Surgical instrument with selectively rigidizable features

Information

  • Patent Grant
  • 10092291
  • Patent Number
    10,092,291
  • Date Filed
    Tuesday, January 25, 2011
    13 years ago
  • Date Issued
    Tuesday, October 9, 2018
    5 years ago
Abstract
Mechanisms for altering the shape of a cell or chamber of a shaft or an actuation drive of an instrument are provided. The mechanisms may selectively rigidize the shaft of surgical or diagnostic instruments. The shaft assembly includes a shaft operatively connectable to a control member, at least one cell or a set of cells defined within the shaft, a shape altering material contained within the cell or cells, and, an activation link operatively connectable to a source of activation energy for delivering activation energy to each cell for activating the shape altering material to selectively rigidize or unrigidize the shaft. An actuator for producing work is also provided that includes an element within a housing that defines a cell or a set of cells. The shape altering material is contained within the cells, and a source of activation energy operatively connected to each cell for activating the shape altering material to expand or contract the cell. The element is operatively connectable to a driving member of an instrument such that the change in the cell is translated to the driving member to facilitate the production of work.
Description
BACKGROUND

i. Field of the Invention


The present application relates to methods and devices for minimally invasive surgical procedures and, more particularly, to surgical and diagnostic instruments having selectively rigidizable components.


ii. Description of the Related Art


In minimally invasive surgical and diagnostic procedures, such as laparoscopic surgery, a surgeon may place one or more small ports into a patient's abdomen to gain access into the abdominal cavity of the patient. A surgeon may use, for example, a port for insufflating the abdominal cavity to create space, a port for introducing a laparoscope for viewing, and a number of other ports for introducing surgical instruments for operating on tissue. Other minimally invasive surgical procedures include natural orifice transluminal endoscopic surgery (NOTES) wherein surgical instruments and viewing devices are introduced into a patient's body through, for example, the mouth, nose, vagina, or rectum. The benefits of minimally invasive procedures compared to open surgery procedures for treating certain types of wounds and diseases or for diagnosing certain types of conditions, are now well-known to include faster recovery time and less pain for the patient, better outcomes, and lower overall costs.


In many case, the site of interest in an internal cavity or lumen of a patient is remote from the entry port or natural orifice and an instrument having a long shaft leading from the external entry port or natural orifice to the site of interest is required. The shaft in many cases has to be flexible to allow it to be maneuvered from the port or orifice to the site of interest. That flexibility can, however, make operation of the tool at the end of the shaft, generally referred to as an end effector, difficult.


The foregoing discussion is intended only to illustrate various aspects of the related art in the field of the invention at the time, and should not be taken as a disavowal of claim scope.


SUMMARY

The use of shape altering materials to facilitate the desired functioning of various portions of instruments, such as surgical or diagnostic instruments, is described herein. In various embodiments, a shaft assembly is provided that includes a shaft, at least one cell defined within the shaft, a shape altering material contained within the at least one cell, and, an activation link operatively connectable to a source of activation energy for delivering activation energy to the at least one cell for activating the shape altering material to selectively rigidize or unrigidize the shaft.


In various embodiments, an actuator for producing work is provided that includes a housing assembly, an element within the housing that has a longitudinal axis and defines therein at least one cell, a shape altering material housed within the at least one cell, and a source of activation energy operatively connected to the cell for activating the shape altering material to effect a change in the size of the at least one cell. The element may be operatively connectable to a driving member of an instrument such that the change in the size of the cell is translated to the driving member to facilitate the production of work.


In certain preferred embodiments, one or both of the shaft assembly and the actuator may be incorporated into a surgical instrument. In these embodiments, the surgical instrument may include an end effector, a shaft assembly operatively connected to the end effector, at least one cell defined within at least one of the shaft assembly or the end effector, a shape altering material housed within the at least one cell, and, an actuation assembly for selectively activating the shape altering material to effect a change in the at least one cell.


The shape altering material may be a wax, a polymeric phase change material, a conductive plastic, an expandable foam, or a magneto rheologic fluid.


The actuation assembly may include a source of activation energy, an activation control member positioned, for example, on a control portion operatively connected to the proximal end of the instrument for selectively applying the activation energy, and a link from the control member to the at least one cell for delivering the activation energy to the cell to activate the shape altering material.


The activation energy may be light, heat, electricity, magnetism, chemical energy (exothermic or endothermic), or pneumatic energy or hydraulic energy. The source of activation energy may be an external source linked to the activation control member, such as an electric outlet or a source of radiation within a desired rage of wavelengths, or an internal storage source for storing activation energy derived from an external source, such as a rechargeable battery, or a self-contained internal source, such as a replaceable battery or pressure sensor.


In certain embodiments, the shaft assembly may include an elongate shaft having a longitudinal axis and a plurality of cells formed in the shaft with each cell containing an amount of the shape altering material.


In certain embodiments, each of the plurality of cells may form a discrete pocket. The plurality of pockets may be arranged at intervals along the length of the shaft. In various embodiments, the shaft may be segmented and each pocket of the plurality of pockets is positioned between different adjacent segments along the axis of the shaft wherein selective activation of the shape altering material effects bending of the shaft in a predetermined direction. In other embodiments, the plurality of pockets may be positioned between different adjacent segments along opposing sides of the length of the shaft wherein selective activation of the shape altering material effects bending of the shaft in at least one of two predetermined directions. A further embodiment provides the plurality of pockets positioned between different adjacent segments along three equi-distant lengths of the shaft wherein selective activation of the shape altering material effects bending of the shaft in any predetermined direction through one or more 360° rotations, depending on the pitch and diameter of the shaft. The plurality of discrete pockets may also be formed into rings around the axis of the shaft.


In alternative embodiments, each of the plurality of cells may form a column along a portion of the length of the shaft. One or more channels may be formed in the shaft for carrying the activation link to the cells.


In other embodiments, the shaft assembly may include a plurality of concentric tubes. For example, there may be in various embodiments, a plurality of concentric tubes spaced such that an annular space is defined between adjacent concentric tubes. In various embodiments, there may be an inner tube, and at least one outer tube, and an annular space defined between the inner tube and the adjacent outer tube, wherein the inner tube defines a central lumen along its length. The shaft assembly may include a plurality of elongate flexible columns alternating with a plurality of elongate cells within the annular space. In another embodiment, the shaft assembly may include a plurality of annular solid segments alternating with a plurality of annular cells within the annular space. In another embodiment, the shaft assembly may include a first coil wound in a clockwise spiral positioned within the annular space. Alternatively, or in addition, there may be a second coil wound in a counterclockwise spiral within the annular space. In the embodiment having both the first and the second coil, the coils are positioned adjacent to each other within the annular space. The annular space in this and various embodiments may define the cell containing the shape altering material.


In certain embodiments of the surgical instrument the at least one cell may be in the end effector, in addition to or instead of, in the shaft assembly. In such embodiments, the end effector may include a housing, an element within the housing having a longitudinal axis and defining therein at least one cell, a plunger movable in an axial direction through the element, wherein the plunger includes a barrier plate for dividing the cell within the element into two chambers. In this embodiment, the shape altering material may be one of the expandable foam or the phase-change material and is housed within at least one of the two chambers. Activation of the shape altering material effects one of expansion or contraction of the shape altering material to move the plunger in one of a first or a second axial direction through the element.


In certain embodiments, each of the two chambers may contain a different shape altering material such that activation energy delivered to the two chambers effects expansion of the shape altering material in one chamber and contraction of the shape altering material in the other chamber to assist movement of the plunger in one of the first or the second axial direction. A spring may be provided within the element for biasing the plunger in a desired one of the first or the second axial direction.


The end effector may be any suitable known end effector, such as a cartridge for holding one or more tissue fasteners, such as staples or clips, wherein the plunger is positioned adjacent the tissue fastener, such that expansion of the shape altering material moves the plunger to eject a tissue fastener from the cartridge.


The end effector may, for example, be a pair of graspers having expandable jaws, such that expansion of the shape altering material moves the plunger to alter the jaws from one of an open or a closed configuration. For example, expansion may open one or both sides of the jaws and contraction of the shape altering material may move the plunger to close one or both sides of the jaws, or vice versa.


In certain embodiments, the end effector may include a cylinder defining a cylindrical space therein and having a central axial rod. The at least one cell may be formed within the cylindrical space between first and second end walls, a stationary radial wall attached to the rod, and a movable radial wall rotatably attached to the rod. When the shape altering material, for example, is a phase change material, activation effects a change of phase resulting in one of expansion or contraction of the phase change material thereby effecting rotation of the movable radial wall about the rod for the production of radial motion.





FIGURES

Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.



FIG. 1 is an embodiment of a surgical instrument having a shaft in a flexible mode and an end effector.



FIG. 2 is an embodiment of the surgical instrument of FIG. 1 wherein the shaft is in a rigidized mode, with a flexible configuration shown in chain line.



FIG. 3 A-A is a cross-sectional view of the shaft through the line A-A of FIG. 2.



FIG. 4 A-A is a cross-sectional view of an alternative embodiment of the shaft through the line A-A of FIG. 2.



FIG. 5 is a view of a shaft having a cell in the form of at least one column.



FIG. 6 is a view of a shaft having an alternative embodiment of cells alternating with solid sections of the shaft.



FIG. 7 is a partial sectional view of a shaft assembly having inner and outer tube layers with a shape altering material contained in between.



FIG. 8 is a side sectional view of the shaft configuration of FIG. 7 in a partially flexed or unrigidized mode.



FIG. 9 is a partial side sectional view of an embodiment of a shaft assembly configuration having inner and outer tubes with a shape altering material contained in between.



FIG. 10 is a view of the stress relationship for the individual and combined inner and outer tube members of a shaft assembly.



FIG. 11 is a curve showing the phase change characteristics of one embodiment of the shape altering material.



FIG. 12 is a view of a magneto rheological shape altering material in a flexible mode in a section of a cell.



FIG. 13 is a view of the magneto rheological shape altering material of FIG. 12 in a rigidized mode.



FIGS. 14 A-E are side sectional and cross-sectional views of alternative embodiments of sets of cells having pockets at the junctions of a segmented shaft.



FIG. 15 is a view of an alternative embodiment of an actuation cell containing a shape altering material in both chambers that effects motion in either of two directions.



FIG. 16 is a cross-sectional view of an alternative embodiment of an actuation cell containing a shape altering material that effects rotational motion.



FIG. 17 is a side sectional view and end view of an embodiment of an end effector with an actuation cell.



FIG. 18 is a side sectional view of a curved shaft having at least two columnar cells.



FIG. 19 A-D are sectional views of an alternative embodiment of a shaft having one or two coils that spiral around an annular cell in opposing directions.



FIG. 20 is a partial view of a shaft having a woven coil configuration.



FIG. 21 is a section view of an embodiment of a surgical stapler on an end-effector of a surgical instrument showing the shape altering material in a contracted state in a cell under a stapler driver and unused staples in a stapler sled and in an expanded state in the cell under staples that have been pressed into tissue.





Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.


DESCRIPTION

Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and do not necessarily limit the scope of the embodiments, the scope of which is defined solely by the appended claims.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.


It will be appreciated that the terms “proximal” and “distal” may be used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will be further appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” and “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting and absolute.


As used herein, the term “biocompatible” includes any material that is compatible with the living tissues and system(s) of a patient by not being substantially toxic or injurious and not causing immunological rejection. “Biocompatibility” includes the tendency of a material to be biocompatible.


Body temperature as used herein means core body temperature, which is generally about 98.6° F. (37.0° C.) measured orally, but can vary depending upon factors such as exercise, sleep, food or drink consumption, the time of day, or the age or health of the individual. Adult body temperatures below about 95° F. and above about 106° F. are dangerous to life and health. Children's body temperatures vary over a larger range. Those skilled in the art will recognize that “body temperature” is a range of temperatures around 98.6° F. (as measured orally), greater than 95° F. and less than 106° F.


As used herein, the term “longitudinal axis”, with respect to an instrument, means the exact or approximate central axis defined by said instrument along its greater dimension, i.e., along its length, from its distal end to its proximal end, and vice versa, and is not intended to be limited to imply a straight line, wherein, for example, an instrument includes a bend angle or curves as described herein, it is intended that “longitudinal axis” as used herein follows such bend angle or curve. As used herein, the term “axial” or “axial movement” or variants thereof, with respect to an instrument or a component of an instrument, means the movement in the direction of the longitudinal axis of such instrument.


As used herein, the term “patient,” used herein, refers to any human or animal on which a surgical procedure may be performed. As used herein, the term “internal site” of a patient means a lumen, body cavity or other location in a patient's body including, without limitation, sites accessible through natural orifices or through incisions.


As used herein, the term “operatively connected” with respect to two or more components, means that operation of, movement of, or some action of one component brings about, directly or indirectly, an operation, movement or reaction in the other component or components. Components that are operatively connected may be directly connected, may be indirectly connected to each other with one or more additional components interposed between the two, or may not be connected at all, but within a position such that the operation of, movement of or action of one component effects an operation, movement or reaction in the other component in a causal manner.


The use of shape altering materials to facilitate the desired functioning of various portions of instruments, such as surgical instruments, is described herein. The shape altering material may be a wax, a polymeric phase change material, a shape memory material, an expandable foam, a magneto rheologic fluid, or a Ferro fluid. Waxes and polymer formulations, for example, can respond to activation means such as temperature, light, electrical, chemical that cause a phase change and results in expansion of the material or rigidization to change the shape of a cell or other chamber in which the material is contained.


For ease of description, the various embodiments will be shown as used with a surgical instrument, such as that shown in FIG. 1. Those skilled in the art will appreciate, however, that the shaft assembly described herein may be used with any instrument in which it would be advantageous to selectively rigidize all or portions of an otherwise flexible shaft, or to unrigidize all or portions of an otherwise rigid shaft, or to change the rigidity of the shaft along portions thereof while in use to accommodate changing requirements, all from a control member remote from the portion of the shaft to be changed. Rigid, rigidity, or rigidize as used herein shall mean holding or maintaining a shape. Those skilled in the art will appreciate, however, that “rigid” and “unrigidize” and the like are relative terms. Rigidity, or lack thereof, is characterized by a load being distributed across the component, such as the shaft 16 described herein. Thus, rigidization by using the shape altering materials can create proportional control resulting in relatively stiffer but not necessarily completely rigid shafts having steel-like stiffness. Rigidization may also result in a completely rigid shaft 16. Rigid, rigidity, or rigidize and unrigidize or flexible, and similar terms as used herein shall include such relative increases and decreases, respectively, in stiffness and the ability to hold or maintain a shape.


Similarly, the actuator described herein for use with an end effector of a surgical instrument may be used to produce work in a similar manner in other working instruments. The two can be combined into one instrument allowing tissue access and subsequent end effector manipulation to gain tissue access for manipulation, diagnosis, or treatment.


In certain preferred embodiments, one or both of the shaft assembly and the actuator may be incorporated into a surgical instrument. In these embodiments, the surgical instrument may include a control portion, an end effector, a shaft assembly positioned between, and operatively connected to each of, the control portion and the end effector, at least one cell defined within at least one of the shaft assembly or the end effector, a shape altering material housed within the at least one cell, and, an actuation assembly for selectively activating the shape altering material to effect a change in the at least one cell. The various features may be integral in a single device, or may be separate but integrated for ease of replacement or interchangeability. For example, a single control member may be releasably attachable to a variety of different types of end effectors and each may be releasably attachable to a variety of different shaft assemblies.


Referring to FIG. 1, a surgical instrument 10 is shown having a control member 12, a shaft 16 and an end effector 14. Any suitable end effector 14 may be used, such as a grasper, retractor or dilator, or no end effector may be used when the function of the shaft, for example, is to provide a channel for delivery of other items to a site within a patient. The illustrative end effector 14 shown in FIG. 1 is a stapler having upper and lower clamp jaws 34, 36, a rotating joint 38 for adjusting the position of the jaws 34, 36, and a drive portion 40.


Control member 12 may include a control housing 20 and a hand piece 28 with a lever 30. The control member 12 may be used to direct the angle and degree of bend in the shaft 16 and to control the work of the end-effector 14. For example, the lever 30 may be squeezed to a desired degree to effect the change in rigidity of the shaft 16 or the operation of the end effector 14. Control knobs 22, 24 and a head control dial 26 are provided in addition to lever 30 for controlling various functions of the end effector 14 or shaft 16, such as, for example, opening and closing of the jaws 34, 36, rotating the rotating joint 38, forming and ejecting a staple, or clipping, cutting, and manipulating tissue, effecting the rigidity of the shaft 16, lighting an internal body cavity or lumen, and the like. A battery compartment 32 is provided to house a rechargeable or replaceable battery. Any standard battery for use with surgical or diagnostic instruments may be used.



