Surgical instrument with lockout mechanism

Information

  • Patent Grant
  • 11517312
  • Patent Number
    11,517,312
  • Date Filed
    Tuesday, February 12, 2019
    5 years ago
  • Date Issued
    Tuesday, December 6, 2022
    a year ago
Abstract
Locking assemblies for surgical clamping and cutting instruments include a locking member and a switch. A drive member may be configured to releasably engage a knife and/or a shuttle of the surgical instrument for translating the knife and/or shuttle in a distal direction through a firing stroke. The locking member is movable from a first position permitting distal translation of the drive member through the firing stroke, and a second position inhibiting distal translation of the drive member through the firing stroke. A switch, when proximally positioned, releasably engages the locking member to maintain the locking member in the first position. The switch disengages from the locking member when the switch is moved to a distal position.
Description
TECHNICAL FIELD

The present disclosure relates to surgical stapling instruments having a locking mechanism to prevent actuation of a knife when there is a spent or previously fired cartridge in place. More particularly, the present disclosure is directed towards locking assemblies for surgical clamping and cutting instruments include a locking member and a switch.


BACKGROUND

Surgical clamping and cutting instruments, such as, for example, surgical stapling instruments, may include an end effector having opposing jaws that clamp tissue and a knife that cuts the clamped tissue. It is often advantageous for an end effector of a surgical stapling instrument to be reusable. To that end, staple cartridges can be fitted into one jaw of the end effector prior to each use of the surgical stapling instrument.


It is desirable to prevent firing of a surgical stapling instrument while a spent cartridge remains in place on the jaw. Thus, a need exists for effective mechanisms to prevent firing of a surgical stapling instrument while a spent staple cartridge is in place in the end effector of the surgical stapling instrument.


SUMMARY

The following presents a simplified summary of the claimed subject matter in order to provide a basic understanding of some aspects of the claimed subject matter. This summary is not an extensive overview of the claimed subject matter. It is intended to neither identify key or critical elements of the claimed subject matter nor delineate the scope of the claimed subject matter. Its sole purpose is to present some concepts of the claimed subject matter in a simplified form as a prelude to the more detailed description that is presented later.


The present disclosure relates to surgical stapling instruments having a locking mechanism to prevent actuation of a knife when there is a spent or previously fired cartridge in place.


In one aspect, a lockout assembly for use with a surgical stapling instrument includes a locking member and a switch. A drive member is configured to releasably engage and translate at least one of a knife or a shuttle in a distal direction through a staple firing stroke. The locking member of the locking assembly is movable from a first position permitting distal translation of the drive member through the staple firing stroke, to a second position inhibiting distal translation of the drive member through the staple firing stroke. A spring may bias the locking member toward the second position. The switch of the locking assembly is movable from a proximal position to a distal position. When the switch is in the proximal position, the switch releasably maintains the locking member in the first position. When the switch is in the distal position, the switch disengages from the locking member thereby allowing the locking member to move to the second position.


In another aspect, a surgical stapling instrument includes an anvil jaw assembly, and a staple jaw assembly, including a knife and a shuttle. A drive member is configured to releasably engage and translate the knife and shuttle in a distal direction through a staple firing stroke. The knife and shuttle disengage from the drive member upon distal movement of the drive member after the staple firing stroke. The surgical stapling instrument further includes a locking member pivotable from a first position permitting distal translation of the drive member, to a second position preventing distal translation of the drive member. The surgical stapling instrument further includes a switch, that when in a proximal position, releasably maintains the locking member in the first position. When the switch is in a distal position, the switch disengages from the locking member thereby allowing the locking member to move to the second position.


In another aspect, a surgical stapling instrument includes an anvil jaw assembly, and a staple jaw assembly including a shuttle. The surgical stapling instrument further includes a drive member having a knife integrally formed on an edge thereof. The drive member is configured to releasably engage and translate the shuttle in a distal direction through a staple firing stroke. The shuttle disengages from the drive member upon subsequent distal movement of the drive member after the staple firing stroke. The surgical stapling instrument further includes a locking member pivotable from a first position permitting distal translation of the drive member, to a second position preventing distal translation of the drive member. The surgical stapling instrument further includes a switch, that when in a proximal position, releasably maintains the locking member in the first position. When the switch is in a distal position, the switch disengages from the locking member thereby allowing the locking member to move to the second position.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present surgical stapling instruments having a locking mechanism will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1A is a perspective view of an illustrative surgical stapling instrument;



