The present invention relates generally to surgical instruments, and more particularly to surgical instruments useful for engaging surfaces of an organ, including organ stabilizer instruments and organ positioner instruments and their related components.
Diseases of the cardiovascular system affect millions of people each year and are a leading cause of death throughout the world. The cost to society from such diseases is enormous both in terms of the number of lives lost as well as in terms of the costs associated with treating patients through traditional surgical techniques. A particularly prevalent form of cardiovascular disease is a reduction in the blood supply leading to the heart caused by atherosclerosis or other condition that creates a restriction in blood flow at a critical point in the vasculature supplying blood to the heart.
One option for treatment of such a blockage or restriction in the blood flow supplying the heart is a procedure known as a coronary artery bypass graft (CABG) surgery, more commonly known as a “heart bypass” operation. In the CABG procedure, the surgeon “bypasses” the obstruction to restore adequate blood flow to the heart either by attaching an available source vessel to the obstructed target coronary artery or by removing a portion of a vein or artery from another part of the body, to use as a graft, and installing the graft between a point on a source vessel and a point on a target artery.
To restore an adequate supply of blood to the heart, the CABG procedure requires that a fluid connection be established between two vessels. This procedure is known as an “anastomosis.” Typically, a source vessel, such as a source artery with an unobstructed blood flow, i.e., the left or right internal mammary artery (IMA), or a bypass-graft having one end sewn to an unobstructed blood source such as the aorta, is sewn to a target occluded coronary artery, such as the left anterior descending (LAD) artery or other vessel that provides blood flow to the muscles of the heart.
Although the CABG procedure has become relatively common, the procedure itself is lengthy and traumatic and can damage the heart, the cardiovascular system, the brain, and the blood cells, as well as activate plasma cascade systems. In a conventional CABG procedure, the surgeon makes an incision down the center of the chest, cuts through the sternum, performs several other procedures necessary to attach the patient to a heart-lung bypass machine, cuts off the blood flow to the heart and then stops the heart from beating in order to complete the bypass. The most lengthy and traumatic surgical procedures are necessary, in part, to connect the patient to a cardiopulmonary bypass (CPB) machine to continue the circulation of oxygenated blood to the rest of the body while the bypass is completed.
In recent years, a growing number of surgeons have begun performing
CABG procedures using surgical techniques especially developed so that the CABG procedure could be performed while the heart is still beating. In such procedures, there is no need for any form of cardiopulmonary bypass, and no need to stop the heart. As a result, these beating heart procedures are much less invasive and carry lower risk of post-operative neurological complications. In certain situations, the entire beating-heart CABG procedure can be performed through a small number, typically one or two, of comparatively small incisions in the chest, further reducing the risk of post-operative wound complications.
When CABG procedures are performed on a beating heart, a surgical stabilizer instrument is typically used to stabilize the heart tissue in the area of the anastomosis. Various surgical stabilizer instruments are available today. Typically the surgical stabilizer instrument will have some form of attachment mechanism that permits it to be fixed to the sternal retractor, so that it is maintained fixed relative to the tissue to be stabilized. One drawback of currently available stabilizer instruments is that they tend to extend too far across the open chest cavity and may obstruct movements of the surgeon's hands in some instances. Additionally, the arm and attachment mechanism also extend above the surface of the retractor and may also form an obstruction.
There is a continuing need for surgical stabilizer instruments having a lower profile and that can be extended into the chest cavity in a configuration that causes less obstruction to the operating surgeon.
When an anastomosis is to be performed on a surgical target area that is not readily accessible by the surgeon (e.g., one or more arteries of interest are located on the lateral or posterior aspects of the heart, making access to such arteries difficult), the heart is typically repositioned either by hand, by the surgeon or a surgeon's assistant, or, more commonly, by attachment of an organ positioner instrument to the heart, for repositioning and maintaining the heart in a displaced position via the organ positioner instrument.
Various organ positioner instruments are available today. Typically the organ positioner will have some form of attachment mechanism that permits it to be fixed to the sternal retractor, so that it is can be supported by the sternal retractor while it is maintaining the organ in the displaced position.
One drawback of currently available organ positioner instruments, is that they tend to extend too far across the open chest cavity and may obstruct movements of the surgeon's hands in some instances, and may prevent viewing of some areas in the surgical field.
There is a continuing need for organ positioner instruments that can be extended into the chest cavity in a configuration that causes less obstruction to the operating surgeon.
The present invention meets these needs as well as providing additional improved features that will become apparent upon reading the detailed description below.
A surgical instrument according to an example embodiment of the present invention comprises: a mount body having a top portion, a distal end, a proximal end and a bottom portion; a joint member pivotally mounted at a distal end portion of the mount body to allow positioning of a proximal portion of an arm extending distally from the joint member, the joint member configured to at least partially constrain movement of the proximal portion of the arm to a plane; and a working end mounted to a distal end portion of the arm.
According to an example embodiment, the joint member comprises a first joint member and a second joint member, wherein the first joint member confines movement of the proximal portion of the arm to yawing, and the second joint member confines movement of the proximal portion of the arm to pitching.
According to an example embodiment, the joint member pivotally mounted at the distal end portion of the mount body is a disk member.
According to an example embodiment, the joint member further comprises a slotted ball.
According to an example embodiment, the joint member is a disk member, and the slotted ball is connected to said disk member.
According to an example embodiment, further comprising an actuator rotatably mounted to the mount body towards the proximal end of the mount body, and a cable extending from the actuator through the mount body, joint member, slotted ball and arm, the actuator and the cable being configured to change a state of the arm from a flexible state to a rigid state by movement of the actuator in a first direction, and from the rigid state to the flexible state by movement of the actuator is a second direction opposite the first direction.
According to an example embodiment, movement of the actuator involves rotation, the first direction is a first rotational direction, and the second direction is a counter-rotational direction.
According to an example embodiment, the slotted ball member forms a joint with a proximal end of the arm.
According to an example embodiment, upper and lower surfaces of the disk member extend substantially parallel with the top portion of the mount body, and wherein the slotted ball is capable of pivoting to an angularly downward position from a plane parallel to the upper and lower surfaces of the disk member.
According to an example embodiment, the instrument comprising a vacuum tube in fluid communication with the working end, and the working end is configured to reversibly attach to the exterior surface of a human's heart.
According to an example embodiment, the instrument comprises an actuator rotatably mounted to the mount body at the proximal end of the mount body, the actuator being configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, the instrument comprises a suction tube in fluid communication with the working end, and a clip configured to receive and temporarily hold the suction tube to maintain the suction tube in a low profile with the instrument, wherein the clip is formed with or connected to the mount body, the actuator, or both the mount body and the actuator.
According to an example embodiment, the actuator comprises a plurality of fins with one of the clips formed in one or more of the fins.
According to an example embodiment, the instrument is an organ stabilizer and the working end comprises at least one contact member configured to be exerted against a tissue surface to stabilize the tissue surface.
According to an example embodiment, the instrument is an organ positioner and the working end comprises a suction member defining a vacuum space therein, wherein the suction member is configured to receive the apex of a human heart.
According to an example embodiment, the instrument is further configured to exert sufficient suction force on the heart to move the heart when the suction member is placed against the heart, a negative pressure of 250 millimeters of Mercury is applied within the vacuum space to engage the suction member with the heart, and the suction member is moved.
According to an example embodiment, the bottom portion comprises a mounting mechanism configured to reversibly clamp the instrument to a fixed object.
According to an example embodiment, the mounting mechanism is fixed to a surface of a sternal retractor, the sternal retractor comprising a sternal retractor blade mounted to or integral with the sternal retractor, wherein the arm is capable of being oriented downwardly to make contact with an inner surface of a sternal retractor blade without requiring the movement of the actuator with respect to the mounting body.
According to an example embodiment, the mounting mechanism comprises a fixed jaw and a movable jaw; and wherein a mounting mechanism actuator is pivotally mounted within the bottom portion and at least partially above the movable jaw, the mounting mechanism actuator being configured to move the movable jaw from an unlocked position to a locked position and vice versa.
According to an example embodiment, the mounting mechanism actuator is configured to move the movable jaw toward the locked position when the mounting mechanism actuator is pulled in a proximal direction.
According to an example embodiment, the mounting mechanism comprises a fixed jaw that is unitarily formed with the main body, and a movable jaw movably engaged to the main body.
According to an example embodiment, the instrument comprises a cam mounted above a bottom surface of the movable jaw and below the mounting mechanism actuator, the cam connected to the mounting mechanism actuator to be actuated to lock or unlock the movable jaw.
According to an example embodiment, the mounting mechanism comprises a mounting mechanism actuator, the mounting mechanism actuator including rocker switches with cams configured to clamp to the fixed object.
According to an example embodiment, the instrument is a stabilizer and the working end comprises a pair of contact members and a blower/mister device incorporated into at least one of the contact members.
According to an example embodiment, the instrument is a stabilizer configured for a blower/mister device to be attached thereto.
According to an example embodiment, the instrument is a stabilizer and the working end comprises a pair of contact members and a support to link the contact members to the arm, wherein the support is pivotally linked to the contact members.
According to an example embodiment, the contact members each comprise a clip at a proximal end portion thereof, the clips configured to form a snap fit with the support members.
