Surgical instruments with articulating shafts

Information

  • Patent Grant
  • 10335182
  • Patent Number
    10,335,182
  • Date Filed
    Monday, July 18, 2016
    8 years ago
  • Date Issued
    Tuesday, July 2, 2019
    5 years ago
Abstract
Various embodiments are directed to articulatable surgical instruments and surgical systems comprising articulatable surgical instruments. Some embodiments comprise an end effector to treat tissue, where the end effector comprises an ultrasonic blade. A hollow shaft may extend proximally from the end effector along a longitudinal axis. A waveguide may extend through the hollow shaft and may be acoustically coupled to the ultrasonic blade. The waveguide may comprise a distally positioned flange positioned within the hollow shaft proximally from the ultrasonic blade and may be held stationary at a first pivot point positioned within the hollow shaft proximally from the flange. A reciprocatable wedge may be configured to interact with the flange to cause the ultrasonic blade to pivot about the first pivot point in a first direction.
Description

This application is related to the following U.S. Patent Applications, filed Jun. 29, 2012, which are incorporated herein by reference in their entirety:


U.S. patent application Ser. No. 13/539,096, entitled “Haptic Feedback Devices for Surgical Robot,” now U.S. Pat. No. 9,198,714;


U.S. patent application Ser. No. 13/539,110, entitled “Lockout Mechanism for Use with Robotic Electrosurgical Device,” now U.S. Pat. No. 9,326,788;


U.S. patent application Ser. No. 13/539,117, entitled “Closed Feedback Control for Electrosurgical Device,” now U.S. Pat. No. 9,226,767;


U.S. patent application Ser. No. 13/538,588, entitled “Surgical Instruments with Articulating Shafts,” now U.S. Patent Application Publication No. 2014/0005701;


U.S. patent application Ser. No. 13/538,601, entitled “Ultrasonic Surgical Instruments with Distally Positioned Transducers,” now U.S. Patent Application Publication No. 2014/0005702;


U.S. patent application Ser. No. 13/538,711, entitled “Ultrasonic Surgical Instruments with Distally Positioned Jaw Assemblies,” now U.S. Pat. No. 9,351,754;


U.S. patent application Ser. No. 13/538,720, entitled “Surgical Instruments with Articulating Shafts,” now U.S. Patent Application Publication No. 2014/0005705;


U.S. patent application Ser. No. 13/538,733, entitled “Ultrasonic Surgical Instruments with Control Mechanisms,” now U.S. Patent Application Publication No. 2014/0005681; and


U.S. patent application Ser. No. 13/539,122, entitled “Surgical Instruments With Fluid Management System,” now U.S. Pat. No. 9,283,045.


BACKGROUND

Various embodiments are directed to surgical devices, including various articulatable shafts and ultrasonic blades for use with surgical devices.


Ultrasonic surgical devices, such as ultrasonic scalpels, are used in many applications in surgical procedures by virtue of their unique performance characteristics. Depending upon specific device configurations and operational parameters, ultrasonic surgical devices can provide substantially simultaneous transection of tissue and homeostasis by coagulation, desirably minimizing patient trauma. An ultrasonic surgical device comprises a proximally-positioned ultrasonic transducer and an instrument coupled to the ultrasonic transducer having a distally-mounted end effector comprising an ultrasonic blade to cut and seal tissue. The end effector is typically coupled either to a handle and/or a robotic surgical implement via a shaft. The blade is acoustically coupled to the transducer via a waveguide extending through the shaft. Ultrasonic surgical devices of this nature can be configured for open surgical use, laparoscopic, or endoscopic surgical procedures including robotic-assisted procedures.


Ultrasonic energy cuts and coagulates tissue using temperatures lower than those used in electrosurgical procedures. Vibrating at high frequencies (e.g., 55,500 times per second), the ultrasonic blade denatures protein in the tissue to form a sticky coagulum. Pressure exerted on tissue by the blade surface collapses blood vessels and allows the coagulum to form a hemostatic seal. A surgeon can control the cutting speed and coagulation by the force applied to the tissue by the end effector, the time over which the force is applied and the selected excursion level of the end effector.


Also used in many surgical applications are electrosurgical devices. Electrosurgical devices apply electrical energy to tissue in order to treat tissue. An electrosurgical device may comprise an instrument having a distally-mounted end effector comprising one or more electrodes. The end effector can be positioned against tissue such that electrical current is introduced into the tissue. Electrosurgical devices can be configured for bipolar or monopolar operation. During bipolar operation, current is introduced into and returned from the tissue by active and return electrodes, respectively, of the end effector. During monopolar operation, current is introduced into the tissue by an active electrode of the end effector and returned through a return electrode (e.g., a grounding pad) separately located on a patient's body. Heat generated by the current flow through the tissue may form haemostatic seals within the tissue and/or between tissues and thus may be particularly useful for sealing blood vessels, for example. The end effector of an electrosurgical device sometimes also comprises a cutting member that is movable relative to the tissue and the electrodes to transect the tissue.


Electrical energy applied by an electrosurgical device can be transmitted to the instrument by a generator. The electrical energy may be in the form of radio frequency (“RF”) energy. RF energy is a form of electrical energy that may be in the frequency range of 300 kHz to 1 MHz. During its operation, an electrosurgical device can transmit low frequency RF energy through tissue, which causes ionic agitation, or friction, in effect resistive heating, thereby increasing the temperature of the tissue. Because a sharp boundary may be created between the affected tissue and the surrounding tissue, surgeons can operate with a high level of precision and control, without sacrificing un-targeted adjacent tissue. The low operating temperatures of RF energy may be useful for removing, shrinking, or sculpting soft tissue while simultaneously sealing blood vessels. RF energy may work particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.


With respect to both ultrasonic and electrosurgical devices, it is often desirable for clinicians to articulate a distal portion of the instrument shaft in order to direct the application of ultrasonic and/or RF energy. Bringing about and controlling such articulation, however, is often a considerable challenge.





DRAWINGS

The features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:



FIG. 1 illustrates one embodiment of a surgical system including a surgical instrument and an ultrasonic generator.



FIG. 2 illustrates one embodiment of the surgical instrument shown in FIG. 1.



FIG. 3 illustrates one embodiment of an ultrasonic end effector.



FIG. 4 illustrates another embodiment of an ultrasonic end effector.



FIG. 5 illustrates an exploded view of one embodiment of the surgical instrument shown in FIG. 1.



FIG. 6 illustrates a cut-away view of one embodiment of the surgical instrument shown in FIG. 1.



FIG. 7 illustrates various internal components of one embodiment of the surgical instrument shown in FIG. 1



FIG. 8 illustrates a top view of one embodiment of a surgical system including a surgical instrument and an ultrasonic generator.



FIG. 9 illustrates one embodiment of a rotation assembly included in one example embodiment of the surgical instrument of FIG. 1.



FIG. 10 illustrates one embodiment of a surgical system including a surgical instrument having a single element end effector.



FIG. 11 is a perspective view of one embodiment of an electrical energy surgical instrument.



FIG. 12 is a side view of a handle of one embodiment of the surgical instrument of FIG. 11 with a half of a handle body removed to illustrate some of the components therein.



FIG. 13 illustrates a perspective view of one embodiment of the end effector of the surgical instrument of FIG. 11 with the jaws open and the distal end of an axially movable member in a retracted position.



FIG. 14 illustrates a perspective view of one embodiment of the end effector of the surgical instrument of FIG. 11 with the jaws closed and the distal end of an axially movable member in a partially advanced position.



FIG. 15 illustrates a perspective view of one embodiment of the axially moveable member of the surgical instrument of FIG. 11.



FIG. 16 illustrates a section view of one embodiment of the end effector of the surgical instrument of FIG. 11.



FIG. 17 illustrates a section a perspective view of one embodiment of a cordless electrical energy surgical instrument.



FIG. 18A illustrates a side view of a handle of one embodiment of the surgical instrument of FIG. 17 with a half handle body removed to illustrate various components therein.



FIG. 18B illustrates an RF drive and control circuit, according to one embodiment.



FIG. 18C illustrates the main components of the controller, according to one embodiment.



FIG. 19 illustrates a block diagram of one embodiment of a robotic surgical system.



FIG. 20 illustrates one embodiment of a robotic arm cart.



FIG. 21 illustrates one embodiment of the robotic manipulator of the robotic arm cart of FIG. 20.



FIG. 22 illustrates one embodiment of a robotic arm cart having an alternative set-up joint structure.



FIG. 23 illustrates one embodiment of a controller that may be used in conjunction with a robotic arm cart, such as the robotic arm carts of FIGS. 19-22.



FIG. 24 illustrates one embodiment of an ultrasonic surgical instrument adapted for use with a robotic system.



FIG. 25 illustrates one embodiment of an electrosurgical instrument adapted for use with a robotic system.



FIG. 26 illustrates one embodiment of an instrument drive assembly that may be coupled to a surgical manipulator to receive and control the surgical instrument shown in FIG. 24.



FIG. 27 illustrates another view of the instrument drive assembly embodiment of FIG. 26 including the surgical instrument of FIG. 24.



FIG. 28 illustrates another view of the instrument drive assembly of FIG. 26 including the electrosurgical instrument of FIG. 25.



FIGS. 29-31 illustrate additional views of the adapter portion of the instrument drive assembly embodiment of FIG. 26.



FIGS. 32-34 illustrate one embodiment of the instrument mounting portion of FIGS. 24-25 showing components for translating motion of the driven elements into motion of the surgical instrument.



FIGS. 35-37 illustrate an alternate embodiment of the instrument mounting portion of FIGS. 24-25 showing an alternate example mechanism for translating rotation of the driven elements into rotational motion about the axis of the shaft and an alternate example mechanism for generating reciprocating translation of one or more members along the axis of the shaft 538.



FIGS. 38-42 illustrate an alternate embodiment of the instrument mounting portion FIGS. 24-25 showing another alternate example mechanism for translating rotation of the driven elements into rotational motion about the axis of the shaft.



FIGS. 43-46A illustrate an alternate embodiment of the instrument mounting portion showing an alternate example mechanism for differential translation of members along the axis of the shaft (e.g., for articulation).



FIGS. 46B-46C illustrate one embodiment of a tool mounting portion comprising internal power and energy sources.



FIG. 47 illustrates a schematic cross-sectional view of a portion of one example embodiment of an ultrasonic medical instrument comprising first, second and third waveguide portions, where the second waveguide portion is substantially ½ of a resonant-longitudinal-wavelength long.



FIG. 47A illustrates cross sections for two example embodiments of the second waveguide portion of FIG. 47.



FIG. 48 illustrates a schematic cross-sectional view of a portion of one example embodiment of an ultrasonic medical instrument comprising first and second waveguide portions, where the first waveguide portion spans multiple ½ resonant longitudinal wavelengths.



FIG. 49 illustrates a schematic cross-sectional view of one example embodiment of an ultrasonic waveguide for use with a medical instrument and comprising first and second waveguide portions, where a first waveguide portion is joined to a second waveguide portion by a dowel press fit.



FIG. 50 illustrates a schematic cross-sectional view of one example embodiment of an ultrasonic waveguide for use with a medical instrument and comprising first and second waveguide portions, where the first waveguide portion is joined to the second waveguide portion by a ball-and-socket type attachment.



FIG. 51 illustrates a schematic cross-sectional view of a portion of another embodiment of an ultrasonic medical instrument comprising a medical ultrasonic waveguide having a length and including a proximal waveguide portion and a distal waveguide portion.



FIG. 52 illustrates one embodiment of a shaft that may be utilized with various surgical instruments, including those described herein.



FIG. 53 illustrates one embodiment of the shaft of FIG. 52 with the wedge translated distally and the blade pivoted, as described.



FIG. 54 illustrates an alternative embodiment of the shaft of FIG. 52 comprising several additional features.



FIG. 55 illustrates one embodiment of an example wedge having a curved or rounded shape.



FIG. 56 illustrates the wedge in conjunction with an end effector comprising an ultrasonic blade as well as a flange.



FIG. 57 illustrates a cross-section of one embodiment of the shaft showing a keyed flange.



FIG. 58 illustrates one embodiment of a keyed wedge comprising steps matching the notches of the keyed flange of FIG. 57.



FIG. 59 illustrates a wedge for use with the shaft, the wedge having a stepped profile.



FIG. 60 illustrates one example embodiment of a shaft for use with various surgical instruments having a cammed articulation mechanism, including those described herein.



FIG. 61 illustrates a cross-sectional view of the shaft of FIG. 60 providing a view of the shaft cam feature and waveguide cam feature.



FIG. 62-64 illustrates one embodiment of an articulating shaft that may be utilized with various surgical instruments, including those described herein.



FIGS. 65-67 illustrate one example embodiment of a shaft coupled to an end effector comprising an ultrasonic blade and a pivotable clamp arm.



FIG. 68 illustrates one embodiment of the end effector of FIGS. 65-67 illustrating a first way to utilize the clamp arm member to open and close the clamp arm.



FIGS. 69-70 illustrate another example embodiment of the end effector of FIGS. 65-67 illustrating an additional way to utilize the clamp arm member to open and close the clamp arm.



FIGS. 71-72 illustrate one example embodiment of the shaft of FIGS. 65-67 showing an example mechanism for managing differential translation of the translating members.



FIGS. 73-74 illustrate one embodiment of a hand-held surgical instrument utilizing the shaft of FIGS. 65-67 in the configuration shown in FIGS. 71-72.



FIGS. 75-76 illustrate one embodiment of an articulating shaft that may be utilized with various surgical instruments, including those described herein.



FIG. 77 illustrates one embodiment of a shaft that may be utilized with various surgical instruments, including those described herein.



FIG. 78 illustrates a view showing additional details of one embodiment of an outer shaft shown in FIG. 77.



FIG. 79 illustrates a cut-away view of one embodiment of the shaft shown in FIG. 77.



FIG. 80 illustrates the cut-away view of one embodiment of the shaft of FIG. 79, with the outer shaft extended distally to articulate the blade.



FIG. 81 illustrates one embodiment of the shaft of FIG. 77 having an additional distal flange.





DESCRIPTION

Example embodiments described herein are directed to articulating surgical instruments, shafts thereof, and methods of using the same. The surgical instruments may comprise an end effector configured to treat tissue in any suitable manner. In some example embodiments, the end effector comprises an ultrasonic blade for cutting and/or coagulating tissue. Details of example ultrasonic blades and the operation thereof are provided herein. Also, in some example embodiments, the end effector can comprise one or more electrodes for providing electrical energy to tissue for cutting, coagulating and/or “welding” tissue. Surgical instruments described herein may be utilized in different surgical settings. For example, different embodiments may be optimized for endoscopic, laparoscopic and/or traditional open surgical techniques. Also, different example embodiments of the surgical instruments described herein may be optimized for manual use by a clinician and/or for robotic use by a clinician in conjunction with a surgical robot.


Various example embodiments of surgical instruments described herein comprise an elongated shaft extending proximally from the end effector along a longitudinal axis. In some example embodiments, the end effector comprises an ultrasonic blade that may be articulated and/or directed from within the shaft (e.g., without otherwise articulating the shaft or in addition to otherwise articulating the shaft). For example, in some example embodiments, the ultrasonic blade is acoustically coupled to a waveguide extending proximally from the ultrasonic blade through the shaft. The waveguide may define a distally positioned flange positioned within the hollow shaft proximally from the blade. The waveguide may further be held stationary at a first pivot point positioned within the shaft proximally from the flange. A reciprocating wedge may be positioned to reciprocate distally and proximally within the shaft. Distal translation of the wedge may push the wedge between the flange and an interior wall of the shaft, ending to cause the ultrasonic blade and waveguide to pivot away from a longitudinal axis of the shaft about the first pivot point. Additional wedges may be placed at different angular positions around the interior wall of the shaft so as to articulate the ultrasonic blade in different directions.


In some example embodiments, an interior wall of the shaft defines a longitudinally directed slot and at least a portion of the reciprocating wedge is positioned within the longitudinal slot as the wedge translates distally and proximally. Also, in some example embodiments, the wedge and flange have corresponding keyed surfaces. For example, the flange may define a notch and the wedge may define a corresponding step such that the step rides within the notch as the reciprocating wedge is translated distally. Additional notches and wedges may also be present and, in some example embodiments, form a step pattern. In some example embodiments, the reciprocating wedge may be stepped, where steps are arranged along the longitudinal axis such that successive steps of the wedge cause the ultrasonic blade and waveguide to pivot about the pivot point by differing amounts.


In some example embodiments, the shaft is translatable along the longitudinal axis relative to the waveguide and ultrasonic blade. For example, the shaft may define first and second axially-directed slots, wherein the flange of the waveguide comprises first and second pegs positioned within the first and second slots. The shaft may be translatable relative to the ultrasonic blade to alternately sheathe and unsheathe the blade.