FIG. 1B is an exploded view of an illustrative end effector of a surgical stapling instrument;



FIG. 2 depicts a partial cross-sectional side view of the end effector of a surgical stapling instrument including a lockout assembly in accordance with an embodiment of the present disclosure having an unfired reload installed;



FIG. 3 is a partial perspective view illustrating the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 showing a proximally positioned switch of a surgical stapling instrument having an unfired reload is installed;



FIG. 3a is a partial perspective view illustrating the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 illustrating a pair of retaining snaps of the switch engaging undercuts of the unfired reload;



FIG. 4 is a partial cross-sectional side view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 with the drive member advanced to contact the knife;



FIG. 5 is a partial side, cross-sectional view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 illustrating the switch advanced to a distal position;



FIG. 6 is a partial side, cross-sectional view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 showing the knife cutting the switch;



FIG. 6a is a partial perspective view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 showing a distal wall blocking the switch from translating distally;



FIG. 7 is a partial perspective view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 showing an uncut switch that has been pushed to a distal position by the knife;



FIG. 8 is a partial perspective view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 having a cut switch that is prevented from retracting by a pair of stops;



FIG. 9 is a partial cross-sectional side view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 with the shuttle shown; and



FIG. 10 is a partial cross-sectional side view of the end effector including a lockout assembly in accordance with the embodiment of FIG. 2 illustrating a drive member having an integrally formed knife on an edge thereof.





DETAILED DESCRIPTION

Particular embodiments of the present surgical stapling instruments are described hereinbelow with reference to the accompanying drawings; however, it is to be understood that the disclosed embodiments are merely exemplary of the disclosure and may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


The present disclosure relates to locking assemblies including a locking member and a switch. A drive member is configured to engage at least one of a knife or a shuttle of a surgical stapling instrument and to translate the knife and/or shuttle in a distal direction through a staple-firing stroke. Contact between the drive member and the knife and/or shuttle is releasable in that once the knife and/or shuttle are translated by the drive member in the distal direction through a staple firing stroke, the knife and/or shuttle disengage from the drive member, remain at a distal portion of the stapling instrument, and are not translated in a proximal direction by the drive member. The locking member is movable from a first position permitting distal translation of the drive member through the staple-firing stroke, and a second position inhibiting distal translation of the drive member through the staple-firing stroke. A spring is configured to bias the locking member toward the second position. The switch of the locking assembly is movable from a proximal position to a distal position. When the switch is in the proximal position, the switch releasably maintains the locking member in the first position. When the switch is in the distal position, the switch disengages from the locking member thereby allowing the locking member to move to the second position.


While the following disclosure is presented with respect to a linear surgical stapler where staples are sequentially fired, it should be understood that the present locking assemblies may be readily adapted for use in any type of surgical clamping and cutting instruments, whether or not the surgical clamping and cutting instrument applies a fastener. The surgical clamping and cutting instrument may be a minimally invasive (e.g., laparoscopic) instrument or an instrument used for open surgery.


Additionally, the present locking assemblies may be readily adapted for use in surgical instruments that are activated using any technique within the purview of those skilled in the art, such as, for example, manually activated surgical instruments, powered surgical instruments (e.g., electro-mechanically powered instruments), robotic surgical instruments, and the like.



FIG. 1A is a perspective view of an illustrative surgical stapling instrument 10 capable of utilizing a locking assembly in accordance with the present disclosure. Surgical stapling instrument 10 includes a handle assembly 12, and an end effector 100 including an anvil jaw assembly 102 and a staple jaw assembly 104 mounted on an elongated shaft 160 of the surgical stapling instrument 10.



FIG. 1B shows anvil jaw assembly 102, including an anvil 106 having staple forming pockets 103 (not shown) supported thereon, and staple jaw assembly 104. Staple jaw assembly 104 and anvil jaw assembly 102 are configured to move from an open position to a closed position. In the open position, a fresh stapling cartridge can be loaded into jaw assembly 104, a spent staple cartridge removed from jaw assembly 104, and tissue may be positioned between the jaw assemblies 102, 104. In the closed position, jaw assemblies 102, 104 cooperate to close upon and clamp tissue such that cartridge 122 and anvil 106 are in close cooperative alignment. In the embodiment shown in FIGS. 1A and 1B, staple jaw assembly 104 is stationary and anvil jaw assembly 102 pivots to the open position. In other embodiments it is contemplated that the jaw assembly containing the anvil is stationary and the jaw assembly containing the staple cartridge pivots to the open position. As those skilled in the art reading this disclosure will appreciate, in yet other embodiments both the anvil jaw assembly and the staple jaw assembly may pivot.


