The present disclosure relates to surgical instruments and methods and, more particularly, to surgical instruments and methods for performing tonsillectomy and/or adenoidectomy procedures.
The tonsils and adenoids are part of the lymphatic system and are generally located in the back of the throat. These parts of the lymphatic system are generally used for sampling bacteria and viruses entering the body and activating the immune system when warranted to produce antibodies to fight oncoming infections. More particularly, the tonsils and adenoids break down the bacteria or virus and send pieces of the bacteria or virus to the immune system to produce antibodies for fighting off infections.
Inflammation of the tonsils and adenoids (e.g., tonsillitis) impedes the ability of the tonsils and adenoids to destroy the bacteria resulting in a bacterial infection. In many instances, the bacteria remain even after treatment and serve as a reservoir for repeated infections (e.g., tonsillitis or ear infections).
A tonsillectomy and/or adenoidectomy may be performed when infections persist and antibiotic treatments fail. Persistent infection typically leads to enlarged tonsil tissue which may need to be removed since in many cases the enlarged tissue causes airway obstruction leading to various sleep disorders such as snoring or, in some cases, sleep apnea. Some individuals are also born with larger tonsils that are more prone to cause obstruction. An adenoidectomy may also be required to remove adenoid tissue when ear pain persists, or when nose breathing or function of the Eustachian tube is impaired. Often times, tonsillectomy and adenoidectomy procedures are performed at the same time.
As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user. Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
A method of surgery provided in accordance with aspects of the present disclosure includes grasping tissue between tissue-contacting surfaces of first and second jaw members of an end effector assembly, supplying energy to at least one of the tissue-contacting surfaces to treat tissue grasped therebetween, and translating the end effector assembly proximally to cut tissue grasped between the tissue-contacting surfaces in a ripping fashion.
In an aspect of the present disclosure, the first jaw member further includes an insulative member extending towards the second jaw member. The insulative member includes a plurality of crests. Each crest defines a blunt apex and a proximally-facing sharpened edge configured such that, upon grasping tissue, the blunt apexes contact tissue grasped between the tissue-contacting surfaces and, upon translating the end effector assembly proximally, the proximally-facing sharpened edges cut tissue grasped between the tissue-contacting surfaces in a ripping fashion.
In one aspect of the present disclosure, grasping tissue includes grasping tissue disposed between tissue to be removed and wall tissue to remain.
In another aspect of the present disclosure, supplying energy to at least one of the tissue-contacting surfaces includes treating at least a portion of tissue to be removed and at least a portion of wall tissue to remain.
In yet another aspect of the present disclosure, translating the end effector assembly proximally to cut tissue includes separating tissue to be removed from wall tissue to remain.
In still another aspect of the present disclosure, the method further includes removing the tissue to be removed.
Another method of surgery provided in accordance with aspects of the present disclosure includes grasping tissue between tissue-contacting surfaces of first and second jaw members of an end effector assembly. Upon grasping tissue, tissue disposed outside an area defined between the tissue-contacting surfaces is at least partially cut. The method further includes supplying energy to at least one of the tissue-contacting surfaces to treat grasped tissue.
In an aspect of the present disclosure, at least one of the first and second jaw members includes an insulative member extending towards the other jaw member and disposed outside the area. Upon grasping of tissue, the at least one insulative member at least partially cuts tissue disposed outside the area.
In another aspect of the present disclosure, grasping tissue includes grasping tissue disposed between tissue to be removed and wall tissue to remain.
In still another aspect of the present disclosure, at least partially cutting tissue includes cutting tissue disposed between the end effector assembly and tissue to be removed.
In yet another aspect of the present disclosure, the method further includes manipulating the end effector assembly to fully separate tissue to be removed from wall tissue to remain.
In still yet another aspect of the present disclosure, the method further includes removing tissue to be removed.
Various aspects and features of the present disclosure are described herein with reference to the drawings wherein:
Turning to
Referring to
With additional reference to
Referring to
One of the shaft members 12a, 12b of forceps 10′, e.g., shaft member 12a, includes a proximal shaft connector 19 configured to connect the forceps 10′ to a source of energy (not shown), e.g., a generator. Proximal shaft connector 19 secures a cable 2′ to forceps 10′ such that the user may selectively supply energy to jaw members 110′, 120′ for treating tissue and for energy-based tissue cutting. More specifically, an activation switch 4′ is provided for supplying energy to jaw members 110′, 120′ to treat tissue upon sufficient approximation of shaft members 12a, 12b, e.g., upon activation of activation switch 4′ via shaft member 12b.