According to an example embodiment, the instrument is a stabilizer and the working end comprises a pair of contact members, the contact members each having a relatively thicker cross-sectional dimension at an outside edge thereof and a relatively thinner cross-sectional dimension at an inside edge thereof.
According to an example embodiment, the arm comprises an intermediate link that is adjustable by a user to adjust a portion of the arm distal of the intermediate link and the working member to assume a flexible configuration in a first configuration, and to assume a rigid configuration in a second configuration, while allowing a portion of the arm proximal of the intermediate link to remain flexible during both the first configuration and the second configuration.
According to an example embodiment, the arm comprises an intermediate link that is adjustable by a user to adjust a portion of the arm proximal of the intermediate link to assume a flexible configuration in a first configuration, and to assume a rigid configuration in a second configuration, while allowing a portion of the arm distal of the intermediate link and the working end to remain flexible during both the first configuration and the second configuration.
According to an example embodiment, the instrument comprises a motor configured to operate the actuator, and a second actuator, located distally of the actuator and the motor, electrically connected to the motor, and configured to actuate the motor to drive the actuator to increase or decrease rigidity in the arm and a connection between the arm and the working end.
According to an example embodiment, the top portion is smooth and comprises a flat portion with no obstructions thereon, and wherein the top surface provides a rest for a surgeon's hand, that can be used to help stabilize the surgeon's hand.
According to an example embodiment, ridges or teeth provided around at least a portion of a perimeter of the disk member.
According to an example embodiment, the instrument a cable extending through the disk member, at least a portion of the arm, and at least a portion of the mount body, wherein the disk member comprises a slot formed therein, the slot being curved to facilitate bending and tightening of the cable thereagainst when the disk member has been pivoted, thereby helping to eliminate or reduce variations in at least one of cable length and cable tension at different angular positions of the disk member relative to the mount body.
According to an example embodiment, the disk member comprises a slot formed therein, the slot being curved to facilitate bending and tightening of the cable thereagainst when the disk member has been pivoted, thereby helping to eliminate or reduce variations in at least one of cable length and cable tension at different angular positions of the disk member relative to the mount body.
According to an example embodiment, the instrument comprises an actuator rotatably mounted to the mount body at the proximal end of the mount body and a cable extending from the actuator through the mount body, disk member, slotted ball and arm, the actuator and the cable being configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, the instrument comprises a canister in fluid communication with the vacuum tube, the canister having an opening for connecting the canister in fluid communication with a vacuum source, the canister configured to trap fluid therein.
According to an example embodiment, the instrument comprises a filter in fluid communication with the opening of the canister, the filter configured to be connected to the vacuum source and to filter particulates from effluent from the canister.
According to an example embodiment, the canister has at least one substantially flat side.
According to an example embodiment, the instrument comprises a strap connected to the canister and adapted to hang the canister in an upright orientation wherein the opening for connecting the canister with a vacuum source is higher than a connection forming the fluid communication of the canister with the vacuum tube.
According to an example embodiment, a surface of the canister is matted to inhibit glare reflection therefrom.
A surgical instrument according to an example embodiment of the present invention comprises: a mount body, an arm, and a tool; the mount body configured to be used with a retractor, a bottom surface of the mount body facing the retractor when mounted, a front edge of the mount body running at an angle to the bottom surface; the arm pivotally connected on a proximal end thereof via the end joint to the front edge of the mount body; the tool connected to a distal end of the arm; the arm configured to be movable between a plurality of positions relative to the mount body and to be temporarily lockable in these positions.
According to an example embodiment, the joint configured such that a proximal portion of the arm extending from or adjacent to the mount body is pivotable to the mount body and temporarily lockable in a position substantially perpendicular to the mount body.
According to an example embodiment, the joint configured such that a proximal portion of the arm extending from and adjacent the mount body is movable from a left distal region of the mount body to a right distal region of the mount body and vice versa.
A surgical instrument according to an example embodiment of the present invention comprises: a mount body, an arm, a tool and a tube; the mount body configured to mount to a retractor or a surgical table; the arm pivotally connected on a proximal end to the mount body; the tool connected to a distal end of the arm; the arm configured to be movable between a plurality of positions relative to the mount body and to be temporarily lockable in these positions; a distal end of the tube connected at or adjacent a distal end of the arm; and the mount body configured to removably retain the tube.
According to an example embodiment, the mount body includes a recess sized to receive and removably retain the tube.
According to an example embodiment, the mount body includes a clip sized to receive and removably retain the tube.
According to an example embodiment, the mount body further comprising an actuator rotatably mounted to the surgical instrument, the actuator being configured to change a state of the arm form a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction; and the actuator configured to removably retain the tube.
An example method of operating a surgical instrument according to the present invention comprises the steps of attaching a mount body of the instrument to a fixed object so that the mount body is not movable relative to the fixed object; adjusting an orientation of an arm that extends from a distal end of the mount body; and rotating an actuator rotatably mounted to a proximal end of the mount body, thereby fixing the orientation of the arm with respect to the mount body in a rigid configuration.
According to an example embodiment, a tensioning cable extends through at least portions of the proximal half of arm and the mount body and connects with the actuator, and the rotation of the actuator increases tension in the cable.
According to an example embodiment, the fixed object is a sternal retractor and the arm contacts an inner surface of the sternal retractor in the rigid configuration.
According to an example embodiment, the instrument is a surgical stabilizer.
According to an example embodiment, the instrument is a surgical stabilizer for beating heart surgery, or an organ positioner for beating heart surgery.
A surgical instrument according to an example embodiment of the present invention comprises: a mount body, an arm, a joint, and a tool; the mount body configured to mount to a retractor, a bottom surface of the mount body facing the retractor when mounted, a front edge of the mount body running at an angle to the bottom surface; the arm pivotally connected on a proximal end of the arm via the joint to or along the front edge of the mount body; the tool connected to a distal end of the arm; the arm configured to be movable between a plurality of positions relative to the mount body and to be temporarily lockable in these positions; and the joint configured such that a proximal portion of the arm extending from and adjacent the mount body is pivotable to and temporarily lockable in a position substantially perpendicular to the mount body along portions of the front edge.
According to an example embodiment, the surgical instrument further comprises a universal connector configured to connect the mount body to any one of a plurality of retractors of different size.
According to an example embodiment, the joint includes a disk member.
According to an example embodiment, the joint includes a slotted ball.
A surgical instrument according to an example embodiment of the present invention comprises: an actuator rotatably mounted to the mount body at the proximal end of the mount body and a cable extending from the actuator through the mount body, disk member, slotted ball and arm, and the actuator and the cable are configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, a tube is provided in fluid communication with the tool.
According to an example embodiment, a tube is provided in fluid communication with the tool, and the actuator includes a clip configured to receive and temporarily hold the tube to maintain the tube in a low profile arrangement with the instrument.
According to an example embodiment, the mount body includes a recess sized to receive and removably retain the tube.
According to an example embodiment, the instrument is a stabilizer and the tool comprises at least one contact member configured to be exerted against a tissue surface to stabilize the tissue surface.
According to an example embodiment, the instrument is a positioner and the tool comprises a suction member defining a vacuum space therein, wherein the suction member is configured to exert sufficient suction force on an organ to move the organ when the suction member is placed against the organ, a negative pressure is applied within the vacuum space to engage the suction member with the organ, and the suction member is moved.
According to an example embodiment, the instrument includes a cable extending through the disk member, at least a portion of the arm and at least a portion of the mount body, wherein the disk member comprises a slot formed therein, the slot being curved to facilitate bending and tightening of the cable thereagainst when the disk member has been pivoted, thereby helping to eliminate or reduce variations in at least one of cable length and cable tension at different angular positions of the disk member relative to the mount body.
According to an example embodiment, an actuator is rotatably mounted to the mount body at the proximal end of the mount body and a cable extends from the actuator through the mount body, disk member, slotted ball and arm.
According to an example embodiment, the actuator and the cable are configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, a canister is provided in fluid communication with the tube, the canister having an opening for connecting the canister in fluid communication with a vacuum source, the canister configured to trap fluid therein.
According to an example embodiment, a filter is in fluid communication with the opening of the canister, and the filter is configured to be connected to the vacuum source and to filter particulates from effluent from the canister.
According to an example embodiment, a strap is connected to the canister and adapted to hang the canister in an upright orientation wherein the opening for connecting the canister with a vacuum source is higher than a connection forming the fluid communication of the canister with the vacuum tube.
According to an example embodiment, a surgical instrument is provided that includes a mount body, an arm, a tool, and a tube; the mount body configured to mount to a retractor or a surgical table; the arm pivotally connected on a proximal end to the mount body; the tool connected to a distal end of the arm; the arm configured to be movable between a plurality of positions relative to the mount body and to be temporarily lockable in these positions; a distal end of the tube connected at or adjacent a distal end of the arm; and the mount body configured to removably retain the tube.
A surgical instrument according to an example embodiment of the present invention comprises: a mount body having a top portion, a distal end, a proximal end and a bottom portion; a plurality of mount body jaws formed by or connected to the bottom portion; a joint member engaged to an arm, the arm extending distally from the joint member and terminating with a working end mounted to a distal end portion of the arm, the joint member pivotally mounted at a distal end portion of the mount body; wherein the arm through positioning of the joint member is capable of being positioned towards the left or right distal regions of the mount body without interfering with a space located above the mount body jaws and immediately dorsal to the top portion of the mount body.
