The present invention relates in general to medical instruments, and more particularly to manually-operated surgical instruments that are intended for use in minimally invasive surgery or other forms of surgical or medical procedures or techniques. The instrument described herein is primarily for a laparoscopic procedure, however, it is to be understood that the instrument of the present invention can be used for a wide variety of other procedures, including intraluminal procedures.
Endoscopic and laparoscopic instruments currently available in the market are extremely difficult to learn to operate and use, mainly due to a lack of dexterity in their use. For instance, when using a typical laparoscopic instrument during surgery, the orientation of the tool of the instrument is solely dictated by the location of the target and the incision. These instruments generally function with a fulcrum effect using the patients own incision area as the fulcrum. As a result, common tasks such as suturing, knotting and fine dissection have become challenging to master. Various laparoscopic instruments have been developed over the years to overcome this deficiency, usually by providing an extra articulation often controlled by a separately disposed control member for added control. However, even so these instruments still do not provide enough dexterity to allow the surgeon to perform common tasks such as suturing, particularly at any arbitrarily selected orientation. Also, existing instruments of this type do not provide an effective way to hold the instrument in a particular position. Moreover, existing instruments require the use of both hands in order to effectively control the instrument.
Accordingly, an object of the present invention is to provide an improved laparoscopic or endoscopic surgical instrument that allows the surgeon to manipulate the tool end of the surgical instrument with greater dexterity.
Another object of the present invention is to provide an improved surgical or medical instrument that has a wide variety of applications, through incisions, through natural body orifices or intraluminally.
A further object of the present invention is to provide an improved medical instrument that is characterized by the ability to lock the instrument in a pre-selected particular position.
Another object of the present invention is to provide a locking feature that is an important adjunct to the other controls of the instrument enabling the surgeon to lock the instrument once in the desired position. This makes it easier for the surgeon to thereafter perform surgical procedures without having to, at the same time, hold the instrument in a particular bent configuration.
Still another object of the present invention is to provide an improved medical instrument that can be effectively controlled with a single hand of the user.
A further object of the present invention is to provide a medical instrument in which the distal motion member is formed of a ball and socket structure having three dimensional movement.
Still another object of the present invention is to provide a medical instrument in which there is provided a means to readily convert the instrument tip into a substantially rigid tip.
To accomplish the foregoing and other objects, features and advantages of the present invention there is provided, in one embodiment thereof, an instrument having a proximal control handle and a distal tool that are intercoupled by an elongated instrument shaft, proximal and distal movable members that respectively intercouple the proximal control handle and the distal tool with the instrument shaft, cabling that extends between the movable members so that a motion at the proximal movable member controls the distal movable member, and a control member at the control handle and manipulable by a user to control, via the proximal and distal movable members, the rotation of the distal tool about its distal tool axis. The control member comprises a slide member mounted on the handle.
In accordance with other aspects of the invention the slide member moves longitudinally to, in turn, control the rotation about a distal tool axis that is a longitudinal axis common to both the distal movable member and said tool; the proximal movable member may comprise a proximal bendable member; an angle locking means may be provided on the handle for locking the angle between the proximal and distal movable members; the movable members may be bendable members and the control member may further comprise gear means for translating linear sliding motion into rotation of the proximal bendable member and the movable members may be bendable members and the control member may further comprise a pulley and capstan means for translating linear sliding motion into rotation of the proximal bendable member.
In accordance with another embodiment the medical instrument has a proximal control handle and a distal tool that are intercoupled by an elongated instrument shaft that is meant to pass internally of an anatomic body, proximal and distal movable members respectively intercouple the proximal control handle and the distal tool with the instrument shaft, cable actuation means is disposed between the movable members, for controlling the positioning of the distal tool, and a locking mechanism is provided having locked and unlocked positions, disposed about the proximal movable member and manually controlled so as to fix the position of the proximal movable member relative to the handle in the locked position thereof, said locking mechanism comprising a socket and a split ball within the socket.