In some example embodiments, an interior portion of the hollow shaft defines a shaft cam feature directed towards the longitudinal axis. The shaft may be rotatable such that the shaft cam alternately contacts and does not contact the flange of the waveguide. In some embodiments, the flange of the waveguide has a corresponding cam feature. When the cam feature contacts the flange, it may cause the waveguide and ultrasonic blade to pivot about the pivot point. In various example embodiments, multiple surface cam features and/or multiple cam features on the flange may be utilized to bring about pivoting of the ultrasonic blade and waveguide in different directions.


In various example embodiments, the interior wall of the shaft defines a groove. Different portions of the groove are positioned at different axial distances from the end effector. The instrument may further comprise first and second interface members coupled to the ultrasonic blade and/or the waveguide at a coupling point. Each interface member extends proximally from the coupling point to a peg member. The peg members are positioned within the groove. The first interface member has a first length from the coupling point to its peg member while the second interface member has a second length from the coupling point to its peg member, where the second length is less than the first length. When the shaft rotates relative to the waveguide and ultrasonic blade, the pegs may ride within the groove and be forced either distally and/or proximally depending on the position of the pegs within the groove. When the distance from the pegs to the coupling point is different than the length of the respective coupling members, the coupling members may bend, deflecting the ultrasonic blade away from the longitudinal axis.


In various example embodiments, a surgical instrument may comprise an end effector with an ultrasonic blade, a hollow shaft and a waveguide. The shaft may comprise a rigid portion and a flexible portion. The end effector may comprises a member from which the ultrasonic blade extends, a clamp arm coupled to the member at a pivot point offset from the longitudinal axis and a flexible control cable coupled to the clamp arm at a point offset from the pivot point. Distal and proximal translation of the control cable may cause the clamp arm to pivot relative to the ultrasonic blade.


Reference will now be made in detail to several embodiments, including embodiments showing example implementations of manual and robotic surgical instruments with end effectors comprising ultrasonic and/or electrosurgical elements. Wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict example embodiments of the disclosed surgical instruments and/or methods of use for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative example embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.



FIG. 1 is a right side view of one embodiment of an ultrasonic surgical instrument 10. In the illustrated embodiment, the ultrasonic surgical instrument 10 may be employed in various surgical procedures including endoscopic or traditional open surgical procedures. In one example embodiment, the ultrasonic surgical instrument 10 comprises a handle assembly 12, an elongated shaft assembly 14, and an ultrasonic transducer 16. The handle assembly 12 comprises a trigger assembly 24, a distal rotation assembly 13, and a switch assembly 28. The elongated shaft assembly 14 comprises an end effector assembly 26, which comprises elements to dissect tissue or mutually grasp, cut, and coagulate vessels and/or tissue, and actuating elements to actuate the end effector assembly 26. The handle assembly 12 is adapted to receive the ultrasonic transducer 16 at the proximal end. The ultrasonic transducer 16 is mechanically engaged to the elongated shaft assembly 14 and portions of the end effector assembly 26. The ultrasonic transducer 16 is electrically coupled to a generator 20 via a cable 22. Although the majority of the drawings depict a multiple end effector assembly 26 for use in connection with laparoscopic surgical procedures, the ultrasonic surgical instrument 10 may be employed in more traditional open surgical procedures and in other embodiments, may be configured for use in endoscopic procedures and in other embodiments, may be configured for use in endoscopic procedures. For the purposes herein, the ultrasonic surgical instrument 10 is described in terms of an endoscopic instrument; however, it is contemplated that an open and/or laparoscopic version of the ultrasonic surgical instrument 10 also may include the same or similar operating components and features as described herein.


In various embodiments, the generator 20 comprises several functional elements, such as modules and/or blocks. Different functional elements or modules may be configured for driving different kinds of surgical devices. For example, an ultrasonic generator module 21 may drive an ultrasonic device, such as the ultrasonic surgical instrument 10. In some example embodiments, the generator 20 also comprises an electrosurgery/RF generator module 23 for driving an electrosurgical device (or an electrosurgical embodiment of the ultrasonic surgical instrument 10). In various embodiments, the generator 20 may be formed integrally within the handle assembly 12. In such implementations, a battery would be co-located within the handle assembly 12 to act as the energy source. FIG. 18A and accompanying disclosures provide one example of such implementations. As shown in FIG. 1, according to various embodiments, the ultrasonic generator module 21 and/or the electrosurgery/RF generator module 23 may be located external to the generator (shown in phantom as ultrasonic generator module 21′ and electrosurgery/RF generator module 23′). In some embodiments, the electrosurgery/RF generator module 23 may be configured to generate a therapeutic and/or a sub-therapeutic energy level. In the example embodiment illustrated in FIG. 1, the generator 20 includes a control system 25 integral with the generator 20, and a foot switch 29 connected to the generator via a cable 27. The generator 20 may also comprise a triggering mechanism for activating a surgical instrument, such as the instrument 10. The triggering mechanism may include a power switch (not shown) as well as a foot switch 29. When activated by the foot switch 29, the generator 20 may provide energy to drive the acoustic assembly of the surgical instrument 10 and to drive the end effector 18 at a predetermined excursion level. The generator 20 drives or excites the acoustic assembly at any suitable resonant frequency of the acoustic assembly and/or derives the therapeutic/sub-therapeutic electromagnetic/RF energy.


In one embodiment, the electrosurgical/RF generator module 23 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. In one embodiment, the ESU can be a bipolar ERBE ICC 350 sold by ERBE USA, Inc. of Marietta, Ga. In bipolar electrosurgery applications, as previously discussed, a surgical instrument having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, or adjacent to, the tissue to be treated such that current can flow from the active electrode to the return electrode through the tissue. Accordingly, the electrosurgical/RF module 23 generator may be configured for therapeutic purposes by applying electrical energy to the tissue T sufficient for treating the tissue (e.g., cauterization).


In one embodiment, the electrosurgical/RF generator module 23 may be configured to deliver a sub-therapeutic RF signal to implement a tissue impedance measurement module. In one embodiment, the electrosurgical/RF generator module 23 comprises a bipolar radio frequency generator as described in more detail below. In one embodiment, the electrosurgical/RF generator module 23 may be configured to monitor electrical impedance Z, of tissue T and to control the characteristics of time and power level based on the tissue T by way of a return electrode provided on a clamp member of the end effector assembly 26. Accordingly, the electrosurgical/RF generator module 23 may be configured for sub-therapeutic purposes for measuring the impedance or other electrical characteristics of the tissue T. Techniques and circuit configurations for measuring the impedance or other electrical characteristics of tissue T are discussed in more detail in commonly assigned U.S. Patent Publication No. 2011/0015631, titled “Electrosurgical Generator for Ultrasonic Surgical Instruments,” the disclosure of which is herein incorporated by reference in its entirety.


A suitable ultrasonic generator module 21 may be configured to functionally operate in a manner similar to the GEN300 sold by Ethicon Endo-Surgery, Inc of Cincinnati, Ohio as is disclosed in one or more of the following U.S. patents, all of which are incorporated by reference herein: U.S. Pat. No. 6,480,796 (Method for Improving the Start Up of an Ultrasonic System Under Zero Load Conditions); U.S. Pat. No. 6,537,291 (Method for Detecting Blade Breakage Using Rate and/or Impedance Information); U.S. Pat. No. 6,662,127 (Method for Detecting Presence of a Blade in an Ultrasonic System); U.S. Pat. No. 6,679,899 (Method for Detecting Transverse Vibrations in an Ultrasonic Hand Piece); U.S. Pat. No. 6,977,495 (Detection Circuitry for Surgical Handpiece System); U.S. Pat. No. 7,077,853 (Method for Calculating Transducer Capacitance to Determine Transducer Temperature); U.S. Pat. No. 7,179,271 (Method for Driving an Ultrasonic System to Improve Acquisition of Blade Resonance Frequency at Startup); and U.S. Pat. No. 7,273,483 (Apparatus and Method for Alerting Generator Function in an Ultrasonic Surgical System).


It will be appreciated that in various embodiments, the generator 20 may be configured to operate in several modes. In one mode, the generator 20 may be configured such that the ultrasonic generator module 21 and the electrosurgical/RF generator module 23 may be operated independently.


For example, the ultrasonic generator module 21 may be activated to apply ultrasonic energy to the end effector assembly 26 and subsequently, either therapeutic or sub-therapeutic RF energy may be applied to the end effector assembly 26 by the electrosurgical/RF generator module 23. As previously discussed, the sub-therapeutic electrosurgical/RF energy may be applied to tissue clamped between claim elements of the end effector assembly 26 to measure tissue impedance to control the activation, or modify the activation, of the ultrasonic generator module 21. Tissue impedance feedback from the application of the sub-therapeutic energy also may be employed to activate a therapeutic level of the electrosurgical/RF generator module 23 to seal the tissue (e.g., vessel) clamped between claim elements of the end effector assembly 26.


In another embodiment, the ultrasonic generator module 21 and the electrosurgical/RF generator module 23 may be activated simultaneously. In one example, the ultrasonic generator module 21 is simultaneously activated with a sub-therapeutic RF energy level to measure tissue impedance simultaneously while the ultrasonic blade of the end effector assembly 26 cuts and coagulates the tissue (or vessel) clamped between the clamp elements of the end effector assembly 26. Such feedback may be employed, for example, to modify the drive output of the ultrasonic generator module 21. In another example, the ultrasonic generator module 21 may be driven simultaneously with electrosurgical/RF generator module 23 such that the ultrasonic blade portion of the end effector assembly 26 is employed for cutting the damaged tissue while the electrosurgical/RF energy is applied to electrode portions of the end effector clamp assembly 26 for sealing the tissue (or vessel).


When the generator 20 is activated via the triggering mechanism, electrical energy is continuously applied by the generator 20 to a transducer stack or assembly of the acoustic assembly. In another embodiment, electrical energy is intermittently applied (e.g., pulsed) by the generator 20. A phase-locked loop in the control system of the generator 20 may monitor feedback from the acoustic assembly. The phase lock loop adjusts the frequency of the electrical energy sent by the generator 20 to match the resonant frequency of the selected longitudinal mode of vibration of the acoustic assembly. In addition, a second feedback loop in the control system 25 maintains the electrical current supplied to the acoustic assembly at a pre-selected constant level in order to achieve substantially constant excursion at the end effector 18 of the acoustic assembly. In yet another embodiment, a third feedback loop in the control system 25 monitors impedance between electrodes located in the end effector assembly 26. Although FIGS. 1-9 show a manually operated ultrasonic surgical instrument, it will be appreciated that ultrasonic surgical instruments may also be used in robotic applications, for example, as described herein, as well as combinations of manual and robotic applications.


In ultrasonic operation mode, the electrical signal supplied to the acoustic assembly may cause the distal end of the end effector 18, to vibrate longitudinally in the range of, for example, approximately 20 kHz to 250 kHz. According to various embodiments, the blade 22 may vibrate in the range of about 54 kHz to 56 kHz, for example, at about 55.5 kHz. In other embodiments, the blade 22 may vibrate at other frequencies including, for example, about 31 kHz or about 80 kHz. The excursion of the vibrations at the blade can be controlled by, for example, controlling the amplitude of the electrical signal applied to the transducer assembly of the acoustic assembly by the generator 20. As noted above, the triggering mechanism of the generator 20 allows a user to activate the generator 20 so that electrical energy may be continuously supplied to the acoustic assembly. The generator 20 also has a power line for insertion in an electro-surgical unit or conventional electrical outlet. It is contemplated that the generator 20 can also be powered by a direct current (DC) source, such as a battery. The generator 20 can comprise any suitable generator, such as Model No. GEN04, and/or Model No. GEN11 available from Ethicon Endo-Surgery, Inc.



FIG. 2 is a left perspective view of one example embodiment of the ultrasonic surgical instrument 10 showing the handle assembly 12, the distal rotation assembly 13, the elongated shaft assembly 14, and the end effector assembly 26. In the illustrated embodiment the elongated shaft assembly 14 comprises a distal end 52 dimensioned to mechanically engage the end effector assembly 26 and a proximal end 50 that mechanically engages the handle assembly 12 and the distal rotation assembly 13. The proximal end 50 of the elongated shaft assembly 14 is received within the handle assembly 12 and the distal rotation assembly 13. More details relating to the connections between the elongated shaft assembly 14, the handle assembly 12, and the distal rotation assembly 13 are provided in the description of FIGS. 5 and 7.


In the illustrated embodiment, the trigger assembly 24 comprises a trigger 32 that operates in conjunction with a fixed handle 34. The fixed handle 34 and the trigger 32 are ergonomically formed and adapted to interface comfortably with the user. The fixed handle 34 is integrally associated with the handle assembly 12. The trigger 32 is pivotally movable relative to the fixed handle 34 as explained in more detail below with respect to the operation of the ultrasonic surgical instrument 10. The trigger 32 is pivotally movable in direction 33A toward the fixed handle 34 when the user applies a squeezing force against the trigger 32. A spring element 98 (FIG. 5) causes the trigger 32 to pivotally move in direction 33B when the user releases the squeezing force against the trigger 32.


In one example embodiment, the trigger 32 comprises an elongated trigger hook 36, which defines an aperture 38 between the elongated trigger hook 36 and the trigger 32. The aperture 38 is suitably sized to receive one or multiple fingers of the user therethrough. The trigger 32 also may comprise a resilient portion 32a molded over the trigger 32 substrate. The resilient portion 32a is formed to provide a more comfortable contact surface for control of the trigger 32 in outward direction 33B. In one example embodiment, the resilient portion 32a may also be provided over a portion of the elongated trigger hook 36 as shown, for example, in FIG. 2. The proximal surface of the elongated trigger hook 32 remains uncoated or coated with a non-resilient substrate to enable the user to easily slide their fingers in and out of the aperture 38. In another embodiment, the geometry of the trigger forms a fully closed loop which defines an aperture suitably sized to receive one or multiple fingers of the user therethrough. The fully closed loop trigger also may comprise a resilient portion molded over the trigger substrate.


In one example embodiment, the fixed handle 34 comprises a proximal contact surface 40 and a grip anchor or saddle surface 42. The saddle surface 42 rests on the web where the thumb and the index finger are joined on the hand. The proximal contact surface 40 has a pistol grip contour that receives the palm of the hand in a normal pistol grip with no rings or apertures. The profile curve of the proximal contact surface 40 may be contoured to accommodate or receive the palm of the hand. A stabilization tail 44 is located towards a more proximal portion of the handle assembly 12. The stabilization tail 44 may be in contact with the uppermost web portion of the hand located between the thumb and the index finger to stabilize the handle assembly 12 and make the handle assembly 12 more controllable.


In one example embodiment, the switch assembly 28 may comprise a toggle switch 30. The toggle switch 30 may be implemented as a single component with a central pivot 304 located within inside the handle assembly 12 to eliminate the possibility of simultaneous activation. In one example embodiment, the toggle switch 30 comprises a first projecting knob 30a and a second projecting knob 30b to set the power setting of the ultrasonic transducer 16 between a minimum power level (e.g., MIN) and a maximum power level (e.g., MAX). In another embodiment, the rocker switch may pivot between a standard setting and a special setting. The special setting may allow one or more special programs to be implemented by the device. The toggle switch 30 rotates about the central pivot as the first projecting knob 30a and the second projecting knob 30b are actuated. The one or more projecting knobs 30a, 30b are coupled to one or more arms that move through a small arc and cause electrical contacts to close or open an electric circuit to electrically energize or de-energize the ultrasonic transducer 16 in accordance with the activation of the first or second projecting knobs 30a, 30b. The toggle switch 30 is coupled to the generator 20 to control the activation of the ultrasonic transducer 16. The toggle switch 30 comprises one or more electrical power setting switches to activate the ultrasonic transducer 16 to set one or more power settings for the ultrasonic transducer 16. The forces required to activate the toggle switch 30 are directed substantially toward the saddle point 42, thus avoiding any tendency of the instrument to rotate in the hand when the toggle switch 30 is activated.


In one example embodiment, the first and second projecting knobs 30a, 30b are located on the distal end of the handle assembly 12 such that they can be easily accessible by the user to activate the power with minimal, or substantially no, repositioning of the hand grip, making it suitable to maintain control and keep attention focused on the surgical site (e.g., a monitor in a laparoscopic procedure) while activating the toggle switch 30. The projecting knobs 30a, 30b may be configured to wrap around the side of the handle assembly 12 to some extent to be more easily accessible by variable finger lengths and to allow greater freedom of access to activation in awkward positions or for shorter fingers.


In the illustrated embodiment, the first projecting knob 30a comprises a plurality of tactile elements 30c, e.g., textured projections or “bumps” in the illustrated embodiment, to allow the user to differentiate the first projecting knob 30a from the second projecting knob 30b. It will be appreciated by those skilled in the art that several ergonomic features may be incorporated into the handle assembly 12. Such ergonomic features are described in U.S. Pat. App. Pub. No. 2009/0105750 entitled “Ergonomic Surgical Instruments,” now U.S. Pat. No. 8,623,027, which is incorporated by reference herein in its entirety.