With continued reference to FIG. 1B, staple jaw assembly 104 includes a staple cartridge 122 supported in a channel 134 on a lower jaw 123. Cartridge 122 includes a plurality of staples 124 that are supported on corresponding staple drivers 126 provided within respective staple apertures 128 formed in cartridge 122. Cartridge 122 also includes a shuttle 130 having an inclined distal portion 131 that, upon distal movement, sequentially acts on staple drivers 126, camming them upwardly thereby moving staples 124 into deforming contact with anvil 106. Cartridge 122 also includes a knife 150 configured to translate distally through a channel 127 in cartridge 122 and sever clamped, stapled tissue.



FIG. 1B further shows a drive member 110 that is movably supported on the surgical stapling instrument such that it may pass distally through cartridge 122 and staple jaw assembly 104 when the surgical stapling instrument is fired (e.g., actuated). Also shown in FIG. 1B is the locking assembly including locking member 116 on staple jaw assembly 104 and switch 170 on cartridge 122.


For a more detailed description of illustrative end effectors, reference may be made to U.S. Pat. Nos. 6,669,073 and 8,800,841, the entire contents of which are incorporated herein by this reference. It should of course, be understood that end effector shown in FIGS. 1A and 1B is merely illustrative, and that other end effectors may be employed, including but not limited to the end effectors shown in WO2014/106275, the entire contents of which are incorporated herein by this reference.



FIG. 2 shows an illustrative surgical stapling instrument with an unfired reload installed, including drive member 110, spring 114, locking member 116, knife 150, switch 170, and slot 180.


In a fresh reload, drive member 110 is in a proximal position where it has not yet engaged knife 150. Drive member 110 may be any structure capable of pushing at least one of a shuttle or a knife of a surgical stapling instrument with the necessary force to effectively sever or staple human tissue. Drive member 110 may be an I-beam, an E-beam, or any other type of drive member capable of performing similar functions. Drive member 110 includes a lower distal portion 111 and upper distal portion 113.


When an unfired reload is installed, as in FIG. 2, switch 170 is in a first proximal position. In a fresh, unfired reload distal portion 119 of locking member 116 rests on shelf 171 of switch 170, keeping engagement portion 118 of locking member 116 above and out of engagement with slot 180. When locking member 116 is in this disabled position, distal translation of drive member 110 is permitted, as locking member 116 will not obstruct movement of drive member 110.


As seen in FIG. 3, an unfired reload containing a new cartridge, knife 150 is located on the proximal side of central portion 174 of switch 170, which is uncut. Upon installation of an unfired reload, as depicted in FIG. 3a, retaining snaps 172 of switch 170 are configured to engage undercuts 177 formed on the unfired reload. This interaction, which may be a snap-fit interaction, retains the switch in the proximal position prior to firing of the surgical stapling instrument.


Upon initiation of the staple-firing stroke, as seen in FIG. 4 drive member 110 moves distally to contact knife 150. At this point in the actuation stoke, locking member 116 remains out of engagement with slot 180 because distal portion 119 of the locking member continues to rest on shelf 171 of switch 170. In this position, upper distal portion 113 of drive member 110 contacts knife 150 for distal translation as the actuation stroke continues. Lower distal portion 111 of drive member 110 similarly moves distally in order to engage and translate shuttle 130 (see FIG. 9).


As illustrated in FIG. 5, as drive member 110 continues to move distally, knife 150 begins to advance. Knife 150 is in contact with, and therefore pushes and translates, switch 170 from a proximal position, to a distal position. As illustrated in FIG. 5, once in the distal position, switch 170 separates from and no longer supports distal portion 119 of locking member 116 which essentially falls off of shelf 171. As a result, engagement portion 118 of locking member 116 falls into and engages slot 180, enabling the lockout. Spring 114 is configured to bias engagement portion 118 of locking member 116 in the direction of Arrow “B”, urging engagement portion 118 to drop into slot 180 to enable the locking mechanism.