In accordance with still other aspects of the invention the locking mechanism may further comprise a wedge member that engages with the split ball; a slide member may be provided for actuating the wedge member which, in turn, expands the split ball to contact the socket; the proximal movable member may be a bendable member and the slide member may be mounted on the handle over the proximal bendable member; a rotation control member may be provided adjacent to the slide member for controlling the orientation of the distal movable member and tool.
In accordance with still another embodiment the medical instrument has a proximal control handle and a distal tool that are intercoupled by an elongated instrument shaft that is meant to pass internally of an anatomic body, proximal and distal movable members respectively intercouple the proximal control handle and the distal tool with the instrument shaft, cable actuation means is disposed between the movable members, for controlling the positioning of the distal tool, and sleeve means extends between the proximal and distal movable members and is slidable to a position over the distal movable member.
In accordance with still further aspects of the invention the sleeve means is preferably relatively rigid so as to fix the distal movable member in a predetermined position; the sleeve means preferably maintains the distal movable member in a straight position; a handle may be provided at the proximal end of the sleeve means to assist in moving the sleeve means and a locking mechanism may be provided having locked and unlocked positions, disposed about the proximal movable member and manually controlled so as to fix the position of the proximal movable member relative to the handle in the locked position thereof.
In accordance with still a further embodiment the medical instrument includes a proximal control handle; a distal work member; a proximal movable member controlled from the proximal control handle; a distal movable member controlled from the proximal movable member to provide controlled movement of the distal work member from the proximal control handle; an instrument shaft that intercouples the proximal and distal movable members and actuation means coupled between the movable members. The distal movable member comprises a ball and socket assembly that enables limited rotation of the distal work member relative to the distal end of the instrument shaft.
In accordance with another aspect of the invention a locking member is supported from the proximal control handle and has locked and unlocked states, said locking member in the unlocked state enabling control of the distal work member from the proximal control handle via the movable members, and said locking member, in its locked state, holding the movable members in a desired fixed position; the proximal movable member may comprise a proximal bendable member that includes a slotted structure; alternatively the proximal movable member may comprise a bendable bellows member and the actuation means may include cables and the ball may include plural recessed areas for accommodating the cables.
In a final embodiment the medical instrument has a proximal control handle and a distal tool that are intercoupled by an elongated instrument shaft that is meant to pass internally of an anatomic body, proximal and distal movable members respectively intercouple the proximal control handle and the distal tool with the instrument shaft, cable actuation means is disposed between the movable members and a locking means is manually operable by a user and includes a follower the position of which is responsive to the position of the movable members. The distal movable member comprises a ball and socket assembly that enables limited rotation of the distal work member relative to the distal end of the instrument shaft.
It should be understood that the drawings are provided for the purpose of illustration only and are not intended to define the limits of the disclosure. The foregoing and other objects and advantages of the embodiments described herein will become apparent with reference to the following detailed description when taken in conjunction with the accompanying drawings in which:
The instrument of the present invention may be used to perform minimally invasive procedures. “Minimally invasive procedure,” refers herein to a surgical procedure in which a surgeon operates through a small cut or incision, the small incision being used to access the operative site. In one embodiment, the incision length ranges from 1 mm to 20 mm in diameter, preferably from 5 mm to 10 mm in diameter. This procedure contrasts those procedures requiring a large cut to access the operative site. Thus, the flexible instrument is preferably used for insertion through such small incisions and/or through a natural body lumen or cavity, so as to locate the instrument at an internal target site for a particular surgical or medical procedure. The introduction of the surgical instrument into the anatomy may also be by percutaneous or surgical access to a lumen, vessel or cavity, or by introduction through a natural orifice in the anatomy.
In addition to use in a laparoscopic procedure, the instrument of the present invention may be used in a variety of other medical, surgical or therapeutic procedures including, but not limited to, colonoscopic, upper GI, arthroscopic, sinus, thorasic, prostate, transvaginal, orthopedic and cardiac procedures. Depending upon the particular procedure, the instrument shaft may be rigid, semi-rigid or flexible.