FIG. 2 illustrates schematically a general embodiment of the internal electronics within the control member 12. An on-off switch 44 triggers the flow of activation energy, such as an electric current, through wires 48 through the shaft 16 (and in some embodiments, the cells 116 (e.g., FIGS. 3, 4, 7, 8 etc.), described in more detail below, positioned in the shaft) to the end effector 14. A light 42 may be provided to signal whether the power is on or off. A gauge 18 may be provided to show the level of power being delivered. A contact, such as ring contact 46 at head control dial 26 may be provided to further control the direction of the flow of activation energy to wires 48.


Those skilled in the art will recognize that other electronic configurations may be used and that other means of control may be used to deliver activation energy where needed in the instrument 10. The sources of activation energy may be provided by tethered means, such as electricity, in any appropriate voltage or current needed, delivered through a standard cable or wire plugged into a wall outlet or power strip to a heating element. A source of activation energy may also be provided by fluid in the form of pneumatic or hydraulic pressure, also delivered through a cable or tubing from a pressurizable source of gas (e.g., CO2 or Argon) or liquid (e.g., pumped saline). Tubing connects to passages such as passages 118 shown in FIG. 4A-A, that egress through external holes. The media flow heats or cools the shaft, and may be the only temperature change agent or may be combined with other temperature change agents, for example, to cool a heat element. A source of activation energy may also be provided by light delivered in any wavelength suitable for use as activation signals. Fiber optics in passages with light reactive material may be turned on or off by turning off the light source or block the light path.


Activation energy may also be provided by untethered means, such as a built in or removable, replaceable battery, or a sensor, such as a piezo electric sensor, for generating signals in response to changes in pressure or motion. A handle may contain a component comprising a floating magnet within a coil (moves when handle is shaken) to create a flow of electrons that charges a capacitor for electrical dispensing i.e. to a heating coil. Untethered activation energy may also be provided by chemical energy generated, for example, from an exothermic or endothermic chemical reaction when two or more reactants, separated by suitable known means, are brought together. Passages 118 may contain reagents with a divider element that when removed, punctured, or otherwise breached, allows the reagent to mix and the reaction to take place. While reversible materials are commercially available and will be known to those skilled in the art, a one way reaction may be more practical in certain applications.


A base charged source of activation energy which stores energy from external source may also be provided in the form of a rechargeable battery, induction/capacitive coupling. For example, coils in a handle and base can be structured to act like a transformer allowing a current to flow and charge a capacitor for electrical dispensing i.e. to a heating coil. Another form of based charged source of activation energy may be provided by heat transfer, that is a heat or cold sink in the handle or shaft of the instrument is charged and moved to make or break contact with an element having phase change property.


The shaft 16 is shown in a curved mode in FIG. 1 and in both linear mode in FIG. 2. Phantom chain lines in FIG. 2 show an alternative configuration wherein portions of shaft 16 may be linear and portions curved to allow the shaft 16 to bend and curve where needed to accommodate the anatomical configuration of the patient at the site of a procedure or along the path to the site of a procedure. Curvature of the shaft 16 may be in a two or three dimensional orientation or both. While in the rigid mode, the shaft 16 of an instrument 10 holds its position to create a fixed linear, curved, or serpentine path as needed for mechanical controls or accommodating a patient's anatomical features. In the flexible mode, the shaft 16 can be manipulated to a desired shape without trauma to the tissue as well as allowing easier passage through a patient's body cavity or lumen if needed.


In various embodiments of shaft 16, cells 116 are provided that contain a shape altering material. In FIGS. 3 A-A and 4 A-A, alternative embodiments of a shaft configuration taken through the line A-A of FIG. 2 are shown. In FIG. 3 A-A, the shaft 16 has a central lumen 114 along the longitudinal axis 200 of shaft 16, and one cell 116 or one set of cells 116 along one side of shaft 16.


An actuation link 48, such as a wire for transmitting electrical or heat generating energy, a cable for delivering light at a desired wavelength, or a channel for delivering a pneumatic or hydraulic fluid, runs through cell 116 or set of cells 116 to deliver activation energy to each cell 116 to activate the shape altering material to effect a change in the material and thereby, a change in the rigidity of cell 116 or of one or more of the pockets 124 within the set of cells 116. See, for example, FIG. 6. The type of activation energy required will depend on the type of shape altering material used.


The shape altering material may be activated by heating when, for example, the material is a phase change material or a wax. An example of heating the phase change material or wax includes winding the activation links 48, in the form of heating elements, such as wires, around the cell 116, with the wire entering at one end of the cell 116 and exiting at another end, and winding around the cell 116 in between the entry and exits, similar to the winding of a thread in a bobbin. In another example, activation links 48 may be wound around an independent structure instead of the cell 116, but operatively linked to the cells 116 to transfer the heat to the phase change material or wax. In another example, a conductive heat resistive matrix may be formed where conductive particles are dispersed throughout the phase change material in the cell 116 and heated by application of heat to the cell 116 to spread the heat throughout the phase change material. In another embodiment, the heating elements 48 may be in the form of a self supporting coil within the phase change material.


In FIG. 4 A-A, shaft 16 has a central lumen 114, two cells 116 or two sets of cells 116 on opposite sides of shaft 16, and two passages 118 for carrying the activation links 48 through the shaft 16. The activation links 48 in this embodiment may branch off at intervals to enter each cell 116 to activate the shape altering material. The passages 118 also allow for passage of activation links 48 for end-effector controls, such as: the mechanical operation of jaws, knives, and staples, as well as the delivery of energy in any suitable form, and any combination thereof. A multi-lumen shaft 16 for example, allows for both fluid delivery for pneumatic or hydraulic control, and other activation links 48, such as wires or sensors, as appropriate.


The central lumen 114 may also be used to deliver surgical tools or instruments, such as sutures, cameras, blades, and graspers, to a site of interest. In various embodiments, shaft 16 may not have a central or an off set lumen, but may be used to deliver an end effector 14 attached to the end of shaft 16. In such a solid embodiment, cells 116, with or without separate passages 118 for activation links 48 may define the only cavities or open spaces in the solid body 120 of shaft 16.


The cells 116 in shaft 16 can be configured in a variety of different ways. As shown in FIGS. 5 and 6, the cells 116 may be formed as one or more elongate columns 136 running along a portion of or all of the length of shaft 16 through the shaft body 120, or may form pockets 124 that alternate with solid segments 122 in the shaft body 120 along all or a portion of the length of shaft 16. The cell 116 or set of cells 116 may run in a direction parallel to or generally parallel to the longitudinal axis, or the cell 116 or set of cells 116 may run in a spiral around a portion of, or all of the length of shaft 16. The set of cells 116 may form a plurality of discrete pockets 124 running parallel or generally parallel to the longitudinal axis 200, or spiraling around a portion of, or all of the length of shaft 16.


In various embodiments having cells 116 in the form of two or more columns 136, 138 formed in the body 120 of shaft 16, as shown in FIG. 18, for example, each column may contain a different shape altering material 140 or 142 that may be activated to change the degree of rigidity under different conditions. For example, one column 136 may contain a phase change material 140 that changes phase from a solid to a liquid at a first temperature, such as a predetermined body temperature, and another column 138 may contain a phase change material 142 that changes phase at a second temperature, different from the first temperature, or may contain a different kind of shape altering material, such as, for example, a wax, or an expandable foam. An example of the bending behavior of such a shaft is shown in FIG. 18, wherein the two cells 116 in the form of columns 136, 138 on opposite sides of shaft 16 contain different shape altering materials 140, 142 that are activated to change the degree of rigidity at different rates, such that one side of shaft 16 increases or decreases its length relative to the other side resulting in a curved shaft. The direction and degree of the curve can be controlled by controlling the timing and degree of activation of the shape altering materials 140 and 142 in columns 136 and 138, respectively.



FIGS. 7 and 8 illustrate a shaft 16 assembly having inner and outer tubes 126 and 128, respectively, defining an annular space 130 between a combined length of the inner and outer tubes 126, 128. The annular space 130 between the tubes 126 and 128 can function as the cell 116 as shown in FIG. 7, or the cell 116 can form one or more elongate columns or discrete pockets that run along the length of annular space 130, similar to the configuration shown in FIGS. 5 and 6. One or more activation links 48 may run through the annular space 130. The inner and outer tubes 126, 128 may be movable longitudinally relative to each other while the shape altering material in cell 116 is in the flexible mode, but may be constrained against relative movement when the shape altering material is in the rigidized mode.


Referring to FIGS. 9 and 10, the dual tube shaft assembly offers advantages in increased moment of inertia. Referring to FIG. 9, D1 is the outer tube 126 and D2 is the inner tube 128, D1O is the outer diameter of the outer tube 126, D1I is the inner diameter of the outer tube 126, D2O is the outer diameter of the inner tube 128 and D2I is the inner diameter of the inner tube 128. The thickness of outer and inner tubes 126, 128 is represented by T1 and T2. The thickness of the central lumen is represented as T3.


The combination of two tubes 126, 128 and a shape altering material creates a stiffer shaft assembly 16 than the individual tubes alone. Classic stress diagrams are shown in FIG. 10 for each tube 126, 128. In FIG. 10, T=tension and C=compression. A shape altering material, such as a phase change material in the liquid state, creates a shaft with the stiffness equal to the sum of their respective physical and dimensional properties. The shape altering materials in the solid state bond the two tubes 126, 128 together creating a stiffer structure (i.e., a structure having an increased moment of inertia) which will hold the tubes 126, 128 in their relative positions at the time of rigidization, e.g., straight, curved, or any desired shape.







Moment





of





Inertia

,

I
=


π


(


D
O
4

-

D
I
4


)


64


,





where DO is outside diameter, DI is inside diameter of either the inner or the outer tube 126, 128. When acting as a solid wall when the shape altering material bonds the tubes together, the moment of inertia of the combined tubes forming the shaft assembly is greater than the sum of the moments of inertia of each tube alone.







I
=



π


(


D

1
O

4

-

D

2
I

4


)


64

>


I

tube





1


+

I

tube





2





,





where D1O is the outer diameter of the outer tube 126 and D2I is the inner diameter of the inner tube 128. As the moment of inertia increases, there will be less deflection of the tubes 126, 128.


An alternative means of control can be achieved by varying the tubing wall thickness, T, to create a wide range of shaft stiffnesses. For example, concentric 0.062 inches thick thermo plastic rubber, such as Kynar™, or any medically approved tubing, may be used. These materials are commercially available in a variety of durometers. Tubes with a thin 0.005 inch layer of shape altering material, such as tetracosane, will hold the shape of shaft 16 but change the stiffness of the shaft assembly very little, whereas a 0.005 inch thick pvc wall and shape altering material having a 0.040 inch thick wall will result in a very flexible shaft when the shape altering material is liquid and a rigid shaft when the shape altering material is solid. Other suitable thermoplastic elastomeric materials are commercially available and include styrenic block copolymers, polyolefin blends, elastomeric alloys (TPE-v or TPV), thermoplastic polyurethanes, thermoplastic copolyester and thermoplastic polyamides. Examples of thermoplastic elastomeric materials products that come from block copolymers are STYROFLEX™ (BASF), KRATON™ (Shell chemicals), PELLETHANE™, ENGAGE™ (Dow Chemical), PEBAX™ (Arkema), ARNITEL™ (DSM), and HYTREL™ (E.I. Du Pont de Nemours). Commercially available elastomer alloys include: DRYFLEX™, MEDIPRENE™, SANTOPRENE™, GEOLAST™ (Monsanto), SARLINK™ (DSM), FORPRENE™, ALCRYN™ (E.I. Du Pont de Nemours) and EVOPRENE™ (AlphaGary).


When the phase change material bonds to tubing wall, the material becomes the shear member and the tubing becomes the stress member. The tubes can be treated to increase the adhesion of the phase change material. Treatment methods include, for example, cleaning, etching, or exposing the tubing to a corona arc.


Tubing material that is thin and has a higher heat transfer capacity on the exterior of the tubing is better suited for external temperature sources. In addition, or in the alternative, the tubing walls may contain fillers to change their properties. For example, the tubing walls may contain carbon fibers to increase thermal transfer properties.


The shape altering material may be a phase change material that changes phase from gas to liquid to solid at a temperature specific to the particular material. FIG. 11, for example, shows a graph of a phase change material that is solid at room temperature and less but changes from a solid to a liquid at or near a predetermined body temperature (e.g., about 97°-99° F.). Other phase change materials may be a liquid or a gas at room temperature and change phase to a solid or liquid, respectively, at a temperature below room or body temperature.


A phase change with its corresponding volume change occurs when the phase change materials reach the temperature at which they change phase (e.g. melting point). At that temperature, the material absorbs large amounts of heat without changing its temperature. When the ambient temperature in the space around the phase change material drops, the phase change material solidifies, releasing its stored latent heat. Phase change materials absorb and emit heat while maintaining a nearly constant temperature. A constrained volume can create high forces.


Tissue or body temperature acts as heat sink. As previously described, the phase change temperature can be above or below body temperature depending on use of the body as a heat source or heat sink. A heating element may also be used to hold the phase change material just above or below its transition temperature to make a faster phase change trigger.


Using available phase change diagrams, the phase change transition temperature can be used to control the shape altering characteristics from a rigidized to an unrigidized or flexed mode back to a rigidized mode or vice versa, as desired.


If the phase change material body is in the liquid phase at body temperature, then the device will be flexible. Cooling the phase change material will make it solid and stiffen the shaft 16. The patient's body temperature will change the phase change material back to liquid and the shaft 16 will regain flexibility.


If the phase change material body is in the solid phase at the predetermined body temperature, the shaft 16 will be rigid. Heating the phase change material to the appropriate temperature above the body temperature will change the phase to liquid and create a flexible condition in the cells 116 and thereby in the portion of shaft 16 where the cells 116 are positioned. Exposure of the phase change material again to the predetermined body temperature will hasten the return to the solid and rigid state. If, however, the transition temperature includes the body temperature, the energy needed to create the phase change is less and opens the kinds of activation sources available.


To cause a phase change material to alter states, energy to heat or cool the material is needed. Brittle phase change materials will fracture if overstressed, potentially limiting tissue contact pressure damage, but will re-crystallize and regain its rigid structure after being re-melted. Phase change materials with crystalline properties, such as tetracosane, are stiffer than polymers like paraffin. High purity phase change materials have greater stiffness than impure or blended materials.


Exemplary phase change materials include water.


Exemplary shape memory materials include metals, for example, NITENOL™ and plastics VERIFLES™ (styrene) manufactured by Cornerstone Research Group.


Exemplary waxes include Paraffin and tetracosane.


Exemplary expandable foams are commercially available from Cornerstone Research Group.


The shape altering material may alternatively be a magneto rheological material. Referring to FIGS. 12 and 13, a carrier oil with magnetic particles 132 dispersed throughout may be contained in the cells 116. Upon activation, the magnetic particles 132 line up and form chains along magnetic flux lines 134. The magneto rheological material may be used in the embodiment of cells 116 shown in FIGS. 5 and 6, for example, wherein the magneto rheological material would be contained in the columnar cell 136 shown in FIG. 5 or in the pockets 124 shown in FIG. 6.


Magneto rheological materials are fluids that contain micrometer sized magnetic particles (in the range of about 0.1 to 10 μm) in a carrier fluid, such as an oil, usually mixed with a surfactant. Surfactants in the carrier fluid reduce the rate and degree to which the magnetic particles 132 come out of suspension in the carrier fluid. When there is no applied magnetic field, the magnetic particles are in suspension and randomly distributed in the carrier fluid. In this mode, the shaft 16 will be flexible. When subjected to a magnetic field, the fluid increases its viscosity to become a viscoelastic solid and the magnetic particles align in chains along lines of magnetic flux perpendicular to the longitudinal axis of the cell 116, which, in most cases, is parallel to the longitudinal axis 200 of the shaft 16. When the fluid is contained between two poles, the chain of particles restricts movement of the fluid along the longitudinal axis of the cell 116. The restriction on movement of the fluid effectively increases its viscosity, rigidizing the cell 116 and the portion of shaft 16 in which the cell 116 is positioned. Any of the commercially available magneto rheological materials may be used as the shape altering material in cells 116. An alternate material is a Ferro fluid with smaller particles which will provide a more dense suspension.