In one example embodiment, the toggle switch 30 may be operated by the hand of the user. The user may easily access the first and second projecting knobs 30a, 30b at any point while also avoiding inadvertent or unintentional activation at any time. The toggle switch 30 may readily operated with a finger to control the power to the ultrasonic assembly 16 and/or to the ultrasonic assembly 16. For example, the index finger may be employed to activate the first contact portion 30a to turn on the ultrasonic assembly 16 to a maximum (MAX) power level. The index finger may be employed to activate the second contact portion 30b to turn on the ultrasonic assembly 16 to a minimum (MIN) power level. In another embodiment, the rocker switch may pivot the instrument 10 between a standard setting and a special setting. The special setting may allow one or more special programs to be implemented by the instrument 10. The toggle switch 30 may be operated without the user having to look at the first or second projecting knob 30a, 30b. For example, the first projecting knob 30a or the second projecting knob 30b may comprise a texture or projections to tactilely differentiate between the first and second projecting knobs 30a, 30b without looking.


In other embodiments, the trigger 32 and/or the toggle switch 30 may be employed to actuate the electrosurgical/RF generator module 23 individually or in combination with activation of the ultrasonic generator module 21.


In one example embodiment, the distal rotation assembly 13 is rotatable without limitation in either direction about a longitudinal axis “T.” The distal rotation assembly 13 is mechanically engaged to the elongated shaft assembly 14. The distal rotation assembly 13 is located on a distal end of the handle assembly 12. The distal rotation assembly 13 comprises a cylindrical hub 46 and a rotation knob 48 formed over the hub 46. The hub 46 mechanically engages the elongated shaft assembly 14. The rotation knob 48 may comprise fluted polymeric features and may be engaged by a finger (e.g., an index finger) to rotate the elongated shaft assembly 14. The hub 46 may comprise a material molded over the primary structure to form the rotation knob 48. The rotation knob 48 may be overmolded over the hub 46. The hub 46 comprises an end cap portion 46a that is exposed at the distal end. The end cap portion 46a of the hub 46 may contact the surface of a trocar during laparoscopic procedures. The hub 46 may be formed of a hard durable plastic such as polycarbonate to alleviate any friction that may occur between the end cap portion 46a and the trocar. The rotation knob 48 may comprise “scallops” or flutes formed of raised ribs 48a and concave portions 48b located between the ribs 48a to provide a more precise rotational grip. In one example embodiment, the rotation knob 48 may comprise a plurality of flutes (e.g., three or more flutes). In other embodiments, any suitable number of flutes may be employed. The rotation knob 48 may be formed of a softer polymeric material overmolded onto the hard plastic material. For example, the rotation knob 48 may be formed of pliable, resilient, flexible polymeric materials including Versaflex® TPE alloys made by GLS Corporation, for example. This softer overmolded material may provide a greater grip and more precise control of the movement of the rotation knob 48. It will be appreciated that any materials that provide adequate resistance to sterilization, are biocompatible, and provide adequate frictional resistance to surgical gloves may be employed to form the rotation knob 48.


In one example embodiment, the handle assembly 12 is formed from two (2) housing portions or shrouds comprising a first portion 12a and a second portion 12b. From the perspective of a user viewing the handle assembly 12 from the distal end towards the proximal end, the first portion 12a is considered the right portion and the second portion 12b is considered the left portion. Each of the first and second portions 12a, 12b includes a plurality of interfaces 69 (FIG. 7) dimensioned to mechanically align and engage each another to form the handle assembly 12 and enclosing the internal working components thereof. The fixed handle 34, which is integrally associated with the handle assembly 12, takes shape upon the assembly of the first and second portions 12a and 12b of the handle assembly 12. A plurality of additional interfaces (not shown) may be disposed at various points around the periphery of the first and second portions 12a and 12b of the handle assembly 12 for ultrasonic welding purposes, e.g., energy direction/deflection points. The first and second portions 12a and 12b (as well as the other components described below) may be assembled together in any fashion known in the art. For example, alignment pins, snap-like interfaces, tongue and groove interfaces, locking tabs, adhesive ports, may all be utilized either alone or in combination for assembly purposes.


In one example embodiment, the elongated shaft assembly 14 comprises a proximal end 50 adapted to mechanically engage the handle assembly 12 and the distal rotation assembly 13; and a distal end 52 adapted to mechanically engage the end effector assembly 26. The elongated shaft assembly 14 comprises an outer tubular sheath 56 and a reciprocating tubular actuating member 58 located within the outer tubular sheath 56. The proximal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the trigger 32 of the handle assembly 12 to move in either direction 60A or 60B in response to the actuation and/or release of the trigger 32. The pivotably moveable trigger 32 may generate reciprocating motion along the longitudinal axis “T.” Such motion may be used, for example, to actuate the jaws or clamping mechanism of the end effector assembly 26. A series of linkages translate the pivotal rotation of the trigger 32 to axial movement of a yoke coupled to an actuation mechanism, which controls the opening and closing of the jaws of the clamping mechanism of the end effector assembly 26. The distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the end effector assembly 26. In the illustrated embodiment, the distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to a clamp arm assembly 64, which is pivotable about a pivot point 70, to open and close the clamp arm assembly 64 in response to the actuation and/or release of the trigger 32. For example, in the illustrated embodiment, the clamp arm assembly 64 is movable in direction 62A from an open position to a closed position about a pivot point 70 when the trigger 32 is squeezed in direction 33A. The clamp arm assembly 64 is movable in direction 62B from a closed position to an open position about the pivot point 70 when the trigger 32 is released or outwardly contacted in direction 33B.


In one example embodiment, the end effector assembly 26 is attached at the distal end 52 of the elongated shaft assembly 14 and includes a clamp arm assembly 64 and a blade 66. The jaws of the clamping mechanism of the end effector assembly 26 are formed by clamp arm assembly 64 and the blade 66. The blade 66 is ultrasonically actuatable and is acoustically coupled to the ultrasonic transducer 16. The trigger 32 on the handle assembly 12 is ultimately connected to a drive assembly, which together, mechanically cooperate to effect movement of the clamp arm assembly 64. Squeezing the trigger 32 in direction 33A moves the clamp arm assembly 64 in direction 62A from an open position, wherein the clamp arm assembly 64 and the blade 66 are disposed in a spaced relation relative to one another, to a clamped or closed position, wherein the clamp arm assembly 64 and the blade 66 cooperate to grasp tissue therebetween. The clamp arm assembly 64 may comprise a clamp pad (not shown) to engage tissue between the blade 66 and the clamp arm 64. Releasing the trigger 32 in direction 33B moves the clamp arm assembly 64 in direction 62B from a closed relationship, to an open position, wherein the clamp arm assembly 64 and the blade 66 are disposed in a spaced relation relative to one another.


The proximal portion of the handle assembly 12 comprises a proximal opening 68 to receive the distal end of the ultrasonic assembly 16. The ultrasonic assembly 16 is inserted in the proximal opening 68 and is mechanically engaged to the elongated shaft assembly 14.


In one example embodiment, the elongated trigger hook 36 portion of the trigger 32 provides a longer trigger lever with a shorter span and rotation travel. The longer lever of the elongated trigger hook 36 allows the user to employ multiple fingers within the aperture 38 to operate the elongated trigger hook 36 and cause the trigger 32 to pivot in direction 33B to open the jaws of the end effector assembly 26. For example, the user may insert three fingers (e.g., the middle, ring, and little fingers) in the aperture 38. Multiple fingers allows the surgeon to exert higher input forces on the trigger 32 and the elongated trigger hook 36 to activate the end effector assembly 26. The shorter span and rotation travel creates a more comfortable grip when closing or squeezing the trigger 32 in direction 33A or when opening the trigger 32 in the outward opening motion in direction 33B lessening the need to extend the fingers further outward. This substantially lessens hand fatigue and strain associated with the outward opening motion of the trigger 32 in direction 33B. The outward opening motion of the trigger may be spring-assisted by spring element 98 (FIG. 5) to help alleviate fatigue. The opening spring force is sufficient to assist the ease of opening, but not strong enough to adversely impact the tactile feedback of tissue tension during spreading dissection.


For example, during a surgical procedure the index finger may be used to control the rotation of the elongated shaft assembly 14 to locate the jaws of the end effector assembly 26 in a suitable orientation. The middle and/or the other lower fingers may be used to squeeze the trigger 32 and grasp tissue within the jaws. Once the jaws are located in the desired position and the jaws are clamped against the tissue, the index finger can be used to activate the toggle switch 30 to adjust the power level of the ultrasonic transducer 16 to treat the tissue. Once the tissue has been treated, the user may release the trigger 32 by pushing outwardly in the distal direction against the elongated trigger hook 36 with the middle and/or lower fingers to open the jaws of the end effector assembly 26. This basic procedure may be performed without the user having to adjust their grip of the handle assembly 12.



FIGS. 3-4 illustrate the connection of the elongated shaft assembly 14 relative to the end effector assembly 26. As previously described, in the illustrated embodiment, the end effector assembly 26 comprises a clamp arm assembly 64 and a blade 66 to form the jaws of the clamping mechanism. The blade 66 may be an ultrasonically actuatable blade acoustically coupled to the ultrasonic transducer 16. The trigger 32 is mechanically connected to a drive assembly. Together, the trigger 32 and the drive assembly mechanically cooperate to move the clamp arm assembly 64 to an open position in direction 62A wherein the clamp arm assembly 64 and the blade 66 are disposed in spaced relation relative to one another, to a clamped or closed position in direction 62B wherein the clamp arm assembly 64 and the blade 66 cooperate to grasp tissue therebetween. The clamp arm assembly 64 may comprise a clamp pad (not shown) to engage tissue between the blade 66 and the clamp arm 64. The distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the end effector assembly 26. In the illustrated embodiment, the distal end of the tubular reciprocating tubular actuating member 58 is mechanically engaged to the clamp arm assembly 64, which is pivotable about the pivot point 70, to open and close the clamp arm assembly 64 in response to the actuation and/or release of the trigger 32. For example, in the illustrated embodiment, the clamp arm assembly 64 is movable from an open position to a closed position in direction 62B about a pivot point 70 when the trigger 32 is squeezed in direction 33A. The clamp arm assembly 64 is movable from a closed position to an open position in direction 62A about the pivot point 70 when the trigger 32 is released or outwardly contacted in direction 33B.


As previously discussed, the clamp arm assembly 64 may comprise electrodes electrically coupled to the electrosurgical/RF generator module 23 to receive therapeutic and/or sub-therapeutic energy, where the electrosurgical/RF energy may be applied to the electrodes either simultaneously or non-simultaneously with the ultrasonic energy being applied to the blade 66. Such energy activations may be applied in any suitable combinations to achieve a desired tissue effect in cooperation with an algorithm or other control logic.



FIG. 5 is an exploded view of the ultrasonic surgical instrument 10 shown in FIG. 2. In the illustrated embodiment, the exploded view shows the internal elements of the handle assembly 12, the handle assembly 12, the distal rotation assembly 13, the switch assembly 28, and the elongated shaft assembly 14. In the illustrated embodiment, the first and second portions 12a, 12b mate to form the handle assembly 12. The first and second portions 12a, 12b each comprises a plurality of interfaces 69 dimensioned to mechanically align and engage one another to form the handle assembly 12 and enclose the internal working components of the ultrasonic surgical instrument 10. The rotation knob 48 is mechanically engaged to the outer tubular sheath 56 so that it may be rotated in circular direction 54 up to 360°. The outer tubular sheath 56 is located over the reciprocating tubular actuating member 58, which is mechanically engaged to and retained within the handle assembly 12 via a plurality of coupling elements 72. The coupling elements 72 may comprise an O-ring 72a, a tube collar cap 72b, a distal washer 72c, a proximal washer 72d, and a thread tube collar 72e. The reciprocating tubular actuating member 58 is located within a reciprocating yoke 84, which is retained between the first and second portions 12a, 12b of the handle assembly 12. The yoke 84 is part of a reciprocating yoke assembly 88. A series of linkages translate the pivotal rotation of the elongated trigger hook 32 to the axial movement of the reciprocating yoke 84, which controls the opening and closing of the jaws of the clamping mechanism of the end effector assembly 26 at the distal end of the ultrasonic surgical instrument 10. In one example embodiment, a four-link design provides mechanical advantage in a relatively short rotation span, for example.


In one example embodiment, an ultrasonic transmission waveguide 78 is disposed inside the reciprocating tubular actuating member 58. The distal end 52 of the ultrasonic transmission waveguide 78 is acoustically coupled (e.g., directly or indirectly mechanically coupled) to the blade 66 and the proximal end 50 of the ultrasonic transmission waveguide 78 is received within the handle assembly 12. The proximal end 50 of the ultrasonic transmission waveguide 78 is adapted to acoustically couple to the distal end of the ultrasonic transducer 16 as discussed in more detail below. The ultrasonic transmission waveguide 78 is isolated from the other elements of the elongated shaft assembly 14 by a protective sheath 80 and a plurality of isolation elements 82, such as silicone rings. The outer tubular sheath 56, the reciprocating tubular actuating member 58, and the ultrasonic transmission waveguide 78 are mechanically engaged by a pin 74. The switch assembly 28 comprises the toggle switch 30 and electrical elements 86a,b to electrically energize the ultrasonic transducer 16 in accordance with the activation of the first or second projecting knobs 30a, 30b.


In one example embodiment, the outer tubular sheath 56 isolates the user or the patient from the ultrasonic vibrations of the ultrasonic transmission waveguide 78. The outer tubular sheath 56 generally includes a hub 76. The outer tubular sheath 56 is threaded onto the distal end of the handle assembly 12. The ultrasonic transmission waveguide 78 extends through the opening of the outer tubular sheath 56 and the isolation elements 82 isolate the ultrasonic transmission waveguide 78 from the outer tubular sheath 56. The outer tubular sheath 56 may be attached to the waveguide 78 with the pin 74. The hole to receive the pin 74 in the waveguide 78 may occur nominally at a displacement node. The waveguide 78 may screw or snap into the hand piece handle assembly 12 by a stud. Flat portions on the hub 76 may allow the assembly to be torqued to a required level. In one example embodiment, the hub 76 portion of the outer tubular sheath 56 is preferably constructed from plastic and the tubular elongated portion of the outer tubular sheath 56 is fabricated from stainless steel. Alternatively, the ultrasonic transmission waveguide 78 may comprise polymeric material surrounding it to isolate it from outside contact.


In one example embodiment, the distal end of the ultrasonic transmission waveguide 78 may be coupled to the proximal end of the blade 66 by an internal threaded connection, preferably at or near an antinode. It is contemplated that the blade 66 may be attached to the ultrasonic transmission waveguide 78 by any suitable means, such as a welded joint or the like. Although the blade 66 may be detachable from the ultrasonic transmission waveguide 78, it is also contemplated that the single element end effector (e.g., the blade 66) and the ultrasonic transmission waveguide 78 may be formed as a single unitary piece.


In one example embodiment, the trigger 32 is coupled to a linkage mechanism to translate the rotational motion of the trigger 32 in directions 33A and 33B to the linear motion of the reciprocating tubular actuating member 58 in corresponding directions 60A and 60B. The trigger 32 comprises a first set of flanges 97 with openings formed therein to receive a first yoke pin 94a. The first yoke pin 94a is also located through a set of openings formed at the distal end of the yoke 84. The trigger 32 also comprises a second set of flanges 96 to receive a first end 92a of a link 92. A trigger pin 90 is received in openings formed in the link 92 and the second set of flanges 96. The trigger pin 90 is received in the openings formed in the link 92 and the second set of flanges 96 and is adapted to couple to the first and second portions 12a, 12b of the handle assembly 12 to form a trigger pivot point for the trigger 32. A second end 92b of the link 92 is received in a slot 93 formed in a proximal end of the yoke 84 and is retained therein by a second yoke pin 94b. As the trigger 32 is pivotally rotated about the pivot point 190 formed by the trigger pin 90, the yoke translates horizontally along longitudinal axis “T” in a direction indicated by arrows 60A,B.



FIG. 8 illustrates one example embodiment of an ultrasonic surgical instrument 10. In the illustrated embodiment, a cross-sectional view of the ultrasonic transducer 16 is shown within a partial cutaway view of the handle assembly 12. One example embodiment of the ultrasonic surgical instrument 10 comprises the ultrasonic signal generator 20 coupled to the ultrasonic transducer 16, comprising a hand piece housing 99, and an ultrasonically actuatable single or multiple element end effector assembly 26. As previously discussed, the end effector assembly 26 comprises the ultrasonically actuatable blade 66 and the clamp arm 64. The ultrasonic transducer 16, which is known as a “Langevin stack”, generally includes a transduction portion 100, a first resonator portion or end-bell 102, and a second resonator portion or fore-bell 104, and ancillary components. The total construction of these components is a resonator. The ultrasonic transducer 16 is preferably an integral number of one-half system wavelengths (nλ/2; where “n” is any positive integer; e.g., n=1, 2, 3 . . . ) in length as will be described in more detail later. An acoustic assembly 106 includes the ultrasonic transducer 16, a nose cone 108, a velocity transformer 118, and a surface 110.