According to an example embodiment, the joint member is capable of being positioning with constrained movement of at least a portion of the joint member with respect to a plane horizontally aligned with respect to the top portion of the mount body.
According to an example embodiment, the working end is configured for attachment to the surface of a heart, the working end further including a stabilizer member to engage one or both sides of a coronary artery, or a positioner member capable of receiving the apex of the heart.
A surgical instrument according to an example embodiment of the present invention comprises: a flexible arm comprising a distal end, a proximal end, and a plurality of joint members located therebetween whereby at least a portion of adjoining joint members can form articulating joints; a working end configured to engage a surface of a human's heart, wherein the working end is connected to the distal end of the flexible arm; and a mount body joint forming a mount body angle between the proximal end of the flexible arm and a mount body, a minimum mount body angle being at most than 120 degrees, wherein a reference angle is defined as 180 degrees between any two unstressed articulating joint members.
According to an example embodiment, the minimum mount body angle is greater than 105 degrees.
According to an example embodiment, the mount body joint is comprised of a horizontal joint and a vertical joint, wherein the horizontal joint is configured for controlled planar translation or pivoting along a first plane that is substantially horizontal, and the vertical joint is configured for generally planar translation or pivoting along a second plane that is substantially perpendicular to the first plane.
A surgical instrument according to an example embodiment of the present invention comprises: a flexible arm comprising a distal end, a proximal end, and a plurality of joint members located therebetween whereby at least a portion of adjoining joint members can form articulating joints, the articulating joints capable of establishing a plurality of arm joint angles each having a minimum achievable angle value, the angle being defined as 180 degrees between any two unstressed articulating joints; a working end configured to engage a surface of a human's heart, wherein the working end is connected to the distal end of the flexible arm; and a mount body joint forming a mount body angle between the proximal end of the flexible arm and a mount body, a minimum mount body angle being a substantially smaller angle than a smallest of the minimum achievable angle values.
A surgical instrument according to an example embodiment of the present invention comprises: a mount body having a top portion, a distal end, a proximal end and a bottom portion and connected to a joint member; a mount body jaw formed by or connected to the bottom portion; the joint member engaged to a proximal portion of an arm that extends distally from the joint member and terminates with a working end, the joint member being pivotally mounted at a distal end portion of the mount body; wherein the joint member prohibits a proximal portion of the arm from extending above the top portion of the mount body.
A surgical instrument according to an example embodiment of the present invention comprises: a mount body having a top surface, a distal end, a proximal end and a bottom portion; a joint member including a disk member pivotally mounted in a distal end portion of the mount body; an arm extending distally from the disk member; and a working end mounted to a distal end portion of the arm.
According to an example embodiment, the joint member forms a joint with a proximal end of the arm.
According to an example embodiment, the joint member includes a slotted ball.
According to an example embodiment, the slotted ball is fixed to the disk member.
According to an example embodiment, the instrument includes an actuator rotatably mounted to the mount body at the proximal end of the mount body and a cable extending from the actuator through the mount body, disk member, slotted ball and arm, and the actuator and the cable are configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, the slotted ball forms a joint with a proximal end of the arm.
According to an example embodiment, upper and lower surfaces of the disk member extend substantially parallel with the top surface of the mount body, and the ball extends angularly downward from a plane parallel to the upper and lower surfaces.
According to an example embodiment, a vacuum tube is provided in fluid communication with the working end.
According to an example embodiment, an actuator is rotatably mounted to the mount body at the proximal end of the mount body. The actuator is configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, a suction tube is provided in fluid communication with the working end, and the actuator includes a clip configured to receive and temporarily hold the suction tube to maintain the suction tube in a low profile with the instrument.
According to an example embodiment, the actuator comprises a plurality of fins with one of the clips formed in each of the fins.
According to an example embodiment, the instrument is a stabilizer and the working end comprises at least one contact member configured to be exerted against a tissue surface to stabilize the tissue surface.
According to an example embodiment, the instrument is a positioner and the working end comprises a suction member defining a vacuum space therein, wherein the suction member is configured to exert sufficient suction force on an organ to move the organ when the suction member is placed against the organ, a negative pressure is applied within the vacuum space to engage the suction member with the organ, and the suction member is moved.
According to an example embodiment, the bottom portion comprises a mounting mechanism configured to clamp the instrument to a fixed object.
According to an example embodiment, the mounting mechanism is fixed to a blade of a sternal retractor and the arm is oriented downwardly and in contact with an inner surface of the sternal retractor blade.
According to an example embodiment, the mounting mechanism comprises a fixed jaw and a movable jaw; and a mounting mechanism actuator is pivotally mounted within the bottom portion above the movable jaw. The mounting mechanism actuator is configured to move the movable jaw from an unlocked position to a locked position and vice versa.
According to an example embodiment, the mounting mechanism actuator is configured to move the movable jaw toward the locked position when the mounting mechanism actuator is pulled in a proximal direction.
According to an example embodiment, a cam is mounted above a bottom surface of the movable jaw and below the mounting mechanism actuator. The cam is connected to the mounting mechanism actuator to be actuated to lock or unlock the movable jaw.
According to an example embodiment, the mounting mechanism comprises a mounting mechanism actuator, and the mounting mechanism actuator includes rocker switches with cams configured to clamp to the fixed object on opposite side of the fixed object.
According to an example embodiment, the instrument is a stabilizer and the working end comprises a pair of contact members and a blower/mister device incorporated into at least one of the contact members.
According to an example embodiment, the instrument is a stabilizer and the working end comprises a pair of contact members and the stabilizer is configured for a blower/mister device to be attached thereto.
According to an example embodiment, the instrument is a stabilizer and the working end comprises a pair of contact members and supports linking the contact members to the arm, wherein the supports are pivotally linked to the contact members.
According to an example embodiment, the contact members each comprise a clip at a proximal end portion thereof, and the clips are configured to form a snap fit with the support members.
According to an example embodiment, the instrument is a stabilizer and the working end comprises a pair of contact members. The contact members each have a relatively thicker cross-sectional dimension at an outside edge thereof and a relatively thinnest cross-sectional dimension at an inside edge thereof.
According to an example embodiment, the arm comprises an intermediate link that is adjustable by user to adjust a portion of the arm distal of the intermediate link and the working member to assume a flexible configuration in a first configuration, and to assume a rigid configuration in a second configuration, while allowing a portion of the arm proximal of the intermediate link to remain flexible during both the first configuration and the second configuration.
According to an example embodiment, the arm comprises an intermediate link that is adjustable by a user to adjust a portion of the arm proximal of the intermediate link to assume a flexible configuration in a first configuration, and to assume a rigid configuration in a second configuration, while allowing a portion of the arm distal of the intermediate link and the working end to remain flexible during both the first configuration and the second configuration.
According to an example embodiment, a motor is configured to operate the actuator, and a second actuator is provided. The second actuator is located distally of the actuator and the motor, and is electrically connected to the motor, and configured to actuate the motor to drive the actuator to increase or decrease rigidity in the arm and a connection between the arm and the working end.
According to an example embodiment, the top surface of the mount body is smooth and flat with no obstructions thereon, and the top surface provides a rest for a surgeon's hand, that can be used to help stabilize the surgeon's hand.
According to an example embodiment, ridges or ratchet teeth are provided around a least a portion of a perimeter of the disk member.
According to an example embodiment, the instrument includes a cable extending through the disk member, at least a portion of the arm and at least a portion of the mount body, wherein the disk member comprises a slot formed therein, the slot being curved to facilitate bending and tightening of the cable thereagainst when the disk member has been pivoted, thereby helping to eliminate or reduce variations in at least one of cable length and cable tension at different angular positions of the disk member relative to the mount body.
According to an example embodiment, the disk member comprises a slot formed therein, the slot being curved to facilitate bending and tightening of the cable thereagainst when the disk member has been pivoted, thereby helping to eliminate or reduce variations in at least one of cable length and cable tension at different angular positions of the disk member relative to the mount body.
According to an example embodiment, an actuator is rotatably mounted to the mount body at the proximal end of the mount body and a cable extends from the actuator through the mount body, disk member, ball and arm. The actuator and the cable are configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, the suction/vacuum tube comprises a color-coded connector at a proximal end thereof, the connector configured to be connected to a source of vacuum or another vacuum line in fluid communication with a source of vacuum.
According to an example embodiment, a canister is provided in fluid communication with the suction/vacuum tube, the canister having an opening for connecting the canister in fluid communication with a vacuum source, the canister configured to trap fluid therein.
According to an example embodiment, a filter is in fluid communication with the opening of the canister, and the filter is configured to be connected to the vacuum source and to filter particulates from effluent from the canister.
According to an example embodiment, the canister has at least one substantially flat side.
According to an example embodiment, a strap is connected to the canister and adapted to hang the canister in an upright orientation wherein the opening for connecting the canister with a vacuum source is higher than a connection forming the fluid communication of the canister with the vacuum tube.
According to an example embodiment, a surface of the canister is matted to inhibit glare reflection therefrom.
