Many surgical devices comprise end effectors with opposing jaw members that are capable of opening and closing. The jaw members grip tissue therebetween when the jaw members are in the closed position. Many such devices are hand-powered, whereby the operator retracts a closure trigger to cause the jaw members to transition to the closed positions, and releases the closure trigger to cause the jaw members to transition to the open position. Other types of surgical devices use electrical or pneumatic motors to close the jaw members.
Ways to reduce the external force required to clamp the jaw members or to make the required clamping force more uniform are desired.
In one general aspect, the present invention is directed to a surgical instrument comprising an end effector, the end effector comprising first and second opposing jaw members, wherein at least one of the first and second jaw members are moveable such that the first and second jaw members are transitionable between open and closed positions. The first jaw member may comprise a permanent magnet. The second jaw member may also comprise a magnet (e.g., permanent or soft). The magnetic motive force between the magnets of the first and second jaw members may attract each other to thereby reduce the external force required to transition the first and second jaw members to the closed position. In addition, the magnets may be configured to repeal each other to thereby aid in opening the jaw members.
Various embodiments of the present invention are described herein by way of example in conjunction with the following figures, wherein:
Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment,” or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment,” or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
In one general aspect, the present invention is directed to any type of surgical device having an end effector with at least two jaw members for gripping or positioning tissue therebetween, and that uses magnetic motive force between magnets in the respective jaw members to aid in clamping and/or opening the jaw members.
End effector 110 may be adapted for capturing (or clamping), welding, and transecting tissue in various embodiments. First jaw 120A and second jaw 120B may close to thereby capture, clamp, or engage tissue about a longitudinal axis 125 defined by cutting member 140. First jaw 120A and second jaw 120B may also apply compression to the tissue. Elongate shaft 108, along with first jaw 120A and second jaw 120B, can be rotated a full 360° degrees, as shown by arrow 117, relative to handle 105 through, for example, a rotary triple contact. First jaw 120A and second jaw 120B can remain openable and/or closeable while rotated.
The jaw members of the end effector 110 are transitionable between open and closed positions, as shown in
Referring briefly now to
More specifically, referring now to
Referring now to
In at least one embodiment, one or both of the jaws 120A, 120B may be flexible, such that one of the jaws is configured to flex when gripping tissue. In at least one embodiment, referring now to
The end effector 110 may further include at least one compression element extending from the cutting member 140, such as inner cam surface 144A and/or 144B of flanges 140A and 140B, see
As discussed above, embodiments of the present invention use magnetomotive force between magnets in the respective jaw members of the end effector, such as first jaw 120A and second jaw 120B of end effector 110, to aid in clamping and/or opening the jaw members 120A-120B. When there is an attractive magnetomotive force between the magnets in the respective jaw members, the magnetomotive force may aid in clamping the jaw members, thereby reducing the external force-to-fire (FTF) required to clamp the end effector. In such embodiments, the end effector 110 may comprise other force means for overcoming the attractive magnetomotive force when attempting to open the jaw members 120A, 120B, such as, for example, a spring biased to urge the jaw members 120A, 120B apart. When there is a repellant magnetomotive force between the magnets in the respective jaw members, the magnetomotive force may aid in opening or unclamping the jaw members.
In various embodiments, at least one of the magnets, such as magnet 180 in first jaw 120A, may be a permanent magnet. As such, the permanent magnet 180 may comprise permanent magnetic material, such as iron, nickel, cobalt, magnetic rare earth metals (such as neodymium and samarium), and/or magnetic alloys thereof (e.g., Alnico, neodymium-iron-boron, or samarium-cobalt). In addition, the permanent magnet 180 may be a switchable permanent magnet, such as an electromagnet or a rotatable permanent magnet, described further below.