In one example embodiment, the distal end of the end-bell 102 is connected to the proximal end of the transduction portion 100, and the proximal end of the fore-bell 104 is connected to the distal end of the transduction portion 100. The fore-bell 104 and the end-bell 102 have a length determined by a number of variables, including the thickness of the transduction portion 100, the density and modulus of elasticity of the material used to manufacture the end-bell 102 and the fore-bell 22, and the resonant frequency of the ultrasonic transducer 16. The fore-bell 104 may be tapered inwardly from its proximal end to its distal end to amplify the ultrasonic vibration amplitude as the velocity transformer 118, or alternately may have no amplification. A suitable vibrational frequency range may be about 20 Hz to 32 kHz and a well-suited vibrational frequency range may be about 30-10 kHz. A suitable operational vibrational frequency may be approximately 55.5 kHz, for example.


In one example embodiment, the piezoelectric elements 112 may be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, barium titanate, or other piezoelectric ceramic material. Each of positive electrodes 114, negative electrodes 116, and the piezoelectric elements 112 has a bore extending through the center. The positive and negative electrodes 114 and 116 are electrically coupled to wires 120 and 122, respectively. The wires 120 and 122 are encased within the cable 22 and electrically connectable to the ultrasonic signal generator 20.


The ultrasonic transducer 16 of the acoustic assembly 106 converts the electrical signal from the ultrasonic signal generator 20 into mechanical energy that results in primarily a standing acoustic wave of longitudinal vibratory motion of the ultrasonic transducer 16 and the blade 66 portion of the end effector assembly 26 at ultrasonic frequencies. In another embodiment, the vibratory motion of the ultrasonic transducer may act in a different direction. For example, the vibratory motion may comprise a local longitudinal component of a more complicated motion of the tip of the elongated shaft assembly 14. A suitable generator is available as model number GEN11, from Ethicon Endo-Surgery, Inc., Cincinnati, Ohio. When the acoustic assembly 106 is energized, a vibratory motion standing wave is generated through the acoustic assembly 106. The ultrasonic surgical instrument 10 is designed to operate at a resonance such that an acoustic standing wave pattern of predetermined amplitude is produced. The amplitude of the vibratory motion at any point along the acoustic assembly 106 depends upon the location along the acoustic assembly 106 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is minimal), and a local absolute value maximum or peak in the standing wave is generally referred to as an anti-node (e.g., where local motion is maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).


The wires 120 and 122 transmit an electrical signal from the ultrasonic signal generator 20 to the positive electrodes 114 and the negative electrodes 116. The piezoelectric elements 112 are energized by the electrical signal supplied from the ultrasonic signal generator 20 in response to an actuator 224, such as a foot switch, for example, to produce an acoustic standing wave in the acoustic assembly 106. The electrical signal causes disturbances in the piezoelectric elements 112 in the form of repeated small displacements resulting in large alternating compression and tension forces within the material. The repeated small displacements cause the piezoelectric elements 112 to expand and contract in a continuous manner along the axis of the voltage gradient, producing longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly 106 to the blade 66 portion of the end effector assembly 26 via a transmission component or an ultrasonic transmission waveguide portion 78 of the elongated shaft assembly 14.


In one example embodiment, in order for the acoustic assembly 106 to deliver energy to the blade 66 portion of the end effector assembly 26, all components of the acoustic assembly 106 must be acoustically coupled to the blade 66. The distal end of the ultrasonic transducer 16 may be acoustically coupled at the surface 110 to the proximal end of the ultrasonic transmission waveguide 78 by a threaded connection such as a stud 124.


In one example embodiment, the components of the acoustic assembly 106 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 106. It is also contemplated that the acoustic assembly 106 may incorporate any suitable arrangement of acoustic elements.


In one example embodiment, the blade 66 may have a length substantially equal to an integral multiple of one-half system wavelengths (nλ/2). A distal end of the blade 66 may be disposed near an antinode in order to provide the maximum longitudinal excursion of the distal end. When the transducer assembly is energized, the distal end of the blade 66 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 64 microns at a predetermined vibrational frequency of 55 kHz, for example.


In one example embodiment, the blade 66 may be coupled to the ultrasonic transmission waveguide 78. The blade 66 and the ultrasonic transmission waveguide 78 as illustrated are formed as a single unit construction from a material suitable for transmission of ultrasonic energy. Examples of such materials include Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other suitable materials. Alternately, the blade 66 may be separable (and of differing composition) from the ultrasonic transmission waveguide 78, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The length of the ultrasonic transmission waveguide 78 may be substantially equal to an integral number of one-half wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 78 may be preferably fabricated from a solid core shaft constructed out of material suitable to propagate ultrasonic energy efficiently, such as the titanium alloy discussed above (i.e., Ti6Al4V) or any suitable aluminum alloy, or other alloys, for example.


In one example embodiment, the ultrasonic transmission waveguide 78 comprises a longitudinally projecting attachment post at a proximal end to couple to the surface 110 of the ultrasonic transmission waveguide 78 by a threaded connection such as the stud 124. The ultrasonic transmission waveguide 78 may include a plurality of stabilizing silicone rings or compliant supports 82 (FIG. 5) positioned at a plurality of nodes. The silicone rings 82 dampen undesirable vibration and isolate the ultrasonic energy from an outer protective sheath 80 (FIG. 5) assuring the flow of ultrasonic energy in a longitudinal direction to the distal end of the blade 66 with maximum efficiency.



FIG. 9 illustrates one example embodiment of the proximal rotation assembly 128. In the illustrated embodiment, the proximal rotation assembly 128 comprises the proximal rotation knob 134 inserted over the cylindrical hub 135. The proximal rotation knob 134 comprises a plurality of radial projections 138 that are received in corresponding slots 130 formed on a proximal end of the cylindrical hub 135. The proximal rotation knob 134 defines an opening 142 to receive the distal end of the ultrasonic transducer 16. The radial projections 138 are formed of a soft polymeric material and define a diameter that is undersized relative to the outside diameter of the ultrasonic transducer 16 to create a friction interference fit when the distal end of the ultrasonic transducer 16. The polymeric radial projections 138 protrude radially into the opening 142 to form “gripper” ribs that firmly grip the exterior housing of the ultrasonic transducer 16. Therefore, the proximal rotation knob 134 securely grips the ultrasonic transducer 16.


The distal end of the cylindrical hub 135 comprises a circumferential lip 132 and a circumferential bearing surface 140. The circumferential lip engages a groove formed in the housing 12 and the circumferential bearing surface 140 engages the housing 12. Thus, the cylindrical hub 135 is mechanically retained within the two housing portions (not shown) of the housing 12. The circumferential lip 132 of the cylindrical hub 135 is located or “trapped” between the first and second housing portions 12a, 12b and is free to rotate in place within the groove. The circumferential bearing surface 140 bears against interior portions of the housing to assist proper rotation. Thus, the cylindrical hub 135 is free to rotate in place within the housing. The user engages the flutes 136 formed on the proximal rotation knob 134 with either the finger or the thumb to rotate the cylindrical hub 135 within the housing 12.


In one example embodiment, the cylindrical hub 135 may be formed of a durable plastic such as polycarbonate. In one example embodiment, the cylindrical hub 135 may be formed of a siliconized polycarbonate material. In one example embodiment, the proximal rotation knob 134 may be formed of pliable, resilient, flexible polymeric materials including Versaflex® TPE alloys made by GLS Corporation, for example. The proximal rotation knob 134 may be formed of elastomeric materials, thermoplastic rubber known as Santoprene®, other thermoplastic vulcanizates (TPVs), or elastomers, for example. The embodiments, however, are not limited in this context.



FIG. 10 illustrates one example embodiment of a surgical system 200 including a surgical instrument 210 having single element end effector 278. The system 200 may include a transducer assembly 216 coupled to the end effector 278 and a sheath 256 positioned around the proximal portions of the end effector 278 as shown. The transducer assembly 216 and end effector 278 may operate in a manner similar to that of the transducer assembly 16 and end effector 18 described above to produce ultrasonic energy that may be transmitted to tissue via blade 226.



FIGS. 11-18C illustrate various embodiments of surgical instruments that utilize therapeutic and/or sub-therapeutic electrical energy to treat and/or destroy tissue or provide feedback to the generators (e.g., electrosurgical instruments). The embodiments of FIGS. 11-18C are adapted for use in a manual or hand-operated manner, although electrosurgical instruments may be utilized in robotic applications as well. FIG. 11 is a perspective view of one example embodiment of a surgical instrument system 300 comprising an electrical energy surgical instrument 310. The electrosurgical instrument 310 may comprise a proximal handle 312, a distal working end or end effector 326 and an introducer or elongated shaft 314 disposed in-between.


The electrosurgical system 300 can be configured to supply energy, such as electrical energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously as described, for example, in connection with FIG. 1, for example. In one example embodiment, the electrosurgical system 300 includes a generator 320 in electrical communication with the electrosurgical instrument 310. The generator 320 is connected to electrosurgical instrument 310 via a suitable transmission medium such as a cable 322. In one example embodiment, the generator 320 is coupled to a controller, such as a control unit 325, for example. In various embodiments, the control unit 325 may be formed integrally with the generator 320 or may be provided as a separate circuit module or device electrically coupled to the generator 320 (shown in phantom as 325′ to illustrate this option). Although in the presently disclosed embodiment, the generator 320 is shown separate from the electrosurgical instrument 310, in one example embodiment, the generator 320 (and/or the control unit 325) may be formed integrally with the electrosurgical instrument 310 to form a unitary electrosurgical system 300, where a battery located within the electrosurgical instrument 310 is the energy source and a circuit coupled to the battery produces the suitable electrical energy, ultrasonic energy, or heat energy. One such example is described herein below in connection with FIGS. 17-18C.


The generator 320 may comprise an input device 335 located on a front panel of the generator 320 console. The input device 335 may comprise any suitable device that generates signals suitable for programming the operation of the generator 320, such as a keyboard, or input port, for example. In one example embodiment, various electrodes in the first jaw 364A and the second jaw 364B may be coupled to the generator 320. The cable 322 may comprise multiple electrical conductors for the application of electrical energy to positive (+) and negative (−) electrodes of the electrosurgical instrument 310. The control unit 325 may be used to activate the generator 320, which may serve as an electrical source. In various embodiments, the generator 320 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example, which may be activated independently or simultaneously.


In various embodiments, the electrosurgical system 300 may comprise at least one supply conductor 331 and at least one return conductor 333, wherein current can be supplied to electrosurgical instrument 300 via the supply conductor 331 and wherein the current can flow back to the generator 320 via the return conductor 333. In various embodiments, the supply conductor 331 and the return conductor 333 may comprise insulated wires and/or any other suitable type of conductor. In certain embodiments, as described below, the supply conductor 331 and the return conductor 333 may be contained within and/or may comprise the cable 322 extending between, or at least partially between, the generator 320 and the end effector 326 of the electrosurgical instrument 310. In any event, the generator 320 can be configured to apply a sufficient voltage differential between the supply conductor 331 and the return conductor 333 such that sufficient current can be supplied to the end effector 110.



FIG. 12 is a side view of one example embodiment of the handle 312 of the surgical instrument 310. In FIG. 12, the handle 312 is shown with half of a first handle body 312A (see FIG. 11) removed to illustrate various components within second handle body 312B. The handle 312 may comprise a lever arm 321 (e.g., a trigger) which may be pulled along a path 33. The lever arm 321 may be coupled to an axially moveable member 378 (FIGS. 13-16) disposed within elongated shaft 314 by a shuttle 384 operably engaged to an extension 398 of lever arm 321. The shuttle 384 may further be connected to a biasing device, such as a spring 388, which may also be connected to the second handle body 312B, to bias the shuttle 384 and thus the axially moveable member 378 in a proximal direction, thereby urging the jaws 364A and 364B to an open position as seen in FIG. 11. Also, referring to FIGS. 11-12, a locking member 190 (see FIG. 12) may be moved by a locking switch 328 (see FIG. 11) between a locked position, where the shuttle 384 is substantially prevented from moving distally as illustrated, and an unlocked position, where the shuttle 384 may be allowed to freely move in the distal direction, toward the elongated shaft 314. In some embodiments, the locking switch 328 may be implemented as a button. The handle 312 can be any type of pistol-grip or other type of handle known in the art that is configured to carry actuator levers, triggers or sliders for actuating the first jaw 364A and the second jaw 364B. The elongated shaft 314 may have a cylindrical or rectangular cross-section, for example, and can comprise a thin-wall tubular sleeve that extends from handle 312. The elongated shaft 314 may include a bore extending therethrough for carrying actuator mechanisms, for example, the axially moveable member 378, for actuating the jaws and for carrying electrical leads for delivery of electrical energy to electrosurgical components of the end effector 326.


The end effector 326 may be adapted for capturing and transecting tissue and for the contemporaneously welding the captured tissue with controlled application of energy (e.g., RF energy). The first jaw 364A and the second jaw 364B may close to thereby capture or engage tissue about a longitudinal axis “T” defined by the axially moveable member 378. The first jaw 364A and second jaw 364B may also apply compression to the tissue. In some embodiments, the elongated shaft 314, along with first jaw 364A and second jaw 364B, can be rotated a full 360° degrees, as shown by arrow 196 (see FIG. 11), relative to handle 312. For example, a rotation knob 348 may be rotatable about the longitudinal axis of the shaft 314 and may be coupled to the shaft 314 such that rotation of the knob 348 causes corresponding rotation of the shaft 314. The first jaw 364A and the second jaw 364B can remain openable and/or closeable while rotated.



FIG. 13 shows a perspective view of one example embodiment of the end effector 326 with the jaws 364A, 364B open, while FIG. 14 shows a perspective view of one example embodiment of the end effector 326 with the jaws 364A, 364B closed. As noted above, the end effector 326 may comprise the upper first jaw 364A and the lower second jaw 364B, which may be straight or curved. The first jaw 364A and the second jaw 364B may each comprise an elongated slot or channel 362A and 362B, respectively, disposed outwardly along their respective middle portions. Further, the first jaw 364A and second jaw 364B may each have tissue-gripping elements, such as teeth 363, disposed on the inner portions of first jaw 364A and second jaw 364B. The first jaw 364A may comprise an upper first outward-facing surface 369A and an upper first energy delivery surface 365A. The second jaw 364B may comprise a lower second outward-facing surface 369B and a lower second energy delivery surface 365B. The first energy delivery surface 365A and the second energy delivery surface 365B may both extend in a “U” shape about the distal end of the end effector 326.


The lever arm 321 of the handle 312 (FIG. 12) may be adapted to actuate the axially moveable member 378, which may also function as a jaw-closing mechanism. For example, the axially moveable member 378 may be urged distally as the lever arm 321 is pulled proximally along the path 33 via the shuttle 384, as shown in FIG. 12 and discussed above. FIG. 15 is a perspective view of one example embodiment of the axially moveable member 378 of the surgical instrument 310. The axially moveable member 378 may comprise one or several pieces, but in any event, may be movable or translatable with respect to the elongated shaft 314 and/or the jaws 364A, 364B. Also, in at least one example embodiment, the axially moveable member 378 may be made of 17-4 precipitation hardened stainless steel. The distal end of axially moveable member 378 may comprise a flanged “I”-beam configured to slide within the channels 362A and 362B in jaws 364A and 364B. The axially moveable member 378 may slide within the channels 362A, 362B to open and close the first jaw 364A and the second jaw 364B. The distal end of the axially moveable member 378 may also comprise an upper flange or “c”-shaped portion 378A and a lower flange or “c”-shaped portion 378B. The flanges 378A and 378B respectively define inner cam surfaces 367A and 367B for engaging outward facing surfaces of the first jaw 364A and the second jaw 364B. The opening-closing of jaws 364A and 364B can apply very high compressive forces on tissue using cam mechanisms which may include movable “I-beam” axially moveable member 378 and the outward facing surfaces 369A, 369B of jaws 364A, 364B.