In another aspect of the present invention, a method of operating a surgical instrument is provided, including: attaching a mount body of the instrument to a fixed object so that the mount body is not movable relative to the fixed object; adjusting an orientation of an arm that extends from a distal end of the mount body; and rotating an actuator rotatably mounted to a proximal end of the mount body, thereby fixing the orientation of the arm in a rigid configuration.
According to an example embodiment, a tensioning cable extends through the arm and the mount body and connects with the actuator, and the rotation of the actuator increases tension in the cable.
According to an example embodiment, the fixed object is a sternal retractor and the arm contacts an inner surface of the sternal retractor in the rigid configuration.
According to an example embodiment, the instrument is a surgical stabilizer.
According to an example embodiment, the instrument is an organ positioner.
Additionally, joint member 130 includes a ball 136 extending from a distal end of disk member 134 as shown in
In another aspect of the present invention, a surgical instrument is provided that includes a mount body, an arm, a joint, and a tool; the mount body configured to mount to a retractor, a bottom surface of the mount body facing the retractor when mounted, a front edge of the mount body running at an angle to the bottom surface; the arm pivotally connected on a proximal end via the joint to the front edge of the mount body; the tool connected to a distal end of the arm; the arm configured to be movable between a plurality of positions relative to the mount body and to be temporarily lockable in these positions; and the joint configured such that a proximal portion of the arm extending from and adjacent the mount body is pivotable to and temporarily lockable in a position substantially perpendicular to the mount body.
According to an example embodiment, the surgical instrument further comprises a universal connector configured to connect the mount body to any one of a plurality of retractors of different size.
According to an example embodiment, the joint includes a disk member.
According to an example embodiment, the joint includes a slotted ball.
According to an example embodiment, the instrument includes an actuator rotatably mounted to the mount body at the proximal end of the mount body and a cable extending from the actuator through the mount body, disk member, slotted ball and arm, and the actuator and the cable are configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, a tube is provided in fluid communication with the tool.
According to an example embodiment, a tube is provided in fluid communication with the tool, and the actuator includes a clip configured to receive and temporarily hold the tube to maintain the tube in a low profile with the instrument.
According to an example embodiment, the mount body includes a recess sized to receive and removably retain the tube.
According to an example embodiment, the instrument is a stabilizer and the tool comprises at least one contact member configured to be exerted against a tissue surface to stabilize the tissue surface.
According to an example embodiment, the instrument is a positioner and the tool comprises a suction member defining a vacuum space therein, wherein the suction member is configured to exert sufficient suction force on an organ to move the organ when the suction member is placed against the organ, a negative pressure is applied within the vacuum space to engage the suction member with the organ, and the suction member is moved.
According to an example embodiment, the instrument includes a cable extending through the disk member, at least a portion of the arm and at least a portion of the mount body, wherein the disk member comprises a slot formed therein, the slot being curved to facilitate bending and tightening of the cable thereagainst when the disk member has been pivoted, thereby helping to eliminate or reduce variations in at least one of cable length and cable tension at different angular positions of the disk member relative to the mount body.
According to an example embodiment, an actuator is rotatably mounted to the mount body at the proximal end of the mount body and a cable extends from the actuator through the mount body, disk member, ball and arm. The actuator and the cable are configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, a canister is provided in fluid communication with the tube, the canister having an opening for connecting the canister in fluid communication with a vacuum source, the canister configured to trap fluid therein.
According to an example embodiment, a filter is in fluid communication with the opening of the canister, and the filter is configured to be connected to the vacuum source and to filter particulates from effluent from the canister.
According to an example embodiment, a strap is connected to the canister and adapted to hang the canister in an upright orientation wherein the opening for connecting the canister with a vacuum source is higher than a connection forming the fluid communication of the canister with the vacuum tube.
In another aspect of the present invention, a surgical instrument is provided that includes a mount body, an arm, a tool, and a tube; the mount body configured to mount to a retractor or a surgical table; the arm pivotally connected on a proximal end to the mount body; the tool connected to a distal end of the arm; the arm configured to be movable between a plurality of positions relative to the mount body and to be temporarily lockable in these positions; a distal end of the tube connected at or adjacent a distal end of the arm; and the mount body configured to removably retain the tube.
According to an example embodiment, the mount body includes a recess sized to receive and removably retain the tube.
According to an example embodiment, the mount body includes a clip sized to receive and removably retain the tube.
According to an example embodiment, the mount body further includes an actuator rotatably mounted to the surgical instrument, the actuator being configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction; and the actuator configured to removably retain the tube.
According to an example embodiment, the arm is pivotally connected to the mount body via a joint.
According to an example embodiment, the joint includes a disk member.
According to an example embodiment, the joint includes a slotted ball.
According to an example embodiment, the tube is provided in fluid communication with the tool.
According to an example embodiment, that actuator includes a clip configured to receive and temporarily hold the tube to maintain the tube in a low profile with the instrument.
According to an example embodiment, the instrument is a stabilizer and the tool comprises at least one contact member configured to be exerted against a tissue surface to stabilize the tissue surface.
According to an example embodiment, the instrument is a positioner and the tool comprises a suction member defining a vacuum space therein, wherein the suction member is configured to exert sufficient suction force on an organ to move the organ when the suction member is placed against the organ, a negative pressure is applied within the vacuum space to engage the suction member with the organ, and the suction member is moved.
According to an example embodiment, the instrument includes a cable extending through the disk member, at least a portion of the arm and at least a portion of the mount body, wherein the disk member comprises a slot formed therein, the slot being curved to facilitate bending and tightening of the cable thereagainst when the disk member has been pivoted, thereby helping to eliminate or reduce variations in at least one of cable length and cable tension at different angular positions of the disk member relative to the mount body.
According to an example embodiment, an actuator is rotatably mounted to the mount body at the proximal end of the mount body and a cable extends from the actuator through the mount body, disk member, ball and arm. The actuator and the cable are configured to change a state of the arm from a flexible state to a rigid state by rotation of the actuator in a first rotational direction, and from the rigid state to the flexible state by rotation of the actuator in a counter-rotational direction.
According to an example embodiment, a canister is provided in fluid communication with the tube, the canister having an opening for connecting the canister in fluid communication with a vacuum source, the canister configured to trap fluid therein.
According to an example embodiment, a filter is in fluid communication with the opening of the canister, and the filter is configured to be connected to the vacuum source and to filter particulates from effluent from the canister.
According to an example embodiment, a strap is connected to the canister and adapted to hang the canister in an upright orientation wherein the opening for connecting the canister with a vacuum source is higher than a connection forming the fluid communication of the canister with the tube.
These and other features of the invention will become apparent to those persons skilled in the art upon reading the details of the instruments and methods as more fully described below.
Before the present instruments and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the terms “lock” or “locked” shall mean to constrain or make immovable, or movable with difficulty.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a contact member” includes a plurality of such contact members and reference to “the device” includes reference to one or more devices and equivalents thereof known to those skilled in the art, and so forth.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Although the instruments described herein are described for use on the heart, it is noted that these instruments are not limited to use on the heart, but can be used for surgical procedures on other organs or tissues, such as to position and/or stabilize other organs or tissues.
Stabilizer instrument 10 further includes an arm 12 pivotally connected to and extending distally from a distal end 24 of mount body 22. The top surface 26 of mount body 22 has a low profile and preferably is smooth so as not to catch sutures, surgical gloves or any other object susceptible to being caught on a non-smooth surface. Additionally, this smooth surface can be used by the surgeon to rest a hand or finger against, to assist in steadying the hand during suturing, for example. Because arm 10 extends from the distal end 24 of mount body 22 and not from the top surface 26 as in many prior art instruments, it provides a lower profile, relative to the height of the patient's 1 chest 2 and the sternal retractor 200. This makes the instrument less of an obstruction (relative to prior art stabilizer instruments where the arm is attached to the top of the attachment mechanism) to the surgeon or anyone else trying to access the surgical working space 3.
Stabilizer instrument 10 further includes a working end 14 mounted to a distal end portion of arm 12. The working end 14 of stabilizer instrument 10 includes at least one contact member 16. A pair of contact members 16 are provided in the embodiment shown in
Contact members 16 may be configured to engage tissue by mechanical means (which optionally may include friction enhancing contact surfaces), by application of suction, or combinations thereof. There are many different embodiments of contact members that may be employed in a surgical stabilizer instrument according to embodiments of the present invention. Further examples of such contact members and details of the same can be found in U.S. Pat. Nos. 5,727,569; 5,875,782; 5,894,842; 5,906,607; 5,957,835; 5,976,069; 6,032,672; 6,036,641; 6,050,266; 6,120,436; 6,213,941; 6,231,506; 6,283,912; 6,290,644; 6,315,717; 6,331,158; 6,346,077; 6,375,611; 6,394,951; 6,406,424; 6,511,416; 6,626,830; 6,652,454; 6,656,113; 6,673,013; 6,685,632; 6,701,930; 6,743,169; 6,758,808; 6,849,044; 6,852,075; 6,893,391; 7,056,287; 7,220,228; 7,238,155; 7,326,177; 7,335,158; 7,485,090; 7,497,824; and 7,503,891, each of which is hereby incorporated herein, in its entirety, by reference thereto.