The magnet 182 of the second jaw 120B may be, for example, a permanent magnet or a soft magnet. In embodiments where the magnet 182 is a permanent magnet, it may comprise permanent magnetic material (such as the example permanent magnetic materials described above). In addition, in various embodiments, the permanent magnet 182 may comprise a switchable permanent magnet, such as an electromagnet or a rotatable magnet, for example. In embodiments where the magnet 182 is a soft magnet, the magnet 182 may comprise soft ferromagnetic material, such as steel and other nickel-iron or nickel-cobalt alloys. In embodiments where the magnet 182 is a soft magnet, the magnetomotive force between the magnets 180, 182 may only assist in closing the jaw 120A, 120B and not in opening the jaws 120A, 120B as the magnetomotive force is an attractive force only. When both magnets 180, 182 are made of permanent magnetic materials, they may repeal or retract each other, depending on their magnetic polarity. If the permanent magnets 180, 182 are configured to attract each other, their magnetomotive force will aid in closing the jaws 120A, 120B, but hinder opening the jaws 120A, 120B. Conversely, if the permanent magnets 180, 182 are configured to repeal each other, their magnetomotive force will aid in opening the jaws 120A, 120B, but hinder closing the jaws 120A, 120B.
As mentioned above, either the magnet 180 or the magnet 182 may be an electromagnet. In such embodiments, the current through the electromagnet may be switched, or reversed, to reverse the magnetomotive force between the magnets 180,182. That way, depending on the orientation of the magnetic field from the electromagnet(s) (which depends on the direction of the current through the coil of the electromagnet(s)), the electromagnet(s) may be used to assist closing and opening of the jaws 120A, 120B of the end effector.
In one embodiment, the control circuit 210 controls the switches 2081-4 such that switches 2081 and 2084 open and close together, and such that 2082 and 2083 open and close together, and open and close oppositely from switches 2081 and 2084. That way, when switches 2081 and 2084 are closed (on), switches 2082 and 2083 are open (off), providing a first current direction through the coil 204. When switches 2082 and 2083 are closed (on), switches 2081 and 2084 are open (off), providing a second current direction through the coil 204 that is opposite to the first current direction. In that way, the polarity of the magnetic field from the electromagnet 202 can be controlled (e.g., reversed). Preferably, the control circuit 210 controls the switches 2081-4 such that are not all closed at the same time. The control circuit 210 may be separate from the switches 2081-4; in other embodiments, the control circuit 210 and the switches 2081-4 may be part of a common integrated circuit.
In various embodiments, the power source 206 may be remotely located from the electromagnet 202, such as part of the electrical source 145. As such, the electrical source 145 may provide DC power to the circuit 200. Coupling wires through the shaft 108 may couple the remote power source 206 to the switches 2081-4 and the electromagnet 202. In other embodiments, the power source 206 may be located in the handle 105. In such embodiments, the power source 206 may comprise one or more battery cells. In a similar manner, the battery cell(s) may be coupled to the switches 2081-4 and the electromagnet 202 by wires running through the shaft 108. More details regarding surgical devices having an opening-and-closing end effector and with a battery cell(s) in the handle of the device may be found in the following published U.S. patent application, which are incorporated herein by reference in their entirety: Pub. No. 2007/0175960; Pub. No. 2008/0167522; and Pub. No. 2009/0209979.
The control circuit 210 may receive inputs from user controls and/or sensors of the device 100. For example, when the user retracts the trigger arm 128, retraction of the trigger arm 128 may be sensed by a sensor 211, which sensor output is input to the control circuit 210. Based thereon, the control circuit 210 may control the switches 2081-4 such that the magnetic field from the electromagnet 202 aids in closing the jaws 120A, 120B. Conversely, when the lever arm 128 transitions from its closed (or retracted) position to its open (or unretracted) position, the control circuit 210 may control the switches 2081-4 so that the polarity of the magnetic field from the electromagnet 202 is reversed, thereby aiding in opening the jaws 120A, 120B. In devices 100 where a push-button(s) is used to open and close the end effector 110, the control circuit 210 may be responsive to activation of the push-button(s) for opening and closing the jaws 120A, 120B.