With reference to
Each jaw member 110, 120 of end effector assembly 100 includes a jaw frame having a proximal flange portion 111, 121, an outer insulative jaw housing 112, 122 disposed about the distal portion (not explicitly shown) of each jaw frame, and a tissue-contacting plate 114, 124, respectively. Proximal flange portions 111, 121 are pivotably coupled to one another about pivot 103 for moving jaw members 110, 120 between the spaced-apart and approximated positions, although other suitable mechanisms for pivoting jaw members 110, 120 relative to one another are also contemplated. The distal portions (not explicitly shown) of the jaw frames are configured to support jaw housings 112, 122, and tissue-contacting plates 114, 124, respectively, thereon.
Outer insulative jaw housings 112, 122 of jaw members 110, 120 support and retain tissue-contacting plates 114, 124 on respective jaw members 110, 120 in opposed relation relative to one another. Tissue-contacting plates 114, 124 are formed from an electrically conductive material, e.g., for conducting electrosurgical energy therebetween for treating tissue, although tissue-contacting plates 114, 124 may alternatively be configured to conduct any suitable energy, e.g., thermal, microwave, light, ultrasonic, etc., through tissue grasped therebetween for energy-based tissue treatment. As mentioned above, tissue-contacting plates 114, 124 are coupled to activation switch 4 (
Various different configurations of end effector assemblies, similar to end effector assembly 100 (
Turning to
Positioned between the spaced-apart plates 214a, 214b of jaw member 210 is an insulative member 218. More specifically, insulative member 218 extends longitudinally between plates 214a, 214b and towards jaw member 220. Insulative member 218 defines a configuration having a plurality of crests 219a spaced-apart via a plurality of lulls 219b. Each crest 219a defines a blunt apex 219c and a proximally-extending sharpened edge 219d. As a result of this configuration, blunt apexes 219c, not sharpened edges 219d, contact tissue upon movement of jaw members 210, 220 to the approximated position to grasp tissue therebetween. Thus, tissue is not cut during grasping and supplying energy thereto. Insulative member 218 may also function as a stop member to set a minimum gap distance between jaw members 210, 220 in the approximated position. Accordingly, insulative member 218 may be configured to define a height of between about 0.001 inches and about 0.010 inches to achieve a similar minimum gap distance between jaw members 210, 220.
In use, end effector assembly 200, with jaw members 210, 220 disposed in the spaced-apart position, is manipulated into position such that tissue to be treated and cut is disposed between jaw members 210, 220. With respect to tonsillectomy procedures, for example, end effector assembly 200 is positioned between the cavity wall tissue (or other tissue to remain) and the tonsil tissue (or other tissue to be removed). Once the desired position has been achieved, jaw members 210, 220 are moved to the approximated position to grasp tissue therebetween. Thereafter, plates 214a, 214b and plate 224 may be energized to different electrical potentials for conducting energy between plates 214a, 214b and plate 224 and through tissue grasped therebetween to treat the grasped tissue.
Once tissue has been treated, the tissue to be removed, e.g., the tonsil tissue, is separated from the tissue to remain, e.g., the wall tissue. In order to separate the tissue, while maintaining jaw members 210, 220 in the approximated position grasping the previously treated tissue therebetween, end effector assembly 200 is moved proximally relative to tissue. As end effector assembly 200 is moved proximally, sharpened edges 219d of insulative member 218 cut through tissue disposed between the two tissue treatment areas, e.g., the area between plate 214a and the opposed portion of plate 224 and the area between plate 214b and the opposed portion of plate 224, in a “ripping” fashion, thereby separating the tonsil tissue to be removed (on one side of the end effector assembly 200) from the wall tissue to remain (on the other side of end effector assembly 200). The separated tonsil tissue may then be removed using end effector assembly 200, another grasping instrument, a suction device, or via other suitable method.