Mount body 22 is configured and dimensioned so that the distal end 24 thereof is substantially laterally flush with an inner surface 200i of the sternal retractor 200, particularly with an inner surface of the arm/blade 204 of the sternal retractor. Alternatively, the distal end 24 may extend slightly beyond the inner surface 200i or end slightly proximally of the inner surface 200i. In any case, when the stabilizer instrument is fixed to rail 202 as shown in
Joint member 30 is pivotally mounted to mount body 22 at the distal end portion thereof, so that arm 12, which is joined to the distal end of joint member 30, extends from the distal end 24 of mount body 22.
Arm 12 comprises a plurality of articulating links 40 that allow the arm 12 to be flexible in a first configuration, but which can be compressed to render the arm 12 substantially rigid in a second configuration. In the embodiment shown in
Each link 40 includes a central channel 40c therethrough which may be tapered at both ends to allow a cable 46 (see the exploded view of
Socket member 56s includes an opening 56p, which is dimensioned to freely receive the ball portion 56b to which working end 14 is fixed. Socket member 56s further includes a slot 56l dimensioned to receive stem 56t, allowing it to slide freely in the slot 56l while at the same time preventing ball portion 56b from passing therethrough. A proximal opening is provided in the socket member 56s and dimensioned to receive at least a portion of coupling members 58, 47 and 60.
Coupling member 60 may be a socket cap which is received within the proximal opening. Socket cap 60 includes a base or cap portion (shown and described in greater detail in U.S. Pat. No. 6,758,808) to abut ball portion 56b and maintain it in its position in the socket member 56s. In the example shown, the cap portion has a substantially planar bottom surface with a circular opening dimensioned to ride against the sphericity of the ball portion 56b. Of course, other configurations of the bottom surface are contemplated which would accomplish the same function, e.g., the ability to apply force against the ball portion 56b and maintain the ball portion within the socket member 56s, while also allowing the ball portion to rotate. Still further, upon increased application of force, the cap portion has the ability to lock the ball portion 56s and prevent it from rotating.
The outer surface of the socket cap 60 is substantially cylindrical and adapted to slidably and rotatably fit within the cavity of the coupling member 56s introduced by the proximal opening thereof. This allows rotation of the working end 14 about the longitudinal axis of the maneuverable arm 12 when the stabilizer 10 is in a non-rigid state. The proximal portion of the socket cap 60 includes driving surfaces adapted to abut against the distal most articulating member 43 and transmit force against the ball portion 56b when the cable is tensioned. Upon complete release of tension in the stabilizer 10 cable 46, the socket member 56s may be pulled in a direction away from the distal most articulating member 43 by a sufficient distance to allow ball portion 56b to be extracted through opening 56p, for example to change the setup by replacing the existing working end 14 with a different one. Thus, a change may be made between working ends 14 to choose a different design or configuration, or even to change to one which operates on a different principle. For example a change from a mechanical contact member, which operates by applying physical pressure against the beating heart tissue, may be replaced with a negative pressure contact member, which engages the heart by vacuum. In this regard, any of the contact members described herein could be exchanged for operation in the stabilizer 10 described. Additionally, other known contact members could be used or adapted to be used by those of ordinary skill in the art.
The socket cap 60 further includes recessed or open portions dimensioned to receive the arms of coupling member 58. The recessed portions are continuous over the length of the socket cap 60 and are also defined along the perimeter of the cap portion. In this way, the arms of coupling member 58 interfit with the socket cap and are continuous with the outer perimeter thereof to form a cylindrical surface for rotating against the socket member 56s. The interior surface of socket member 56s is undercut near the proximal end to form an annular groove that extends around the interior circumference of the proximal end portion and underlies a lip formed thereby. Upon assembly, tines which extend outwardly from the arms of coupling member 58 at the distal ends of the arms, engage the groove and are prevented from being withdrawn from the socket member 56s by the lip. Because the lip and groove extend around the entire inner circumference of the socket member 56s, coupling member 58 is free to rotate with socket cap 60 in an unlocked configuration of the stabilizer 10. The outside ends of the tines are preferably chamfered or beveled to ease the insertion of the coupling member 58 into the socket member 56s.
A cable fitting is provided as a part of the coupling assembly, and includes an enlarged ball-shaped or other shape stop portion/coupling member 47 which has an abutment surface adapted to abut against coupling member 58 to apply a force thereto when the cable is drawn up thereagainst.
The proximal end of cable 46 is connected to actuation mechanism that is configured to increase or decrease tension in cable 46 by drawing the proximal end portion of cable 46 proximally or moving it distally relative to mount body 22, respectively. Increase and decrease of tension is actuated by actuator 52, such as the knob shown in
In the embodiment shown in
The joint member 30 includes a swivel joint 32 that is formed by a disk member 34 pivotally mounted to mounting mechanism 20 as illustrated in
Disk member 34 is slotted with slot 34s through a proximal portion thereof, forming top and bottom proximal disk surfaces 34p wherein the slot 34s typically sweeps through at least about 120 degrees of the periphery of the disk member 34, more typically at least about 150 degrees as shown in
As shown in the embodiment of
Additionally, joint member 30 includes a ball 36 extending from a distal end of disk member 34 as shown in
Positioner instrument 100 further includes an arm 112 pivotally connected to and extending distally from a distal end 124 of mount body 122. The top surface 126 of mount body 122 is smooth so as not to catch sutures, surgical gloves or any other object susceptible to being caught on a non-smooth surface. Additionally, this smooth surface can be used by the surgeon to rest a hand or finger against, to assist in steadying the hand during suturing or other procedural step, for example. Because arm 112 extends from the distal end 124 of mount body 122 and not from the top surface 126, it provides a lower profile, relative to the height of the patient's 1 chest opening 2 and the sternal retractor 200 than a design where the arm extends from a top of the mount body. This makes the instrument less of an obstruction (relative to prior art stabilizer instruments where the arm is attached to the top of the attachment mechanism) to the surgeon or anyone else trying to access the surgical working space 3.
Positioner instrument 100 further includes a working end 114 mounted to a distal end portion of arm 112. The working end 114 of positioner instrument 100 includes at least one contact member 116. A single contact member 116 is provided in the embodiment shown in
Conforming seal 252 is preferably made of biocompatible foam having some open cells (to control a slow flow of air through seal 252), and some has closed cells (including those which define a “skin” on the distal surface of seal 252, which is the surface designed to contact the organ). The size and ratio of the open cells to the closed cells governs the rate at which air moves through the seal 252, in order to hold and continue to hold suction (with the skin of the seal 252 engaged against an organ or tissue) with a given amount of vacuum applied in 151. As noted, the skin is especially smooth so that when contacting the surface of the organ/tissue, it forms a seal therewith that is airtight and does not leak to reduce the amount of vacuum applied.
Compliant joint 118 is attached to the distal end of arm 112. This connection may be formed in the same manner as described above with regard to components 43, 47, 58, 60 and 56s above in the stabilizer embodiment of
Arm 112 may be made in the same manner as arm 12 discussed above, although the members 140 and 142 may have smaller cross sectional dimensions than corresponding members 40 and 42. Alternatively, any arm that has a flexible configuration, and which can be actuated to a rigid configuration may be used, including any arms described in any of the patents incorporated by reference herein. Mounting mechanism 120 is provided to fix the positioner 100 to a stationary object, such as a sternal retractor or other fixed object.
Fork 165 is fixed to ball 56b via a post or is integrally made with the ball 56b and post. Ball 56b is free to rotate relative to socket 56s when the cable 46 is relieved of tension and arm 112 is in a flexible state. This freedom to rotate is three-dimensional freedom provided by a ball and socket arrangement. Roller 164 is rotationally mounted between the tines of form 165 and is free to rotate relative thereto. Roller 164 defines a central channel 164c, and shaft 153 of contact member 114 extends through channel 164c as shown in
During beating heart surgery, the positioner 100 of
Spring 156 dampens the oscillating motion of shaft 153 relative to roller 164, in the following manner. As shaft 153 slides vertically downward relative to roller 164, spring 156 is compressed (converting some of the kinetic energy of shaft 153 into potential energy). Then, as shaft 153 slides vertically upward relative to roller 164, spring 156 relaxes (elongates) back to its equilibrium position (assisting in pulling the heart surface upward as some of the potential energy stored in the spring is converted to kinetic energy of shaft 153). Optionally, fork 165 may include a pivoting latch (not shown, see U.S. Pat. No. 6,506,149,
Mount body 122 is configured and dimensioned so that the distal end 124 thereof is substantially flush with an inner surface 200i of the sternal retractor 200, particularly with an inner surface of the arm/blade 204 of the sternal retractor. Alternatively, the distal end 124 may extend slightly beyond/inward of the inner surface 200i or end slightly before/outward of the inner surface 200i. In any case, when the positioner instrument 100 is fixed to rail 202 as shown in
Joint member 130 is pivotally mounted to mount body 122 at the distal end portion thereof, so that arm 112, which is joined to the distal end of joint member 130, extends from the distal end 124 of mount body 122. Arm 112 comprises a plurality of articulating links 140 that allow the arm 112 to be flexible in a first configuration, but which can be compressed to render the arm 112 substantially rigid in a second configuration. In the embodiment shown in
Each link 140 includes a central channel therethrough which may be tapered at both ends to allow a cable 46 (see the exploded view of
The proximal end of cable 46 is connected to an actuation mechanism that is configured to increase or decrease tension in cable 46 by drawing the proximal end portion of cable 46 proximally or moving it distally relative to mount body 122, respectively. Increase and decrease of tension is actuated by actuator 152, such as the knob shown in
In the embodiment shown in
The joint member 130 includes a swivel or pivot joint 132 that is formed by a disk member 134 pivotally mounted to mounting mechanism 120 as illustrated in
Disk member 134 is slotted 134s through a proximal portion thereof, wherein the slot 134s typically sweeps through at least about 120 degrees of the periphery of the disk member 134, more typically at least about 150 degrees as shown in
Additionally, joint member 130 includes a ball 136 extending from a distal end of disk member 134 as shown in
Other variations of ball 136 may be provided, including, but not limited to the variations of ball 36 described above Likewise, alternative embodiments of disk member 134 may be provided like the alternative embodiments of disk member 34 described above.