In FIG. 6, switch 170 is in the distal position. Once switch 170 is translated distally, further distal translation is prevented as switch 170 becomes obstructed by distal wall 179 as best seen in FIG. 6a. As a result of this obstruction, continued distal translation of knife 150 cuts through central portion 174 of switch 170 (see FIG. 7), as a result of the force provided by drive member 110 translating knife 150 distally. A perspective view of switch 170 in the second distal position is shown in FIG. 7 just before cutting of central portion 174. FIG. 7 also illustrates stops 176, each including a proximal ramped face 175. As drive member 110 translates knife 150 distally, and knife 150 pushes switch 170 distally, switch 170 rides over ramped faces 175 of stops 176. Distal faces 181 of stops 176 prohibit movement of switch 170 back to its initial proximal position.


In FIG. 8, knife 150 has cut through central portion 174 of switch 170 so that knife 150 may continue to translate distally towards a final, parked position. As illustrated, stops 176 are positioned on the proximal side of switch 170. In this position, retraction of switch 170 is impossible, as the proximal portions 178 of switch 170 abut distal faces 181 of stops 176. By preventing switch 170 from retracting, it is ensured that locking member 116 may not be disengaged, while also keeping both cut parts of switch 170 contained in the reload.


Once drive member 110 translates distally through a complete firing stroke during which stapling and severing of tissue have occurred, drive member 110 can be retracted, leaving knife 150 parked at a position in a distal portion of cartridge 122. In embodiments, such as the embodiment illustrated in FIG. 9 a shuttle 130 may be unable to move proximally towards the home position due to friction with cartridge 122. In embodiments, as illustrated in FIG. 10, knife 150 may be integrally formed with drive member 110. In embodiments, knife 150 may be parked in a predetermined position in a distally located garage 165. The garage 165 including lateral surfaces that face the cutting tip of knife 150. As drive member 110 is retracted, engagement portion 118 of locking member 116 is unable to move upwards out of slot 180, as spring 114 retains it in the locked position.


Further retraction of drive member 110 positions locking member 116 distal of the drive member. Because the staple cartridge is spent and there is no proximally positioned switch to hold the locking member out of engagement with slot 180, any attempt to re-fire the surgical stapling instrument will be prevented by drive member 110 engaging locking member 116.