Turning to
Positioned between the spaced-apart plates 314a, 314b and 324a, 324b of each jaw member 310, 320, respectively, is an insulative member 318, 328, although in some embodiments only one jaw member 310, 320 includes the insulative member 318, 328. Insulative members 318, 328 extend from jaw members 310, 320 longitudinally between plates 314a, 314b and 324a, 324b, respectively, and towards the other jaw member 320, 310, respectively. Insulative members 318, 328 define generally triangular transverse, cross-sectional configurations with apexes 319, 329, respectively, thereof oriented in opposed relation relative to one another such that apexes 319, 329 meet one another upon full approximation of jaw members 310, 320. Apexes 319, 329 may be sharpened or blunt. Insulative members 318, 328 may further function as stop members to set the minimum gap distance between jaw members 310, 320 in the approximated position. Accordingly, insulative members 318, 328 may cooperate to define a total height, e.g., the sum of the respective heights, of between about 0.001 inches and about 0.010 inches to achieve a similar minimum gap distance between jaw members 310, 320 in the approximated position.
In use, end effector assembly 300, with jaw members 310, 320 disposed in the spaced-apart position, is manipulated into position such that tissue to be treated and cut is disposed between jaw members 310, 320. With respect to tonsillectomy procedures, for example, end effector assembly 300 is positioned between the wall tissue to remain and the tonsil tissue to be removed. Once the desired position has been achieved, jaw members 310, 320 are moved to the approximated position to grasp tissue therebetween. Thereafter, plates 314a, 314b and plates 324a, 324b may be energized to different electrical potentials for conducting energy therebetween and through the grasped tissue to treat the grasped tissue.
Once tissue has been treated, the tonsil tissue is separated from the wall tissue and removed. In order to separate the tonsil tissue, while maintaining jaw members 310, 320 in the approximated position grasping the previously treated tissue therebetween, end effector assembly 300 is manipulated, e.g., translated longitudinally, translated laterally, and/or rotated relative to tissue. As end effector assembly 300 is moved relative to tissue, tissue pinched between apexes 319, 329 is cut or separated via the sharpened apexes 319, 329, in embodiments where so provided, and/or the relatively high pressure concentration on tissue disposed therebetween in a “ripping” fashion. More specifically, the tissue is separated between the two treatment areas, e.g., between plates 314a, 324a on one side of insulative members 318, 328 and between plates 314b, 324b on the other side of insulative members 318, 328, thereby separating the tonsil tissue on one side of end effector assembly 300 and the wall tissue on the other side of end effector assembly 300. The separated tonsil tissue may then be removed similarly as detailed above.
Turning to
One of the jaw members, e.g., jaw member 410, includes an insulative member 418 extending longitudinally between spaced-apart plates 414a, 414b. Insulative member 418 extends from jaw member 410 towards jaw member 420 and defines a generally rectangular transverse, cross-sectional configuration. As a result of this configuration, insulative member 418 includes a pair of corner edges 419a, 419b which may be sharpened to facilitate cutting tissue. Alternatively, corners 419a, 419b may be angled or curved to define blunt configurations.
The other jaw member, e.g., jaw member 420, includes a recess 428 defined within jaw housing 422 thereof and positioned between spaced-apart plates 424a, 424b. Recess 428 extends longitudinally along jaw member 420 and defines a generally rectangular transverse, cross-sectional configuration that is complementary to the configuration of insulative member 418. More specifically, recess 428 may be similarly sized or slightly larger than insulative member 418 so as to at least partially receive insulative member 418 therein upon approximation of jaw members 410, 420. As a result of this configuration, corner edges 419a, 419b abut or are disposed in close proximity to interior walls 429 defining recess 428 when jaw members 410, 420 are moved to the approximated position.
Insulative member 418 and recess 428 may cooperate to function as a stop member to set a minimum gap distance between jaw members 410, 420 in the approximated position. More specifically, the difference between the height of insulative member 418 and the depth of recess 428 may be selected so as to define a minimum gap distance between jaw members 410, 420 within the ranges detailed above (or other suitable range), when insulative member 418 bottoms out within or is no longer capable of being advanced into recess 428.