Unlike conventional locking mechanisms that use a lever and a cam to advance a movable jaw of a clamping mechanism relative to a fixed jaw in order to fix the mechanism to a fixed object, wherein the lever is co-planar with the bottom surface of the movable jaw or the bottom surface of the lever is below the top surface of the movable jaw, mounting mechanism actuator (e.g., lever or the like) 80 of the embodiment of the present invention shown in
Additionally, unlike conventional mounting mechanisms wherein the actuator lever is rotated distally to fix the mechanism to a retractor, the actuator 80 of the present invention is drawn proximally (i.e., towards the user) to fix or lock the mounting mechanism 20 (or 120) to a retractor. Ergonomically, this makes it easier for the user to lock an instrument 100 or 10 to a sternal retractor, as the proximal rotation is easier to perform and can generally be done with one hand, where it often takes both hands to fix a mechanism that requires distal rotation of the lever to fix the mechanism, since it is easy to hold the body 22 and pull, using one hand, but difficult to hold the body and push, using the same hand. Also, in the conventional mechanisms, the lever extends outwardly from the mounting mechanism and extends alongside the rail of the retractor when the mechanism is fixed thereto, thereby preventing another instrument from being mounted close to that mechanism. In the present invention, however, actuator 80 is drawn back proximally in the locked position and streamlined with the mounting mechanism 20,120, see
Alternatively, or in addition to temporarily holding tube 62 in clip 52c, tube may be temporarily held in recess 22c provided in mount body 22, as shown in
Preferably, tube 62 is a soft, flexible, reinforced tube. However, the interior 52b of the main body of the clip 52c has an inside diameter only slightly smaller than the outside diameter of the tube 62, so as grip the tube 62 while keeping constriction relatively insubstantial. Accordingly, the tube 62 is held in position in space 52b by the soft grip and opening 52o of clip 52c prevents the tubing 62 from escaping the clip during use of the instrument, as operator intervention is required to remove the tube again so that it can be repositioned in the opening 52o.
Alternatively, or in addition to temporarily holding tube 62 in clip 152c, tube may be temporarily held in a recess provided in mount body 122. The recess in mount body 122 can be configured in the same way as recess 22c shown in
A filter 320 is provided in line, in fluid communication with canister 300, between canister 300 and vacuum source 402 or 404, see
Canister 300 is preferably provided with at least one substantially flat side that facilitates mounting of the canister 300 along a wall, for example. In the embodiment shown in
Turning now to
Additionally or alternatively, the supports 17 may be configured to pivot relative to contact members 16, as indicated by the arrows in
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition 57 of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/354,516, entitled “Surgical Instruments, Systems and Methods of Use” which was filed on Jun. 14, 2010, the content of which are incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1706500 | Smith | Mar 1929 | A |
2082782 | Allen | Jun 1937 | A |
2296793 | Kirschbaum | Sep 1942 | A |
2450194 | Glaser | Sep 1948 | A |
2590527 | Fluck | Mar 1952 | A |
2693795 | Grieshaber | Nov 1954 | A |
2863444 | Joseph Winsten | Dec 1958 | A |
3096962 | Meijs | Jul 1963 | A |
3361133 | Kimberley et al. | Jan 1968 | A |
3392722 | Jorgensen | Jul 1968 | A |
3466079 | Mammel | Sep 1969 | A |
3584822 | Oram | Jun 1971 | A |
3683926 | Suzuki | Aug 1972 | A |
3720433 | Rosfelder | Mar 1973 | A |
3783373 | Jawor | Jan 1974 | A |
3783873 | Jacobs | Jan 1974 | A |
3807406 | Rafferty et al. | Apr 1974 | A |
3858578 | Milo | Jan 1975 | A |
3858926 | Ottenhues | Jan 1975 | A |
3882855 | Schulte et al. | May 1975 | A |
3882885 | McCain | May 1975 | A |
3912317 | Ohnaka | Oct 1975 | A |
3916909 | Kletschka et al. | Nov 1975 | A |
3983863 | Janke et al. | Oct 1976 | A |
4047532 | Phillips et al. | Sep 1977 | A |
4048987 | Hurson | Sep 1977 | A |
4049000 | Williams | Sep 1977 | A |
4049002 | Kletschka et al. | Sep 1977 | A |
4049484 | Priest et al. | Sep 1977 | A |
4052980 | Grams et al. | Oct 1977 | A |
4094484 | Galione | Jun 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4096864 | Kletschka et al. | Jun 1978 | A |
4108178 | Betush | Aug 1978 | A |
4168708 | Lepley, Jr. et al. | Sep 1979 | A |
4217890 | Owens | Aug 1980 | A |
4226228 | Shin et al. | Oct 1980 | A |
4230119 | Blum | Oct 1980 | A |
4300541 | Burgin | Nov 1981 | A |
4300564 | Furihata | Nov 1981 | A |
4306561 | de Medinaceli | Dec 1981 | A |
4350160 | Kolesov et al. | Sep 1982 | A |
4366819 | Kaster | Jan 1983 | A |
4368736 | Kaster | Jan 1983 | A |
4421107 | Estes et al. | Dec 1983 | A |
4428368 | Torii | Jan 1984 | A |
4428815 | Powell et al. | Jan 1984 | A |
4434791 | Darnell | Mar 1984 | A |
4457300 | Budde | Jul 1984 | A |
4461284 | Fackler | Jul 1984 | A |
4483339 | Gillis | Nov 1984 | A |
4492229 | Grunwald | Jan 1985 | A |
4597382 | Perez, Jr. | Jul 1986 | A |
4617916 | LeVahn et al. | Oct 1986 | A |
4627421 | Symbas et al. | Dec 1986 | A |
4637377 | Loop | Jan 1987 | A |
4646747 | Lundback | Mar 1987 | A |
4673161 | Flynn et al. | Jun 1987 | A |
4688570 | Kramer et al. | Aug 1987 | A |
4702230 | Pelta | Oct 1987 | A |
4708510 | McConnell et al. | Nov 1987 | A |
D293470 | Adler | Dec 1987 | S |
4718418 | L'Esperance, Jr. | Jan 1988 | A |
4726356 | Santilli et al. | Feb 1988 | A |
4726358 | Brady | Feb 1988 | A |
4736749 | Lundback | Apr 1988 | A |
4747394 | Watanabe | May 1988 | A |
4747395 | Brief | May 1988 | A |
4754746 | Cox | Jul 1988 | A |
4767142 | Takahashi et al. | Aug 1988 | A |
4767404 | Renton | Aug 1988 | A |
4787662 | Dewez | Nov 1988 | A |
4803984 | Narayanan et al. | Feb 1989 | A |
4808163 | Laub | Feb 1989 | A |
4827926 | Carol | May 1989 | A |
4829985 | Couetil | May 1989 | A |
4841967 | Chang et al. | Jun 1989 | A |
4852552 | Chaux | Aug 1989 | A |
4854318 | Solem et al. | Aug 1989 | A |
4858552 | Glatt et al. | Aug 1989 | A |
4863133 | Bonnell | Sep 1989 | A |
4865019 | Phillips | Sep 1989 | A |
4869457 | Ewerlof | Sep 1989 | A |
4884559 | Collins | Dec 1989 | A |
4892526 | Reese | Jan 1990 | A |
4904012 | Nishiguchi et al. | Feb 1990 | A |
4917427 | Scaglia | Apr 1990 | A |
4925443 | Heilman et al. | May 1990 | A |
4931341 | Haffer et al. | Jun 1990 | A |
4941872 | Felix et al. | Jul 1990 | A |
4949707 | LeVahn et al. | Aug 1990 | A |
4949927 | Madocks et al. | Aug 1990 | A |
4955896 | Freeman | Sep 1990 | A |
4957477 | Lundback | Sep 1990 | A |
4962758 | Lasner et al. | Oct 1990 | A |
4971037 | Pelta | Nov 1990 | A |
4973300 | Wright | Nov 1990 | A |
4989587 | Farley | Feb 1991 | A |
4991578 | Cohen | Feb 1991 | A |
4993862 | Pelta | Feb 1991 | A |
5009660 | Clapham | Apr 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5019086 | Neward | May 1991 | A |
5025779 | Bugge | Jun 1991 | A |
5034001 | Garrison et al. | Jul 1991 | A |