More specifically, referring now to FIGS. 13-15, collectively, the inner cam surfaces 367A and 367B of the distal end of axially moveable member 378 may be adapted to slidably engage the first outward-facing surface 369A and the second outward-facing surface 369B of the first jaw 364A and the second jaw 364B, respectively. The channel 362A within first jaw 364A and the channel 362B within the second jaw 364B may be sized and configured to accommodate the movement of the axially moveable member 378, which may comprise a tissue-cutting element 371, for example, comprising a sharp distal edge. FIG. 14, for example, shows the distal end of the axially moveable member 378 advanced at least partially through channels 362A and 362B (FIG. 13). The advancement of the axially moveable member 378 may close the end effector 326 from the open configuration shown in FIG. 13. In the closed position shown by FIG. 14, the upper first jaw 364A and lower second jaw 364B define a gap or dimension D between the first energy delivery surface 365A and second energy delivery surface 365B of first jaw 364A and second jaw 364B, respectively. In various embodiments, dimension D can equal from about 0.0005″ to about 0.040″, for example, and in some embodiments, between about 0.001″ to about 0.010″, for example. Also, the edges of the first energy delivery surface 365A and the second energy delivery surface 365B may be rounded to prevent the dissection of tissue.



FIG. 16 is a section view of one example embodiment of the end effector 326 of the surgical instrument 310. The engagement, or tissue-contacting, surface 365B of the lower jaw 364B is adapted to deliver energy to tissue, at least in part, through a conductive-resistive matrix, such as a variable resistive positive temperature coefficient (PTC) body, as discussed in more detail below. At least one of the upper and lower jaws 364A, 364B may carry at least one electrode 373 configured to deliver the energy from the generator 320 to the captured tissue. The engagement, or tissue-contacting, surface 365A of upper jaw 364A may carry a similar conductive-resistive matrix (i.e., a PTC material), or in some embodiments the surface may be a conductive electrode or an insulative layer, for example. Alternatively, the engagement surfaces of the jaws can carry any of the energy delivery components disclosed in U.S. Pat. No. 6,773,409, filed Oct. 22, 2001, entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, the entire disclosure of which is incorporated herein by reference.


The first energy delivery surface 365A and the second energy delivery surface 365B may each be in electrical communication with the generator 320. The first energy delivery surface 365A and the second energy delivery surface 365B may be configured to contact tissue and deliver electrosurgical energy to captured tissue which are adapted to seal or weld the tissue. The control unit 325 regulates the electrical energy delivered by electrical generator 320 which in turn delivers electrosurgical energy to the first energy delivery surface 365A and the second energy delivery surface 365B. The energy delivery may be initiated by an activation button 328 (FIG. 12) operably engaged with the lever arm 321 and in electrical communication with the generator 320 via cable 322. In one example embodiment, the electrosurgical instrument 310 may be energized by the generator 320 by way of a foot switch 329 (FIG. 11). When actuated, the foot switch 329 triggers the generator 320 to deliver electrical energy to the end effector 326, for example. The control unit 325 may regulate the power generated by the generator 320 during activation. Although the foot switch 329 may be suitable in many circumstances, other suitable types of switches can be used.


As mentioned above, the electrosurgical energy delivered by electrical generator 320 and regulated, or otherwise controlled, by the control unit 325 may comprise radio frequency (RF) energy, or other suitable forms of electrical energy. Further, the opposing first and second energy delivery surfaces 365A and 365B may carry variable resistive positive temperature coefficient (PTC) bodies that are in electrical communication with the generator 320 and the control unit 325. Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications: U.S. Pat. Nos. 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,913,579; 6,905,497; 6,802,843; 6,770,072; 6,656,177; 6,533,784; and 6,500,312; and U.S. Pat. App. Pub. Nos. 2010/0036370 and 2009/0076506, all of which are incorporated herein in their entirety by reference and made a part of this specification.


In one example embodiment, the generator 320 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. In one example embodiment, the ESU can be a bipolar ERBE ICC 350 sold by ERBE USA, Inc. of Marietta, Ga. In some embodiments, such as for bipolar electrosurgery applications, a surgical instrument having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, adjacent to and/or in electrical communication with, the tissue to be treated such that current can flow from the active electrode, through the positive temperature coefficient (PTC) bodies and to the return electrode through the tissue. Thus, in various embodiments, the electrosurgical system 300 may comprise a supply path and a return path, wherein the captured tissue being treated completes, or closes, the circuit. In one example embodiment, the generator 320 may be a monopolar RF ESU and the electrosurgical instrument 310 may comprise a monopolar end effector 326 in which one or more active electrodes are integrated. For such a system, the generator 320 may require a return pad in intimate contact with the patient at a location remote from the operative site and/or other suitable return path. The return pad may be connected via a cable to the generator 320. In other embodiments, the operator 20 may provide sub-therapeutic RF energy levels for purposes of evaluating tissue conditions and providing feedback in the electrosurgical system 300. Such feedback may be employed to control the therapeutic RF energy output of the electrosurgical instrument 310.


During operation of electrosurgical instrument 300, the user generally grasps tissue, supplies energy to the captured tissue to form a weld or a seal (e.g., by actuating button 328 and/or pedal 216), and then drives a tissue-cutting element 371 at the distal end of the axially moveable member 378 through the captured tissue. According to various embodiments, the translation of the axial movement of the axially moveable member 378 may be paced, or otherwise controlled, to aid in driving the axially moveable member 378 at a suitable rate of travel. By controlling the rate of the travel, the likelihood that the captured tissue has been properly and functionally sealed prior to transection with the cutting element 371 is increased.



FIG. 17 is a perspective view of one example embodiment of a surgical instrument system comprising a cordless electrical energy surgical instrument 410. The electrosurgical system is similar to the electrosurgical system 300. The electrosurgical system can be configured to supply energy, such as electrical energy, ultrasonic energy, heat energy, or any combination thereof, to the tissue of a patient either independently or simultaneously as described in connection with FIGS. 1 and 11, for example. The electrosurgical instrument may utilize the end effector 326 and elongated shaft 314 described herein in conjunction with a cordless proximal handle 412. In one example embodiment, the handle 412 includes a generator circuit 420 (see FIG. 18). The generator circuit 420 performs a function substantially similar to that of generator 320. In one example embodiment, the generator circuit 420 is coupled to a controller, such as a control circuit. In the illustrated embodiment, the control circuit is integrated into the generator circuit 420. In other embodiments, the control circuit may be separate from the generator circuit 420.


In one example embodiment, various electrodes in the end effector 326 (including jaws 364A, 364B thereof) may be coupled to the generator circuit 420. The control circuit may be used to activate the generator 420, which may serve as an electrical source. In various embodiments, the generator 420 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example. In one example embodiment, a button 328 may be provided to activate the generator circuit 420 to provide energy to the end effectors 326, 326.



FIG. 18A is a side view of one example embodiment of the handle 412 of the cordless surgical instrument 410. In FIG. 18, the handle 412 is shown with half of a first handle body removed to illustrate various components within second handle body 434. The handle 412 may comprise a lever arm 424 (e.g., a trigger) which may be pulled along a path 33 around a pivot point. The lever arm 424 may be coupled to an axially moveable member 478 disposed within elongated shaft 314 by a shuttle operably engaged to an extension of lever arm 424. In one example embodiment, the lever arm 424 defines a shepherd's hook shape comprising a distal member 424a and a proximal member 424b.


In one example embodiment, the cordless electrosurgical instrument comprises a battery 437. The battery 437 provides electrical energy to the generator circuit 420. The battery 437 may be any battery suitable for driving the generator circuit 420 at the desired energy levels. In one example embodiment, the battery 437 is a 100 mAh, triple-cell Lithium Ion Polymer battery. The battery may be fully charged prior to use in a surgical procedure, and may hold a voltage of about 12.6V. The battery 437 may have two fuses fitted to the cordless electrosurgical instrument 410, arranged in line with each battery terminal. In one example embodiment, a charging port 439 is provided to connect the battery 437 to a DC current source (not shown).


The generator circuit 420 may be configured in any suitable manner. In some embodiments, the generator circuit comprises an RF drive and control circuit 440. FIG. 18B illustrates an RF drive and control circuit 440, according to one embodiment. FIG. 18B is a part schematic part block diagram illustrating the RF drive and control circuitry 440 used in this embodiment to generate and control the RF electrical energy supplied to the end effector 326. As will be explained in more detail below, in this embodiment, the drive circuitry 440 is a resonant mode RF amplifier comprising a parallel resonant network on the RF amplifier output and the control circuitry operates to control the operating frequency of the drive signal so that it is maintained at the resonant frequency of the drive circuit, which in turn controls the amount of power supplied to the end effector 326. The way that this is achieved will become apparent from the following description.


As shown in FIG. 18B, the RF drive and control circuit 440 comprises the above described battery 437 are arranged to supply, in this example, about 0V and about 12V rails. An input capacitor (Cin) 442 is connected between the 0V and the 12V for providing a low source impedance. A pair of FET switches 443-1 and 443-2 (both of which are N-channel in this embodiment to reduce power losses) is connected in series between the 0V rail and the 12V rail. FET gate drive circuitry 445 is provided that generates two drive signals—one for driving each of the two FETs 443. The FET gate drive circuitry 445 generates drive signals that causes the upper FET (443-1) to be on when the lower FET (443-2) is off and vice versa. This causes the node 447 to be alternately connected to the 12V rail (when the FET 443-1 is switched on) and the 0V rail (when the FET 443-2 is switched on). FIG. 18B also shows the internal parasitic diodes 448-1 and 448-2 of the corresponding FETs 443, which conduct during any periods that the FETs 443 are open.


As shown in FIG. 18B, the node 447 is connected to an inductor-inductor resonant circuit 450 formed by inductor Ls 452 and inductor Lm 454. The FET gate driving circuitry 445 is arranged to generate drive signals at a drive frequency (fd) that opens and crosses the FET switches 443 at the resonant frequency of the parallel resonant circuit 450. As a result of the resonant characteristic of the resonant circuit 450, the square wave voltage at node 447 will cause a substantially sinusoidal current at the drive frequency (fd) to flow within the resonant circuit 450. As illustrated in FIG. 18B, the inductor Lm 454 is the primary of a transformer 455, the secondary of which is formed by inductor Lsec 456. The inductor Lsec 456 of the transformer 455 secondary is connected to an inductor-capacitor-capacitor parallel resonant circuit 457 formed by inductor L2 458, capacitor C4 460, and capacitor C2 462. The transformer 455 up-converts the drive voltage (Vd) across the inductor Lm 454 to the voltage that is applied to the output parallel resonant circuit 457. The load voltage (VL) is output by the parallel resonant circuit 457 and is applied to the load (represented by the load resistance Rload 459 in FIG. 18B) corresponding to the impedance of the forceps' jaws and any tissue or vessel gripped by the end effector 326. As shown in FIG. 18B, a pair of DC blocking capacitors CbI 480-1 and 480-2 is provided to prevent any DC signal being applied to the load 459.


In one embodiment, the transformer 455 may be implemented with a Core Diameter (mm), Wire Diameter (mm), and Gap between secondary windings in accordance with the following specifications:


Core Diameter, D (mm)


D=19.9×10-3


Wire diameter, W (mm) for 22 AWG wire


W=7.366×10-4


Gap between secondary windings, in gap=0.125


G=gap/25.4


In this embodiment, the amount of electrical power supplied to the end effector 326 is controlled by varying the frequency of the switching signals used to switch the FETs 443. This works because the resonant circuit 450 acts as a frequency dependent (loss less) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 450, the less the drive signal is attenuated. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 450, the more the drive signal is attenuated and so the power supplied to the load reduces. In this embodiment, the frequency of the switching signals generated by the FET gate drive circuitry 445 is controlled by a controller 481 based on a desired power to be delivered to the load 459 and measurements of the load voltage (VL) and of the load current (IL) obtained by conventional voltage sensing circuitry 483 and current sensing circuitry 485. The way that the controller 481 operates will be described in more detail below.


In one embodiment, the voltage sensing circuitry 483 and the current sensing circuitry 485 may be implemented with high bandwidth, high speed rail-to-rail amplifiers (e.g., LMH6643 by National Semiconductor). Such amplifiers, however, consume a relatively high current when they are operational. Accordingly, a power save circuit may be provided to reduce the supply voltage of the amplifiers when they are not being used in the voltage sensing circuitry 483 and the current sensing circuitry 485. In one-embodiment, a step-down regulator (e.g., LT3502 by Linear Technologies) may be employed by the power save circuit to reduce the supply voltage of the rail-to-rail amplifiers and thus extend the life of the battery 437.



FIG. 18C illustrates the main components of the controller 481, according to one embodiment. In the embodiment illustrated in FIG. 18C, the controller 481 is a microprocessor based controller and so most of the components illustrated in FIG. 16 are software based components. Nevertheless, a hardware based controller 481 may be used instead. As shown, the controller 481 includes synchronous I,Q sampling circuitry 491 that receives the sensed voltage and current signals from the sensing circuitry 483 and 485 and obtains corresponding samples which are passed to a power, Vrms and Irms calculation module 493. The calculation module 493 uses the received samples to calculate the RMS voltage and RMS current applied to the load 459 (FIG. 18B; end effector 326 and tissue/vessel gripped thereby) and from them the power that is presently being supplied to the load 459. The determined values are then passed to a frequency control module 495 and a medical device control module 497. The medical device control module 497 uses the values to determine the present impedance of the load 459 and based on this determined impedance and a pre-defined algorithm, determines what set point power (Pset) should be applied to the frequency control module 495. The medical device control module 497 is in turn controlled by signals received from a user input module 499 that receives inputs from the user (for example pressing buttons or activating the control levers 114, 110 on the handle 104) and also controls output devices (lights, a display, speaker or the like) on the handle 104 via a user output module 461.


The frequency control module 495 uses the values obtained from the calculation module 493 and the power set point (Pset) obtained from the medical device control module 497 and predefined system limits (to be explained below), to determine whether or not to increase or decrease the applied frequency. The result of this decision is then passed to a square wave generation module 463 which, in this embodiment, increments or decrements the frequency of a square wave signal that it generates by 1 kHz, depending on the received decision. As those skilled in the art will appreciate, in an alternative embodiment, the frequency control module 495 may determine not only whether to increase or decrease the frequency, but also the amount of frequency change required. In this case, the square wave generation module 463 would generate the corresponding square wave signal with the desired frequency shift. In this embodiment, the square wave signal generated by the square wave generation module 463 is output to the FET gate drive circuitry 445, which amplifies the signal and then applies it to the FET 443-1. The FET gate drive circuitry 445 also inverts the signal applied to the FET 443-1 and applies the inverted signal to the FET 443-2.


The electrosurgical instrument 410 may comprise additional features as discussed with respect to electrosurgical system 300. Those skilled in the art will recognize that electrosurgical instrument 410 may include a rotation knob 348, an elongated shaft 314, and an end effector 326. These elements function in a substantially similar manner to that discussed above with respect to the electrosurgical system 300. In one example embodiment, the cordless electrosurgical instrument 410 may include visual indicators 435. The visual indicators 435 may provide a visual indication signal to an operator. In one example embodiment, the visual indication signal may alert an operator that the device is on, or that the device is applying energy to the end effector. Those skilled in the art will recognize that the visual indicators 435 may be configured to provide information on multiple states of the device.


Over the years a variety of minimally invasive robotic (or “telesurgical”) systems have been developed to increase surgical dexterity as well as to permit a surgeon to operate on a patient in an intuitive manner. Robotic surgical systems can be used with many different types of surgical instruments including, for example, ultrasonic or electrosurgical instruments, as described herein. Example robotic systems include those manufactured by Intuitive Surgical, Inc., of Sunnyvale, Calif., U.S.A. Such systems, as well as robotic systems from other manufacturers, are disclosed in the following U.S. Patents which are each herein incorporated by reference in their respective entirety: U.S. Pat. No. 5,792,135, entitled “Articulated Surgical Instrument For Performing Minimally Invasive Surgery With Enhanced Dexterity and Sensitivity”, U.S. Pat. No. 6,231,565, entitled “Robotic Arm DLUs For Performing Surgical Tasks”, U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool With Ultrasound Cauterizing and Cutting Instrument”, U.S. Pat. No. 6,364,888, entitled “Alignment of Master and Slave In a Minimally Invasive Surgical Apparatus”, U.S. Pat. No. 7,524,320, entitled “Mechanical Actuator Interface System For Robotic Surgical Tools”, U.S. Pat. No. 7,691,098, entitled Platform Link Wrist Mechanism”, U.S. Pat. No. 7,806,891, entitled “Repositioning and Reorientation of Master/Slave Relationship in Minimally Invasive Telesurgery”, and U.S. Pat. No. 7,824,401, entitled “Surgical Tool With Writed Monopolar Electrosurgical End Effectors”. Many of such systems, however, have in the past been unable to generate the magnitude of forces required to effectively cut and fasten tissue.



FIGS. 19-46A illustrate example embodiments of robotic surgical systems. In some embodiments, the disclosed robotic surgical systems may utilize the ultrasonic or electrosurgical instruments described herein. Those skilled in the art will appreciate that the illustrated robotic surgical systems are not limited to only those instruments described herein, and may utilize any compatible surgical instruments. Those skilled in the art will further appreciate that while various embodiments described herein may be used with the described robotic surgical systems, the disclosure is not so limited, and may be used with any compatible robotic surgical system.