In use, end effector assembly 400, with jaw members 410, 420 disposed in the spaced-apart position, is manipulated into position such that tissue to be treated and cut is disposed between jaw members 410, 420. With respect to tonsillectomy procedures, for example, end effector assembly 400 is positioned between the wall tissue to remain and the tonsil tissue to be removed. Once the desired position has been achieved, jaw members 410, 420 are moved to the approximated position to grasp tissue therebetween. At least some tissue cutting or perforation due to shearing of insulative member 418 relative to interior walls 429 of recess 428 may be effected as jaw members 410, 420 are moved to the approximated position. With tissue grasped between plates 414a, 414b and plates 424a, 424b, plates 414a, 414b and plates 424a, 424b may be energized to different electrical potentials for conducting energy therebetween and through the grasped tissue to treat the grasped tissue.
Once tissue has been treated, the tonsil tissue is separated from the wall tissue and removed. In order to separate the tonsil tissue, if not sufficiently separated already, while maintaining jaw members 410, 420 in the approximated position grasping the previously treated tissue therebetween, end effector assembly 400 is manipulated, e.g., translated longitudinally, translated laterally, and/or rotated relative to tissue. As end effector assembly 400 is moved relative to tissue, the partially cut or perforated tissue is pinched between corner edges 419a, 419b of insulative member 418 and interior walls 429 defining recess 428 to further cut and, ultimately separate the tonsil tissue to be removed from the wall tissue to remain in a shearing fashion. The cut-line, similarly as above, is defined between the two treatment areas, e.g., between plates 414a, 424a on one side of insulative member 418 and recess 428 and between plates 414b, 424b on the other side of insulative member 418 and recess 428. The separated tonsil tissue may then be removed similarly as detailed above.
With reference to
One of the jaw members, e.g., jaw member 510, defines an increased width as compared to the other jaw member, e.g., jaw member 520, such that a portion of jaw housing 512 overhangs jaw member 520, e.g., is disposed outside the peripheral bounds of jaw member 520. Extending from the overhanging portion of jaw member 510 is an insulative finger 518. Finger 518 extends longitudinally along the outer side edge of jaw housing 512 and extends from jaw housing 512 generally towards jaw member 520. However, due to the fact that jaw housing 512 overhangs jaw member 520, finger 518 extends alongside at least a portion of jaw housing 522 of jaw member 520, outside the tissue grasping area defined between plates 514, 524. Further, finger 518 extends in contact with or close proximity with the corresponding outer peripheral edge 528 of jaw housing 522 of jaw member 520 such that shearing between finger 518 and outer peripheral edge 528 is achieved upon movement of jaw members 510, 520 to the approximated position. Finger 518 may define a sharpened edge to facilitate shear cutting of tissue, or may define a blunt edge.
In use, end effector assembly 500, with jaw members 510, 520 disposed in the spaced-apart position, is manipulated into position such that tissue to be treated and cut is disposed between jaw members 510, 520. With respect to tonsillectomy procedures, for example, end effector assembly 500 is positioned between the wall tissue to remain and the tonsil tissue to be removed with finger 518 disposed adjacent the tonsil tissue to be removed, e.g., spaced-apart from the wall tissue to remain. Once the desired position has been achieved, jaw members 510, 520 are moved to the approximated position to grasp tissue therebetween. At least some tissue cutting or perforation due to shearing of finger 518 relative to outer peripheral edge 528 may be effected as jaw members 510, 520 are moved to the approximated position. Thereafter, plates 514, 524 may be energized to different electrical potentials for conducting energy therebetween and through the grasped tissue to treat the grasped tissue.
Once tissue has been treated, the tonsil tissue is separated from the wall tissue and removed. In order to separate the tonsil tissue, if not sufficiently done so already, while maintaining jaw members 510, 520 in the approximated position grasping the previously treated tissue therebetween, end effector assembly 500 is manipulated, e.g., translated longitudinally, translated laterally, and/or rotated relative to tissue. More specifically, end effector assembly 500 is moved relative to tissue to further cut and ultimately separate the tonsil tissue to be removed from the wall tissue to remain via separating the tissue pinched between finger 518 of jaw member 510 and outer peripheral edge 528 of jaw member 520 in a shearing fashion. In this configuration, the cut-line is disposed on the tissue-to-be-removed side of the tissue treatment area, spaced-apart from the wall tissue to remain. The separated tonsil tissue may ultimately be removed, similarly as detailed above.