5036867 | Biswas | Aug 1991 | A |
5036868 | Berggren et al. | Aug 1991 | A |
5037428 | Picha et al. | Aug 1991 | A |
5052373 | Michelson | Oct 1991 | A |
5053041 | Ansari et al. | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5080088 | LeVahn | Jan 1992 | A |
5087247 | Horn et al. | Feb 1992 | A |
5098369 | Heilman et al. | Mar 1992 | A |
5098396 | Taylor et al. | Mar 1992 | A |
5098432 | Wagenknecht | Mar 1992 | A |
5102853 | Chattha et al. | Apr 1992 | A |
5107852 | Davidson et al. | Apr 1992 | A |
5119804 | Anstadt | Jun 1992 | A |
5125395 | Adair | Jun 1992 | A |
5131905 | Grooters | Jul 1992 | A |
5133724 | Wilson et al. | Jul 1992 | A |
5139517 | Corral | Aug 1992 | A |
5150706 | Cox et al. | Sep 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5159921 | Hoover | Nov 1992 | A |
RE34150 | Santilli et al. | Dec 1992 | E |
5167223 | Koros et al. | Dec 1992 | A |
5171254 | Sher | Dec 1992 | A |
5180392 | Skeie et al. | Jan 1993 | A |
5192070 | Nagai et al. | Mar 1993 | A |
5192289 | Jessen | Mar 1993 | A |
5196003 | Bilweis | Mar 1993 | A |
5203769 | Clement et al. | Apr 1993 | A |
5242386 | Holzer | Sep 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5245705 | Swaney | Sep 1993 | A |
5256132 | Snyders | Oct 1993 | A |
5268640 | Du et al. | Dec 1993 | A |
5287861 | Wilk | Feb 1994 | A |
5290082 | Palmer et al. | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5318013 | Wilk | Jun 1994 | A |
5323789 | Berggren et al. | Jun 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5336170 | Salerno et al. | Aug 1994 | A |
5336252 | Cohen | Aug 1994 | A |
5339801 | Poloyko et al. | Aug 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5363841 | Coker | Nov 1994 | A |
5363882 | Chikama | Nov 1994 | A |
5368566 | Crocker | Nov 1994 | A |
5372147 | Lathrop et al. | Dec 1994 | A |
5381788 | Matula et al. | Jan 1995 | A |
5382256 | del Castillo | Jan 1995 | A |
5382756 | Dagan | Jan 1995 | A |
5383840 | Heilman et al. | Jan 1995 | A |
5385840 | Benson et al. | Jan 1995 | A |
5395333 | Brill | Mar 1995 | A |
5397307 | Goodin | Mar 1995 | A |
5403280 | Wang | Apr 1995 | A |
5417709 | Slater | May 1995 | A |
5423737 | Cartmell et al. | Jun 1995 | A |
5425705 | Evard et al. | Jun 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5453078 | Valentine et al. | Sep 1995 | A |
5467763 | McMahon et al. | Nov 1995 | A |
5480425 | Ogilive | Jan 1996 | A |
5484391 | Buckman et al. | Jan 1996 | A |
5484412 | Pierpont | Jan 1996 | A |
5489280 | Russell | Feb 1996 | A |
5498256 | Furnish | Mar 1996 | A |
5503617 | Jako | Apr 1996 | A |
5509890 | Kazama | Apr 1996 | A |
5512037 | Russell et al. | Apr 1996 | A |
5512038 | O'Neal et al. | Apr 1996 | A |
5513827 | Michelson | May 1996 | A |
5514076 | Ley | May 1996 | A |
5520609 | Moll et al. | May 1996 | A |
5520610 | Giglio et al. | May 1996 | A |
5522819 | Graves et al. | Jun 1996 | A |
5522882 | Gaterud et al. | Jun 1996 | A |
5529571 | Daniel | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5547458 | Ortiz et al. | Aug 1996 | A |
5554101 | Matula et al. | Sep 1996 | A |
5555897 | Lathrop et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5564682 | Tsuji | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573496 | McPherson et al. | Nov 1996 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5607446 | Beehler et al. | Mar 1997 | A |
5613937 | Garrison et al. | Mar 1997 | A |
5616117 | Dinkler et al. | Apr 1997 | A |
5632746 | Middleman et al. | May 1997 | A |
5645560 | Crocker et al. | Jul 1997 | A |
5651378 | Matheny et al. | Jul 1997 | A |
5662300 | Michelson | Sep 1997 | A |
5667480 | Knight et al. | Sep 1997 | A |
5707362 | Yoon | Jan 1998 | A |
5713951 | Garrison et al. | Feb 1998 | A |
D421803 | Koros et al. | Mar 1998 | S |
5722935 | Christian | Mar 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5730757 | Benetti et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5749892 | Vierra et al. | May 1998 | A |
5755660 | Tyagi | May 1998 | A |
5769870 | Salahieh et al. | Jun 1998 | A |
5772583 | Wright et al. | Jun 1998 | A |
5782746 | Wright | Jul 1998 | A |
5795291 | Koros et al. | Aug 1998 | A |
5797934 | Rygaard | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5803902 | Sienkiewicz et al. | Sep 1998 | A |
5807243 | Vierra et al. | Sep 1998 | A |
5813410 | Levin | Sep 1998 | A |
5818231 | Smith | Oct 1998 | A |
5820373 | Okano et al. | Oct 1998 | A |
5830214 | Flom et al. | Nov 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846193 | Wright | Dec 1998 | A |
5846194 | Wasson et al. | Dec 1998 | A |
5846219 | Vancaillie | Dec 1998 | A |
5864275 | Ohashi et al. | Jan 1999 | A |
5865730 | Fox et al. | Feb 1999 | A |
5865731 | Lenox et al. | Feb 1999 | A |
5868770 | Rygaard | Feb 1999 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5876332 | Looney | Mar 1999 | A |
5879291 | Kolata et al. | Mar 1999 | A |
5882299 | Rastegar et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5888247 | Benetti | Mar 1999 | A |
5891017 | Swindle et al. | Apr 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5899425 | Corey, Jr. et al. | May 1999 | A |
5899627 | Dobrovolny | May 1999 | A |
5906601 | Lydon et al. | May 1999 | A |
5906602 | Weber et al. | May 1999 | A |
5906607 | Taylor et al. | May 1999 | A |
5908378 | Kovacs et al. | Jun 1999 | A |
5908382 | Koros et al. | Jun 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5921979 | Kovac et al. | Jul 1999 | A |
5928139 | Koros et al. | Jul 1999 | A |
5944658 | Koros et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5947125 | Benetti | Sep 1999 | A |
5947896 | Sherts et al. | Sep 1999 | A |
5957423 | Kronner | Sep 1999 | A |
5957832 | Taylor et al. | Sep 1999 | A |
5957835 | Anderson et al. | Sep 1999 | A |
5967972 | Santilli et al. | Oct 1999 | A |
5967973 | Sherts et al. | Oct 1999 | A |
5976069 | Navia et al. | Nov 1999 | A |
5976080 | Farascioni | Nov 1999 | A |
5976171 | Taylor | Nov 1999 | A |
5984843 | Morton | Nov 1999 | A |
5984864 | Fox et al. | Nov 1999 | A |
5984865 | Farley et al. | Nov 1999 | A |
5984867 | Deckman et al. | Nov 1999 | A |
6007486 | Hunt et al. | Dec 1999 | A |
6007523 | Mangosong | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6013027 | Khan et al. | Jan 2000 | A |
6015427 | Mueller et al. | Jan 2000 | A |
6017304 | Vierra et al. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6027476 | Sterman et al. | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030340 | Maffei et al. | Feb 2000 | A |
6032672 | Taylor | Mar 2000 | A |
6033362 | Cohn | Mar 2000 | A |
6033641 | Hall et al. | Mar 2000 | A |
6036641 | Taylor et al. | Mar 2000 | A |
6042539 | Harper et al. | Mar 2000 | A |
6050266 | Benetti et al. | Apr 2000 | A |
6063021 | Hossain et al. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6071235 | Furnish et al. | Jun 2000 | A |
6071295 | Takahashi | Jun 2000 | A |
6083154 | Liu et al. | Jul 2000 | A |
6099468 | Santilli et al. | Aug 2000 | A |
6102853 | Scirica et al. | Aug 2000 | A |
6102854 | Cartier et al. | Aug 2000 | A |
6110187 | Donlon | Aug 2000 | A |
6113534 | Koros et al. | Sep 2000 | A |
6120436 | Anderson et al. | Sep 2000 | A |
6132370 | Furnish et al. | Oct 2000 | A |