The shaft is flexible when introduced at some entry point of a patient's body. A magnet can be positioned and turned on and off to give momentary stiffening of the shaft 16 for maneuvering. The flexible state allows the shaft to take shape, when, for example, a vaginal entry device needs to drape over the sacral prominence without applying pressure to compress tissue and nerves. The magnet may be external, internal or built into the shaft. A magnet built into the shaft could allow an external controller to control any or all segments of the shaft subject to magnetic zones created by loops of wire to create a magnetic field.


For example, to apply a magnetic field to activate the magneto rheological material when used in cells 116, an external magnet may be used, such as the type of external magnetic control device used in magnetic anchoring and guidance systems (MAGS). MAGS, which have been developed for use in minimally invasive procedures, generally include an internal device attached in some manner to a surgical instrument, laparoscope or other camera or viewing device, and an external hand held device for controlling the movement of the internal device. Each of the external and internal devices has magnets which are magnetically coupled to each other across, for example, a patient's abdominal wall. The external device of such a system and its associated magnets may be used to apply the magnetic field to the magneto rheological material in the cells 116. An internal magnet to establish a localized magnetic field. The strength of the magnetic field may be adjusted by adjusting the height of the external magnet or alternatively, the field intensity if using an electromagnet.


In various embodiments, shown in FIGS. 14 A-E, the shaft 16 may be segmented. In a similar manner, the rotating joint 38 of the end-effector 14 is shown as segmented. Although described with specific reference to the shaft 16, the following description of segmented sections applies to both the shaft and a bendable or twistable section of the end-effector 14, such as but not limited to the rotating joint 38 shown in FIGS. 1 and 2. One or more shaft 16 segments 102 will have a means, such as a flexible membrane lining for the segmented shaft, to allow separation at the junctions 110 between shaft segments 102 while maintaining a closed shaft. Separation of the edges at the junctions of adjacent segments 102 at one point will cause the adjacent segments 102 to angulate on one side creating a curved section of shaft 16. Controlling multiple segments 102 individually or in some combination will enable controlling the length and degree of curve. In certain embodiments, each of the plurality of cells 116 may form a discrete pocket 124 arranged at intervals along the length of the shaft 16, with each pocket 124 being positioned at the junction 110 between a different adjacent segment 102 along the longitudinal axis 200 of a solid (i.e., without a central lumen) shaft 16. See FIG. 14 A. Selective activation of the shape altering material in one or more of the pockets 124 effects bending of the shaft 16 in a predetermined direction along a desired portion of the shaft 16.


In other embodiments, as shown in FIG. 14 B, side to side motion of a shaft 16 can be provided by having two sets of cells 116 arranged along opposing sides of the length of the shaft 16 such that there are two pockets 124 positioned on opposite sides (e.g., at about 180° from each other) of the junction 110 between adjacent segments 102 of shaft 16. Selective activation of the shape altering material in this embodiment effects bending of the shaft 16 in at least one of two predetermined directions along a desired portion of the shaft 16.


A further embodiment shown in FIG. 14 C provides three sets of cells 116 arranged equi-distant from each other (e.g., at about 120° from each other) such that there are three pockets 124 positioned equi-distant from each other around the circumference of the juncture 110 of adjacent segments 102 of shaft 16. Selective activation of the shape altering material in this embodiment effects bending or twisting of the shaft 16 in any predetermined direction within 360°. In each of the foregoing embodiments, the pockets 124 may be positioned at either regular or irregular intervals of segments 102 along all or a portion of the length of the shaft 16. By way of example, a pair of pockets 124 in the embodiment having two sets of cells 116 may be positioned regularly at every junction 110 between adjacent segments 102 or at the junctions 110 between every second, third or fourth shaft segment 102. Alternatively, there may be pairs of pockets 124 (or one, three or more pockets) at every junction 110 of adjacent segments 102 for several segments in a row, followed several unpocketed segments, followed by pairs of pockets 124 or single columns of pockets 124 at every other junction 110 of shaft segments 102, or in any desired pattern suitable for the intended use of the instrument and shaft.


Segmented shafts allow for flexibility. An alternative to the segmented shaft with a flexible inner lining is a ball and socket design which enables a load to create increased friction to hold the shape. A cable may run through the center of the ball and socket arrangement. Referring to FIG. 14 A, a central activation link 48 when expanded by the shape altering material, such as a phase change material, pneumatic or hydraulic fluid, or chemical means, creates the friction needed to lock the segments 102 in place. Having two or more off-center lines that are simultaneously expanded like those shown in FIG. 14 B or C, will provide an alternate shape holding configuration. Multiple lines allow higher forces to be created or allow a smaller expansion member to maintain a lower force.


An alternate form shown in FIG. 14 D that can be used to either curve or tighten an assembly is a ring (continuous or segmented) with one, two or three activation links 48 that, depending on how they are activated, enables a curved or linear response. The plurality of discrete pockets 124 may be formed into rings positioned around the longitudinal axis 200 of the shaft 16, for example, at the juncture 110 of adjacent shaft segments 102, or where the shaft 16 is not segmented, at either regular or irregular intervals along all or a portion of the length of the shaft 16.



FIG. 14 E shows an embodiment of a series of pockets 124 in four sets of cells 116. In this embodiment, there may be a split shaft 16 or the sets of cells 116 may be used in, for example, the jaws of a grasper or another type of an end effector 14 having facing sections that would benefit from changing between a flexible and a rigid shape. Two sets of cells 116, arranged in off-set rows of pockets 124, are placed in each half shaft 16 or end effector 14 section.


The segmented motion can be achieved by the expansion of shape memory plastics or phase change materials such as wax. Use of more conventional power means such as reversible chemical reaction, pneumatic or hydraulic fluids may be used as well. To give a faster return after diminishing the elongation source, a wire 48 with springs applies a return to the shortened (straight) position.


In an alternative embodiment of shaft 16 and cells 116, coiled tubes may be used. Coils are flexible and can perform well in compression. Expansion of coils, however, will make the shaft 16 poor in tension. FIG. 19 shows a shaft 16 construction having a continuous annular cell 116 and oppositely wound coils 146 and 148 housed therein. One coil 146 is wound in a clockwise direction and the other coil 148 is wound in a counterclockwise direction. Either one of the two coils may be wound inside the other of the two coils. The dual coil construction, particularly when combined with a shape altering material, prevents the shaft from being crushed. A shape altering material, such as a phase change material, is placed in the annular cell 116 in between the coils 146 and 148, thus enabling the coils 146, 148 to become one stronger structure that can then be used to perform with greater tension and compression. By varying the coil material, wire size, mandrel diameter, and pitch, a large range of flexible properties, limited only by the available volume, can be created.


Referring to FIG. 20, an alternative configuration for the shaft 16 and cell 116 provides a woven wire pattern 144 in the annular cell 116 that has some give before engagement in tension, compression and torque. Integration with a shape altering material, such as a phase change material, can make the shaft 16 behave like a solid shaft and eliminate twisting of the shaft 16.


Various embodiments of the cells in their capacity as an actuator assembly may include one or more linear pushing and/or pulling cells 80 that may be used as an alternative to the mechanical drive system used for example in surgical stapler systems. A volume change in the cell 80 may be channeled to a smaller diameter section to increase the linear travel of a plunger 86, as described below. The volume of the actuator cell 80 or set of cells 80 and the activation energy input to each cell may be varied to accommodate a variety of end effectors 14 of any size or length of actuation.



FIG. 15 illustrates an example of a cell 116 used as an actuation cell 80 for the production of work by enabling pushing, pulling, or a reciprocating pushing and pulling motion. Actuation cell 80 is defined between a first end wall 88 and a second end wall 90. An axially movable plunger 86 having a mid plate 94 and a rod 96 is positioned in actuation cell 80, dividing cell 80 into a first chamber 82 and a second chamber 84. In the embodiment shown in FIG. 15, both chambers 82 and 84 contain a shape altering material. In other embodiments of the actuation cell 80, only one of the chambers 82 or 84 may contain a shape altering material. Seals 92 prevent leakage of the shape altering material from one chamber into the adjacent chamber. An activation link 48 as described previously is operatively connected to the cell 80 to activate a change in the shape altering material.


In the embodiment wherein both chambers 82, 84 contain shape altering materials, each chamber may contain a shape altering material different from the material in the adjacent chamber. As described above, the adjacent chambers 82, 84 may contain two different phase change materials, or two different expandable foams that are activated at different temperatures, or may contain two different kinds of shape altering materials that are activated under different conditions, or may contain the same or different shape altering materials with separate activation links to each chamber 82, 84 to effect a change in the state of the material at different times or to effect different changes in the state of the material at the same time.


When the shape altering material in chamber 82 is activated to cause the material to expand, the expanding material pushes mid plate 94 of plunger 86 in direction 78 (to the right in FIG. 15). The shape altering material in chamber 84 must be able to be compressed or must not fill the entire chamber. Pushing plate 94 pushes rod 96 in direction 78. When used in an end effector 14, rod 96 will be operatively connected to a component, such as a gear, a ramp, a movable platform, a pivot point, or the like, that performs or causes to be performed some work. Pushing rod 96 will apply force to the component to trigger the desired performance.


Similarly, when the shape altering material in chamber 84 is activated to cause the material to expand, the expanding material pulls mid plate 94 of plunger 86 in direction 76 (to the left in FIG. 15). The shape altering material in chamber 82 must be able to be compressed or must not fill the entire chamber. Pulling plate 94 pulls rod 96 in direction 76. The component in the end effector 14 to which rod 96 is operatively connected may be pulled back, to end the performance of the work or may be pulled back to rest the component for the next application of force sufficient to trigger the performance of work.


In certain embodiments, a spring 106 as shown in FIG. 17, can be incorporated adjacent to an end wall 88 or 90 of the actuation cell 80, or in one of the chambers 82 or 84 when only one chamber 82 or 84 contains the shape altering material. The spring 106 may be used to bias the plunger 86 toward the position in which the shape altering material in the adjacent chamber is in an unexpanded mode. The spring 106 may return the plunger 86 in a one way motion or return it to a neutral position in an actuation cell 80 configured for two way motion, like the cell 80 shown in FIG. 15. Spring 106 may be of any type of biasing member, such as a tension spring, a compression spring, a rotational spring, a leaf spring, or bellview washer.



FIG. 16 illustrates the cross sectional view of an embodiment of an actuation cell 80 that enables the production of work in a circular configuration for rotational applications. Examples of rotational motion are in plane axial rotation, a cam, or a screw. The degree of rotation may be any fractional or greater turn. In this embodiment of actuation cell 80, the plunger 86 includes a central rod 96, a fixed radial wall 98 and a movable radial wall 94. The shape altering material is contained in the cell 80 between the fixed and movable radial walls 98, 94. An activation link 48 as described previously is operatively connected to the cell 80 to activate a change in the shape altering material.


Activation of the shape altering material may expand the material forcing the rotational movement of movable radial wall 94 in a counterclockwise direction, as shown by the arrow in FIG. 16. Activation of the shape altering material may alternatively cause the shape altering material to contract. Movable radial wall 94 may be biased in the clockwise direction back into the contracted position by a spring or other biasing member, as described above, or by activation of a second shape altering material in the manner described with regard to FIG. 15. Those skilled in the art will recognize that, depending on the location of the shape altering material within cell 80 relative to fixed and movable radial wall 98, 94, the expansion and contraction of the shape altering material may cause rotation of the movable wall in a clockwise or counterclockwise direction, respectively. Those skilled in the art will appreciate that the movable radial wall 94 does not have to be in the center of the cell 80 and further, that the cell 80 may be partitioned to have one, two or more divisions, or chambers in the cells 80 in cross section.


The degree of axial, linear or rotational motion may be controlled by segmented heating elements or proportional resistance, with for example, a potentiometer or a rheostat, or by way of dynamic computer control. In this embodiment, the control member 12 may be operatively connected to an external computer, or may incorporate computer chips controllable with the various controls on control member 12, as described above.


Surface temperatures below 140° F. are not known to harm tissue, but temperatures at or above that temperature may. Therefore, when the speed and action of the plunger 86 is triggered by a thermal response, insulation of the area surrounding the actuation cell 80 is provided to avoid harm to tissue. Similarly, insulation may be provided around portions of shaft 16 if such high temperatures are used to trigger changes in rigidity.


An example of the type of work that may be triggered by the activation of the shape altering material in an actuation cell 80 is a surgical stapler. Referring to FIG. 17, an end effector 14 in the form of a surgical stapler with a jaw drive is shown. The end effector 14 shown includes a drive portion 40 and a rotating joint 38 from which extend rotating jaws 50 and ribbon drives 52 for stapling and cutting operations. Drive portion 40 that houses an actuation cell 80 which is divided into first and second chambers 56 and 72, respectively, by leading end walls 88a and 88b and mid plates 94a and 94b of plunger 86. First chamber 56 contains a shape altering material and second chamber 72 contains a spring 106 for biasing the mid plate 94a, b of plunger 86 distally, in direction 76. The mechanical spring 106 maintains the rotating jaws 50 in a normally open position, when the activation energy is not applied. Seals 92, such as O-rings, are positioned in the space between each of the adjacent wall 88a, b and plate sections 94a, b. Plunger 86 includes a center rod 96 that extends from the leading end wall 88 through mid plate walls 90 through end wall 90 into a shaft 16 of an instrument 10 (not shown in this view. See FIGS. 1 and 2). Rod 96 includes a channel 58 along the longitudinal axis of rod 96 through which run the activation links 48 and ribbon drives 52 for stapling and cutting. Two activation links 48 branch off into actuation cell 80. The remaining activation links 48 continue forward, distally to the rotating jaw drives 50 and ribbon drives 52.


Activation of the shape altering material in the manner described in any of the embodiments described herein causes the material to expand, exerting force on the mid plate 94a of plunger 86, thereby pulling the plunger 86 and its narrow channel 58 in the proximal direction (direction 78 in FIG. 17) allowing rotating drives 50 to expand outwardly, away from each other in a more open position. When the activation energy is discontinued or changed such that the shape altering material contracts, spring 106 pushes mid plate sections 94a, b forward in the distal direction (direction 76 in FIG. 17) to squeeze rotating drives 50 into channel 58 forcing the drives 50 inwardly, towards each other in a more closed position. The actuation cell 80 in the embodiment of FIG. 17 can be configured such that the rotating jaws will be normally closed and powered to open.


The actuation cells 80 described herein can easily be adapted to numerous end effectors 14. For example, referring to FIGS. 1 and 2, the jaws 34, 36 can be configured to be normally closed and powered to open, or normally open and powered to close. The jaws 34, 36 may be configured to open in a non-symmetrical fashion. One jaw arm 34 or 36 may be fixed and the other movable.


The drive portion 40 and shaft 16 may be configured in any diameter with the limitation being that deliverable forces will be less with smaller diameters. A practical size range is from 2 mm to 12 mm diameters. Other dimensions may be used depending on the application.


In another embodiment, staple drivers 206 may sit on a platform or stapler sled 260 positioned in the bottom portion 236 of the end effector 14, above an actuation cell 280. End-effectors that comprise staplers and stapler drives are shown in U.S. Pat. No. 7,794,475, which is incorporated herein by reference. Instead of the driving mechanism shown in the prior art stapler systems, a shape altering material in an actuation cell 280 may be provided, which, when heated by a heating element 208 which may be connected directly or indirectly to an activation energy source 248, changes phase from solid to liquid, or more generally, changes from a contracted to an expanded state. The change to the expanded state changes the volume of cell 280, which applies force to the staple drivers 206 and ejects the staple 200 into tissue 300. The top portion 234 of the end effector 14 presses the staple into a closed position, designated by staples 202, as illustrated in the FIG. 21. In another embodiment, a knife (not shown) may be incorporated as part of the platform of the stapler sled that is raised when the shape altering material expands. The knife may be part of the same driver as the staple or may be independently raised with its own driver, activation source, and control. Surgical staples and knives of this kind are commercially available and well known in the art, so will not be described in detail herein.


When the shape altering material is an expandable foam, when heated, the foam can expand to forty times its volume to drive staple formation. The activation energy source may be any of the means identified herein. The expandable foam material may be any suitable known foam, such as the foam product available from Cornerstone Research Group, Inc; of Dayton, Ohio. One property of an expandable foam is a time delay from activation to expansion. This delay can be adjusted from seconds to minutes. Staplers are typically clamped on tissue 300 for a minute before firing the staples 200. As such, the foam may be selected and its activation controlled to provide a built in delay mechanism.


Those skilled in the art will appreciate that other configurations of foam expansion for pushing staples and cutting tissue directly or indirectly may be provided within the scope of the subject matter described and claimed herein.