Turning to
One of the jaw members, e.g., jaw member 620, defines an increased width as compared to the other jaw member, e.g., jaw member 610, such that a portion 623 of jaw housing 622 overhangs jaw housing 612 of jaw member 610, e.g., is disposed outside the peripheral bounds of jaw member 610. Extending from portion 623 of jaw member 620 is an outer insulative finger 628, disposed outside the tissue-grasping area defined between plates 614, 624. Outer finger 628 extends longitudinally along the outer side edge of portion 623 of jaw housing 622 and extends from jaw housing 622 generally towards jaw member 610.
Jaw member 610 includes an inner insulative finger 618 disposed outside the tissue-grasping area defined between plates 614, 624 and positioned on the same side as outer finger 628. Inner finger 618 extends longitudinally along the outer side edge of jaw housing 612 and extends from jaw housing 612 towards jaw member 620 opposite portion 623 of jaw member 620. Inner finger 618 defines a reduced height as compared to outer finger 628 to permit full approximation of jaw members 610, 620. Inner and outer fingers 618, 628 are disposed in close proximity or abutment with one another such that, upon movement of jaw members 610, 620 to the approximated position, shear-cutting of tissue disposed between fingers 618, 628 is effected.
As an alternative to being fixedly engaged to jaw housings 610, 620, fingers 618, 628 may be movably coupled to jaw housing 610, 620 via a biasing member (not explicitly shown) to delay the shearing effect of fingers 618, 628 relative to the approximation of jaw members 610, 620. As such, grasping of tissue and, if also desired, initiation of tissue treatment may be effected prior to fingers 618, 628 cutting tissue disposed therebetween. Finger 518 of end effector assembly 500 (see
In use, end effector assembly 600, with jaw members 610, 620 disposed in the spaced-apart position, is manipulated into position such that tissue to be treated and cut is disposed between jaw members 610, 620. With respect to tonsillectomy procedures, for example, end effector assembly 600 is positioned between the wall tissue to remain and the tonsil tissue to be removed such that fingers 618, 628 are positioned adjacent the tonsil tissue to be removed. Once the desired position has been achieved, jaw members 610, 620 are moved to the approximated position to grasp tissue therebetween. Moving jaw members 610, 620 to the approximated position affects shear-cutting (or at least partial shear-cutting) of tissue disposed between fingers 618, 628 to at least partially separate the tonsil tissue to be removed from the wall tissue. Thereafter, or overlapping therewith, plates 614, 624 may be energized to different electrical potentials for conducting energy therebetween and through the grasped tissue to treat the grasped wall tissue. The tonsil tissue may be further and fully separated via shearing, if needed, by manipulating end effector assembly 600, and ultimately removed, similarly as above.
Referring to
One of the jaw members, e.g., jaw member 710, includes a longitudinally-extending cut-out 718 defined along one of the outer side edge portions 713 of jaw housing 712 such that one side of jaw housing 712 defines a rounded outer side edge portion 713. The other jaw member, e.g., jaw member 720 defines a tooth 728 extending longitudinally along the outer side edge of jaw housing 722 opposite cut-out 718. Tooth 728 extends from jaw housing 722 generally towards jaw member 710 and defines a sharpened edge 729. Cut-out 718 at least partially accommodates tooth 728 to permit full approximation of jaw members 710, 720. Further, both cut-out 718 and tooth 728 are disposed outside the tissue-grasping area defined between plates 714, 724.
In use, end effector assembly 700, with jaw members 710, 720 disposed in the spaced-apart position, is manipulated into position such that tissue to be treated and cut is disposed between jaw members 710, 720. With respect to tonsillectomy procedures, for example, end effector assembly 700 is positioned between the wall tissue to remain and the tonsil tissue to be removed with tooth 728 positioned adjacent the tonsil tissue to be removed. Once the desired position has been achieved, jaw members 710, 720 are moved to the approximated position to grasp tissue therebetween. Some tissue cutting or perforation via sharpened edge 729 of tooth 728 may be effected as jaw members 710, 720 are moved to the approximated position. Thereafter, plates 714, 724 may be energized to different electrical potentials for conducting energy therebetween and through the grasped tissue to treat the grasped tissue.