In various embodiments, the control circuit 210 may be responsive to other sensors, such as a pressure sensor 212 and/or a position sensor 214, for example. The pressure sensor 212 may be located in the end effector 110 and may sense the compression force on the tissue between the jaws 120A, 120B. If the compression force exceeds a threshold level as sensed by the pressure sensor 212, the control circuit 210 may open the switches 2081-4 to turn off the electromagnet 202. In addition, in such circumstances, the control circuit 210 could control the switches to open the jaw members. The position sensor 214 may sense, for example, the distance between the jaws 120A, 120B, which is indicative of the thickness of the tissue clamped between the jaws. The position sensor 214 may comprise a Hall effect sensor, for example. In various embodiments, if the tissue thickness is less than a threshold level as sensed by the position sensor 214, the control circuit 210 may open the switches 2081-4 to turn off the electromagnet 202. In addition, in such circumstances, the control circuit 210 could control the switches to open the jaw members. More details regarding implementation of a pressure (or load) sensor and/or position sensors in an opening-and-closing end effector of a surgical device may be found in U.S. Pub. No. 2006/0212069, U.S. Pub. No. 2009/0076534, and U.S. patent application Ser. No. 12/647,134, which are incorporated herein by reference in their entirety. In various embodiments, the circuit 200 may also comprise passive circuit elements, such as resistors, to dissipate current to the electromagnet 202, to thereby control the magnitude of the current to the electromagnet 202, and hence the strength of the magnetic field from the electromagnet 202.
In various embodiments, one of the magnets (e.g., magnet 180) may be an electromagnet and the other magnet (e.g., magnet 182) may comprise permanent magnetic or soft magnetic materials. Where the second magnet 182 comprises permanent magnetic materials, the electromagnet 180 may repeal or attract the second magnet 182, depending on the polarity of the magnetic field from the electromagnet 180 (which can be controlled by the control circuit). In other embodiments, both magnets 180, 182 may be electromagnets. In such embodiments, by suitably varying the direction of the current through the coils of the electromagnets (which can be controlled by the control circuit), the two electromagnets can be configured to attract or repeal each other, thereby aiding closing and opening of the jaws 120A, 120B.
The electromagnet(s) 180, 182 may be positioned at the distal end of the jaw member(s) 120, 120B. In other embodiments, the electromagnet(s) 180, 182 may be positioned more proximately in the jaw member(s) 120, 120B. In addition, a magnetic field concentrator(s) may be used to concentrate the magnetic field from the electromagnet(s) 180, 182 at a desired location in the end effector 102. That way, for example, the electromagnet(s) 180, 182 does not need to be located in the precise location where the magnetic field is desired. Examples of a magnetic field concentrator can be found in, for example, U.S. Pat. No. 7,513,025, which is incorporated herein by reference.
In addition to electromagnets, another type of switchable permanent magnet that may be used for one of the magnets is a rotatable permanent magnet, as illustrated in
The above described embodiments may be employed in any suitable surgical device comprising an opening-closing end effector with two jaw members moveable relative to each other, including, but not limited to bipolar RF surgical devices, harmonic devices (e.g., the jaw members may comprise one jaw and one blade in such embodiments), endo-cutters, clamps, etc.
The devices disclosed herein may be designed to be disposed of after a single use, or they may be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of this application.
Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.
It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.
Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications, and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
2366274 | Luth et al. | Jan 1945 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
3166971 | Stoecker | Jan 1965 | A |
3580841 | Cadotte et al. | May 1971 | A |
3703651 | Blowers | Nov 1972 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4281785 | Brooks | Aug 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4582236 | Hirose | Apr 1986 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4910389 | Sherman et al. | Mar 1990 | A |
5104025 | Main et al. | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5309927 | Welch | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5496317 | Goble et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5558671 | Yates | Sep 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5984938 | Yoon | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6206876 | Levine et al. | Mar 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6503248 | Levine | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6602252 | Mollenauer | Aug 2003 | B2 |
6635057 | Harano et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6679882 | Kornerup | Jan 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6789939 | Schrödinger et al. | Sep 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6821273 | Mollenauer | Nov 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6860880 | Treat et al. | Mar 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7354440 | Truckal et al. | Apr 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Sheltoin, IV et al. | Oct 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
7935114 | Takashino et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8070036 | Knodel et al. | Dec 2011 | B1 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
20020165541 | Whitman | Nov 2002 | A1 |
20030105474 | Bonutti | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030216722 | Swanson | Nov 2003 | A1 |
20040019350 | O'Brien et al. | Jan 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040143260 | Francischelli | Jul 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040232196 | Shelton, IV et al. | Nov 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20050085809 | Mucko et al. | Apr 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060069388 | Truckai et al. | Mar 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070106158 | Madan et al. | May 2007 | A1 |
20070146113 | Truckai et al. | Jun 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070232920 | Kowalski et al. | Oct 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232927 | Madan et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070239025 | Wiener et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080071271 | Francischelli | Mar 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080188851 | Truckai et al. | Aug 2008 | A1 |
20080221565 | Eder et al. | Sep 2008 | A1 |
20080262491 | Swoyer et al. | Oct 2008 | A1 |
20080294158 | Pappone et al. | Nov 2008 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090099582 | Isaacs et al. | Apr 2009 | A1 |
20090125027 | Fischer | May 2009 | A1 |
20090138003 | Deville et al. | May 2009 | A1 |
20090206140 | Scheib et al. | Aug 2009 | A1 |
20090209979 | Yates et al. | Aug 2009 | A1 |
20090248002 | Takashino et al. | Oct 2009 | A1 |
20090320268 | Cunningham et al. | Dec 2009 | A1 |
20090326530 | Orban, III et al. | Dec 2009 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100032470 | Hess et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036380 | Taylor et al. | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100076433 | Taylor et al. | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100237132 | Measamer et al. | Sep 2010 | A1 |
20100264194 | Huang et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20110087208 | Boudreaux et al. | Apr 2011 | A1 |
20110087209 | Boudreaux et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087219 | Boudreaux et al. | Apr 2011 | A1 |
20110087220 | Felder et al. | Apr 2011 | A1 |
20110155781 | Swensgard et al. | Jun 2011 | A1 |
20110238065 | Hunt et al. | Sep 2011 | A1 |
20110251608 | Timm et al. | Oct 2011 | A1 |
20110251609 | Johnson et al. | Oct 2011 | A1 |
20110251612 | Faller et al. | Oct 2011 | A1 |
20110251613 | Guerra et al. | Oct 2011 | A1 |
20110264093 | Schall | Oct 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110282339 | Weizman et al. | Nov 2011 | A1 |
20110301605 | Horner | Dec 2011 | A1 |
20110306963 | Dietz et al. | Dec 2011 | A1 |
20110306964 | Stulen et al. | Dec 2011 | A1 |
20110306965 | Norvell et al. | Dec 2011 | A1 |
20110306966 | Dietz et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110306968 | Beckman et al. | Dec 2011 | A1 |
20110306972 | Widenhouse et al. | Dec 2011 | A1 |
20110306973 | Cummings et al. | Dec 2011 | A1 |