In an alternative embodiment, a tapered wedge, similar to ramp 250 in FIG. 21, and a driver with wings may be provided. The wings (one side or two) have volume expansion causing a movement along the stapler sled's 260 long axle thereby moving the driver up the ramp (inclined plane) to drive the staple 200 out of the sled 260. This is a linear expansion that drives a sled 260 that sequentially fires staples 200 and cuts tissue 300. In yet another embodiment, a rotational cell, such as the cell shown in FIG. 16, may be used to raise the staple driver and knife.


Variations of the concept allow for multiple configurations wherein a number of extruded holes may be provided to accommodate cells of the phase change material and activation means. An offset activation may be used to allow a slower reaction time thereby gradually increasing or decreasing the degree of rigidity over time.


Although the Figures and description herein primarily reference shaft and cell components as being circular in cross section, those skilled in the art will recognize that other configurations may be used. For example, the shaft and cells or one of them, may form, in cross section, an oval, a square, a rectangle, a triangle or another polygonal shape, or an irregular shape. Conforming changes in configuration would be made in any appropriate end walls, movable walls, plungers and plunger mid plates of the cells 116 or 80.


Except as otherwise noted, the articles “a”, “an”, and “the” mean “one or more”.


Except as otherwise noted, all amounts including quantities, percentages, portions, and proportions, are understood to be modified by the word “about”, and amounts are not intended to indicate significant digits.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.


It should be understood that every maximum numerical limitation given throughout this specification includes every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.


The embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example. Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTES™ procedures. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small-keyhole-incisions.


Endoscopic minimally invasive surgical and diagnostic medical procedures are used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small-keyhole-incision incisions (usually 0.5-2.5 cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.


Preferably, the various embodiments of the devices described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility. Other sterilization techniques can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, and/or steam.


Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical instrument comprising: a shaft assembly, comprising: an inner tube extending longitudinally along the shaft assembly;an outer tube coaxially aligned with the inner tube along a combined length of the inner tube and the outer tube;a phase change material continuously disposed along the combined length of the inner tube and the outer tube in an annular space defined between the inner tube and the outer tube, wherein the phase change material is transitionable between a flexible mode and a rigidized mode, wherein, in the flexible mode, the combined length is flexible to define a plurality of curved orientations, wherein, in the flexible mode, the inner tube and the outer tube are longitudinally movable relative to each other between a plurality of relative positions, wherein the phase change material, in the rigidized mode, maintains the plurality of curved orientations, and wherein the phase change material, in the rigidized mode, constrains relative longitudinal motion between the inner tube and the outer tube; andan activation link extending longitudinally along the combined length of the inner tube and outer tube, wherein the activation link at least partially extends through the phase change material in the annular space between the inner tube and the outer tube, and wherein the activation link is configured to transition the phase change material between the flexible mode and the rigidizable mode.
  • 2. The surgical instrument of claim 1, further comprising: a source of activation energy; andan activation control member for selectively applying the activation energy to the activation link.
  • 3. The surgical instrument of claim 1, wherein the phase change material comprises a solid phase and a non-solid phase, wherein the phase change material is in the rigidized mode in the solid phase, and wherein the phase change material bonds the inner tube to the outer tube in the solid phase.
  • 4. The surgical instrument of claim 3, wherein the inner tube comprises an outer wall disposed along the combined length, wherein the outer tube comprises an inner wall disposed along the combined length, and wherein the inner wall and the outer wall are treated to increase friction between the phase change material, in the solid phase, and the inner wall and the outer wall.
  • 5. The surgical instrument of claim 4, wherein the inner wall and the outer wall are treated by one of cleaning, etching, and exposure to a corona arc.
US Referenced Citations (1533)
Number Name Date Kind
645576 Tesla Mar 1900 A
649621 Tesla May 1900 A
787412 Tesla Apr 1905 A
1039354 Bonadio Sep 1912 A
1127948 Wappler Feb 1915 A
1482653 Lilly Feb 1924 A
1625602 Gould et al. Apr 1927 A
1916722 Ende Jul 1933 A
2028635 Wappler Jan 1936 A
2031682 Wappler et al. Feb 1936 A
2113246 Wappler Apr 1938 A
2155365 Rankin Apr 1939 A
2191858 Moore Feb 1940 A
2196620 Attarian Apr 1940 A
2388137 Graumlich Oct 1945 A
2493108 Casey, Jr. Jan 1950 A
2504152 Riker et al. Apr 1950 A
2938382 De Graaf May 1960 A
2952206 Becksted Sep 1960 A
3069195 Buck Dec 1962 A
3070088 Brahos Dec 1962 A
3170471 Schnitzer Feb 1965 A
3435824 Gamponia Apr 1969 A
3470876 Barchilon Oct 1969 A
3595239 Petersen Jul 1971 A
3669487 Roberts et al. Jun 1972 A
3746881 Fitch et al. Jul 1973 A
3799672 Vurek Mar 1974 A
3854473 Matsuo Dec 1974 A
3946740 Bassett Mar 1976 A
3948251 Hosono Apr 1976 A
3961632 Moossun Jun 1976 A
3965890 Gauthier Jun 1976 A
3994301 Agris Nov 1976 A
4011872 Komiya Mar 1977 A
4012812 Black Mar 1977 A
4085743 Yoon Apr 1978 A
4164225 Johnson et al. Aug 1979 A
4174715 Hasson Nov 1979 A
4178920 Cawood, Jr. et al. Dec 1979 A
4207873 Kruy Jun 1980 A
4235238 Ogiu et al. Nov 1980 A
4258716 Sutherland Mar 1981 A
4269174 Adair May 1981 A
4278077 Mizumoto Jul 1981 A
4285344 Marshall Aug 1981 A
4311143 Komiya Jan 1982 A
4329980 Terada May 1982 A
4396021 Baumgartner Aug 1983 A
4406656 Nattier et al. Sep 1983 A
4452246 Bader et al. Jun 1984 A
4461281 Carson Jul 1984 A
4491132 Aikins Jan 1985 A
4527331 Lasner et al. Jul 1985 A
4527564 Eguchi et al. Jul 1985 A
4538594 Boebel et al. Sep 1985 A
D281104 Davison Oct 1985 S
4569347 Frisbie Feb 1986 A
4580551 Siegmund et al. Apr 1986 A
4646722 Silverstein et al. Mar 1987 A
4653476 Bonnet Mar 1987 A
4655219 Petruzzi Apr 1987 A
4669470 Brandfield Jun 1987 A
4671477 Cullen Jun 1987 A
4677982 Llinas et al. Jul 1987 A
4685447 Iversen et al. Aug 1987 A
4711240 Goldwasser et al. Dec 1987 A
4712545 Honkanen Dec 1987 A
4721116 Schintgen et al. Jan 1988 A
4727600 Avakian Feb 1988 A
4733662 DeSatnick et al. Mar 1988 A
D295894 Sharkany et al. May 1988 S
4753223 Bremer Jun 1988 A
4763669 Jaeger Aug 1988 A
4770188 Chikama Sep 1988 A
4790624 Van Hoye et al. Dec 1988 A
4815450 Patel Mar 1989 A
4823794 Pierce Apr 1989 A
4829999 Auth May 1989 A
4867140 Hovis et al. Sep 1989 A
4869238 Opie et al. Sep 1989 A
4869459 Bourne Sep 1989 A
4873979 Hanna Oct 1989 A
4880015 Nierman Nov 1989 A
4911148 Sosnowski et al. Mar 1990 A
4926860 Stice et al. May 1990 A
4938214 Specht et al. Jul 1990 A
4950273 Briggs Aug 1990 A
4950285 Wilk Aug 1990 A
4953539 Nakamura et al. Sep 1990 A
4960133 Hewson Oct 1990 A
4977887 Gouda Dec 1990 A
4979950 Transue et al. Dec 1990 A
4984581 Stice Jan 1991 A
4994079 Genese et al. Feb 1991 A
5007917 Evans Apr 1991 A
5010876 Henley et al. Apr 1991 A
5020514 Heckele Jun 1991 A
5020535 Parker et al. Jun 1991 A
5025778 Silverstein et al. Jun 1991 A
5033169 Bindon Jul 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5050585 Takahashi Sep 1991 A
5052372 Shapiro Oct 1991 A
5065516 Dulebohn Nov 1991 A
5066295 Kozak et al. Nov 1991 A
5108421 Fowler Apr 1992 A
5123913 Wilk et al. Jun 1992 A
5123914 Cope Jun 1992 A
5133727 Bales et al. Jul 1992 A
5147374 Fernandez Sep 1992 A
5174300 Bales et al. Dec 1992 A
5176126 Chikama Jan 1993 A
5190050 Nitzsche Mar 1993 A
5190555 Wetter et al. Mar 1993 A
5192284 Pleatman Mar 1993 A
5192300 Fowler Mar 1993 A
5197963 Parins Mar 1993 A
5201752 Brown et al. Apr 1993 A
5201908 Jones Apr 1993 A
5203785 Slater Apr 1993 A
5203787 Noblitt et al. Apr 1993 A
5209747 Knoepfler May 1993 A
5217003 Wilk Jun 1993 A
5217453 Wilk Jun 1993 A
5219357 Honkanen et al. Jun 1993 A
5219358 Bendel et al. Jun 1993 A
5222362 Maus et al. Jun 1993 A
5222965 Haughton Jun 1993 A
5234437 Sepetka Aug 1993 A
5234453 Smith et al. Aug 1993 A
5235964 Abenaim Aug 1993 A
5242456 Nash et al. Sep 1993 A
5245460 Allen et al. Sep 1993 A
5246424 Wilk Sep 1993 A
5257999 Slanetz, Jr. Nov 1993 A
5259366 Reydel Nov 1993 A
5263958 deGuillebon et al. Nov 1993 A
5273524 Fox et al. Dec 1993 A
5275607 Lo et al. Jan 1994 A
5275614 Haber et al. Jan 1994 A
5275616 Fowler Jan 1994 A
5284128 Hart Feb 1994 A
5284162 Wilk Feb 1994 A
5287845 Faul et al. Feb 1994 A
5287852 Arkinstall Feb 1994 A
5290299 Fain et al. Mar 1994 A
5290302 Pericic Mar 1994 A
5295977 Cohen et al. Mar 1994 A
5297536 Wilk Mar 1994 A
5297687 Freed Mar 1994 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5312333 Churinetz et al. May 1994 A
5312351 Gerrone May 1994 A
5312416 Spaeth et al. May 1994 A
5312423 Rosenbluth et al. May 1994 A
5318589 Lichtman Jun 1994 A
5320636 Slater Jun 1994 A
5324261 Amundson et al. Jun 1994 A
5325845 Adair Jul 1994 A
5330471 Eggers Jul 1994 A
5330486 Wilk Jul 1994 A
5330488 Goldrath Jul 1994 A
5330496 Alferness Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5331971 Bales et al. Jul 1994 A
5334168 Hemmer Aug 1994 A
5334198 Hart et al. Aug 1994 A
5341815 Cofone et al. Aug 1994 A
5342396 Cook Aug 1994 A
5344428 Griffiths Sep 1994 A
5345927 Bonutti Sep 1994 A
5350391 Iacovelli Sep 1994 A
5352184 Goldberg et al. Oct 1994 A
5352222 Rydell Oct 1994 A
5354302 Ko Oct 1994 A
5354311 Kambin et al. Oct 1994 A
5356381 Ensminger et al. Oct 1994 A
5356408 Rydell Oct 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5364408 Gordon Nov 1994 A
5364410 Failla et al. Nov 1994 A
5366466 Christian et al. Nov 1994 A
5366467 Lynch et al. Nov 1994 A
5368605 Miller, Jr. Nov 1994 A
5370647 Graber et al. Dec 1994 A
5370679 Atlee Dec 1994 A
5374273 Nakao et al. Dec 1994 A
5374275 Bradley et al. Dec 1994 A
5374277 Hassler Dec 1994 A
5377695 An Haack Jan 1995 A
5383877 Clarke Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5386817 Jones Feb 1995 A
5387259 Davidson Feb 1995 A
5391174 Weston Feb 1995 A
5392789 Slater et al. Feb 1995 A
5395386 Slater Mar 1995 A
5401248 Bencini Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403328 Shallman Apr 1995 A
5403342 Tovey et al. Apr 1995 A
5403348 Bonutti Apr 1995 A
5405073 Porter Apr 1995 A
5405359 Pierce Apr 1995 A
5409478 Gerry et al. Apr 1995 A
5417699 Klein et al. May 1995 A
5423821 Pasque Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5439471 Kerr Aug 1995 A
5439478 Palmer Aug 1995 A
5441059 Dannan Aug 1995 A
5441494 Ortiz Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445648 Cook Aug 1995 A
5449021 Chikama Sep 1995 A
5454827 Aust et al. Oct 1995 A
5456667 Ham et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458131 Wilk Oct 1995 A
5458583 McNeely et al. Oct 1995 A
5460168 Masubuchi et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462561 Voda Oct 1995 A
5465731 Bell et al. Nov 1995 A
5467763 McMahon et al. Nov 1995 A
5468250 Paraschac et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470320 Tiefenbrun et al. Nov 1995 A
5478347 Aranyi Dec 1995 A
5478352 Fowler Dec 1995 A
5480404 Kammerer et al. Jan 1996 A
5482029 Sekiguchi et al. Jan 1996 A
5482054 Slater et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496347 Hashiguchi et al. Mar 1996 A
5499990 Schülken et al. Mar 1996 A
5499992 Meade et al. Mar 1996 A
5501692 Riza Mar 1996 A
5503616 Jones Apr 1996 A
5505686 Willis et al. Apr 1996 A
5507755 Gresl et al. Apr 1996 A
5511564 Wilk Apr 1996 A
5514157 Nicholas et al. May 1996 A
5518501 Oneda et al. May 1996 A
5522829 Michalos Jun 1996 A
5522830 Aranyi Jun 1996 A
5527321 Hinchliffe Jun 1996 A
5533418 Wu et al. Jul 1996 A
5536248 Weaver et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5549637 Crainich Aug 1996 A
5554151 Hinchliffe Sep 1996 A
5555883 Avitall Sep 1996 A
5558133 Bortoli et al. Sep 1996 A
5562693 Devlin et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5569298 Schnell Oct 1996 A
5571090 Sherts Nov 1996 A
5573540 Yoon Nov 1996 A
5578030 Levin Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584845 Hart Dec 1996 A
5591179 Edelstein Jan 1997 A
5591205 Fowler Jan 1997 A
5593420 Eubanks, Jr. et al. Jan 1997 A
5595562 Grier Jan 1997 A
5597378 Jervis Jan 1997 A
5601573 Fogelberg et al. Feb 1997 A
5601588 Tonomura et al. Feb 1997 A
5601602 Fowler Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607389 Edwards et al. Mar 1997 A
5607406 Hernandez et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5613975 Christy Mar 1997 A
5616117 Dinkier et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5620415 Lucey et al. Apr 1997 A
5624399 Ackerman Apr 1997 A
5624431 Gerry et al. Apr 1997 A
5626578 Tihon May 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5630782 Adair May 1997 A
5643283 Younker Jul 1997 A
5643292 Hart Jul 1997 A
5643294 Tovey et al. Jul 1997 A
5644798 Shah Jul 1997 A
5645083 Essig et al. Jul 1997 A
5645565 Rudd et al. Jul 1997 A
5649372 Souza Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653690 Booth et al. Aug 1997 A
5653722 Kieturakis Aug 1997 A
5657755 Desai Aug 1997 A
5662621 Lafontaine Sep 1997 A
5662663 Shallman Sep 1997 A
5667527 Cook Sep 1997 A
5669875 van Eerdenburg Sep 1997 A
5681324 Kammerer et al. Oct 1997 A
5681330 Hughett et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5690606 Slotman Nov 1997 A
5690656 Cope et al. Nov 1997 A
5690660 Kauker et al. Nov 1997 A
5695448 Kimura et al. Dec 1997 A
5695505 Yoon Dec 1997 A
5695511 Cano et al. Dec 1997 A
5700275 Bell et al. Dec 1997 A
5702438 Avitall Dec 1997 A
5704892 Adair Jan 1998 A
5709708 Thal Jan 1998 A
5711921 Langford Jan 1998 A
5716326 Dannan Feb 1998 A
5716375 Fowler Feb 1998 A
5728094 Edwards Mar 1998 A
5730740 Wales et al. Mar 1998 A
5735849 Baden et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741278 Stevens Apr 1998 A
5741285 McBrayer et al. Apr 1998 A
5741429 Donadio, III et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5746759 Meade et al. May 1998 A
5749826 Faulkner May 1998 A
5749881 Sackier et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752951 Yanik May 1998 A
5755731 Grinberg May 1998 A
5762604 Kieturakis Jun 1998 A
5766167 Eggers et al. Jun 1998 A
5766170 Eggers Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769849 Eggers Jun 1998 A
5779701 McBrayer et al. Jul 1998 A
5779716 Cano et al. Jul 1998 A
5779727 Orejola Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5782861 Cragg et al. Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5791022 Bohman Aug 1998 A
5792113 Kramer et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5797835 Green Aug 1998 A
5797928 Kogasaka Aug 1998 A
5797939 Yoon Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5803903 Athas et al. Sep 1998 A
5808665 Green Sep 1998 A
5810806 Ritchart et al. Sep 1998 A
5810849 Kontos Sep 1998 A
5810865 Koscher et al. Sep 1998 A
5810876 Kelleher Sep 1998 A
5810877 Roth et al. Sep 1998 A
5813976 Filipi et al. Sep 1998 A
5814058 Carlson et al. Sep 1998 A
5817061 Goodwin et al. Oct 1998 A
5817107 Schaller Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5819736 Avny et al. Oct 1998 A
5823947 Yoon et al. Oct 1998 A
5824071 Nelson et al. Oct 1998 A
5827276 LeVeen et al. Oct 1998 A
5827281 Levin Oct 1998 A
5827299 Thomason et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5830231 Geiges, Jr. Nov 1998 A
5833603 Kovacs et al. Nov 1998 A
5833700 Fogelberg et al. Nov 1998 A
5833703 Manushakian Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5843017 Yoon Dec 1998 A
5843121 Yoon Dec 1998 A
5849022 Sakashita et al. Dec 1998 A
5853374 Hart et al. Dec 1998 A
5855585 Kontos Jan 1999 A
5860913 Yamaya et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5868762 Cragg et al. Feb 1999 A
5876411 Kontos Mar 1999 A
5882331 Sasaki Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5893846 Bales et al. Apr 1999 A
5893874 Bourque et al. Apr 1999 A
5893875 O'Connor et al. Apr 1999 A
5897487 Ouchi Apr 1999 A
5899919 Eubanks, Jr. et al. May 1999 A
5902238 Golden et al. May 1999 A
5902254 Magram May 1999 A
5904702 Ek et al. May 1999 A
5908420 Parins et al. Jun 1999 A
5908429 Yoon Jun 1999 A
5911737 Lee et al. Jun 1999 A
5916146 Allotta et al. Jun 1999 A
5916147 Boury Jun 1999 A
5921993 Yoon Jul 1999 A
5921997 Fogelberg et al. Jul 1999 A
5922008 Gimpelson Jul 1999 A
5925052 Simmons Jul 1999 A
5928255 Meade et al. Jul 1999 A
5928266 Kontos Jul 1999 A
5936536 Morris Aug 1999 A
5944718 Austin et al. Aug 1999 A
5951547 Gough et al. Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954720 Wilson et al. Sep 1999 A
5954731 Yoon Sep 1999 A
5957936 Yoon et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5957953 DiPoto et al. Sep 1999 A
5964782 Lafontaine et al. Oct 1999 A
5970581 Chadwick et al. Oct 1999 A
5971995 Rousseau Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976074 Moriyama Nov 1999 A
5976075 Beane et al. Nov 1999 A
5976130 McBrayer et al. Nov 1999 A
5976131 Guglielmi et al. Nov 1999 A
5980539 Kontos Nov 1999 A
5980556 Giordano et al. Nov 1999 A
5984938 Yoon Nov 1999 A
5984939 Yoon Nov 1999 A
5984950 Cragg et al. Nov 1999 A
5989182 Hori et al. Nov 1999 A
5993447 Blewett et al. Nov 1999 A
5993474 Ouchi Nov 1999 A
5995875 Blewett et al. Nov 1999 A
5997555 Kontos Dec 1999 A
6001120 Levin Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004330 Middleman et al. Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6010515 Swain et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6016452 Kasevich Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6019770 Christoudias Feb 2000 A
6024708 Bales et al. Feb 2000 A
6024747 Kontos Feb 2000 A
6027522 Palmer Feb 2000 A
6030365 Laufer Feb 2000 A
6030384 Nezhat Feb 2000 A
6030634 Wu et al. Feb 2000 A
6033399 Gines Mar 2000 A
6036640 Corace et al. Mar 2000 A
6036685 Mueller Mar 2000 A
6053927 Hamas Apr 2000 A
6053937 Edwards et al. Apr 2000 A
6066160 Colvin et al. May 2000 A
6068603 Suzuki May 2000 A
6068629 Haissaguerre et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074408 Freeman Jun 2000 A
6086530 Mack Jul 2000 A
6090105 Zepeda et al. Jul 2000 A
6090108 McBrayer et al. Jul 2000 A
6090129 Ouchi Jul 2000 A
6096046 Weiss Aug 2000 A
6102909 Chen et al. Aug 2000 A
6102926 Tartaglia et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6106521 Blewett et al. Aug 2000 A
6109852 Shahinpoor et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6110183 Cope Aug 2000 A
6113593 Tu et al. Sep 2000 A