6139492 | Vierra et al. | Oct 2000 | A |
6149583 | Vierra et al. | Nov 2000 | A |
6152874 | Looney et al. | Nov 2000 | A |
6159201 | Hamilton et al. | Dec 2000 | A |
6159231 | Looney et al. | Dec 2000 | A |
6168577 | Niederjohn et al. | Jan 2001 | B1 |
6183486 | Snow et al. | Feb 2001 | B1 |
6190311 | Glines et al. | Feb 2001 | B1 |
6193652 | Berky et al. | Feb 2001 | B1 |
6199556 | Benetti et al. | Mar 2001 | B1 |
6200263 | Person | Mar 2001 | B1 |
6210323 | Gilhuly et al. | Apr 2001 | B1 |
6213940 | Sherts et al. | Apr 2001 | B1 |
6224545 | Cocchia et al. | May 2001 | B1 |
6231506 | Hu et al. | May 2001 | B1 |
6231585 | Takahashi et al. | May 2001 | B1 |
6234961 | Gray | May 2001 | B1 |
6241655 | Riess | Jun 2001 | B1 |
6251065 | Kochamba et al. | Jun 2001 | B1 |
6254532 | Paolitto et al. | Jul 2001 | B1 |
6264605 | Scirica et al. | Jul 2001 | B1 |
6283912 | Hu et al. | Sep 2001 | B1 |
6306085 | Farascioni | Oct 2001 | B1 |
6315717 | Benetti et al. | Nov 2001 | B1 |
6322500 | Sikora et al. | Nov 2001 | B1 |
6331157 | Hancock | Dec 2001 | B2 |
6331158 | Hu et al. | Dec 2001 | B1 |
6336898 | Borst et al. | Jan 2002 | B1 |
6338710 | Takahashi et al. | Jan 2002 | B1 |
6338712 | Spence et al. | Jan 2002 | B2 |
6338738 | Bellotti et al. | Jan 2002 | B1 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6348036 | Looney et al. | Feb 2002 | B1 |
6361493 | Spence et al. | Mar 2002 | B1 |
6364833 | Valerio et al. | Apr 2002 | B1 |
6371910 | Zwart et al. | Apr 2002 | B1 |
6375611 | Voss et al. | Apr 2002 | B1 |
6390976 | Spence et al. | May 2002 | B1 |
6394948 | Borst et al. | May 2002 | B1 |
6394951 | Taylor et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6406424 | Williamson et al. | Jun 2002 | B1 |
6425901 | Zhu et al. | Jul 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6458079 | Cohn et al. | Oct 2002 | B1 |
6464629 | Boone et al. | Oct 2002 | B1 |
6464630 | Borst et al. | Oct 2002 | B1 |
6468265 | Evans et al. | Oct 2002 | B1 |
6475142 | Parsons et al. | Nov 2002 | B1 |
6478029 | Boyd et al. | Nov 2002 | B1 |
6478729 | Rogers et al. | Nov 2002 | B1 |
6482151 | Vierra et al. | Nov 2002 | B1 |
6494211 | Boyd et al. | Dec 2002 | B1 |
6503245 | Palmer et al. | Jan 2003 | B2 |
6506149 | Peng et al. | Jan 2003 | B2 |
6537212 | Sherts et al. | Mar 2003 | B2 |
6551242 | Furnish et al. | Apr 2003 | B1 |
6565508 | Scirica et al. | May 2003 | B2 |
6581889 | Carpenter et al. | Jun 2003 | B2 |
6589166 | Knight et al. | Jul 2003 | B2 |
6592573 | Castañeda et al. | Jul 2003 | B2 |
6602183 | Levi et al. | Aug 2003 | B1 |
6607478 | Williams | Aug 2003 | B2 |
6607479 | Kochamba et al. | Aug 2003 | B1 |
6610008 | Spence et al. | Aug 2003 | B1 |
6610009 | Person | Aug 2003 | B2 |
6626830 | Califiore et al. | Sep 2003 | B1 |
6652454 | Hu et al. | Nov 2003 | B2 |
6656113 | Green et al. | Dec 2003 | B2 |
6685632 | Hu et al. | Feb 2004 | B1 |
6709389 | Farascioni | Mar 2004 | B2 |
6726622 | Spence et al. | Apr 2004 | B2 |
6730020 | Peng et al. | May 2004 | B2 |
6733445 | Sherts et al. | May 2004 | B2 |
6740028 | Boone et al. | May 2004 | B2 |
6743170 | Spence et al. | Jun 2004 | B1 |
6755780 | Borst et al. | Jun 2004 | B2 |
6758808 | Paul et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6790177 | Phillips et al. | Sep 2004 | B2 |
6849044 | Voss et al. | Feb 2005 | B1 |
6866628 | Goodman | Mar 2005 | B2 |
6875171 | Paolitto et al. | Apr 2005 | B2 |
6890292 | Kochamba et al. | May 2005 | B2 |
6893391 | Taylor | May 2005 | B2 |
6899670 | Peng et al. | May 2005 | B2 |
6900592 | Kunhardt et al. | May 2005 | B2 |
6902523 | Kochamba et al. | Jun 2005 | B2 |
6936001 | Snow | Aug 2005 | B1 |
6936002 | Kochamba et al. | Aug 2005 | B2 |
6939297 | Gannoe et al. | Sep 2005 | B2 |
6969349 | Spence et al. | Nov 2005 | B1 |
7018328 | Mager et al. | Mar 2006 | B2 |
7048683 | Borst et al. | May 2006 | B2 |
7056287 | Taylor et al. | Jun 2006 | B2 |
7137949 | Scirica et al. | Nov 2006 | B2 |
7182731 | Nguyen et al. | Feb 2007 | B2 |
7189201 | Borst et al. | Mar 2007 | B2 |
7195591 | Spence et al. | Mar 2007 | B2 |
7201716 | Boone et al. | Apr 2007 | B2 |
7220228 | Hu et al. | May 2007 | B2 |
7226409 | Peng et al. | Jun 2007 | B2 |
7238155 | Hu et al. | Jul 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
7311664 | Goodman et al. | Dec 2007 | B2 |
7377895 | Spence et al. | May 2008 | B2 |
7399272 | Kim et al. | Jul 2008 | B2 |
7404792 | Spence et al. | Jul 2008 | B2 |
7476196 | Spence et al. | Jan 2009 | B2 |
7476199 | Spence et al. | Jan 2009 | B2 |
7585277 | Taylor et al. | Sep 2009 | B2 |
7736307 | Hu et al. | Jun 2010 | B2 |
7753844 | Sharratt et al. | Jul 2010 | B2 |
7758500 | Boyd et al. | Jul 2010 | B2 |
7766817 | Peng et al. | Aug 2010 | B2 |
8092369 | Peng et al. | Jan 2012 | B2 |
8231528 | Friedrich et al. | Jul 2012 | B1 |
20010009971 | Sherts et al. | Jul 2001 | A1 |
20010044572 | Benetti et al. | Nov 2001 | A1 |
20020058957 | Farascioni | May 2002 | A1 |
20020077532 | Gannoe et al. | Jun 2002 | A1 |
20020091300 | Peng et al. | Jul 2002 | A1 |
20020099270 | Taylor et al. | Jul 2002 | A1 |
20020111537 | Taylor et al. | Aug 2002 | A1 |
20020161295 | Edwards et al. | Oct 2002 | A1 |
20030083555 | Hunt et al. | May 2003 | A1 |
20030216619 | Scirica et al. | Nov 2003 | A1 |
20040015047 | Mager et al. | Jan 2004 | A1 |
20040030223 | Calafiore et al. | Feb 2004 | A1 |
20040092799 | Hu et al. | May 2004 | A1 |
20040143138 | Kunz et al. | Jul 2004 | A1 |
20040171917 | Paul et al. | Sep 2004 | A1 |
20040267097 | Xiao et al. | Dec 2004 | A1 |
20050215851 | Kim et al. | Sep 2005 | A1 |
20060200005 | Bjork et al. | Sep 2006 | A1 |
20060270909 | Davis et al. | Nov 2006 | A1 |
20060270910 | Davis | Nov 2006 | A1 |
20070055108 | Taylor et al. | Mar 2007 | A1 |
20070142712 | Phillips et al. | Jun 2007 | A1 |
20070255109 | Stein et al. | Nov 2007 | A1 |
20070260124 | Dobrovolny | Nov 2007 | A1 |
20080071145 | Bjork et al. | Mar 2008 | A1 |
20080108878 | Goodman et al. | May 2008 | A1 |
20090254187 | Bjork | Oct 2009 | A1 |
20100210915 | Caldwell et al. | Aug 2010 | A1 |
20100210916 | Hu et al. | Aug 2010 | A1 |
20100317925 | Banchieri | Dec 2010 | A1 |
20110028792 | Ibrahim et al. | Feb 2011 | A1 |
20110028797 | Yee et al. | Feb 2011 | A1 |
20110137130 | Thalgott et al. | Jun 2011 | A1 |
20110270039 | Li | Nov 2011 | A1 |
20120078061 | Calafiore et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2003521296 | Jul 2003 | JP |
2003529403 | Oct 2003 | JP |
9726828 | Jan 1997 | WO |
9849947 | Apr 1998 | WO |
9908585 | Aug 1998 | WO |
9909892 | Aug 1998 | WO |
9916367 | Sep 1998 | WO |
0117437 | Mar 2001 | WO |
0154562 | Aug 2001 | WO |
Entry |
---|
International Search Report related to PCT/2011/040399 (now published as WO2011/159733A1) to Serowski et al. filed on Jun. 14, 2011. |
Decision of Rejection issued in corresponding Japanese Patent Application No. 2013-515460 dated Sep. 6, 2016 (4 pages). |
Decision of Rejection issued in corresponding Japanese Patent Application No. 2013-515460, mailing date Oct. 6, 2015, and an English Translation of same (12 pages). |
Number | Date | Country | |
---|---|---|---|
20120157788 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61354516 | Jun 2010 | US |