In order to disable the lockout of the surgical stapling instrument, an unfired reload (i.e. a new cartridge) must be installed. Each new cartridge contains a new switch 170, shuttle 130, and knife 150. When a new cartridge is installed, switch 170 moves proximally causing a distal portion 119 of locking member 116 to engage with and ride upwards along proximal ramped surface 173 of switch 170, until locking member 116 is again resting on shelf 171, as may be seen in FIG. 2. The lockout is then disabled, allowing for a user to again fire the surgical stapling instrument.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of presently disclosed embodiments. Thus the scope of the embodiments should be determined by the appended claims and their legal equivalents, rather than by the examples given.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. As well, one skilled in the art will appreciate further features and advantages of the present disclosure based on the above-described embodiments. Accordingly, the present disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A surgical stapling instrument comprising: first and second jaws;a drive member configured to move in a distal direction through one of the jaws; anda locking assembly including a locking member pivotable between a first position permitting distal translation of the drive member, and a second position preventing distal translation of the drive member;a switch movable from a proximal position to a distal position, wherein when the switch is in the proximal position the switch releasably maintains the locking member in the first position, and wherein when the switch is in the distal position the switch disengages from the locking member thereby allowing the locking member to move to the second position; andwherein the locking member engages a slot in one of the first and second jaws when in the second position, wherein the drive member is configured to pass through a portion of the switch as the drive member is moved in the distal direction through one of the jaws.
  • 2. The surgical stapling instrument of claim 1, wherein one of the first and second jaws comprises a removable staple cartridge containing a knife and wherein the drive member is configured to releasably engage and translate the knife in the distal direction.
  • 3. The surgical stapling instrument of claim 2, wherein the knife is configured to cut through a center portion of the switch.
  • 4. The surgical stapling instrument of claim 1, wherein one of the first and second jaws comprises a shuttle and wherein the drive member is configured to releasably engage and translate the shuttle in the distal direction.
  • 5. The surgical stapling instrument of claim 1, wherein one of the first and second jaws comprises a removable staple cartridge containing the switch.
  • 6. The lockout assembly of claim 5, wherein one of the first and second jaws includes a channel configured to receive the staple cartridge.
  • 7. The surgical stapling instrument of claim 1, further comprising a spring configured to bias the locking member towards the second position.
  • 8. The surgical stapling instrument of claim 1, wherein the switch is prevented from moving proximally after the switch has been moved to the distal position.
  • 9. The surgical stapling instrument of claim 1, wherein one of the first and second jaws further includes a pair of stops configured to prevent movement of the switch to the proximal position after the switch has been moved to the distal position.
  • 10. The surgical stapling instrument of claim 1, wherein the drive member is actuated by a control device of a robotic surgical system.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is the National Stage of International Application No. PCT/US19/17646 filed Feb. 12, 2019 which claims benefit of U.S. Provisional Application No. 62/629,572 filed Feb. 12, 2018, the entirety of which is herein incorporated by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/017646 2/12/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/157500 8/15/2019 WO A
US Referenced Citations (267)
Number Name Date Kind
4305539 Korolkov et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4429695 Green Feb 1984 A
4509518 McGarry et al. Apr 1985 A
4605001 Rothfuss et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4767044 Green Aug 1988 A
4809695 Gwathmey et al. Mar 1989 A
4848637 Pruitt Jul 1989 A
4892244 Fox et al. Jan 1990 A
4930503 Pruitt Jun 1990 A
4978049 Green Dec 1990 A
5027834 Pruitt Jul 1991 A
5040715 Green et al. Aug 1991 A
5133735 Slater et al. Jul 1992 A
5133736 Bales, Jr. et al. Jul 1992 A
5180092 Crainich Jan 1993 A
5275323 Schulze et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5334183 Wuchinich Aug 1994 A
5342396 Cook Aug 1994 A
5366133 Geiste Nov 1994 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5480089 Blewett Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5497931 Nakamura Mar 1996 A