6117144 Nobles et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6139555 Hart et al. Oct 2000 A
6141037 Upton et al. Oct 2000 A
6146391 Cigaina Nov 2000 A
6148222 Ramsey, III Nov 2000 A
6149653 Deslauriers Nov 2000 A
6149662 Pugliesi et al. Nov 2000 A
6152920 Thompson et al. Nov 2000 A
6156006 Brosens et al. Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6168570 Ferrera Jan 2001 B1
6168605 Measamer et al. Jan 2001 B1
6169269 Maynard Jan 2001 B1
6170130 Hamilton et al. Jan 2001 B1
6173872 Cohen Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179837 Hooven Jan 2001 B1
6183420 Douk et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190383 Schmaltz et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6190399 Palmer et al. Feb 2001 B1
6203533 Ouchi Mar 2001 B1
6206872 Lafond et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6210409 Ellman et al. Apr 2001 B1
6214007 Anderson Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6228096 Marchand May 2001 B1
6231506 Hu et al. May 2001 B1
6234958 Snoke et al. May 2001 B1
6245079 Nobles et al. Jun 2001 B1
6246914 de la Rama et al. Jun 2001 B1
6258064 Smith et al. Jul 2001 B1
6261242 Roberts et al. Jul 2001 B1
6264664 Avellanet Jul 2001 B1
6270497 Sekino et al. Aug 2001 B1
6270505 Yoshida et al. Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6283963 Regula Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
6296630 Altman et al. Oct 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322578 Houle et al. Nov 2001 B1
6325534 Hawley et al. Dec 2001 B1
6326177 Schoenbach et al. Dec 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6350267 Stefanchik Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352543 Cole Mar 2002 B1
6355013 van Muiden Mar 2002 B1
6355035 Manushakian Mar 2002 B1
6361534 Chen et al. Mar 2002 B1
6364879 Chen et al. Apr 2002 B1
6368340 Malecki et al. Apr 2002 B2
6371956 Wilson et al. Apr 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6383195 Richard May 2002 B1
6383197 Conlon et al. May 2002 B1
6387671 Rubinsky et al. May 2002 B1
6391029 Hooven et al. May 2002 B1
6398708 Hastings et al. Jun 2002 B1
6402735 Langevin Jun 2002 B1
6402746 Whayne et al. Jun 2002 B1
6406440 Stefanchik Jun 2002 B1
6409727 Bales et al. Jun 2002 B1
6409733 Conlon et al. Jun 2002 B1
6419639 Walther et al. Jul 2002 B2
6419641 Mark et al. Jul 2002 B1
6427089 Knowlton Jul 2002 B1
6431500 Jacobs et al. Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6443970 Schulze et al. Sep 2002 B1
6443988 Felt et al. Sep 2002 B2
6447511 Slater Sep 2002 B1
6447523 Middleman et al. Sep 2002 B1
6454783 Piskun Sep 2002 B1
6454785 De Hoyos Garza Sep 2002 B2
6458076 Pruitt Oct 2002 B1
6464701 Hooven et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6470218 Behl Oct 2002 B1
6475104 Lutz et al. Nov 2002 B1
6485411 Konstorum et al. Nov 2002 B1
6489745 Koreis Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491627 Komi Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6493590 Wessman et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6500176 Truckai et al. Dec 2002 B1
6503192 Ouchi Jan 2003 B1
6506190 Walshe Jan 2003 B1
6508827 Manhes Jan 2003 B1
6514239 Shimmura et al. Feb 2003 B2
6520954 Ouchi Feb 2003 B2
6526320 Mitchell Feb 2003 B2
6527782 Hogg et al. Mar 2003 B2
6530922 Cosman et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6537200 Leysieffer et al. Mar 2003 B2
6543456 Freeman Apr 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6554766 Maeda et al. Apr 2003 B2
6554823 Palmer et al. Apr 2003 B2
6554829 Schulze et al. Apr 2003 B2
6558384 Mayenberger May 2003 B2
6562034 Edwards et al. May 2003 B2
6562035 Levin May 2003 B1
6562052 Nobles et al. May 2003 B2
6569159 Edwards et al. May 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6572635 Bonutti Jun 2003 B1
6575988 Rousseau Jun 2003 B2
6579311 Makower Jun 2003 B1
6581889 Carpenter et al. Jun 2003 B2
6585642 Christopher Jul 2003 B2
6585717 Wittenberger et al. Jul 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592559 Pakter et al. Jul 2003 B1
6592603 Lasner Jul 2003 B2
6602262 Griego et al. Aug 2003 B2
6605105 Cuschieri et al. Aug 2003 B1
6610072 Christy et al. Aug 2003 B1
6610074 Santilli Aug 2003 B2
6613038 Bonutti et al. Sep 2003 B2
6613068 Ouchi Sep 2003 B2
6616632 Sharp et al. Sep 2003 B2
6620193 Lau et al. Sep 2003 B1
6623448 Slater Sep 2003 B2
6626919 Swanstrom Sep 2003 B1
6632229 Yamanouchi Oct 2003 B1
6632234 Kieturakis et al. Oct 2003 B2
6638275 McGaffigan et al. Oct 2003 B1
6638286 Burbank et al. Oct 2003 B1
6645225 Atkinson Nov 2003 B1
6652518 Wellman et al. Nov 2003 B2
6652521 Schulze Nov 2003 B2
6652551 Heiss Nov 2003 B1
6656194 Gannoe et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6663655 Ginn et al. Dec 2003 B2
6666854 Lange Dec 2003 B1
6672338 Esashi et al. Jan 2004 B1
6673058 Snow Jan 2004 B2
6673087 Chang et al. Jan 2004 B1
6673092 Bacher Jan 2004 B1
6679882 Kornerup Jan 2004 B1
6685628 Vu Feb 2004 B2
6685724 Haluck Feb 2004 B1
6692445 Roberts et al. Feb 2004 B2
6692462 Mackenzie et al. Feb 2004 B2
6692493 McGovern et al. Feb 2004 B2
6699180 Kobayashi Mar 2004 B2
6699256 Logan et al. Mar 2004 B1
6699263 Cope Mar 2004 B2
6706018 Westlund et al. Mar 2004 B2
6708066 Herbst et al. Mar 2004 B2
6709188 Ushimaru Mar 2004 B2
6709445 Boebel et al. Mar 2004 B2
6716226 Sixto, Jr. et al. Apr 2004 B2
6731875 Kartalopoulos May 2004 B1
6736822 McClellan et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6743166 Berci et al. Jun 2004 B2
6743226 Cosman et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6743240 Smith et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6749609 Lunsford et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752811 Chu et al. Jun 2004 B2
6752822 Jespersen Jun 2004 B2
6758857 Cioanta et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6761722 Cole et al. Jul 2004 B2
6773434 Ciarrocca Aug 2004 B2
6776787 Phung et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780352 Jacobson Aug 2004 B2
6783491 Saadat et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786905 Swanson et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790217 Schulze et al. Sep 2004 B2
6795728 Chornenky et al. Sep 2004 B2
6800056 Tartaglia et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818007 Dampney et al. Nov 2004 B1
6824548 Smith et al. Nov 2004 B2
6830545 Bendall Dec 2004 B2
6836688 Ingle et al. Dec 2004 B2
6837847 Ewers et al. Jan 2005 B2
6840246 Downing Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6843794 Sixto, Jr. et al. Jan 2005 B2
6861250 Cole et al. Mar 2005 B1
6866627 Nozue Mar 2005 B2
6866628 Goodman et al. Mar 2005 B2
6869394 Ishibiki Mar 2005 B2
6878106 Herrmann Apr 2005 B1
6878110 Yang et al. Apr 2005 B2
6881213 Ryan et al. Apr 2005 B2
6881216 Di Caprio et al. Apr 2005 B2
6884213 Raz et al. Apr 2005 B2
6887255 Shimm May 2005 B2
6889089 Behl et al. May 2005 B2
6896683 Gadberry et al. May 2005 B1
6896692 Ginn et al. May 2005 B2
6899710 Hooven May 2005 B2
6908427 Fleener et al. Jun 2005 B2
6908476 Jud et al. Jun 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6916284 Moriyama Jul 2005 B2
6918871 Schulze Jul 2005 B2
6918908 Bonner et al. Jul 2005 B2
6926725 Cooke et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932824 Roop et al. Aug 2005 B1
6932827 Cole Aug 2005 B2
6932834 Lizardi et al. Aug 2005 B2
6936003 Iddan Aug 2005 B2
6939327 Hall et al. Sep 2005 B2
6942613 Ewers et al. Sep 2005 B2
6944490 Chow Sep 2005 B1
6945472 Wuttke et al. Sep 2005 B2
6945979 Kortenbach et al. Sep 2005 B2
6955683 Bonutti Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6960162 Saadat et al. Nov 2005 B2
6960163 Ewers et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6964662 Kidooka Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6971988 Orban, III Dec 2005 B2
6972017 Smith et al. Dec 2005 B2
6974411 Belson Dec 2005 B2
6976992 Sachatello et al. Dec 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
6984205 Gazdzinski Jan 2006 B2
6986774 Middleman et al. Jan 2006 B2
6988987 Ishikawa et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
6997870 Couvillon, Jr. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001341 Gellman et al. Feb 2006 B2
7008375 Weisel Mar 2006 B2
7008419 Shadduck Mar 2006 B2
7009634 Iddan et al. Mar 2006 B2
7010340 Scarantino et al. Mar 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025580 Heagy et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029438 Morin et al. Apr 2006 B2
7029450 Gellman Apr 2006 B2
7032600 Fukuda et al. Apr 2006 B2
7035680 Partridge et al. Apr 2006 B2
7037290 Gardeski et al. May 2006 B2
7041052 Saadat et al. May 2006 B2
7052489 Griego et al. May 2006 B2
7060024 Long et al. Jun 2006 B2
7060025 Long et al. Jun 2006 B2
7063697 Slater Jun 2006 B2
7063715 Onuki et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070602 Smith et al. Jul 2006 B2
7076305 Imran et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7083629 Weller et al. Aug 2006 B2
7083635 Ginn Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7088923 Haruyama Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090685 Kortenbach et al. Aug 2006 B2
7093518 Gmeilbauer Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7105000 McBrayer Sep 2006 B2
7105005 Blake Sep 2006 B2
7108696 Daniel et al. Sep 2006 B2
7108703 Danitz et al. Sep 2006 B2
7112208 Morris et al. Sep 2006 B2
7115092 Park et al. Oct 2006 B2
7115124 Xiao Oct 2006 B1
7117703 Kato et al. Oct 2006 B2
7118531 Krill Oct 2006 B2
7118578 West, Jr. et al. Oct 2006 B2
7118587 Dycus et al. Oct 2006 B2
7128708 Saadat et al. Oct 2006 B2
7130697 Chornenky et al. Oct 2006 B2
RE39415 Bales et al. Nov 2006 E
7131978 Sancoff et al. Nov 2006 B2
7131979 DiCarlo et al. Nov 2006 B2
7131980 Field et al. Nov 2006 B1
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7146984 Stack et al. Dec 2006 B2
7147650 Lee Dec 2006 B2
7150097 Sremcich et al. Dec 2006 B2
7150655 Mastrototaro et al. Dec 2006 B2
7150750 Damarati Dec 2006 B2
7152488 Hedrich et al. Dec 2006 B2
7153321 Andrews Dec 2006 B2
7160296 Pearson et al. Jan 2007 B2
7163525 Franer Jan 2007 B2
7172714 Jacobson Feb 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7188627 Nelson et al. Mar 2007 B2
7195612 Van Sloten et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
7204820 Akahoshi Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211092 Hughett May 2007 B2
7220227 Sasaki et al. May 2007 B2
7223272 Francere et al. May 2007 B2
7229438 Young Jun 2007 B2
7232414 Gonzalez Jun 2007 B2
7232445 Kortenbach et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7241290 Doyle et al. Jul 2007 B2
7244228 Lubowski Jul 2007 B2
7250027 Barry Jul 2007 B2
7252660 Kunz Aug 2007 B2
7255675 Gertner et al. Aug 2007 B2
7261725 Binmoeller Aug 2007 B2
7270663 Nakao Sep 2007 B2
7288075 Parihar et al. Oct 2007 B2
7291127 Eidenschink Nov 2007 B2
7294139 Gengler Nov 2007 B1
7301250 Cassel Nov 2007 B2
7306597 Manzo Dec 2007 B2
7308828 Hashimoto Dec 2007 B2
7318802 Suzuki et al. Jan 2008 B2
7320695 Carroll Jan 2008 B2
7322934 Miyake et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7329256 Johnson et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7329383 Stinson Feb 2008 B2
7335220 Khosravi et al. Feb 2008 B2
7344536 Lunsford et al. Mar 2008 B1
7352387 Yamamoto Apr 2008 B2
7364582 Lee Apr 2008 B2
7371215 Colliou et al. May 2008 B2
7381216 Buzzard et al. Jun 2008 B2
7390324 Whalen et al. Jun 2008 B2
7393222 Wenchell Jul 2008 B2
7402162 Ouchi Jul 2008 B2
7404791 Linares et al. Jul 2008 B2
7410483 Danitz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416554 Lam et al. Aug 2008 B2
7422590 Kupferschmid et al. Sep 2008 B2
7435229 Wolf Oct 2008 B2
7435257 Lashinski et al. Oct 2008 B2
7452327 Durgin et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7468066 Vargas et al. Dec 2008 B2
7476237 Taniguchi et al. Jan 2009 B2
7485093 Glukhovsky Feb 2009 B2
7488295 Burbank et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7497867 Lasner et al. Mar 2009 B2
7498950 Ertas et al. Mar 2009 B1
7507200 Okada Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7515953 Madar et al. Apr 2009 B2
7520876 Ressemann et al. Apr 2009 B2
7524281 Chu et al. Apr 2009 B2
7524302 Tower Apr 2009 B2
7534228 Williams May 2009 B2
7540872 Schechter et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7544203 Chin et al. Jun 2009 B2
7548040 Lee et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7553278 Kucklick Jun 2009 B2
7553298 Hunt et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7559887 Dannan Jul 2009 B2
7559916 Smith et al. Jul 2009 B2
7560006 Rakos et al. Jul 2009 B2
7561907 Fuimaono et al. Jul 2009 B2
7561916 Hunt et al. Jul 2009 B2
7566334 Christian et al. Jul 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7575548 Takemoto et al. Aug 2009 B2
7579550 Dayton et al. Aug 2009 B2
7582096 Gellman et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7588557 Nakao Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7608083 Lee et al. Oct 2009 B2
7611479 Cragg et al. Nov 2009 B2
7618398 Holman et al. Nov 2009 B2
7621936 Cragg et al. Nov 2009 B2
7632250 Smith et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637903 Lentz et al. Dec 2009 B2
7648519 Lee et al. Jan 2010 B2
7650742 Ushijima Jan 2010 B2
7651483 Byrum et al. Jan 2010 B2
7651509 Bojarski et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655004 Long Feb 2010 B2
7662089 Okada et al. Feb 2010 B2
7666180 Holsten et al. Feb 2010 B2
7666203 Chanduszko et al. Feb 2010 B2
7670336 Young et al. Mar 2010 B2
7674259 Shadduck Mar 2010 B2
7678043 Gilad Mar 2010 B2
7680543 Azure Mar 2010 B2
7684599 Horn et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7697970 Uchiyama et al. Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699864 Kick et al. Apr 2010 B2
7713189 Hanke May 2010 B2
7713270 Suzuki May 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7749161 Beckman et al. Jul 2010 B2
7753933 Ginn et al. Jul 2010 B2
7758577 Nobis et al. Jul 2010 B2
7762949 Nakao Jul 2010 B2
7762998 Birk et al. Jul 2010 B2
7763012 Petrick et al. Jul 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7771416 Spivey et al. Aug 2010 B2
7771437 Hogg et al. Aug 2010 B2
7780683 Roue et al. Aug 2010 B2
7780691 Stefanchik Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7794409 Damarati Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7815662 Spivey et al. Oct 2010 B2
7828186 Wales Nov 2010 B2
7833156 Williams et al. Nov 2010 B2
7837615 Le et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7842068 Ginn Nov 2010 B2
7846171 Kullas et al. Dec 2010 B2
7850660 Uth et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7862546 Conlon et al. Jan 2011 B2
7867216 Wahr et al. Jan 2011 B2
7892220 Faller et al. Feb 2011 B2
7896804 Uchimura et al. Mar 2011 B2
7896887 Rimbaugh et al. Mar 2011 B2
7905828 Brock et al. Mar 2011 B2
7909809 Scopton et al. Mar 2011 B2
7914513 Voorhees, Jr. Mar 2011 B2
7918869 Saadat et al. Apr 2011 B2
7927271 Dimitriou et al. Apr 2011 B2
7931624 Smith et al. Apr 2011 B2
7945332 Schechter May 2011 B2
7947000 Vargas et al. May 2011 B2
7953326 Farr et al. May 2011 B2
7955298 Carroll et al. Jun 2011 B2
7963975 Criscuolo Jun 2011 B2
7965180 Koyama Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7969473 Kotoda Jun 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7976552 Suzuki Jul 2011 B2
7985239 Suzuki Jul 2011 B2
7988685 Ziaie et al. Aug 2011 B2
8029504 Long Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8048067 Davalos et al. Nov 2011 B2
8057510 Ginn et al. Nov 2011 B2
8062311 Litscher et al. Nov 2011 B2
8066632 Dario et al. Nov 2011 B2
8075587 Ginn Dec 2011 B2
8088062 Zwolinski Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8118821 Mouw Feb 2012 B2
8147424 Kassab et al. Apr 2012 B2
8157813 Ko et al. Apr 2012 B2
8182414 Handa et al. May 2012 B2
8206295 Kaul Jun 2012 B2
8221310 Saadat et al. Jul 2012 B2
8303581 Arts et al. Nov 2012 B2
8430811 Hess et al. Apr 2013 B2
20010023333 Wise et al. Sep 2001 A1
20010049497 Kalloo et al. Dec 2001 A1
20020022771 Diokno et al. Feb 2002 A1
20020022857 Goldsteen et al. Feb 2002 A1
20020023353 Ting-Kung Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020042562 Meron et al. Apr 2002 A1
20020049439 Mulier et al. Apr 2002 A1
20020068945 Sixto, Jr. et al. Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082516 Stefanchik Jun 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020107530 Sauer et al. Aug 2002 A1
20020133115 Gordon et al. Sep 2002 A1
20020138086 Sixto, Jr. et al. Sep 2002 A1
20020147456 Diduch et al. Oct 2002 A1
20020165592 Glukhovsky et al. Nov 2002 A1
20020173805 Matsuno et al. Nov 2002 A1
20020183591 Matsuura et al. Dec 2002 A1
20030014090 Abrahamson Jan 2003 A1
20030023255 Miles et al. Jan 2003 A1