Once tissue has been treated, the tonsil tissue is separated from the wall tissue and removed. In order to separate the tonsil tissue, while maintaining jaw members 710, 720 in the approximated position grasping the previously treated tissue therebetween, end effector assembly 700 is manipulated, e.g., translated longitudinally, translated laterally, and/or rotated relative to tissue to cut (or further cut) and ultimately separate the tonsil tissue from the wall tissue in a ripping fashion using sharpened edge 729 of tooth 728. In this configuration, the cut-line, similarly as with end effector assemblies 500, 600 (
A tip portion 818 of plate 814, disposed adjacent the second, maximum thickness side thereof, may include an insulative coating or an insulative cap to maintain electrical isolation between plates 814, 824 in the approximated position of jaw members 810, 820 while also setting the minimum gap distance between jaw members 810, 820 (within the range detailed above). Tip portion 818 may be sharpened to facilitate tissue cutting, although blunt configurations are also contemplated. Tip portion 818 is disposed at the outer boundary of the tissue-grasping area defined between plates 814, 824. As such, substantial tissue treatment is effected only on one side of tip portion 818, e.g., between tip portion 818 and the first, opposite side of plate 814.
In use, end effector assembly 800, with jaw members 810, 820 disposed in the spaced-apart position, is manipulated into position such that tissue to be treated and cut is disposed between jaw members 810, 820. With respect to tonsillectomy procedures, for example, end effector assembly 800 is positioned between the wall tissue to remain and the tonsil tissue to be removed such that tip portion 818 of plate 814 is disposed adjacent the tonsil tissue to be removed. Once the desired position has been achieved, jaw members 810, 820 are moved to the approximated position to grasp tissue therebetween. Some cutting or perforation of tissue disposed between tip portion 818 of plate 814 and plate 824 may be effected as jaw members 810, 820 are moved to the approximated position. Thereafter, plates 814, 824 may be energized to different electrical potentials for conducting energy therebetween and through the grasped tissue to treat the grasped tissue.
Once tissue has been treated, the tonsil tissue is separated from the wall tissue and removed. In order to separate the tonsil tissue, while maintaining jaw members 810, 820 in the approximated position grasping the previously treated tissue therebetween, end effector assembly 800 is manipulated, e.g., translated longitudinally, translated laterally, and/or rotated relative to tissue. As end effector assembly 800 is moved relative to tissue, tissue pinched between tip portion 818 of plate 814 and plate 824 is further cut in a ripping fashion using tip portion 818 to ultimately separate the tonsil tissue to be removed from the wall tissue to remain. As with end effector assemblies 500-700 (
The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application claims the benefit of, and priority to, U.S. Provisional Patent Application Nos. 62/035,799 and 62/035,814, both of which were filed on Aug. 11, 2014. This application is related to U.S. patent application Ser. No. 14/795,546, filed on Jul. 9, 2015. The entire contents of each of the above applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
5190541 | Abele et al. | Mar 1993 | A |
D348930 | Olson | Jul 1994 | S |
5613499 | Palmer et al. | Mar 1997 | A |
D384413 | Zlock et al. | Sep 1997 | S |
5674220 | Fox et al. | Oct 1997 | A |
5700261 | Brinkerhoff | Dec 1997 | A |
5797958 | Yoon | Aug 1998 | A |
5891142 | Eggers et al. | Apr 1999 | A |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
6071281 | Burnside | Jun 2000 | A |
6174309 | Wrublewski | Jan 2001 | B1 |
D449886 | Tetzlaff et al. | Oct 2001 | S |
6361534 | Chen | Mar 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
6425896 | Baltschun et al. | Jul 2002 | B1 |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
D535027 | James et al. | Jan 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