FIGS. 19-25 illustrate the structure and operation of several example robotic surgical systems and components thereof. FIG. 19 shows a block diagram of an example robotic surgical system 500. The system 500 comprises at least one controller 508 and at least one arm cart 510. The arm cart 510 may be mechanically coupled to one or more robotic manipulators or arms, indicated by box 512. Each of the robotic arms 512 may comprise one or more surgical instruments 514 for performing various surgical tasks on a patient 504. Operation of the arm cart 510, including the arms 512 and instruments 514 may be directed by a clinician 502 from a controller 508. In some embodiments, a second controller 508′, operated by a second clinician 502′ may also direct operation of the arm cart 510 in conjunction with the first clinician 502′. For example, each of the clinicians 502, 502′ may control different arms 512 of the cart or, in some cases, complete control of the arm cart 510 may be passed between the clinicians 502, 502′. In some embodiments, additional arm carts (not shown) may be utilized on the patient 504. These additional arm carts may be controlled by one or more of the controllers 508, 508′. The arm cart(s) 510 and controllers 508, 508′ may be in communication with one another via a communications link 516, which may be any suitable type of wired or wireless communications link carrying any suitable type of signal (e.g., electrical, optical, infrared, etc.) according to any suitable communications protocol. Example implementations of robotic surgical systems, such as the system 500, are disclosed in U.S. Pat. No. 7,524,320 which has been herein incorporated by reference. Thus, various details of such devices will not be described in detail herein beyond that which may be necessary to understand various embodiments of the claimed device.



FIG. 20 shows one example embodiment of a robotic arm cart 520. The robotic arm cart 520 is configured to actuate a plurality of surgical instruments or instruments, generally designated as 522 within a work envelope 527. Various robotic surgery systems and methods employing master controller and robotic arm cart arrangements are disclosed in U.S. Pat. No. 6,132,368, entitled “Multi-Component Telepresence System and Method”, the full disclosure of which is incorporated herein by reference. In various forms, the robotic arm cart 520 includes a base 524 from which, in the illustrated embodiment, three surgical instruments 522 are supported. In various forms, the surgical instruments 522 are each supported by a series of manually articulatable linkages, generally referred to as set-up joints 526, and a robotic manipulator 528. These structures are herein illustrated with protective covers extending over much of the robotic linkage. These protective covers may be optional, and may be limited in size or entirely eliminated in some embodiments to minimize the inertia that is encountered by the servo mechanisms used to manipulate such devices, to limit the volume of moving components so as to avoid collisions, and to limit the overall weight of the cart 520. Cart 520 will generally have dimensions suitable for transporting the cart 520 between operating rooms. The cart 520 may be configured to typically fit through standard operating room doors and onto standard hospital elevators. In various forms, the cart 520 would preferably have a weight and include a wheel (or other transportation) system that allows the cart 520 to be positioned adjacent an operating table by a single attendant.



FIG. 21 shows one example embodiment of the robotic manipulator 528 of the robotic arm cart 520. In the example shown in FIG. 21, the robotic manipulators 528 may include a linkage 530 that constrains movement of the surgical instrument 522. In various embodiments, linkage 530 includes rigid links coupled together by rotational joints in a parallelogram arrangement so that the surgical instrument 522 rotates around a point in space 532, as more fully described in issued U.S. Pat. No. 5,817,084, the full disclosure of which is herein incorporated by reference. The parallelogram arrangement constrains rotation to pivoting about an axis 534a, sometimes called the pitch axis. The links supporting the parallelogram linkage are pivotally mounted to set-up joints 526 (FIG. 20) so that the surgical instrument 522 further rotates about an axis 534b, sometimes called the yaw axis. The pitch and yaw axes 534a, 534b intersect at the remote center 536, which is aligned along a shaft 538 of the surgical instrument 522. The surgical instrument 522 may have further degrees of driven freedom as supported by manipulator 540, including sliding motion of the surgical instrument 522 along the longitudinal instrument axis “LT-LT”. As the surgical instrument 522 slides along the instrument axis LT-LT relative to manipulator 540 (arrow 534c), remote center 536 remains fixed relative to base 542 of manipulator 540. Hence, the entire manipulator 540 is generally moved to re-position remote center 536. Linkage 530 of manipulator 540 is driven by a series of motors 544. These motors 544 actively move linkage 530 in response to commands from a processor of a control system. As will be discussed in further detail below, motors 544 are also employed to manipulate the surgical instrument 522.



FIG. 22 shows one example embodiment of a robotic arm cart 520′ having an alternative set-up joint structure. In this example embodiment, a surgical instrument 522 is supported by an alternative manipulator structure 528′ between two tissue manipulation instruments. Those of ordinary skill in the art will appreciate that various embodiments of the claimed device may incorporate a wide variety of alternative robotic structures, including those described in U.S. Pat. No. 5,878,193, the full disclosure of which is incorporated herein by reference. Additionally, while the data communication between a robotic component and the processor of the robotic surgical system is primarily described herein with reference to communication between the surgical instrument 522 and the controller, it should be understood that similar communication may take place between circuitry of a manipulator, a set-up joint, an endoscope or other image capture device, or the like, and the processor of the robotic surgical system for component compatibility verification, component-type identification, component calibration (such as off-set or the like) communication, confirmation of coupling of the component to the robotic surgical system, or the like.



FIG. 23 shows one example embodiment of a controller 518 that may be used in conjunction with a robotic arm cart, such as the robotic arm carts 520, 520′ depicted in FIGS. 20-22. The controller 518 generally includes master controllers (generally represented as 519 in FIG. 23) which are grasped by the clinician and manipulated in space while the clinician views the procedure via a stereo display 521. A surgeon feed back meter 515 may be viewed via the display 521 and provide the surgeon with a visual indication of the amount of force being applied to the cutting instrument or dynamic clamping member. The master controllers 519 generally comprise manual input devices which preferably move with multiple degrees of freedom, and which often further have a handle or trigger for actuating instruments (for example, for closing grasping saws, applying an electrical potential to an electrode, or the like).



FIG. 24 shows one example embodiment of an ultrasonic surgical instrument 522 adapted for use with a robotic surgical system. For example, the surgical instrument 522 may be coupled to one of the surgical manipulators 528, 528′ described hereinabove. As can be seen in FIG. 24, the surgical instrument 522 comprises a surgical end effector 548 that comprises an ultrasonic blade 550 and clamp arm 552, which may be coupled to an elongated shaft assembly 554 that, in some embodiments, may comprise an articulation joint 556. FIG. 25 shows another example embodiment having an electrosurgical instrument 523 in place of the ultrasonic surgical instrument 522. The surgical instrument 523 comprises a surgical end effector 548 that comprises closable jaws 551A, 551B having energy delivery surfaces 553A, 553B for engaging and providing electrical energy to tissue between the jaws 551A, 551B. A tissue cutting element or knife 555 may be positioned at the distal end of an axially movable member 557 that may extend through the elongated shaft assembly 554 to the instrument mounting portion 558. FIG. 26 shows one example embodiment of an instrument drive assembly 546 that may be coupled to one of the surgical manipulators 528, 528′ to receive and control the surgical instruments 522, 523. The instrument drive assembly 546 may also be operatively coupled to the controller 518 to receive inputs from the clinician for controlling the instrument 522, 523. For example, actuation (e.g., opening and closing) of the clamp arm 552, actuation (e.g., opening and closing) of the jaws 551A, 551B, actuation of the ultrasonic blade 550, extension of the knife 555 and actuation of the energy delivery surfaces 553A, 553B, etc. may be controlled through the instrument drive assembly 546 based on inputs from the clinician provided through the controller 518. The surgical instrument 522 is operably coupled to the manipulator by an instrument mounting portion, generally designated as 558. The surgical instruments 522 further include an interface 560 which mechanically and electrically couples the instrument mounting portion 558 to the manipulator.



FIG. 27 shows another view of the instrument drive assembly of FIG. 26 including the ultrasonic surgical instrument 522. FIG. 28 shows another view of the instrument drive assembly of FIG. 26 including the electrosurgical instrument 523. The instrument mounting portion 558 includes an instrument mounting plate 562 that operably supports a plurality of (four are shown in FIG. 26) rotatable body portions, driven discs or elements 564, that each include a pair of pins 566 that extend from a surface of the driven element 564. One pin 566 is closer to an axis of rotation of each driven elements 564 than the other pin 566 on the same driven element 564, which helps to ensure positive angular alignment of the driven element 564. The driven elements 564 and pints 566 may be positioned on an adapter side 567 of the instrument mounting plate 562.


Interface 560 also includes an adaptor portion 568 that is configured to mountingly engage the mounting plate 562 as will be further discussed below. The adaptor portion 568 may include an array of electrical connecting pins 570, which may be coupled to a memory structure by a circuit board within the instrument mounting portion 558. While interface 560 is described herein with reference to mechanical, electrical, and magnetic coupling elements, it should be understood that a wide variety of telemetry modalities might be used, including infrared, inductive coupling, or the like.



FIGS. 29-31 show additional views of the adapter portion 568 of the instrument drive assembly 546 of FIG. 26. The adapter portion 568 generally includes an instrument side 572 and a holder side 574 (FIG. 29). In various embodiments, a plurality of rotatable bodies 576 are mounted to a floating plate 578 which has a limited range of movement relative to the surrounding adaptor structure normal to the major surfaces of the adaptor 568. Axial movement of the floating plate 578 helps decouple the rotatable bodies 576 from the instrument mounting portion 558 when the levers 580 along the sides of the instrument mounting portion housing 582 are actuated (See FIGS. 24, 25) Other mechanisms/arrangements may be employed for releasably coupling the instrument mounting portion 558 to the adaptor 568. In at least one form, rotatable bodies 576 are resiliently mounted to floating plate 578 by resilient radial members which extend into a circumferential indentation about the rotatable bodies 576. The rotatable bodies 576 can move axially relative to plate 578 by deflection of these resilient structures. When disposed in a first axial position (toward instrument side 572) the rotatable bodies 576 are free to rotate without angular limitation. However, as the rotatable bodies 576 move axially toward instrument side 572, tabs 584 (extending radially from the rotatable bodies 576) laterally engage detents on the floating plates so as to limit angular rotation of the rotatable bodies 576 about their axes. This limited rotation can be used to help drivingly engage the rotatable bodies 576 with drive pins 586 of a corresponding instrument holder portion 588 of the robotic system, as the drive pins 586 will push the rotatable bodies 576 into the limited rotation position until the pins 586 are aligned with (and slide into) openings 590.


Openings 590 on the instrument side 572 and openings 590 on the holder side 574 of rotatable bodies 576 are configured to accurately align the driven elements 564 (FIGS. 27, 28) of the instrument mounting portion 558 with the drive elements 592 of the instrument holder 588. As described above regarding inner and outer pins 566 of driven elements 564, the openings 590 are at differing distances from the axis of rotation on their respective rotatable bodies 576 so as to ensure that the alignment is not 33 degrees from its intended position. Additionally, each of the openings 590 may be slightly radially elongated so as to fittingly receive the pins 566 in the circumferential orientation. This allows the pins 566 to slide radially within the openings 590 and accommodate some axial misalignment between the instrument 522, 523 and instrument holder 588, while minimizing any angular misalignment and backlash between the drive and driven elements. Openings 590 on the instrument side 572 may be offset by about 90 degrees from the openings 590 (shown in broken lines) on the holder side 574, as can be seen most clearly in FIG. 31.


Various embodiments may further include an array of electrical connector pins 570 located on holder side 574 of adaptor 568, and the instrument side 572 of the adaptor 568 may include slots 594 (FIG. 31) for receiving a pin array (not shown) from the instrument mounting portion 558. In addition to transmitting electrical signals between the surgical instrument 522, 523 and the instrument holder 588, at least some of these electrical connections may be coupled to an adaptor memory device 596 (FIG. 30) by a circuit board of the adaptor 568.


A detachable latch arrangement 598 may be employed to releasably affix the adaptor 568 to the instrument holder 588. As used herein, the term “instrument drive assembly” when used in the context of the robotic system, at least encompasses various embodiments of the adapter 568 and instrument holder 588 and which has been generally designated as 546 in FIG. 26. For example, as can be seen in FIG. 26, the instrument holder 588 may include a first latch pin arrangement 600 that is sized to be received in corresponding clevis slots 602 provided in the adaptor 568. In addition, the instrument holder 588 may further have second latch pins 604 that are sized to be retained in corresponding latch devises 606 in the adaptor 568. See FIG. 30. In at least one form, a latch assembly 608 is movably supported on the adapter 568 and is biasable between a first latched position wherein the latch pins 600 are retained within their respective latch clevis 602 and an unlatched position wherein the second latch pins 604 may be into or removed from the latch devises 606. A spring or springs (not shown) are employed to bias the latch assembly into the latched position. A lip on the instrument side 572 of adaptor 568 may slidably receive laterally extending tabs of instrument mounting housing 582.


As described the driven elements 564 may be aligned with the drive elements 592 of the instrument holder 588 such that rotational motion of the drive elements 592 causes corresponding rotational motion of the driven elements 564. The rotation of the drive elements 592 and driven elements 564 may be electronically controlled, for example, via the robotic arm 512, in response to instructions received from the clinician 502 via a controller 508. The instrument mounting portion 558 may translate rotation of the driven elements 564 into motion of the surgical instrument 522, 523.



FIGS. 32-34 show one example embodiment of the instrument mounting portion 558 showing components for translating motion of the driven elements 564 into motion of the surgical instrument 522, 523. FIGS. 32-34 show the instrument mounting portion with a shaft 538 having a surgical end effector 610 at a distal end thereof. The end effector 610 may be any suitable type of end effector for performing a surgical task on a patient. For example, the end effector may be configured to provide RF and/or ultrasonic energy to tissue at a surgical site. The shaft 538 may be rotatably coupled to the instrument mounting portion 558 and secured by a top shaft holder 646 and a bottom shaft holder 648 at a coupler 650 of the shaft 538.


In one example embodiment, the instrument mounting portion 558 comprises a mechanism for translating rotation of the various driven elements 564 into rotation of the shaft 538, differential translation of members along the axis of the shaft (e.g., for articulation), and reciprocating translation of one or more members along the axis of the shaft 538 (e.g., for extending and retracting tissue cutting elements such as 555, overtubes and/or other components). In one example embodiment, the rotatable bodies 612 (e.g., rotatable spools) are coupled to the driven elements 564. The rotatable bodies 612 may be formed integrally with the driven elements 564. In some embodiments, the rotatable bodies 612 may be formed separately from the driven elements 564 provided that the rotatable bodies 612 and the driven elements 564 are fixedly coupled such that driving the driven elements 564 causes rotation of the rotatable bodies 612. Each of the rotatable bodies 612 is coupled to a gear train or gear mechanism to provide shaft articulation and rotation and clamp jaw open/close and knife actuation.


In one example embodiment, the instrument mounting portion 558 comprises a mechanism for causing differential translation of two or more members along the axis of the shaft 538. In the example provided in FIGS. 32-34, this motion is used to manipulate articulation joint 556. In the illustrated embodiment, for example, the instrument mounting portion 558 comprises a rack and pinion gearing mechanism to provide the differential translation and thus the shaft articulation functionality. In one example embodiment, the rack and pinion gearing mechanism comprises a first pinion gear 614 coupled to a rotatable body 612 such that rotation of the corresponding driven element 564 causes the first pinion gear 614 to rotate. A bearing 616 is coupled to the rotatable body 612 and is provided between the driven element 564 and the first pinion gear 614. The first pinion gear 614 is meshed to a first rack gear 618 to convert the rotational motion of the first pinion gear 614 into linear motion of the first rack gear 618 to control the articulation of the articulation section 556 of the shaft assembly 538 in a left direction 620L. The first rack gear 618 is attached to a first articulation band 622 (FIG. 32) such that linear motion of the first rack gear 618 in a distal direction causes the articulation section 556 of the shaft assembly 538 to articulate in the left direction 620L. A second pinion gear 626 is coupled to another rotatable body 612 such that rotation of the corresponding driven element 564 causes the second pinion gear 626 to rotate. A bearing 616 is coupled to the rotatable body 612 and is provided between the driven element 564 and the second pinion gear 626. The second pinion gear 626 is meshed to a second rack gear 628 to convert the rotational motion of the second pinion gear 626 into linear motion of the second rack gear 628 to control the articulation of the articulation section 556 in a right direction 620R. The second rack gear 628 is attached to a second articulation band 624 (FIG. 33) such that linear motion of the second rack gear 628 in a distal direction causes the articulation section 556 of the shaft assembly 538 to articulate in the right direction 620R. Additional bearings may be provided between the rotatable bodies and the corresponding gears. Any suitable bearings may be provided to support and stabilize the mounting and reduce rotary friction of shaft and gears, for example.