20030036679 Kortenbach et al. Feb 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030078471 Foley et al. Apr 2003 A1
20030083681 Moutafis et al. May 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114732 Webler et al. Jun 2003 A1
20030120257 Houston et al. Jun 2003 A1
20030124009 Ravi et al. Jul 2003 A1
20030130564 Martone et al. Jul 2003 A1
20030130656 Levin Jul 2003 A1
20030139646 Sharrow et al. Jul 2003 A1
20030158521 Ameri Aug 2003 A1
20030167062 Gambale et al. Sep 2003 A1
20030171651 Page et al. Sep 2003 A1
20030176880 Long et al. Sep 2003 A1
20030216611 Vu Nov 2003 A1
20030216615 Ouchi Nov 2003 A1
20030220545 Ouchi Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229269 Humphrey Dec 2003 A1
20030229371 Whitworth Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040002683 Nicholson et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040054322 Vargas Mar 2004 A1
20040098007 Heiss May 2004 A1
20040101456 Kuroshima et al. May 2004 A1
20040104999 Okada Jun 2004 A1
20040116948 Sixto, Jr. et al. Jun 2004 A1
20040127940 Ginn et al. Jul 2004 A1
20040133077 Obenchain et al. Jul 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040136779 Bhaskar Jul 2004 A1
20040138525 Saadat et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138587 Lyons, IV Jul 2004 A1
20040161451 Pierce et al. Aug 2004 A1
20040167545 Sadler et al. Aug 2004 A1
20040176699 Walker et al. Sep 2004 A1
20040186350 Brenneman et al. Sep 2004 A1
20040193009 Jaffe et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20040193186 Kortenbach et al. Sep 2004 A1
20040193188 Francese Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040193200 Dworschak et al. Sep 2004 A1
20040199052 Banik et al. Oct 2004 A1
20040199159 Lee et al. Oct 2004 A1
20040206859 Chong et al. Oct 2004 A1
20040210245 Erickson et al. Oct 2004 A1
20040215058 Zirps et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225186 Home, Jr. et al. Nov 2004 A1
20040225323 Nagase et al. Nov 2004 A1
20040230095 Stefanchik et al. Nov 2004 A1
20040230096 Stefanchik et al. Nov 2004 A1
20040230097 Stefanchik et al. Nov 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243108 Suzuki Dec 2004 A1
20040249246 Campos Dec 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249394 Morris et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20040254572 McIntyre et al. Dec 2004 A1
20040260198 Rothberg et al. Dec 2004 A1
20040260337 Freed Dec 2004 A1
20050004515 Hart et al. Jan 2005 A1
20050033265 Engel et al. Feb 2005 A1
20050033277 Clague et al. Feb 2005 A1
20050033319 Gambale et al. Feb 2005 A1
20050033333 Smith et al. Feb 2005 A1
20050043690 Todd Feb 2005 A1
20050049616 Rivera et al. Mar 2005 A1
20050059963 Phan et al. Mar 2005 A1
20050059964 Fitz Mar 2005 A1
20050065397 Saadat et al. Mar 2005 A1
20050065509 Coldwell et al. Mar 2005 A1
20050065517 Chin Mar 2005 A1
20050070754 Nobis et al. Mar 2005 A1
20050070763 Nobis et al. Mar 2005 A1
20050070764 Nobis et al. Mar 2005 A1
20050080413 Canady Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050085832 Sancoff et al. Apr 2005 A1
20050090837 Sixto, Jr. et al. Apr 2005 A1
20050090838 Sixto, Jr. et al. Apr 2005 A1
20050096502 Khalili May 2005 A1
20050101837 Kalloo et al. May 2005 A1
20050101838 Camillocci et al. May 2005 A1
20050101984 Chanduszko et al. May 2005 A1
20050107663 Saadat et al. May 2005 A1
20050107664 Kalloo et al. May 2005 A1
20050110881 Glukhovsky et al. May 2005 A1
20050113847 Gadberry et al. May 2005 A1
20050119613 Moenning et al. Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125010 Smith et al. Jun 2005 A1
20050131279 Boulais et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050143647 Minai et al. Jun 2005 A1
20050143690 High Jun 2005 A1
20050143774 Polo Jun 2005 A1
20050143803 Watson et al. Jun 2005 A1
20050149087 Ahlberg et al. Jul 2005 A1
20050149096 Hilal et al. Jul 2005 A1
20050159648 Freed Jul 2005 A1
20050165272 Okada et al. Jul 2005 A1
20050165378 Heinrich et al. Jul 2005 A1
20050165411 Orban, III Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050182429 Yamanouchi Aug 2005 A1
20050192478 Williams et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050192602 Manzo Sep 2005 A1
20050192654 Chanduszko et al. Sep 2005 A1
20050209624 Vijay Sep 2005 A1
20050215858 Vail, III Sep 2005 A1
20050216050 Sepetka et al. Sep 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050228406 Bose Oct 2005 A1
20050234297 Devierre et al. Oct 2005 A1
20050250983 Tremaglio et al. Nov 2005 A1
20050250990 Le et al. Nov 2005 A1
20050250993 Jaeger Nov 2005 A1
20050251166 Vaughan et al. Nov 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050261674 Nobis et al. Nov 2005 A1
20050267492 Poncet et al. Dec 2005 A1
20050272975 McWeeney et al. Dec 2005 A1
20050272977 Saadat et al. Dec 2005 A1
20050273084 Hinman et al. Dec 2005 A1
20050274935 Nelson Dec 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20050277951 Smith et al. Dec 2005 A1
20050277952 Arp et al. Dec 2005 A1
20050277954 Smith et al. Dec 2005 A1
20050277955 Palmer et al. Dec 2005 A1
20050277956 Francese et al. Dec 2005 A1
20050277957 Kuhns et al. Dec 2005 A1
20050283118 Uth et al. Dec 2005 A1
20050283119 Uth et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20060004406 Wehrstein et al. Jan 2006 A1
20060004409 Nobis et al. Jan 2006 A1
20060004410 Nobis et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060015131 Kierce et al. Jan 2006 A1
20060020167 Sitzmann Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060025654 Suzuki et al. Feb 2006 A1
20060025781 Young et al. Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060025819 Nobis et al. Feb 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060058582 Maahs et al. Mar 2006 A1
20060058776 Bilsbury Mar 2006 A1
20060064083 Khalaj et al. Mar 2006 A1
20060069396 Meade et al. Mar 2006 A1
20060069424 Acosta et al. Mar 2006 A1
20060069425 Hillis et al. Mar 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060074413 Behzadian Apr 2006 A1
20060079890 Guerra Apr 2006 A1
20060089528 Tartaglia et al. Apr 2006 A1
20060095031 Ormsby May 2006 A1
20060095060 Mayenberger et al. May 2006 A1
20060100687 Fahey et al. May 2006 A1
20060106423 Weisel et al. May 2006 A1
20060111209 Hinman et al. May 2006 A1
20060111210 Hinman et al. May 2006 A1
20060111704 Brenneman et al. May 2006 A1
20060129166 Lavelle Jun 2006 A1
20060135962 Kick et al. Jun 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060142644 Mulac et al. Jun 2006 A1
20060142652 Keenan Jun 2006 A1
20060142790 Gertner Jun 2006 A1
20060142798 Holman et al. Jun 2006 A1
20060149131 Or Jul 2006 A1
20060149132 Iddan Jul 2006 A1
20060149135 Paz Jul 2006 A1
20060161190 Gadberry et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060167482 Swain et al. Jul 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060183975 Saadat et al. Aug 2006 A1
20060184161 Maahs et al. Aug 2006 A1
20060189844 Tien Aug 2006 A1
20060189845 Maahs et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060195084 Slater Aug 2006 A1
20060200005 Bjork et al. Sep 2006 A1
20060200121 Mowery Sep 2006 A1
20060200169 Sniffin Sep 2006 A1
20060200170 Aranyi Sep 2006 A1
20060200199 Bonutti et al. Sep 2006 A1
20060217665 Prosek Sep 2006 A1
20060217697 Lau et al. Sep 2006 A1
20060217742 Messerly et al. Sep 2006 A1
20060217743 Messerly et al. Sep 2006 A1
20060229639 Whitfield Oct 2006 A1
20060229640 Whitfield Oct 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060241570 Wilk Oct 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247576 Poncet Nov 2006 A1
20060247663 Schwartz et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060253004 Frisch et al. Nov 2006 A1
20060253039 McKenna et al. Nov 2006 A1
20060258907 Stefanchik et al. Nov 2006 A1
20060258908 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060258954 Timberlake et al. Nov 2006 A1
20060258955 Hoffman et al. Nov 2006 A1
20060259010 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060264904 Kerby et al. Nov 2006 A1
20060264930 Nishimura Nov 2006 A1
20060270902 Igarashi et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060276835 Uchida Dec 2006 A1
20060281970 Stokes et al. Dec 2006 A1
20060282106 Cole et al. Dec 2006 A1
20060285732 Horn et al. Dec 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20060287666 Saadat et al. Dec 2006 A1
20060293626 Byrum et al. Dec 2006 A1
20070002135 Glukhovsky Jan 2007 A1
20070005019 Okishige Jan 2007 A1
20070010801 Chen et al. Jan 2007 A1
20070015965 Cox et al. Jan 2007 A1
20070016225 Nakao Jan 2007 A1
20070032700 Fowler et al. Feb 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070043261 Watanabe et al. Feb 2007 A1
20070043345 Davalos et al. Feb 2007 A1
20070049800 Boulais Mar 2007 A1
20070049902 Griffin et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070060880 Gregorich et al. Mar 2007 A1
20070066869 Hoffman Mar 2007 A1
20070067017 Trapp Mar 2007 A1
20070073102 Matsuno et al. Mar 2007 A1
20070073269 Becker Mar 2007 A1
20070079924 Saadat et al. Apr 2007 A1
20070083195 Werneth et al. Apr 2007 A1
20070088370 Kahle et al. Apr 2007 A1
20070100375 Mikkaichi et al. May 2007 A1
20070100376 Mikkaichi et al. May 2007 A1
20070106118 Moriyama May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070112251 Nakhuda May 2007 A1
20070112331 Weber et al. May 2007 A1
20070112342 Pearson et al. May 2007 A1
20070112383 Conlon et al. May 2007 A1
20070112384 Conlon et al. May 2007 A1
20070112385 Conlon May 2007 A1
20070112417 Shanley et al. May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123840 Cox May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070129719 Kendale et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070135709 Rioux et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142706 Matsui et al. Jun 2007 A1
20070142710 Yokoi et al. Jun 2007 A1
20070142780 Van Lue Jun 2007 A1
20070154460 Kraft et al. Jul 2007 A1
20070156028 Van Lue et al. Jul 2007 A1
20070156127 Rioux et al. Jul 2007 A1
20070161855 Mikkaichi et al. Jul 2007 A1
20070162101 Burgermeister et al. Jul 2007 A1
20070167901 Herrig et al. Jul 2007 A1
20070173691 Yokoi et al. Jul 2007 A1
20070173869 Gannoe et al. Jul 2007 A1
20070173870 Zacharias Jul 2007 A2
20070173872 Neuenfeldt Jul 2007 A1
20070179525 Frecker et al. Aug 2007 A1
20070179530 Tieu et al. Aug 2007 A1
20070197865 Miyake et al. Aug 2007 A1
20070198057 Gelbart et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070203487 Sugita Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208364 Smith et al. Sep 2007 A1
20070208407 Gerdts et al. Sep 2007 A1
20070213754 Mikkaichi et al. Sep 2007 A1
20070225554 Maseda et al. Sep 2007 A1
20070233040 MacNamara et al. Oct 2007 A1
20070244358 Lee Oct 2007 A1
20070244550 Eidenschink Oct 2007 A1
20070250036 Volk et al. Oct 2007 A1
20070250038 Boulais Oct 2007 A1
20070250057 Nobis et al. Oct 2007 A1
20070255096 Stefanchik et al. Nov 2007 A1
20070255100 Barlow et al. Nov 2007 A1
20070255273 Fernandez et al. Nov 2007 A1
20070255303 Bakos et al. Nov 2007 A1
20070255306 Conlon et al. Nov 2007 A1
20070260112 Rahmani Nov 2007 A1
20070260117 Zwolinski et al. Nov 2007 A1
20070260121 Bakos et al. Nov 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070260273 Cropper et al. Nov 2007 A1
20070260302 Igaki Nov 2007 A1
20070270629 Charles Nov 2007 A1
20070270889 Conlon et al. Nov 2007 A1
20070270895 Nobis et al. Nov 2007 A1
20070270907 Stokes et al. Nov 2007 A1
20070282165 Hopkins et al. Dec 2007 A1
20070282371 Lee et al. Dec 2007 A1
20070293727 Goldfarb et al. Dec 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080004650 George Jan 2008 A1
20080015409 Barlow Jan 2008 A1
20080015413 Barlow et al. Jan 2008 A1
20080015552 Doyle et al. Jan 2008 A1
20080021416 Arai et al. Jan 2008 A1
20080022927 Zhang Jan 2008 A1
20080027387 Grabinsky Jan 2008 A1
20080033451 Rieber et al. Feb 2008 A1
20080051629 Sugiyama et al. Feb 2008 A1
20080051735 Measamer et al. Feb 2008 A1
20080058586 Karpiel Mar 2008 A1
20080058854 Kieturakis et al. Mar 2008 A1
20080065169 Colliou et al. Mar 2008 A1
20080071264 Azure Mar 2008 A1
20080086172 Martin et al. Apr 2008 A1
20080097159 Ishiguro Apr 2008 A1
20080097472 Agmon et al. Apr 2008 A1
20080097483 Ortiz et al. Apr 2008 A1
20080103527 Martin et al. May 2008 A1
20080114384 Chang et al. May 2008 A1
20080119870 Williams May 2008 A1
20080119891 Miles et al. May 2008 A1
20080125796 Graham May 2008 A1
20080132892 Lunsford et al. Jun 2008 A1
20080139882 Fujimori Jun 2008 A1
20080140069 Filloux et al. Jun 2008 A1
20080140071 Vegesna Jun 2008 A1
20080147000 Seibel et al. Jun 2008 A1
20080147113 Nobis et al. Jun 2008 A1
20080171907 Long et al. Jul 2008 A1
20080177135 Muyari et al. Jul 2008 A1
20080188710 Segawa et al. Aug 2008 A1
20080188868 Weitzner et al. Aug 2008 A1
20080200755 Bakos Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200911 Long Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200934 Fox Aug 2008 A1
20080208213 Benjamin et al. Aug 2008 A1
20080221587 Schwartz Sep 2008 A1
20080228213 Blakeney et al. Sep 2008 A1
20080230972 Ganley Sep 2008 A1
20080234696 Taylor et al. Sep 2008 A1
20080243106 Coe Oct 2008 A1
20080243148 Mikkaichi et al. Oct 2008 A1
20080243176 Weitzner Oct 2008 A1
20080249567 Kaplan Oct 2008 A1
20080262513 Stahler et al. Oct 2008 A1
20080262524 Bangera et al. Oct 2008 A1
20080262540 Bangera et al. Oct 2008 A1
20080269782 Stefanchik et al. Oct 2008 A1
20080269783 Griffith Oct 2008 A1
20080275474 Martin et al. Nov 2008 A1
20080275475 Schwemberger et al. Nov 2008 A1
20080287737 Dejima Nov 2008 A1
20080287983 Smith et al. Nov 2008 A1
20080300461 Shaw et al. Dec 2008 A1
20080300547 Bakos Dec 2008 A1
20080309758 Karasawa et al. Dec 2008 A1
20080312496 Zwolinski Dec 2008 A1
20080312499 Handa et al. Dec 2008 A1
20080312500 Asada et al. Dec 2008 A1
20080312506 Spivey et al. Dec 2008 A1
20080319436 Daniel et al. Dec 2008 A1
20080319439 Ootsubu Dec 2008 A1
20090005636 Pang et al. Jan 2009 A1
20090054728 Trusty Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090062795 Vakharia et al. Mar 2009 A1
20090069634 Larkin Mar 2009 A1
20090076499 Azure Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090082776 Cresina Mar 2009 A1
20090082779 Nakao Mar 2009 A1
20090112059 Nobis Apr 2009 A1
20090112062 Bakos Apr 2009 A1
20090112063 Bakos et al. Apr 2009 A1
20090125042 Mouw May 2009 A1
20090131751 Spivey et al. May 2009 A1
20090131932 Vakharia et al. May 2009 A1
20090131933 Ghabrial et al. May 2009 A1
20090143639 Stark Jun 2009 A1
20090143649 Rossi Jun 2009 A1
20090143794 Conlon et al. Jun 2009 A1
20090143818 Faller et al. Jun 2009 A1
20090149710 Stefanchik et al. Jun 2009 A1
20090177031 Surti et al. Jul 2009 A1
20090177219 Conlon Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090192344 Bakos et al. Jul 2009 A1
20090192534 Ortiz et al. Jul 2009 A1
20090198231 Esser et al. Aug 2009 A1
20090198253 Omori Aug 2009 A1
20090210000 Sullivan et al. Aug 2009 A1
20090216248 Uenohara et al. Aug 2009 A1
20090221873 McGrath Sep 2009 A1
20090227828 Swain et al. Sep 2009 A1
20090228001 Pacey Sep 2009 A1
20090248055 Spivey et al. Oct 2009 A1
20090259105 Miyano et al. Oct 2009 A1
20090269317 Davalos Oct 2009 A1
20090281559 Swain et al. Nov 2009 A1
20090287206 Jun Nov 2009 A1
20090287236 Bakos et al. Nov 2009 A1
20090292164 Yamatani Nov 2009 A1
20090299135 Spivey Dec 2009 A1
20090299143 Conlon et al. Dec 2009 A1
20090299362 Long et al. Dec 2009 A1
20090299385 Stefanchik et al. Dec 2009 A1
20090299406 Swain et al. Dec 2009 A1
20090299409 Coe et al. Dec 2009 A1
20090306658 Nobis et al. Dec 2009 A1
20090306683 Zwolinski et al. Dec 2009 A1
20090322864 Karasawa et al. Dec 2009 A1
20090326332 Carter Dec 2009 A1
20090326561 Carroll, II et al. Dec 2009 A1
20100010294 Conlon et al. Jan 2010 A1
20100010298 Bakos et al. Jan 2010 A1
20100010299 Bakos et al. Jan 2010 A1
20100010303 Bakos Jan 2010 A1
20100010510 Stefanchik Jan 2010 A1
20100010511 Harris et al. Jan 2010 A1
20100023032 Granja Filho Jan 2010 A1
20100030211 Davalos et al. Feb 2010 A1
20100036198 Tacchino et al. Feb 2010 A1
20100042045 Spivey Feb 2010 A1
20100048990 Bakos Feb 2010 A1
20100049190 Long et al. Feb 2010 A1
20100049223 Granja Filho Feb 2010 A1
20100056861 Spivey Mar 2010 A1
20100056862 Bakos Mar 2010 A1
20100056864 Lee Mar 2010 A1
20100057085 Holcomb et al. Mar 2010 A1
20100057108 Spivey et al. Mar 2010 A1
20100063538 Spivey et al. Mar 2010 A1
20100076451 Zwolinski et al. Mar 2010 A1
20100076460 Taylor et al. Mar 2010 A1
20100081877 Vakharia Apr 2010 A1
20100091128 Ogasawara et al. Apr 2010 A1
20100113872 Asada et al. May 2010 A1
20100121362 Clague et al. May 2010 A1
20100130817 Conlon May 2010 A1
20100130975 Long May 2010 A1
20100131005 Conlon May 2010 A1
20100152539 Ghabrial et al. Jun 2010 A1
20100152609 Zwolinski et al. Jun 2010 A1