Although reference is made herein to a “surgical instrument,” it is contemplated that the principles of this invention also apply to other medical instruments, not necessarily for surgery, and including, but not limited to, such other implements as catheters, as well as diagnostic and therapeutic instruments and implements.
There are a number of unique features embodied in the instrument disclosed herein. For example, there is provided a locking mechanism that may employ either a locking wedge, locking sleeve or locking lever arrangement for maintaining the proximal and distal bendable members in a particular bent condition, or in other words locked in that position. This lock control allows the surgeon one less degree of freedom to concentrate on when performing certain tasks. By locking the bendable sections at a particular position, this enables the surgeon to be more hands-free for controlling other degrees of freedom of the instrument such as manipulation of the rotation knob to, in turn, control the orientation of the end effector.
Another feature of the present invention relates to the provision of a distal ball and socket arrangement that enables three dimensional angled control of the instrument tool.
Still another feature of the present invention relates to a further form of control of the distal tool rotation via a proximal control member that operates on a motion basis that, in turn, through a mechanical interface, controls rotation of the tool about a distal tool axis.
Still another feature of the present invention is to provide a medical instrument in which there is provided a means, preferably a sleeve means, to readily convert the instrument tip into a substantially rigid tip. This is accomplished by sliding the sleeve over the instrument tip, particularly over the distal moveable member, to hold the tip in a particular position, preferably a straight position.
In the surgical instrument described herein both the tool and handle motion members or bendable members are preferably capable of bending in any direction. They are interconnected via cables (preferably four cables) in such a way that a bending action at the proximal member provides a related bending at the distal member. The proximal bending is controlled by a motion or deflection of the control handle by a user of the instrument. In other words the surgeon grasps the handle and once the instrument is in position any motion (deflection) at the handle immediately controls the proximal bendable member which, in turn, via cabling controls a corresponding bending or deflection at the distal bendable member. This action, in turn, controls the positioning of the distal tool.
The proximal member is preferably generally larger than the distal member so as to provide enhanced ergonomic control. In the illustrated embodiment the ratio of proximal to distal bendable member diameters may be on the order of three to one. In one version in accordance with the invention there may be provided a bending action in which the distal bendable member bends in the same direction as the proximal bendable member. In an alternate embodiment the bendable, turnable or flexible members may be arranged to bend in opposite directions by rotating the actuation cables through 180 degrees, or could be controlled to bend in virtually any other direction depending upon the relationship between the distal and proximal support points for the cables.
As has been noted the, amount of bending motion produced at the distal bending member is determined by the dimension of the proximal bendable member in comparison to that of the distal bendable member. In the embodiment described the proximal bendable member is generally larger than the distal bendable member, and as a result, the magnitude of the motion produced at the distal bendable member is greater than the magnitude of the motion at the proximal bendable member. The proximal bendable member can be bent in any direction (about 360 degrees) controlling the distal bendable member to bend in either the same or an opposite direction, but in the same plane at the same time. Also, the surgeon is able to bend and roll the instrument's tool about its longitudinal axis P to any orientation simply by rolling the axial rotation knob about rotation axis.