5533521 Granger Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5554164 Wilson et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5615820 Viola Apr 1997 A
5624452 Yates Apr 1997 A
5628446 Geiste et al. May 1997 A
5667626 Cayford et al. Sep 1997 A
5676674 Bolanos et al. Oct 1997 A
5688269 Newton et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693042 Boiarski et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5709680 Yates et al. Jan 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5959892 Lin et al. Sep 1999 A
6032849 Mastri et al. Mar 2000 A
6079606 Milliman et al. Jun 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6330956 Willinger Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6488196 Fenton, Jr. Dec 2002 B1
6503259 Huxel et al. Jan 2003 B2
6585735 Frazier et al. Jul 2003 B1
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6786382 Hoffman Sep 2004 B1
6817974 Cooper et al. Nov 2004 B2
6877647 Green et al. Apr 2005 B2
6905057 Swayze et al. Jun 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7114642 Whitman Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV et al. Nov 2006 B2
7308998 Mastri et al. Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398908 Holsten et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7455676 Holsten et al. Nov 2008 B2
7472814 Mastri et al. Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7494039 Racenet et al. Feb 2009 B2
7565993 Milliman et al. Jul 2009 B2
7588174 Holsten et al. Sep 2009 B2
7673783 Morgan et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721930 McKenna et al. May 2010 B2
7726539 Holsten et al. Jun 2010 B2
7770774 Mastri et al. Aug 2010 B2
7832611 Boyden et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7866526 Green et al. Jan 2011 B2
7942303 Shah et al. May 2011 B2
7950561 Aranyi May 2011 B2
8070035 Holsten et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8127975 Olson et al. Mar 2012 B2
8157152 Holsten et al. Apr 2012 B2
8272553 Mastri et al. Sep 2012 B2
8308042 Aranyi Nov 2012 B2
8348127 Marczyk Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8551091 Couture et al. Oct 2013 B2
8573465 Shelton Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8608047 Holsten et al. Dec 2013 B2
8672939 Garrison Mar 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8858547 Brogna Oct 2014 B2
8905287 Racenet et al. Dec 2014 B2
8925785 Holsten et al. Jan 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9216019 Schmid et al. Dec 2015 B2
9345479 Racenet et al. May 2016 B2
9717497 Zerkle et al. Aug 2017 B2
9717498 Aranyi et al. Aug 2017 B2
9936949 Measamer et al. Apr 2018 B2
10111659 Racenet et al. Oct 2018 B2
10231732 Racenet et al. Mar 2019 B1
10285693 Kimsey et al. May 2019 B2
10646219 Racenet et al. May 2020 B2
10828027 Racenet et al. Nov 2020 B2
10863988 Patel et al. Dec 2020 B2
20020165562 Grant Nov 2002 A1
20030181910 Dycus et al. Sep 2003 A1
20040232199 Shelton et al. Nov 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006430 Wales Jan 2005 A1
20050006434 Wales et al. Jan 2005 A1
20050070925 Shelton, IV et al. Mar 2005 A1
20050070958 Swayze et al. Mar 2005 A1
20050173490 Shelton, IV Aug 2005 A1
20050178813 Swayze et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20060000868 Shelton, IV et al. Jan 2006 A1
20060016853 Racenet Jan 2006 A1
20060022014 Shelton, IV et al. Feb 2006 A1
20060022015 Shelton, IV et al. Feb 2006 A1
20060024817 Deguchi et al. Feb 2006 A1
20060025809 Shelton, IV Feb 2006 A1
20060025810 Shelton, IV Feb 2006 A1
20060025811 Shelton, IV Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025813 Shelton et al. Feb 2006 A1
20060025816 Shelton, IV Feb 2006 A1
20060049230 Shelton, IV et al. Mar 2006 A1
20060097026 Shelton, IV May 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060190031 Wales et al. Aug 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20070010838 Shelton, IV et al. Jan 2007 A1
20070045379 Shelton, IV Mar 2007 A1
20070102475 Ortiz May 2007 A1
20070262116 Hueil et al. Nov 2007 A1
20080023522 Olson et al. Jan 2008 A1
20080078804 Shelton et al. Apr 2008 A1
20090277947 Viola Nov 2009 A1
20100108740 Pastorelli et al. May 2010 A1
20100145334 Olson et al. Jun 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20110022078 Hinman Jan 2011 A1
20110174863 Shelton, IV et al. Jul 2011 A1
20110251612 Faller et al. Oct 2011 A1
20110251613 Guerra et al. Oct 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295270 Giordano et al. Dec 2011 A1
20120022584 Donnigan et al. Jan 2012 A1
20120223121 Viola et al. Sep 2012 A1
20130015231 Kostrzewski Jan 2013 A1
20130056521 Swensgard Mar 2013 A1
20130068821 Huitema et al. Mar 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130098965 Kostrzewski Apr 2013 A1
20130148577 Terry et al. Jun 2013 A1
20130248577 Leimbach et al. Sep 2013 A1
20130296922 Allen, IV et al. Nov 2013 A1
20140001236 Shelton, IV et al. Jan 2014 A1