7270660 | Ryan | Sep 2007 | B2 |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
7621910 | Sugi | Nov 2009 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7717914 | Kimura | May 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
8035129 | Ramaswamy et al. | Oct 2011 | B2 |
8112871 | Brandt et al. | Feb 2012 | B2 |
8133254 | Dumbauld et al. | Mar 2012 | B2 |
8162965 | Reschke et al. | Apr 2012 | B2 |
8187273 | Kerr et al. | May 2012 | B2 |
8226650 | Kerr | Jul 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8266783 | Brandt et al. | Sep 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8287536 | Mueller et al. | Oct 2012 | B2 |
8292067 | Chowaniec et al. | Oct 2012 | B2 |
8292886 | Kerr et al. | Oct 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8343150 | Artale | Jan 2013 | B2 |
8343151 | Siebrecht et al. | Jan 2013 | B2 |
8357159 | Romero | Jan 2013 | B2 |
8388647 | Nau, Jr. et al. | Mar 2013 | B2 |
8409247 | Garrison et al. | Apr 2013 | B2 |
8430876 | Kappus et al. | Apr 2013 | B2 |
8439911 | Mueller | May 2013 | B2 |
8469991 | Kerr | Jun 2013 | B2 |
8469992 | Roy et al. | Jun 2013 | B2 |
8647343 | Chojin et al. | Feb 2014 | B2 |
20030018332 | Schmaltz et al. | Jan 2003 | A1 |
20030130656 | Levin | Jul 2003 | A1 |
20030171747 | Kanehira | Sep 2003 | A1 |
20040006340 | Latterell et al. | Jan 2004 | A1 |
20080004616 | Patrick | Jan 2008 | A1 |
20080015567 | Kimura | Jan 2008 | A1 |
20080045947 | Johnson et al. | Feb 2008 | A1 |
20090187188 | Guerra et al. | Jul 2009 | A1 |
20100204697 | Dumbauld et al. | Aug 2010 | A1 |
20100204698 | Chapman et al. | Aug 2010 | A1 |
20100217258 | Floume et al. | Aug 2010 | A1 |
20100249769 | Nau, Jr. et al. | Sep 2010 | A1 |
20100280511 | Rachlin et al. | Nov 2010 | A1 |
20110034918 | Reschke | Feb 2011 | A1 |
20110046623 | Reschke | Feb 2011 | A1 |
20110054468 | Dycus | Mar 2011 | A1 |
20110054471 | Gerhardt et al. | Mar 2011 | A1 |
20110060334 | Brandt et al. | Mar 2011 | A1 |
20110060335 | Harper et al. | Mar 2011 | A1 |
20110071523 | Dickhans | Mar 2011 | A1 |
20110073594 | Bonn | Mar 2011 | A1 |
20110077648 | Lee et al. | Mar 2011 | A1 |
20110082494 | Kerr et al. | Apr 2011 | A1 |
20110118736 | Harper et al. | May 2011 | A1 |
20120203272 | Wohl | Aug 2012 | A1 |
20130274740 | Dickson | Oct 2013 | A1 |
20140163552 | Anderson et al. | Jun 2014 | A1 |
20150005760 | Poulsen | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
2415263 | Oct 1975 | DE |
02514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
03423356 | Jun 1986 | DE |
03612646 | Apr 1987 | DE |
8712328 | Feb 1988 | DE |
04303882 | Feb 1995 | DE |
04403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Nov 1996 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
10045375 | Oct 2002 | DE |
202007009317 | Aug 2007 | DE |
19738457 | Jan 2009 | DE |
102004026179 | Jan 2009 | DE |
1159926 | Mar 2003 | EP |
61-501068 | Sep 1984 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
05-40112 | Feb 1993 | JP |
06343644 | Dec 1994 | JP |
07265328 | Oct 1995 | JP |
8-56955 | Mar 1996 | JP |
08252263 | Oct 1996 | JP |
09010223 | Jan 1997 | JP |
11-070124 | Mar 1999 | JP |
11244298 | Sep 1999 | JP |
2000-102545 | Apr 2000 | JP |
2000342599 | Dec 2000 | JP |
2000350732 | Dec 2000 | JP |
2001008944 | Jan 2001 | JP |
2001029356 | Feb 2001 | JP |
2001128990 | May 2001 | JP |
401367 | Oct 1973 | SU |
0036986 | Jun 2000 | WO |
0154604 | Aug 2001 | WO |
2005110264 | Nov 2005 | WO |
Entry |
---|
Isaacson, Glenn et al.; “Pediatric Tonsillectomy With Bipolar Electrosurgical Scissors”, American Journal of Otolaryngology, vol. 19, No. 5 Sep.-Oct. 1998: pp. 291-295. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte,NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12:876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J. Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich. |
PCT Search report and Written Opinion issued in corresponding PCT application No. PCT/US2015/040839 dated May 13, 2016. |
Number | Date | Country | |
---|---|---|---|
20160038225 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
62035814 | Aug 2014 | US | |
62035799 | Aug 2014 | US |