In one example embodiment, the instrument mounting portion 558 further comprises a mechanism for translating rotation of the driven elements 564 into rotational motion about the axis of the shaft 538. For example, the rotational motion may be rotation of the shaft 538 itself. In the illustrated embodiment, a first spiral worm gear 630 coupled to a rotatable body 612 and a second spiral worm gear 632 coupled to the shaft assembly 538. A bearing 616 (FIG. 17) is coupled to a rotatable body 612 and is provided between a driven element 564 and the first spiral worm gear 630. The first spiral worm gear 630 is meshed to the second spiral worm gear 632, which may be coupled to the shaft assembly 538 and/or to another component of the instrument 522, 523 for which longitudinal rotation is desired. Rotation may be caused in a clockwise (CW) and counter-clockwise (CCW) direction based on the rotational direction of the first and second spiral worm gears 630, 632. Accordingly, rotation of the first spiral worm gear 630 about a first axis is converted to rotation of the second spiral worm gear 632 about a second axis, which is orthogonal to the first axis. As shown in FIGS. 32-33, for example, a CW rotation of the second spiral worm gear 632 results in a CW rotation of the shaft assembly 538 in the direction indicated by 634CW. A CCW rotation of the second spiral worm gear 632 results in a CCW rotation of the shaft assembly 538 in the direction indicated by 634CCW. Additional bearings may be provided between the rotatable bodies and the corresponding gears. Any suitable bearings may be provided to support and stabilize the mounting and reduce rotary friction of shaft and gears, for example.


In one example embodiment, the instrument mounting portion 558 comprises a mechanism for generating reciprocating translation of one or more members along the axis of the shaft 538. Such translation may be used, for example to drive a tissue cutting element, such as 555, drive an overtube for closure and/or articulation of the end effector 610, etc. In the illustrated embodiment, for example, a rack and pinion gearing mechanism may provide the reciprocating translation. A first gear 636 is coupled to a rotatable body 612 such that rotation of the corresponding driven element 564 causes the first gear 636 to rotate in a first direction. A second gear 638 is free to rotate about a post 640 formed in the instrument mounting plate 562. The first gear 636 is meshed to the second gear 638 such that the second gear 638 rotates in a direction that is opposite of the first gear 636. In one example embodiment, the second gear 638 is a pinion gear meshed to a rack gear 642, which moves in a liner direction. The rack gear 642 is coupled to a translating block 644, which may translate distally and proximally with the rack gear 642. The translation block 644 may be coupled to any suitable component of the shaft assembly 538 and/or the end effector 610 so as to provide reciprocating longitudinal motion. For example, the translation block 644 may be mechanically coupled to the tissue cutting element 555 of the RF surgical device 523. In some embodiments, the translation block 644 may be coupled to an overtube, or other component of the end effector 610 or shaft 538.



FIGS. 35-37 illustrate an alternate embodiment of the instrument mounting portion 558 showing an alternate example mechanism for translating rotation of the driven elements 564 into rotational motion about the axis of the shaft 538 and an alternate example mechanism for generating reciprocating translation of one or more members along the axis of the shaft 538. Referring now to the alternate rotational mechanism, a first spiral worm gear 652 is coupled to a second spiral worm gear 654, which is coupled to a third spiral worm gear 656. Such an arrangement may be provided for various reasons including maintaining compatibility with existing robotic systems 500 and/or where space may be limited. The first spiral worm gear 652 is coupled to a rotatable body 612. The third spiral worm gear 656 is meshed with a fourth spiral worm gear 658 coupled to the shaft assembly 538. A bearing 760 is coupled to a rotatable body 612 and is provided between a driven element 564 and the first spiral worm gear 738. Another bearing 760 is coupled to a rotatable body 612 and is provided between a driven element 564 and the third spiral worm gear 652. The third spiral worm gear 652 is meshed to the fourth spiral worm gear 658, which may be coupled to the shaft assembly 538 and/or to another component of the instrument 522, 523 for which longitudinal rotation is desired. Rotation may be caused in a CW and a CCW direction based on the rotational direction of the spiral worm gears 656, 658. Accordingly, rotation of the third spiral worm gear 656 about a first axis is converted to rotation of the fourth spiral worm gear 658 about a second axis, which is orthogonal to the first axis. As shown in FIGS. 36 and 37, for example, the fourth spiral worm gear 658 is coupled to the shaft 538, and a CW rotation of the fourth spiral worm gear 658 results in a CW rotation of the shaft assembly 538 in the direction indicated by 634CW. A CCW rotation of the fourth spiral worm gear 658 results in a CCW rotation of the shaft assembly 538 in the direction indicated by 634CCW. Additional bearings may be provided between the rotatable bodies and the corresponding gears. Any suitable bearings may be provided to support and stabilize the mounting and reduce rotary friction of shaft and gears, for example.


Referring now to the alternate example mechanism for generating reciprocating translation of one or more members along the axis of the shaft 538, the instrument mounting portion 558 comprises a rack and pinion gearing mechanism to provide reciprocating translation along the axis of the shaft 538 (e.g., translation of a tissue cutting element 555 of the RF surgical device 523). In one example embodiment, a third pinion gear 660 is coupled to a rotatable body 612 such that rotation of the corresponding driven element 564 causes the third pinion gear 660 to rotate in a first direction. The third pinion gear 660 is meshed to a rack gear 662, which moves in a linear direction. The rack gear 662 is coupled to a translating block 664. The translating block 664 may be coupled to a component of the device 522, 523, such as, for example, the tissue cutting element 555 of the RF surgical device and/or an overtube or other component which is desired to be translated longitudinally.



FIGS. 38-42 illustrate an alternate embodiment of the instrument mounting portion 558 showing another alternate example mechanism for translating rotation of the driven elements 564 into rotational motion about the axis of the shaft 538. In FIGS. 38-42, the shaft 538 is coupled to the remainder of the mounting portion 558 via a coupler 676 and a bushing 678. A first gear 666 coupled to a rotatable body 612, a fixed post 668 comprising first and second openings 672, first and second rotatable pins 674 coupled to the shaft assembly, and a cable 670 (or rope). The cable is wrapped around the rotatable body 612. One end of the cable 670 is located through a top opening 672 of the fixed post 668 and fixedly coupled to a top rotatable pin 674. Another end of the cable 670 is located through a bottom opening 672 of the fixed post 668 and fixedly coupled to a bottom rotating pin 674. Such an arrangement is provided for various reasons including maintaining compatibility with existing robotic systems 500 and/or where space may be limited. Accordingly, rotation of the rotatable body 612 causes the rotation about the shaft assembly 538 in a CW and a CCW direction based on the rotational direction of the rotatable body 612 (e.g., rotation of the shaft 538 itself). Accordingly, rotation of the rotatable body 612 about a first axis is converted to rotation of the shaft assembly 538 about a second axis, which is orthogonal to the first axis. As shown in FIGS. 38-39, for example, a CW rotation of the rotatable body 612 results in a CW rotation of the shaft assembly 538 in the direction indicated by 634CW. A CCW rotation of the rotatable body 612 results in a CCW rotation of the shaft assembly 538 in the direction indicated by 634CCW. Additional bearings may be provided between the rotatable bodies and the corresponding gears. Any suitable bearings may be provided to support and stabilize the mounting and reduce rotary friction of shaft and gears, for example.



FIGS. 43-46A illustrate an alternate embodiment of the instrument mounting portion 558 showing an alternate example mechanism for differential translation of members along the axis of the shaft 538 (e.g., for articulation). For example, as illustrated in FIGS. 43-46A, the instrument mounting portion 558 comprises a double cam mechanism 680 to provide the shaft articulation functionality. In one example embodiment, the double cam mechanism 680 comprises first and second cam portions 680A, 680B. First and second follower arms 682, 684 are pivotally coupled to corresponding pivot spools 686. As the rotatable body 612 coupled to the double cam mechanism 680 rotates, the first cam portion 680A acts on the first follower arm 682 and the second cam portion 680B acts on the second follower arm 684. As the cam mechanism 680 rotates the follower arms 682, 684 pivot about the pivot spools 686. The first follower arm 682 may be attached to a first member that is to be differentially translated (e.g., the first articulation band 622). The second follower arm 684 is attached to a second member that is to be differentially translated (e.g., the second articulation band 624). As the top cam portion 680A acts on the first follower arm 682, the first and second members are differentially translated. In the example embodiment where the first and second members are the respective articulation bands 622 and 624, the shaft assembly 538 articulates in a left direction 620L. As the bottom cam portion 680B acts of the second follower arm 684, the shaft assembly 538 articulates in a right direction 620R. In some example embodiments, two separate bushings 688, 690 are mounted beneath the respective first and second follower arms 682, 684 to allow the rotation of the shaft without affecting the articulating positions of the first and second follower arms 682, 684. For articulation motion, these bushings reciprocate with the first and second follower arms 682, 684 without affecting the rotary position of the jaw 902. FIG. 46 shows the bushings 688, 690 and the dual cam assembly 680, including the first and second cam portions 680B, 680B, with the first and second follower arms 682, 684 removed to provide a more detailed and clearer view.


In various embodiments, the instrument mounting portion 558 may additionally comprise internal energy sources for driving electronics and provided desired ultrasonic and/or RF frequency signals to surgical tools. FIGS. 46B-46C illustrate one embodiment of a tool mounting portion 558′ comprising internal power and energy sources. For example, surgical instruments (e.g., instruments 522, 523) mounted utilizing the tool mounting portion 558′ need not be wired to an external generator or other power source. Instead, the functionality of the various generators 20, 320 described herein may be implemented on board the mounting portion 558.


As illustrated in FIGS. 46B-46C, the instrument mounting portion 558′ may comprise a distal portion 702. The distal portion 702 may comprise various mechanisms for coupling rotation of drive elements 592 to end effectors of the various surgical instruments 522, 523, for example, as described herein above. Proximal of the distal portion 702, the instrument mounting portion 558′ comprises an internal direct current (DC) energy source and an internal drive and control circuit 704. In the illustrated embodiment, the energy source comprises a first and second battery 706, 708. In other respects, the tool mounting portion 558′ is similar to the various embodiments of the tool mounting portion 558 described herein above.


The control circuit 704 may operate in a manner similar to that described above with respect to generators 20, 320. For example, when an ultrasonic instrument 522 is utilized, the control circuit 704 may provide an ultrasonic drive signal in a manner similar to that described above with respect to generator 20. Also, for example, when an RF instrument 523 or ultrasonic instrument 522 capable of providing a therapeutic or non-therapeutic RF signal is used, the control circuit 704 may provide an RF drive signal, for example, as described herein above with respect to the module 23 of generator 20 and/or the generator 300. In some embodiments, the control circuit 704 may be configured in a manner similar to that of the control circuit 440 described herein above with respect to FIGS. 18B-18C.


Various embodiments described herein comprise an articulatable shaft. When using an articulatable shaft, components running through the shaft from the end effector must be flexible, so as to flex when the shaft articulates. In various embodiments, this can be accomplished by utilizing waveguides that have flexible portions. For example, FIG. 47 illustrates a schematic cross-sectional view of a portion of one example embodiment of an ultrasonic medical instrument 1500 comprising first, second and third waveguide portions. In FIG. 47, the hand piece and the sheath-articulation control knobs, etc. of the ultrasonic medical instrument 1500 are omitted for clarity. In the example embodiment shown in FIG. 47, the ultrasonic medical instrument 1500 comprises a medical ultrasonic waveguide 1502 for transmitting ultrasonic energy from a transducer (not shown in FIG. 47) to an ultrasonic blade 1544. The medical ultrasonic waveguide 1502 has a length and includes first, second and third waveguide portions 1504, 1506 and 1508. The second waveguide portion 1506 is located lengthwise between the first and third waveguide portions 1504 and 1508; the first waveguide portion 1504 is located proximal the second waveguide portion 1506; and the third waveguide portion 1508 is located distal the second waveguide portion 1506. The first and third waveguide portions 1504 and 1508 each have a larger transverse area and the second waveguide portion 1506 has a smaller transverse area. The second waveguide portion 1506 is more bendable than either of the first and third waveguide portions 1504 and 1508. It is further noted that ultrasonic vibration can be any one, or any combination, of longitudinal, transverse, and torsional vibration. In some embodiments, the section 1506 may have a circular cross-section (e.g., a uniform cross-sectional radius).


In some embodiments the second bendable waveguide portion 1506 may not have a uniform cross-sectional radius. For example, FIG. 47A illustrates cross sections for two example embodiments of the waveguide portion 1506. The waveguide portion 1506′ is illustrated in relation to two axes 1509, 1511, also shown in FIG. 47. In various embodiments, the waveguide portion 1506′ may have a cross sectional length along axis 1511 that is less than its cross sectional dimension along axis 1509. In some embodiments, the cross sectional length along the axis 1509 may be equal to the cross sectional length of the other waveguide portions 1504, 1506. The waveguide portion 1506′ may be bendable along the axis 1509. Referring now to waveguide portion 1506″, its cross sectional lengths along the axis 1509, 1511 may be the same, providing the waveguide portion 1506″ with a greater range of directions for bending.


In some example embodiments, the medical ultrasonic waveguide 1502 is a monolithic (e.g., the blade portion 1544 is integral to the waveguide 1502). Also, in some example embodiments, the medical ultrasonic waveguide 1502 includes first and second longitudinal vibration antinodes 1510 and 1512. The first waveguide portion 1504 may transition to the second waveguide portion 1506 proximate the first longitudinal vibration antinode 1510; and the second waveguide portion 1506 may transition to the third waveguide portion 1508 proximate the second longitudinal vibration antinode 1512. In some example embodiments, as illustrated by FIG. 47, the second waveguide portion 1506 is substantially ½ of a resonant-longitudinal-wavelength long.


In one example application of the embodiment of FIG. 47, the ultrasonic medical instrument 1500 also includes a user-actuated articulated sheath 1514 which surrounds the medical ultrasonic waveguide 1502. In various example embodiments, the medical ultrasonic waveguide 1502 includes three (meaning at least three) longitudinal vibration nodes 1516 located, one each, on the first, second and third waveguide portions 1504, 1506 and 1508. It is noted that one or more additional longitudinal vibration nodes may, or may not, be present between any one or two of the three longitudinal vibration nodes 1516. In one modification, the sheath 1514 contacts (e.g., directly contacts or indirectly contacts through at least one intervening member 1517 such as a silicone intervening member) the first, second and third waveguide portions 1504, 1506 and 1508 at a corresponding one of the three longitudinal vibration nodes 1516. In one example, the sheath 1514 includes a rigid first sheath portion 1518 contacting the first waveguide portion 1504 at the first longitudinal vibration node (the leftmost node 1516 of FIG. 47), a flexible second sheath portion 1520 contacting the second waveguide portion 1506 at the second longitudinal vibration node (the middle node 1516 of FIG. 47), and a rigid third sheath portion 1522 contacting the third waveguide portion 1508 at the third longitudinal vibration node (the rightmost node 1516 of FIG. 47). In some example embodiments, the sheath 1514 has only two articulation positions (e.g., straight and fully articulated). In other example embodiments, the sheath 1514 has a number of intermediate bent positions between a straight position and a fully articulated position depending on the number of energy efficient curves the waveguide 1502 can be formed to. In some example embodiments, such energy efficient curves minimize vibrational energy going into non-longitudinal vibrational modes.



FIG. 48 illustrates a schematic cross-sectional view of a portion of one example embodiment of an ultrasonic medical instrument 1524 comprising first and second waveguide portions 1530, 1532, where the first waveguide portion 1530 spans multiple ½ resonant longitudinal wavelengths. In the example embodiment show in FIG. 48, a medical ultrasonic waveguide 1526 includes at least two longitudinal vibration nodes 1528 located on the first waveguide portion 1530. In one variation, a sheath 1534 contacts (e.g., directly contacts or indirectly contacts through at least one intervening member 1536 such as a silicone intervening member) the first waveguide portion 1530 at the at-least-two longitudinal vibration nodes 1528. In some example embodiments, the sheath 1534 includes two rigid sheath portions 1538 and 1542 and one flexible sheath portion 1540, wherein the flexible sheath portion 1540 contacts the first waveguide portion 1530 at least one of the two longitudinal vibration nodes 1528, and wherein the flexible sheath portion 1540 is disposed between the two rigid sheath portions 1538 and 1542. In one example embodiment, the two rigid sheath portions 1538 and 1542 each contact the second waveguide portion 1532 at a corresponding one of the at-least-two longitudinal vibration nodes 1528.