20100152746 Ceniccola et al. Jun 2010 A1
20100179510 Fox et al. Jul 2010 A1
20100179530 Long et al. Jul 2010 A1
20100191050 Zwolinski Jul 2010 A1
20100191267 Fox Jul 2010 A1
20100198005 Fox Aug 2010 A1
20100198149 Fox Aug 2010 A1
20100198248 Vakharia Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100249700 Spivey Sep 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100298642 Trusty et al. Nov 2010 A1
20100312056 Galperin et al. Dec 2010 A1
20100331622 Conlon Dec 2010 A2
20100331758 Davalos et al. Dec 2010 A1
20100331774 Spivey Dec 2010 A2
20110077476 Rofougaran Mar 2011 A1
20110093009 Fox Apr 2011 A1
20110098694 Long Apr 2011 A1
20110098704 Long et al. Apr 2011 A1
20110105850 Voegele et al. May 2011 A1
20110106221 Neal, II et al. May 2011 A1
20110112434 Ghabrial et al. May 2011 A1
20110115891 Trusty May 2011 A1
20110124964 Nobis May 2011 A1
20110152609 Trusty et al. Jun 2011 A1
20110152610 Trusty et al. Jun 2011 A1
20110152612 Trusty et al. Jun 2011 A1
20110152858 Long et al. Jun 2011 A1
20110152859 Long et al. Jun 2011 A1
20110152878 Trusty et al. Jun 2011 A1
20110152923 Fox Jun 2011 A1
20110160514 Long et al. Jun 2011 A1
20110190659 Long et al. Aug 2011 A1
20110190764 Long et al. Aug 2011 A1
20110193948 Amling et al. Aug 2011 A1
20110245619 Holcomb Oct 2011 A1
20110285488 Scott et al. Nov 2011 A1
20110306971 Long Dec 2011 A1
20120004502 Weitzner et al. Jan 2012 A1
20120029335 Sudam et al. Feb 2012 A1
20120088965 Stokes et al. Apr 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120089093 Trusty Apr 2012 A1
20120116155 Trusty May 2012 A1
20120179148 Conlon Jul 2012 A1
20120191075 Trusty Jul 2012 A1
20120220998 Long et al. Aug 2012 A1
20120220999 Long Aug 2012 A1
20120221002 Long et al. Aug 2012 A1
20120238796 Conlon Sep 2012 A1
20120330306 Long et al. Dec 2012 A1
20130090666 Hess et al. Apr 2013 A1
Foreign Referenced Citations (163)
Number Date Country
666310 Feb 1996 AU
3008120 Sep 1980 DE
4323585 Jan 1995 DE
19713797 Oct 1997 DE
19757056 Aug 2008 DE
102006027873 Oct 2009 DE
0086338 Aug 1983 EP
0286415 Oct 1988 EP
0589454 Mar 1994 EP
0464479 Mar 1995 EP
0529675 Feb 1996 EP
0621009 Jul 1997 EP
0724863 Jul 1999 EP
0760629 Nov 1999 EP
0818974 Jul 2001 EP
1281356 Feb 2003 EP
0947166 May 2003 EP
0836832 Dec 2003 EP
1402837 Mar 2004 EP
0744918 Apr 2004 EP
0931515 Aug 2004 EP
0941128 Oct 2004 EP
1411843 Oct 2004 EP
1150614 Nov 2004 EP
1477104 Nov 2004 EP
1481642 Dec 2004 EP
1493391 Jan 2005 EP
0848598 Feb 2005 EP
1281360 Mar 2005 EP
1568330 Aug 2005 EP
1452143 81 Sep 2005 EP
1616527 Jan 2006 EP
1006888 Mar 2006 EP
1629764 Mar 2006 EP
1013229 Jun 2006 EP
1721561 Nov 2006 EP
1153578 Mar 2007 EP
1334696 Mar 2007 EP
1769766 Apr 2007 EP
1836971 Sep 2007 EP
1836980 Sep 2007 EP
1854421 Nov 2007 EP
1857061 Nov 2007 EP
1875876 Jan 2008 EP
1891881 Feb 2008 EP
1902663 Mar 2008 EP
1477106 Jun 2008 EP
1949844 Jul 2008 EP
1518499 81 Aug 2008 EP
1582138 Sep 2008 EP
1709918 Oct 2008 EP
1985226 Oct 2008 EP
1994904 Nov 2008 EP
1707130 Dec 2008 EP
0723462 Mar 2009 EP
1769749 Nov 2009 EP
2135545 Dec 2009 EP
1493397 81 Sep 2011 EP
2731610 Sep 1996 FR
330629 Jun 1930 GB
2335860 Oct 1999 GB
2403909 Jan 2005 GB
2421190 Jun 2006 GB
2443261 Apr 2008 GB
56-46674 Apr 1981 JP
63309252 Dec 1988 JP
4038960 Feb 1992 JP
8-29699 Feb 1996 JP
2000245683 Sep 2000 JP
2002-369791 Dec 2002 JP
2003-088494 Mar 2003 JP
2003-235852 Aug 2003 JP
2004-33525 Feb 2004 JP
2004-065745 Mar 2004 JP
2005-121947 May 2005 JP
2005-261514 Sep 2005 JP
2006297005 Nov 2006 JP
2006-343510 Dec 2006 JP
1021295 Feb 2004 NL
194230 May 1967 SU
980703 Dec 1982 SU
WO 8401707 May 1984 WO
WO 9213494 Aug 1992 WO
WO 9310850 Jun 1993 WO
WO 9320760 Oct 1993 WO
WO 9320765 Oct 1993 WO
WO 9509666 Apr 1995 WO
WO 9622056 Jul 1996 WO
WO 9627331 Sep 1996 WO
WO 9639946 Dec 1996 WO
WO 9712557 Apr 1997 WO
WO 9801080 Jan 1998 WO
WO 9900060 Jan 1999 WO
WO 9909919 Mar 1999 WO
WO 9917661 Apr 1999 WO
WO 9930622 Jun 1999 WO
WO 0035358 Jun 2000 WO
WO 0068665 Nov 2000 WO
WO 0110319 Feb 2001 WO
WO 0126708 Apr 2001 WO
WO 0141627 Jun 2001 WO
WO 0158360 Aug 2001 WO
WO 0211621 Feb 2002 WO
WO 0234122 May 2002 WO
WO 02094082 Nov 2002 WO
WO 03045260 Jun 2003 WO
WO 03047684 Jun 2003 WO
WO 03059412 Jul 2003 WO
WO 03078721 Sep 2003 WO
WO 03081761 Oct 2003 WO
WO 03082129 Oct 2003 WO
WO 2004006789 Jan 2004 WO
WO 2004028613 Apr 2004 WO
WO 2004037123 May 2004 WO
WO 2004037149 May 2004 WO
WO 2004052221 Jun 2004 WO
WO 2004086984 Oct 2004 WO
WO 2005009211 Feb 2005 WO
WO 2005018467 Mar 2005 WO
WO 2005037088 Apr 2005 WO
WO 2005048827 Jun 2005 WO
WO 2005065284 Jul 2005 WO
WO 2005097019 Oct 2005 WO
WO 2005097234 Oct 2005 WO
WO 2005112810 Dec 2005 WO
WO 2005120363 Dec 2005 WO
WO 2005122866 Dec 2005 WO
WO 2006007399 Jan 2006 WO
WO 2006012630 Feb 2006 WO
WO 2006040109 Apr 2006 WO
WO 2006041881 Apr 2006 WO
WO 2006060405 Jun 2006 WO
WO 2006110733 Oct 2006 WO
WO 2006113216 Oct 2006 WO
WO 2007013059 Feb 2007 WO
WO 2007014063 Feb 2007 WO
WO 2007048085 Apr 2007 WO
WO 2007063550 Jun 2007 WO
WO 2007100067 Sep 2007 WO
WO 2007109171 Sep 2007 WO
WO 2007135577 Nov 2007 WO
WO 2007143200 Dec 2007 WO
WO 2007144004 Dec 2007 WO
WO 2008005433 Jan 2008 WO
WO 2008033356 Mar 2008 WO
WO 2008041225 Apr 2008 WO
WO 2008076337 Jun 2008 WO
WO 2008076800 Jun 2008 WO
WO 2008079440 Jul 2008 WO
WO 2008101075 Aug 2008 WO
WO 2008102154 Aug 2008 WO
WO 2008108863 Sep 2008 WO
WO 2008151237 Dec 2008 WO
WO 2009021030 Feb 2009 WO
WO 2009027065 Mar 2009 WO
WO 2009029065 Mar 2009 WO
WO 2009032623 Mar 2009 WO
WO 2009036457 Mar 2009 WO
WO 2009121017 Oct 2009 WO
WO 2010027688 Mar 2010 WO
WO 2010056716 May 2010 WO
WO 2010080974 Jul 2010 WO
WO 2010088481 Aug 2010 WO
Non-Patent Literature Citations (76)
Entry
Michael S. Kavic, M.D., “Natural Orifice Translumenal Endoscopic Surgery: “Notes””, JSLA, vol. 10, pp. 133-134 (2006).
Ethicon, Inc., “Wound Closure Manual: Chapter 3 (The Surgical Needle),” 15 pages, (1994).
Guido M. Sclabas, M.D., et al., “Endoluminal Methods for Gastrotomy Closure in Natural Orifice TransEnteric Surgery (NOTES),” Surgical Innovation, vol. 13, No. 1, pp. 23-30, Mar. 2006.
Fritscher-Ravens, et al., “Transgastric Gastropexy and Hiatal Hernia Repair for GERD Under EUS Control: a Porcine Model,” Gastrointestinal Endoscopy, vol. 59, No. 1, pp. 89-95, 2004.
Ogando, “Prototype Tools That Go With the Flow,” Design News, 2 pages, Jul. 17, 2006.
Edd, et al., “In Vivo Results of a New Focal Tissue Ablation Technique: Irreversible Electroporation,” IEEE Trans Biomed Eng, vol. 53, pp. 1409-1415, 2006.
Kennedy, et al., “High-Burst-Strength, Feedback-Controlled Bipolar Vessel Sealing,” Surgical Endoscopy, vol. 12, pp. 876-878 (1998).
Collins et al., “Local Gene Therapy of Solid Tumors with GM-CSF and B7-1 Eradicates Both Treated and Distal Tumors,” Cancer Gene Therapy, vol. 13, pp. 1061-1071 (2006).
K. Sumiyama et al., “Transesophageal Mediastinoscopy by Submucosal Endoscopy With Mucosal Flap Safety Value Technique,” Gastrointest Endosc., Apr. 2007, vol. 65(4), pp. 679-683 (Abstract).
K. Sumiyama et al., “Submucosal Endoscopy with Mucosal Flap Safety Valve,” Gastrointest Endosc. Apr. 2007, vol. 65(4) pp. 694-695 (Abstract).
K. Sumiyama et al., “Transgastric Cholecystectomy: Transgastric Accessibility to the Gallbladder Improved with the SEMF Method and a Novel Multibending Therapeutic Endoscope,” Gastrointest Endosc., Jun. 2007, vol. 65(7), pp. 1028-1034 (Abstract).
K. Sumiyama et al., “Endoscopic Caps,” Tech. Gastrointest. Endosc., vol. 8, pp. 28-32, 2006.
“Z-Offset Technique Used in the Introduction of Trocar During Laparoscopic Surgery,” M.S. Hershey NOTES Presentation to EES NOTES Development Team, Sep. 27, 2007.
F.N. Denans, Nouveau Procede Pour La Guerison Des Plaies Des Intestines, Extrait Des Seances De La Societe Royale De Medecine De Marseille, Pendant Le Mois De Decembre 1825, et le Premier Tremestre De 1826, Séance Du 24 Fevrier 1826. Recueil De La Societe Royale De Medecin De Marseille. Marseille: Impr. D'Achard, 1826; 1:127-31. (with English translation).
I. Fraser, “An Historical Perspective on Mechanical Aids in Intestinal Anastamosis,” Surg, Gynecol. Obstet. (Oct. 1982), vol. 155, pp. 566-574.
M.E. Ryan et al., “Endoscopic Intervention for Biliary Leaks After Laparoscopic Cholecystectomy: A Multicenter Review,” Gastrointest. Endosc., vol. 47(3), 1998, pp. 261-266.
C. Cope, “Creation of Compression Gastroenterostomy by Means of the Oral, Percutaneous, or Surgical Introduction of Magnets: Feasibility Study in Swine,” J. Vasc Intery Radiol, (1995), vol. 6(4), pp, 539-545.
J.W. Hazey et al., “Natural Orifice Transgastric Endoscopic Peritoneoscopy in Humans: Initial Clinical Trial,” Surg Endosc, (Jan. 2008), vol. 22(1), pp. 16-20.
N. Chopita et al., “Endoscopic Gastroenteric Anastamosis Using Magnets,” Endoscopy, (2005), vol. 37(4), pp. 313-317.
C. Cope et al., “Long Term Patency of Experimental Magnetic Compression Gastroenteric Anastomoses Achieved with Covered Stents,” Gastrointest Endosc, (2001), vol. 53, pp. 780-784.
H. Okajima et al., “Magnet Compression Anastamosis for Bile Duct Stenosis After Duct to Duct Biliary Reconstruction in Living Donor Liver Transplantation,” Liver Transplantation (2005), pp. 473-475.
A. Fritscher-Ravens et al., “Transluminal Endosurgery: Single Lumen Access Anastamotic Device for Flexible Endoscopy,” Gastrointestinal Endosc, (2003), vol. 58(4), pp. 585-591.
G.A. Hallenbeck, M.D. et al., “An Instrument for Colorectal Anastomosis Without Sutrues,” Dis Col Rectum, (1963), vol. 5, pp. 98-101.
T. Hardy, Jr., M.D. et al., “A Biofragmentable Ring for Sutureless Bowel Anastomosis. An Experimental Study,” Dis Col Rectum, (1985), vol. 28, pp. 484-490.
P. O'Neill, M.D. et al., “Nonsuture Intestinal Anastomosis,” Am J. Surg, (1962), vol. 104, pp. 761-767.
C.P. Swain, M.D. et al., “Anastomosis at Flexible Endoscopy: An Experimental Study of Compression Button Gastrojejunostomy,” Gastrointest Endosc, (1991), vol. 37, pp. 628-632.
J.B. Murphy, M.D., “Cholecysto-Intestinal, Gastro-Intestinal, Entero-Intestinal Anastomosis, and Approximation Without Sutures (original research),” Med Rec, (Dec. 10, 1892), vol. 42(24), pp. 665-676.
USCI® EndoSurgical Operating System—g-Prox® Tissue Grasper/Approximation Device; [online] URL: http://www.usgimedical.com/eos/components-gprox.htm—accessed May 30, 2008 (2 pages).
Printout of web page—http://www.vacumed.com/zcom/product/Product.do?compid=27&prodid=852, #51XX Low-Cost Permanent Tubes 2MM ID, Smooth Interior Walls, VacuMed, Ventura, California, Accessed Jul. 24, 2007.
Endoscopic Retrograde Cholangiopancreatogram (ERCP); [online] URL: http://www.webmd.com/digestive-disorders/endoscopic-retrograde-cholangiopancreatogram-ercp.htm; last updated: Apr. 30, 2007; accessed: Feb. 21, 2008 (6 pages).
ERCP; Jackson Siegelbaum Gastroenterology; [online] URL: http://www.gicare.com/pated/epdgs20.htm; accessed Feb. 21, 2008 (3 pages).
D.G. Fong et al., “Transcolonic Ventral Wall Hernia Mesh Fixation in a Porcine Model,” Endoscopy 2007; 39: 865-869.
B. Rubinsky, Ph.D., “Irreversible Electroporation in Medicine,” Technology in Cancer Research and Treatment, vol. 6, No. 4, Aug. (2007), pp. 255-259.
D.B. Nelson, MD et al., “Endoscopic Hemostatic Devices,” Gastrointestinal Endoscopy, vol. 54, No. 6, 2001, pp. 833-840.
CRE™ Pulmonary Balloon Dilator; [online] URL: http://www.bostonscientific.com/Device.bsci?page=HCP_Overview&navRe1Id=1000.1003&method=D . . . , accessed Jul. 18, 2008 (4 pages).
J.D. Paulson, M.D., et al., “Development of Flexible Culdoscopy,” The Journal of the American Association of Gynecologic Laparoscopists, Nov. 1999, vol. 6, No. 4, pp. 487-490.
H. Seifert, et al., “Retroperitoneal Endoscopic Debridement for Infected Peripancreatic Necrosis,” The Lancet, Research Letters, vol. 356, Aug. 19, 2000, pp. 653-655.
K.E. Mönkemüller, M.D., et al., “Transmural Drainage of Pancreatic Fluid Collections Without Electrocautery Using the Seldinger Technique,” Gastrointestinal Endoscopy, vol. 48, No. 2, 1998, pp. 195-200, (Accepted Mar. 31, 1998).
D. Wilhelm et al., “An Innovative, Safe and Sterile Sigmoid Access (ISSA) for Notes,” Endoscopy 2007, vol. 39, pp. 401-406.
Nakazawa et al., “Radiofrequency Ablation of Hepatocellular Carcinoma: Correlation Between Local Tumor Progression After Ablation and Ablative Margin,” AJR, 188, pp. 480-488 (Feb. 2007).
Miklav{hacek over (c)}i{hacek over (c)} et al., “A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy,” Biochimica et Biophysica Acta, 1523, pp. 73-83 (2000).
Evans, “Ablative and cathether-delivered therapies for colorectal liver metastases (CRLM),” EJSO, 33, pp. S64-S75 (2007).
Wong et al., “Combined Percutaneous Radiofrequency Ablation and Ethanol Injection for Hepatocellular Carcinoma in High-Risk Locations,” AJR, 190, pp. W187-W195 (2008).
Heller et al., “Electrically mediated plasmid DNA delivery to hepatocellular carcinomas in vivo,” Gene Therapy, 7, pp. 826-829 (2000).
Widera et al., “Increased DNA Vaccine Delivery and Immunogenicity by Electroporation In Vivo,” The Journal of Immunology, 164, pp. 4635-4640 (2000).
Weaver et al., “Theory of electroporation: A review,” Bioelectrochemistry and Bioenergetics, 41, pp. 135-160 (1996).
Mulier et al., “Radiofrequency Ablation Versus Resection for Resectable Colorectal Liver Metastases: Time for a Randomized Trial?” Annals of Surgical Oncology, 15(1), pp. 144-157 (2008).
Link et al., “Regional Chemotherapy of Nonresectable Colorectal Liver Metastases with Mitoxanthrone, 5-Fluorouracil, Folinic Acid, and Mitomycin C May Prolong Survival,” Cancer, 92, pp. 2746-2753 (2001).
Guyton et al., “Membrane Potentials and Action Potentials,” W.B. Sanders, ed. Textbook of Medical Physiology, p. 56 (2000).
Guyton et al., “Contraction of Skeletal Muscle,” Textbook of Medical Physiology, pp. 82-84 (2000).
“Ethicon Endo-Surgery Novel Investigational Notes and SSL Devices Featured in 15 Presentations at Sages,” Apr. 22, 2009 Press Release; URL http://www.jnj.com/connect/news/a11/20090422_152000; accessed Aug. 28, 2009 (3 pages).
“Ethicon Endo-Surgery Studies Presented at DDW Demonstrate Potential of Pure NOTES Surgery With Company's Toolbox,” Jun. 3, 2009 Press Release; URL http://www.jnj.com/connect/news/product/20090603_120000; accessed Aug. 28, 2009 (3 pages).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Abstract submitted along with Poster at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
Castellvi et al., “Hybrid Transvaginal NOTES Sleeve Gastrectomy in a Porcine Model Using a Magnetically Anchored Camera and Novel Instrumentation,” Poster submitted along with Abstract at SAGES Annual Meeting in Phoenix, AZ, Apr. 22, 2009 (1 page).
OCTO Port Modular Laparoscopy System for Single Incision Access, Jan. 4, 2010; UR: http://www.medgadget.com/archives/2010/01/octo_port_modulariaparo . . . ; accessed Jan. 5, 2010 (4 pages).
Hakko Retractors, obtained Aug. 25, 2009 (5 pages).
Zadno et al., “Linear Superelasticity in Cold-Worked Ni—Ti,” Engineering Aspects of Shape Memory Alloys, pp. 414-419 (1990).
U.S. Appl. No. 13/013,131, filed Jan. 25, 2011.
U.S. Appl. No. 12/900,132, filed Oct. 7, 2010.
U.S. Appl. No. 12/939,441, filed Nov. 4, 2010.
U.S. Appl. No. 12/902,531, filed Oct. 12, 2010.
U.S. Appl. No. 12/902,550, filed Oct. 12, 2010.
U.S. Appl. No. 13/036,895, filed Feb. 28, 2011.
U.S. Appl. No. 13/036,908, filed Feb. 28, 2011.
U.S. Appl. No. 13/218,221, filed Aug. 25, 2011.
U.S. Appl. No. 13/267,251, filed Oct. 6, 2011.
How Stuff Works “How Smart Structures Will Work,” http://science.howstuffworks.com/engineering/structural/smart-structure1.htm; accessed online Nov. 1, 2011 (3 pages).
Instant Armor: Science Videos—Science News—ScienCentral; http://www.sciencentral.com/articles./view.php3?article_id=218392121; accessed online Nov. 1, 2011 (2 pages).
Stanway, Smart Fluids: Current and Future Developments. Material Science and Technology, 20, pp. 931-939, 2004; accessed online Nov. 1, 2011 at http://www.dynamics.group.shef.ac.uk/smart/smart.html (7 pages).
Jolly et al., Properties and Applications of Commercial Magnetorheological Fluids. SPIE 5th Annual Int. Symposium on Smart Structures and Materials, 1998 (18 pages).
Rutala et al. “Guideline for Disinfection and Sterilization in Healthcare Facilities, 2008” (available at http://www.cdc.gov/hicpac/Disinfection_Sterilization/13_11sterilizingPractices.html).
U.S. Appl. No. 13/325,791, filed Dec. 14, 2011.
U.S. Appl. No. 13/399,358, filed Feb. 17, 2012.
U.S. Appl. No. 13/420,818, filed Mar. 15, 2012.
International Search Report for PCT/US2012/021532, dated Jul. 6, 2012 (4 pages).
Bewlay et al., “Spinning” in ASM Handbook, vol. 14B, Metalworking: Sheet Forming (2006).
Related Publications (1)
Number Date Country
20120191076 A1 Jul 2012 US