20140025071 Sims et al. Jan 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140180286 Marczyk et al. Jun 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi Sep 2014 A1
20140263559 Williams et al. Sep 2014 A1
20140263567 Williams et al. Sep 2014 A1
20140263569 Williams Sep 2014 A1
20140343550 Faller et al. Nov 2014 A1
20150209037 Kostrzewski et al. Jul 2015 A1
20150250530 Manzo et al. Sep 2015 A1
20150272576 Cappola Oct 2015 A1
20150297227 Huitema et al. Oct 2015 A1
20160038227 Garrison Feb 2016 A1
20160120544 Shelton, IV et al. May 2016 A1
20160175033 Le Jun 2016 A1
20160192999 Stulen et al. Jul 2016 A1
20160270780 Hall et al. Sep 2016 A1
20160287251 Shelton, IV et al. Oct 2016 A1
20160338764 Krastins et al. Nov 2016 A1
20170010578 Miyakawa Jan 2017 A1
20170042604 McFarland et al. Feb 2017 A1
20170079710 Deville et al. Mar 2017 A1
20170097035 Zimmerman et al. Apr 2017 A1
20170135746 Tetzlaff et al. May 2017 A1
20170189028 Aranyi Jul 2017 A1
20170245857 Shelton, IV et al. Aug 2017 A1
20170296172 Harris et al. Oct 2017 A1
20180021042 Nicholas Jan 2018 A1
20180161052 Weir et al. Jun 2018 A1
20180168581 Hunter et al. Jun 2018 A1
20180168622 Shelton, IV et al. Jun 2018 A1
20180168628 Hunter Jun 2018 A1
20180168641 Harris et al. Jun 2018 A1
20180168642 Shelton, IV et al. Jun 2018 A1
20180168649 Shelton, IV et al. Jun 2018 A1
20180310948 Stamm et al. Nov 2018 A1
20190015124 Williams et al. Jan 2019 A1
20190142531 Wentworth et al. May 2019 A1
20190167266 Patel et al. Jun 2019 A1
20190365458 Whitlock et al. Dec 2019 A1
20200397430 Patel et al. Dec 2020 A1
20210000557 Mustufa et al. Jan 2021 A1
20210077101 Patel et al. Mar 2021 A1
20210177495 Ross et al. Jun 2021 A1
20210177500 Khalaji Jun 2021 A1
20210212683 Burbank Jul 2021 A1
20210386427 Millman et al. Dec 2021 A1
20220015762 Wixey et al. Jan 2022 A1
20220015763 Wixey et al. Jan 2022 A1
20220015823 Wilson et al. Jan 2022 A1
20220054130 Overmyer et al. Feb 2022 A1
20220061836 Parihar et al. Mar 2022 A1
20220061840 Hites Mar 2022 A1
20220061841 Wixey et al. Mar 2022 A1
20220071632 Patel et al. Mar 2022 A1
20220079585 Egan Mar 2022 A1
Foreign Referenced Citations (36)
Number Date Country
0277532 Aug 1990 EP
0277529 Apr 1993 EP
1090592 Apr 2001 EP
1728473 Dec 2006 EP
1479346 Jan 2007 EP
1621141 Jul 2007 EP
1316290 Feb 2012 EP
1754445 Oct 2013 EP
3135225 Mar 2017 EP
3173029 May 2017 EP
2828952 Dec 2005 FR
5301166 Sep 2013 JP
2016508792 Mar 2016 JP
2016513570 May 2016 JP
2017527396 Sep 2017 JP
6411461 Oct 2018 JP
2019141659 Aug 2019 JP
405234 Sep 1975 SU
886900 Dec 1981 SU
1333319 Aug 1987 SU
1442191 Dec 1988 SU
1459659 Feb 1989 SU
WO-8602254 Apr 1986 WO
WO-9005489 May 1990 WO
WO-9734533 Sep 1997 WO
WO-03094743 Nov 2003 WO
WO-03094746 Nov 2003 WO
WO-03094747 Nov 2003 WO
WO-2012142872 Oct 2012 WO
WO-2014106275 Jul 2014 WO
WO-2017034803 Mar 2017 WO
WO-2017156070 Sep 2017 WO
WO-2017214243 Dec 2017 WO
WO-2018005750 Jan 2018 WO
WO-2018071497 Apr 2018 WO
WO-2018118402 Jun 2018 WO
Non-Patent Literature Citations (17)
Entry
International Search Report and Written Opinion for Application No. PCT/US2020/054568, dated Jan. 29, 2021, 13 pages.
International Preliminary Reporton Patentability for Application No. PCT/US2019/017646, dated Aug. 27, 2020, 10 pages.
International Preliminary Reporton Patentability for Application No. PCT/US2019/019501, dated Sep. 3, 2020, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/056979, dated Dec. 18, 2019, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/062344, dated Mar. 23, 2020, 17 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/062768, dated Mar. 9, 2020, 15 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/064861, dated Mar. 30, 2020, 18 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/066513, dated Apr. 21, 2020, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/066530, dated Apr. 21, 2020, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/020672, dated Jun. 29, 2020, 10 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/033481, dated Sep. 3, 2020, 22 pages.
Vertut, Jean and Phillipe Coiffet, Robot Technology: Teleoperation and Robotics Evolution and Development, English translation, Prentice-Hall, Inc., Inglewood Cliffs, NJ, USA 1986, vol. 3A, 332 pages.
United States Patent Office; International Search Report & Written Opinion; dated Apr. 16, 2019; PCT Application No. PCT/US2019/017646.
European Search Report (Corrected version) for Application No. EP19750317.0, dated Mar. 28, 2022, 26 pages.
International Search Report and Written Opinion for Application No. PCT/US2020/025655, dated Jul. 22, 2020, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2019/019501, dated May 9, 2019, 8 pages.
Partial European Search Report for Application No. EP19757451.0, dated Feb. 2, 2022, 12 pages.
Related Publications (1)
Number Date Country
20210022736 A1 Jan 2021 US
Provisional Applications (1)
Number Date Country
62629572 Feb 2018 US