In this description reference is made to bendable members. These members may also be referred to as turnable members, bendable sections, bendable segments or flexible members. In the descriptions set out herein, terms such as “bendable section,” “bendable segment,” “bendable member,” or “turnable member” refer to an element of the instrument that is controllably bendable in comparison to an element that is pivoted at a joint. The term “movable member” is considered as generic to bendable sections and joints. The bendable elements of the present invention enable the fabrication of an instrument that can bend in any direction without any singularity and that is further characterized by a ready capability to bend in any direction, all preferably with a single unitary or uni-body structure. A definition of a “unitary” or “uni-body” structure is—a structure that is constructed only of a single integral member and not one that is formed of multiple assembled or mated components—. A typical unitary structure is illustrated at the proximal end of the instrument shown in
A definition of these bendable members is—an instrument element, formed either as a controlling means or a controlled means, and that is capable of being constrained by tension or compression forces to deviate from a straight line to a curved configuration without any sharp breaks or angularity—. Bendable members may be in the form of unitary structures, such as shown herein in
The instrument disclosed herein may be used, for example, for laparoscopic surgery through the abdominal wall. For this purpose there is provided an insertion site at which there is disposed a cannula or trocar. The shaft of the instrument is adapted to pass through the cannula or trocar so as to dispose the distal end of the instrument at the operative site. The end effector may be considered as at such an operative site with the cannula or trocar at an incision point in the skin. The distal end of the instrument may be typically used with a sheath to keep bodily fluids from entering the distal bending member.
One embodiment of the surgical tool of the present invention is shown in
The thumb slide switch 260 is longitudinally slidable in slot 276 on the side of the handle 12. The thumb slide is affixed to a rack 262 that, in turn, rotates pinion gear 264 as it is pushed forward or rearward. The pinion gear 264 is affixed to or formed as part of a bevel gear 266 and the pinion gear 264 and one of the bevel gears are free to rotate on stub shaft 268. The stub shaft 268 is mounted in boss 270 (
An alternate drive means for performing the rotation function is shown in
Reference is now made to a further embodiment of the invention shown in
A thumb slide switch 298 drives the wedge 300 against cam surfaces 302 of the rim 294. This action, as seen in
The sleeve 322 is attached at its proximal end to handle 324 which has a gripping portion 326 and furthermore has a slot 328 on its inside surface that rides over one or more protusions 330 on the outside surface of the neck 206 of ball 120. The handle 324 may also have detents 332 to engage the handle in respective forward or rearward positions.
In the embodiment of
Reference is now made to other embodiments of the invention shown in
A rolling motion can be carried out with any one of the instruments disclosed herein. For example, in the embodiment of
Any rotation of the rotation knob 624 while the instrument is locked (or unlocked) maintains the instrument tip at the same angular position, but rotates the orientation of the tip (tool). For a further explanation of the tip rotational feature refer to co-pending application Ser. No. 11/302,654, filed on Dec. 14, 2005, particularly FIGS. 25-28, which is hereby incorporated by reference in its entirety.
The handle 612, via proximal bendable member 618, may be tilted at an angle to the instrument shaft longitudinal center axis. This tilting, deflecting or bending may be considered as in the plane of the paper. By means of the cabling this action causes a corresponding bend at the distal bendable member 720 to a position wherein the tip is directed along an axis and at a corresponding angle to the instrument shaft longitudinal center axis. The bending at the proximal bendable member 618 is controlled by the surgeon from the handle 612 by manipulating the handle in essentially any direction including in and out of the plane of the paper in
Thus, the control at the handle is used to bend the instrument at the proximal motion member to, in turn, control the positioning of the distal motion member and tool. The “position” of the tool is determined primarily by this bending or motion action and may be considered as the coordinate location at the distal end of the distal motion member. Actually, one may consider a coordinate axis at both the proximal and distal motion members as well as at the instrument tip. This positioning is in three dimensions. Of course, the instrument positioning is also controlled to a certain degree by the ability of the surgeon to pivot the instrument at the incision point. The “orientation” of the tool, on the other hand, relates to the rotational positioning of the tool, from the proximal rotation control member, about the illustrated distal tip or tool axis P.
In the drawings a set of jaws is depicted, however, other tools or devices may be readily adapted for use with the instrument of the present invention. These include, but are not limited to, cameras, detectors, optics, scope, fluid delivery devices, syringes, etc. The tool may include a variety of articulated tools such as: jaws, scissors, graspers, needle holders, micro dissectors, staple appliers, tackers, suction irrigation tools and clip appliers. In addition, the tool may include a non-articulated tool such as: a cutting blade, probe, irrigator, catheter or suction orifice.