20120010615 | Cummings et al. | Jan 2012 | A1 |
20120010616 | Huang et al. | Jan 2012 | A1 |
20120012636 | Beckman et al. | Jan 2012 | A1 |
20120012638 | Huang et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022524 | Timm et al. | Jan 2012 | A1 |
20120022525 | Dietz et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120022527 | Woodruff et al. | Jan 2012 | A1 |
20120022528 | White et al. | Jan 2012 | A1 |
20120022529 | Shelton, IV et al. | Jan 2012 | A1 |
20120022530 | Woodruff et al. | Jan 2012 | A1 |
20120136353 | Romero | May 2012 | A1 |
20120150176 | Weizman | Jun 2012 | A1 |
20130023875 | Harris et al. | Jan 2013 | A1 |
20130053831 | Johnson et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
10201569 | Jul 2003 | DE |
0340803 | Aug 1993 | EP |
0630612 | Dec 1994 | EP |
0705571 | Apr 1996 | EP |
0640317 | Sep 1999 | EP |
1749479 | Feb 2007 | EP |
1767157 | Mar 2007 | EP |
1878399 | Jan 2008 | EP |
1915953 | Apr 2008 | EP |
1532933 | May 2008 | EP |
1707143 | Jun 2008 | EP |
1943957 | Jul 2008 | EP |
1849424 | Apr 2009 | EP |
2042117 | Apr 2009 | EP |
2060238 | May 2009 | EP |
1810625 | Aug 2009 | EP |
2090238 | Aug 2009 | EP |
2092905 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
1747761 | Oct 2009 | EP |
1769766 | Feb 2010 | EP |
2151204 | Feb 2010 | EP |
2153791 | Feb 2010 | EP |
2243439 | Oct 2010 | EP |
1728475 | Aug 2011 | EP |
2353518 | Aug 2011 | EP |
WO 9322973 | Nov 1993 | WO |
WO 9635382 | Nov 1996 | WO |
WO 9800069 | Jan 1998 | WO |
WO 9840020 | Sep 1998 | WO |
WO 9857588 | Dec 1998 | WO |
WO 9923960 | May 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 0025691 | May 2000 | WO |
WO 0128444 | Apr 2001 | WO |
WO 03001986 | Jan 2003 | WO |
WO 03013374 | Feb 2003 | WO |
WO 03020339 | Mar 2003 | WO |
WO 03028541 | Apr 2003 | WO |
WO 03030708 | Apr 2003 | WO |
WO 03068046 | Aug 2003 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2005052959 | Jun 2005 | WO |
WO 2006021269 | Mar 2006 | WO |
WO 2006036706 | Apr 2006 | WO |
WO 2006055166 | May 2006 | WO |
WO 2008020964 | Feb 2008 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008099529 | Aug 2008 | WO |
WO 2008101356 | Aug 2008 | WO |
WO 2009022614 | Feb 2009 | WO |
WO 2009036818 | Mar 2009 | WO |
WO 2009039179 | Mar 2009 | WO |
WO 2009059741 | May 2009 | WO |
WO 2009082477 | Jul 2009 | WO |
WO 2009149234 | Dec 2009 | WO |
WO 2010017266 | Feb 2010 | WO |
WO 2010104755 | Sep 2010 | WO |
WO 2011089717 | Jul 2011 | WO |
Entry |
---|
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Glaser and Subak-Sharpe, Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
U.S. Appl. No. 12/576,756, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,776, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,789, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,808, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,831, filed Oct. 9, 2009. |
U.S. Appl. No. 12/836,366, filed Jul. 14, 2010. |
U.S. Appl. No. 12/836,383, filed Jul. 14, 2010. |
U.S. Appl. No. 12/836,396, filed Jul. 14, 2010. |
U.S. Appl. No. 12/842,464, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,476, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,507, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,518, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,538, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,565, filed Jul. 23, 2010. |
U.S. Appl. No. 12/758,253, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,268, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,284, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,298, filed Apr. 12, 2010. |
U.S. Appl. No. 12/765,175, filed Apr. 22, 2010. |
U.S. Appl. No. 12/841,480, filed Jul. 22, 2010. |
U.S. Appl. No. 12/963,001, filed Dec. 8, 2010. |
U.S. Appl. No. 12/732,992, filed Mar. 26, 2010. |
U.S. Appl. No. 12/797,207, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,252, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,288, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,305, filed Jun. 9, 2010. |
U.S. Appl. No. 12/841,370, filed Jul. 22, 2010. |
U.S. Appl. No. 12/797,844, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,853, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,861, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,866, filed Jun. 10, 2010. |
U.S. Appl. No. 12/832,345, filed Jul. 8, 2010. |
U.S. Appl. No. 12/832,361, filed Jul. 8, 2010. |
U.S. Appl. No. 12/781,243, filed May 17, 2010. |
U.S. Appl. No. 12/775,724, filed May 7, 2010. |
U.S. Appl. No. 12/622,113, filed Nov. 19, 2009. |
U.S. Appl. No. 12/635,415, filed Dec. 10, 2009. |
International Search Report for PCT/US2011/057705, Jan. 17, 2012 (4 pages). |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
U.S. Appl. No. 13/221,410, filed Aug. 30, 2011. |
U.S. Appl. No. 13/189,169, filed Jul. 22, 2011. |
U.S. Appl. No. 12/647,134, filed Dec. 24, 2009. |
Number | Date | Country | |
---|---|---|---|
20120101488 A1 | Apr 2012 | US |