As depicted in
Reference is now made to
In the embodiment of
As indicated previously, the end effector or tool 716 is actuated by means of a jaw actuation member including an elongated lever. The lever is supported from the handle housing. This operates the tool actuator cable 638 from a slider (not shown) in the handle housing. When the cable 638 is moved to the right, then the jaws are moved toward a closed position. In
The instrument shaft 614 includes an outer shaft tube 632 that may be constructed of a lightweight metal material or may be a plastic material. The proximal end of the tube 632 is received by the adaptor cover 626. The distal end of the tube 632 is secured to the distal bendable member 720. Within the outer shaft tube 632 there is provided a support tube 634 that is preferably constructed of a plastic material. Tube 634 extends between the distal bendable member 720 and the proximal bendable member 618. The jaw actuator cable 638 extends within this support tube 634. The support tube 634 may have disposed along its length a series of spacers (not shown). Each of the spacers is preferably evenly spaced along the instrument shaft and may be provided with slots for accommodating the tool actuator cables.
As indicated previously, the control between the proximal member 618 and the distal member 720 is carried out by means of the flex control cables 600. There are four such cables. At the distal end of these cables, as mentioned before, the cables connect to anchors at the jaw end of the instrument. The cables 600 are retained at there proximal ends by cable end lugs 602 terminating at the proximal end of the proximal member. Preferably springs 604 or other resilient members are retained between these end lugs 602 and a wall of the rotation knob 624. The springs 604 tension or take up the slack on the cables. Within the adaptor cover 626, the cables 600 extend through the transition member 606. The cables then extend to a larger diameter outer locus as they extend through the proximal bendable member. The stepped transition member 606 may be of metal and is secured to the end of the tube 632.
In the embodiment of the invention illustrated in
The locking mechanism 640 includes, inter alia, an anchor ring 642 that provides the primary support for the locking cables 660, as well as the support of the locking mechanism from the rotation knob structure. In this regard, the anchor ring 642 includes diametrically disposed pins that are accommodated in elongated slots of opposed rearwardly extending fingers. The cables 660 are relatively rigid and generally of a larger diameter than the cables 600. All of the cables 600 are preferably of the same length.
When the instrument illustrated in this embodiment is in a straight in-line position then the locking mechanism, and particularly the anchor ring 642 extends substantially transverse to the center axis. When the handle 612 is bent, such as in the positions shown in
Each of the cables 660 are disposed 90 degrees apart, as are the bent cables 600. The cables 660 may be disposed 45 degrees to the cables 600. The distal end of each cable 660 terminates at lug end 621. Rotation of the rotation knob 624 causes rotation of the entire proximal bendable member and the locking mechanism 640.
Reference is now made to
In the embodiment of
The proximal motion member 818 is constructed primarily of a bellows 827 that functions with the rotation knob 824 and locking mechanism 811 to control the distal end of the instrument. The bellows 827 is attached at opposite ends to the adaptor 826 at member 806 and at the rotation knob 824. The ends of the bellows may be secured by a compression fit with the respective adaptor 826 and rotation knob 824. As illustrated in
In the embodiment of
Refer now to
The embodiment described in
In this embodiment although a pair of lock levers is illustrated it is understood that only a single lock lever may be used. When a pair of lock levers is used they are normally both held in the same position, either locked or unlocked. This locking feature is an important adjunct to the other controls of the instrument enabling the surgeon to lock the instrument once in the desired position. This makes it easier for the surgeon to thereafter perform surgical procedures without having to, at the same time, hold the instrument in a particular bent configuration. However, even when locked, the end effector can still be rotated to control tool orientation.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims. For example, the embodiments described herein have primarily used four control cables for providing all direction motion of the motion members. In alternate embodiments fewer or greater numbers of cables may be provided. In a most simplified version only two cables are used to provide single DOF action at the bendable motion member. Also, any of the disclosed embodiments can use a handle that is either essentially in line with the instrument shaft or of a pistol grip type.