Referring now to FIG. 47, the waveguide 1502 may comprise a blade portion 1544 adapted to contact and ultrasonically treat patient tissue. The blade portion 1544 may be disposed at a distal end of the waveguide 1502 (e.g., distal of the third blade portion 1508 of the blade 1502). In one example embodiment, the surgical instrument 1500 may also comprise a user-actuated clamp arm 1546 pivotally attached to the sheath 1514, 1534 proximate the blade portion 1544, wherein the clamp arm 1546 and the medical ultrasonic waveguide 1502 at least in part define an ultrasonic surgical shears 1548. The tissue pad and clamping arm control mechanism has been omitted from FIG. 47. Referring again to FIG. 48, the medical ultrasonic waveguide 1526 may also comprise a blade portion 1545, similar to the blade portion 1544, and disposed at a distal end of the first waveguide portion 1532. The blade portion 1545 may also be adapted to contact and ultrasonically treat patient tissue. The instrument 1524 of FIG. 48 may also comprise a clamp arm 1546, defining, with the blade portion 1545, an ultrasonic surgical shears 1548.


In various example embodiments, certain portions of the waveguides 1502, 1526 are substantially rigid. For example, first and third portions 1504 and 1508 of the waveguide 1502 may be substantially rigid. The first portion 1532 of the waveguide 1526 may be substantially rigid. Referring again to FIG. 47, the medical ultrasonic waveguide 1502 may include first and second neck portions 1550 and 1552 joining, respectively, the first and second waveguide portions 1504 and 1506 and the second and third waveguide portions 1506 and 1508. (A similar neck portion 1552 may join the first and second waveguide portions 1530, 1532 of the waveguide 1526.)


In one modification, the medical ultrasonic waveguide 1502 is substantially cylindrical from the first waveguide portion 1504 to the third waveguide portion 1508, wherein the first, second and third waveguide portions 1504, 1506 and 1508 each have a substantially constant diameter, and wherein the diameter of the second waveguide portion 1506 is smaller than the diameter of either of the first and third waveguide portions 1504 and 1508. In some example embodiments, the diameter of the second waveguide portion 1506 is between substantially one and two millimeters, and the diameter of the first and third waveguide portions is between substantially three and five millimeters. In one choice of materials, the medical ultrasonic waveguide 1502 consists essentially of a titanium alloy. In one modification, the medical ultrasonic waveguide 1502 includes first and second longitudinal vibration antinodes 1510 and 1512, and the first neck portion 1550 is disposed proximate the first longitudinal vibration antinode 1510 and the second neck portion 1552 is disposed proximate the second longitudinal vibration antinode 1512.



FIG. 49 illustrates a schematic cross-sectional view of one example embodiment of an ultrasonic waveguide 1554 for use with a medical instrument and comprising first and second waveguide portions, where a first waveguide portion 1556 is joined to a second waveguide portion 1558 by a dowel press fit. In the example illustrated in FIG. 49, the second waveguide portion 1558 is also coupled to a third waveguide portion 1560 by a dowel press fit. In various example embodiments, the second waveguide portion 1558 consists essentially of titanium or nitinol. In the same or a different illustration, the length of the second waveguide portion 1558 is less than ½ wavelength (a wavelength being the length of a resonant-longitudinal-wavelength of the medical ultrasonic waveguide which depends essentially on the material of the waveguide and the frequency at which it is run) and in one example is less than ⅛ wave.



FIG. 50 illustrates a schematic cross-sectional view of one example embodiment of an ultrasonic waveguide 1564 for use with a medical instrument. Like the waveguide 1554, the waveguide 1564 is not a monolithic waveguide. The waveguide 1564 may comprise first and second waveguide portions 1564, 1566, where the first waveguide portion 1564 is joined to the second waveguide 1566 portion by a ball-and-socket type attachment. The second waveguide portion 1566 may also be joined to a third waveguide portion 1568 in any suitable manner. In the example of FIG. 50, the second waveguide portion 1566 is joined to the third waveguide portion 1568 via a dowel press fit. Other attachments between waveguide portions are left to those skilled in the art.



FIG. 51 illustrates a schematic cross-sectional view of a portion of another embodiment of an ultrasonic medical instrument 1570 comprising a medical ultrasonic waveguide 1572 having a length and including a proximal waveguide portion 1574 and a distal waveguide portion 1576. The proximal waveguide portion 1574 has a larger transverse area and the distal waveguide portion 1576 has a smaller transverse area. The distal waveguide portion 1576 bends more easily than does the proximal waveguide portion 1574. The distal waveguide portion 1576 includes a distal end portion 1580 adapted to contact and ultrasonically treat patient tissue. In various example embodiments, the additional ½ wave needed to neck up and create the larger diameter end effector of the embodiment of FIG. 47 is eliminated making it possible to place the articulation joint closer to the distal end of the ultrasonic medical instrument 1570. The embodiments, applications, etc. shown in FIGS. 47-50 are equally applicable (without the presence of the third waveguide portion) to the embodiment of FIG. 51.



FIG. 52 illustrates one embodiment of a shaft 1000 that may be utilized with various surgical instruments, including those described herein. An end effector 1006 is positioned within a shaft body 1004 and may comprise an ultrasonic blade 1008. The ultrasonic blade 1008 may be acoustically coupled to a waveguide 1020 extending proximally from the blade 1008. The waveguide 1020 may comprise a bendable portion 1012, such as the bendable portions 1506, 1530, 1576, etc., described herein above. Also positioned within the shaft 1000 is a wedge 1016 coupled to a translating cable 1018 that extends proximally from the wedge 1016. The wedge 1016 may reciprocate proximally and distally under the control of the cable 1018. The cable 1018 may be made of any suitable material including, for example, a material that is rigid enough to provide a distally directed force on the wedge 1016 when the cable 1018 is pushed distally (e.g., from a handle, from a robotic instrument mounting portion, etc.). In some embodiments, the cable 1018 may be made from a metal material.


The ultrasonic waveguide 1020 may be coupled to the shaft body 1004 at a pivot point 1014. For example, the pivot point 1014 may represent a pin received through the waveguide 1020 to hold the waveguide stationary relative to the shaft body 1004 at about the pivot point 1014. The pivot point may be located proximally from the bendable portion 1012. Distal of the bendable portion 1012 of the waveguide 1020, the waveguide 1020 and/or ultrasonic blade 1008 defines a flange 1010. As the wedge 1016 is translated distally, it may come into contact with the flange 1010. As the flange 1010 rides up the wedge 1016, the waveguide 1020 may pivot about the pivot point, tending to pivot the blade 1008 and waveguide 1020 away from a longitudinal axis 1002 of the shaft 1000. FIG. 53 illustrates one embodiment of the shaft 1000, with the wedge 1016 translated distally and the blade 1008 pivoted, as described. Proximal translation of the wedge 1016 from the position shown in FIG. 53 may release the force on the flange 1010 tending to cause deflection of the blade 1008. Absent the force, the blade 1008 and waveguide 1020 may return to the resting position illustrated in FIG. 52. For example, the blade 1008 and/or waveguide 1020 may be constructed from a resilient material that regains its original shape after bending. For example, in various embodiments, the wedge 1016 may not push the blade 1008 and/or the waveguide 1020 past their respective points of plasticity. The flange 1010 and pivot point 1014 may both be positioned at nodes of the waveguide 1020 (e.g., portions where there is substantially no movement of the waveguide 1020). In some embodiments, the flange 1010 and pivot point 1014 may be separated by a single wavelength.


The wedge 1016 and cable 1018 may be translated distally and proximally according to any suitable method or mechanism. For example, when the shaft 1000 is used in conjunction with a manual or hand held surgical instrument, the cable 1018 may be translated distally and proximally in a manner similar to that described herein above with respect to the reciprocating tubular actuating member 58 of the instrument 10 and/or the axially moving member 378 of the instrument 300. Also, for example, when the shaft 1000 is used in conjunction with a surgical robot, the cable 1018 may be translated distally and proximally in a manner similar to that described above with respect to the tissue cutting element 555 of the instrument 310.



FIG. 54 illustrates an alternative embodiment of the shaft 1000 comprising several additional features. For example, the shaft 1000, as illustrated in FIG. 54 comprises an optional second wedge 1016′ and cable 1018′. The second wedge 1016′ and cable 1018′ may operate similar to the wedge 1016 and cable 1018 described herein above. The second wedge 1016′ and cable 1018′, however, may be offset from the first wedge 1016 and cable 1018 about the longitudinal axis such that distal translation of the first wedge 1016 causes the end effector 1008 and waveguide 1020 to pivot in a first direction and distal translation of the second wedge 1016′ causes the end effector 1008 and waveguide 1020 to pivot in a second direction. In various example embodiments, the first and second directions may be 180° opposed from one another about the longitudinal axis. In the example embodiment illustrated in FIG. 54, the shaft body 1004 also comprises slots 1022, 1022′ for receiving slot members 1024, 1024′ of the respective wedges 1016, 1016′. The slots 1022, 1022′ and slot members 1024, 1024′ may serve to maintain axially alignment of the respective wedges 1016, 1016′.



FIG. 54 also illustrates one example mechanism for translating the wedges 1016, 1016′ and cables 1018, 1018′ distally and proximally (e.g., in a robotic surgical embodiment). For example, each cable 1018, 1018′ may be wound around respective spools 1026, 1026′. The spools 1026, 1026′, in turn, may be coupled to a robotically controlled component such as, for example, respective rotatable bodies 612 as described herein. Clockwise and counter clockwise rotation of the spools 1026, 1026′ may wind and unwind the cables 1018, 1018′ providing alternating distal and proximally translation to the wedges 1016, 1016′.


The wedges 1016, 1016′ of FIGS. 52-54 are shown in two dimensions. Wedges according to various embodiments, however, can have different three dimensional shapes. FIG. 55 illustrates one embodiment of an example wedge 1028 having a curved or rounded shape. A cross-section 1030 of the wedge 1028 shows a wedge face portion 1032 for contacting the flange 1010. The arrow 1032 indicates a distal direction along the longitudinal axis 1002. FIG. 56 illustrates the wedge 1028 in conjunction with an end effector 1006 comprising an ultrasonic blade 1008 as well as a flange 1010.



FIG. 57 illustrates a cross-section of one embodiment of the shaft 1000 showing a keyed flange 1010′. The flange 1010′ comprises a first keyed surface 1038 for receiving a keyed wedge. The keyed surface 1038 defines first, second and third notches 1036, 1038, 1040 for receiving a steps of a correspondingly keyed wedge. FIG. 58 illustrates one embodiment of a keyed wedge 1044 comprising steps 1046, 1048, 1050 matching the notches 1036, 1038, 1040 of the keyed flange 1010′. In various embodiments, the longitudinal slopes of the various steps 1046, 1048, 1050 are equal. The keyed flange 1010′ is also illustrated with an optional second keyed surface 1042, for example, for interfacing with a second keyed wedge (not shown) in a multi-wedge embodiment such as that shown in FIG. 54. Also, although three notches 1036, 1038, 1040 and three steps 1046, 1048, 1050 are shown, it will be appreciated that keyed surfaces 1038 and wedges 1044 may have more or fewer notches and steps.



FIG. 59 illustrates a wedge 1052 for use with the shaft 1000, the wedge 1052 having a stepped profile. The stepped profile may allow the wedge 1052 to pivot the ultrasonic blade 1008 and waveguide 1020 by discrete amounts. For example, as the wedge 1052 is translated distally, a first wedge portion 1054 pushes the flange 1010, pivoting the blade 1008 and waveguide 1020 by a first amount. As the flange 1010 reaches a first flat portion 1056, it may be held, pivoted by the first amount, until the flange 1010 encounters a second wedge portion 1058. The second wedge portion 1058 may pivot the blade 1008 and waveguide 1020 by a second amount, which is again held as the flange 1010 slides across a second flat portion 1060. A third wedge portion 1062 and third flat portion 1064 may operate in a similar fashion as the wedge 1052 continues to translate distally. When the wedge 1052 is retracted proximally, the flange 1010 (and therefore the blade 1008 and waveguide 1020) may transition back through the discrete pivot amounts associated with each wedge portion and flat portion pair.



FIG. 60 illustrates one example embodiment of a shaft 1066 for use with various surgical instruments, including those described herein having a cammed articulation mechanism. Positioned within the shaft 1066 is a waveguide 1020 coupled to the shaft 1066 at a pivot point 1014. The waveguide 1020 is acoustically coupled to an ultrasonic blade 1008, as described above. The flange 1068 may be a cammed flange defining a waveguide cam feature 1072 configured to contact a shaft cam feature 1070 to deflect the waveguide 1020 and blade 1008 about the pivot point 1014. FIG. 61 illustrates a cross-sectional view of the shaft 1066 providing a view of the shaft cam feature 1070 and waveguide cam feature 1072. In various example embodiments, the shaft body 1004 may be rotatable about the longitudinal axis 1002. As the shaft body 1004 rotates, the shaft cam feature 1070 may come into contact with the waveguide cam feature 1072, causing the waveguide 1020 and blade 1008 to pivot about the pivot point 1014 away from the shaft cam feature 1070.


In some example embodiments, as illustrated in FIG. 61, the flange 1068 may define additional waveguide cam features 1074, 1076, 1078 that may operate in a manner similar to the waveguide cam feature 1072. For example, as the shaft body 1004 rotates, the shaft cam feature 1070 may, in turn, contact each of the additional waveguide cam features 1074, 1076, 1078, causing the waveguide 1020 and blade 1008 to pivot away from the shaft cam feature 1070 about the pivot point 1014. In various embodiments, the shaft body 1004 may define additional shaft cam features (not shown). The shaft body 1004 may be rotated in any suitable manner. For example, in manual or hand-operated surgical instruments, the shaft body 1004 may be rotated in a manner similar to that described above with respect to the distal rotation assembly 13 and shaft assembly 14. In robotic surgical instruments, for example, the shaft body 1004 may be rotated in a manner similar to those described above with respect to FIGS. 32-46C. Also, FIG. 60 illustrates another embodiment for rotating the shaft body 1004, for example, in a robotic setting. For example, a proximal end of the shaft body 1004 may comprise first and second spools 1085, 1087. Additional spools 1081, 1083 are positioned to be rotated by a robot (e.g., the spools 1081, 1083 may be coupled to rotatable bodies 612, as described herein. A cable 1093 may be wound around spools 1085 and 1081. Similarly, a cable 1091 may be wound around spools 1083, 1087. Rotation of spool 1081 may cause the cable 1093 to wind off of the spool 1085 to the spool 1081, thereby rotating the shaft body 1004 in a first direction. The shaft rotation in the first direction may also cause cable 1091 to wind off of spool 1083 and onto spool 1087. In some embodiments, spool 1083 may be separately driven to facilitate this winding. To rotate the shaft body 1004 in a direction opposite the first direction, the spool 1083 may be rotated in an opposite direction, causing cable 1091 to wind from the spool 1087 to the spool 1093. At the same time, spool 1085 may draw cable 1093 from spool 1081. Again, spool 1081 may be separated driven to facilitate this winding.



FIG. 62-64 illustrates one embodiment of an articulating shaft 1080 that may be utilized with various surgical instruments, including those described herein. The shaft body 1004 comprises an interior wall 1092 defining a groove 1082. The groove 1082 may have different portions positioned at different axial distances from the end effector 1006. For example, in some example embodiments, the groove 1082 may be an ovaloid. Also, in some example embodiments, as illustrated by FIGS. 62-64, the groove 1082 may represent a partial or complete cross-section of the shaft body 1004 taken in a plane that intersects the longitudinal axis 1002, but is not perpendicular to the axis 1002.


The flange 1010 of the waveguide 1020 (and/or end effector 1006) may be coupled to a pair of interface members 1084, 1086 at a coupling point (represented in FIGS. 62-64 as the flange 1010). A first interface member 1084 may extend proximally from the flange 1010 and may comprise and/or define a first peg member 1088 positioned to ride within the groove 1082. A second interface member 1084 may extend proximally from the flange 1010 and, similarly, may comprise and/or define a second peg member 1090 also positioned to ride within the groove 1082. As illustrated, the length of the first interface member 1084 between the flange 1010 and the first peg 1088 is longer than the length of the second interface member 1086 between the flange 1010 and the second peg 1090, although this is not necessary.


In the example embodiment shown in FIGS. 62-64, the end effector 1006 is pivoted away from the longitudinal axis 1002 by rotating the shaft body 1004 relative to the waveguide 1020, blade 1008 and interface members 1084, 1086. This relative rotation be brought about by rotation of the shaft body 1004, rotation of the waveguide 1020, or both. As the relative rotation takes place, the peg members 1088, 1090 may ride within the groove 1082. As the peg members 1088, 1090 ride within portions of the groove that are closer to and further from the end effector 1006, the peg members 1088, 1090 may be pushed close to and further from the end effector 1006. Differential axial translation of the peg members 1088, 1090 may cause bending of the interface members 1084, 1086, resulting in pivoting of the end effector 1006. For example, as illustrated in FIG. 64, the peg members 1088, 1090 are placed at a position roughly equidistant from the end effector 1006. As the interface member 1084 is longer than the interface member 1086 in the example of FIG. 64, member 1084 may be pushed distally, while member 1086 is pulled proximally. This may result in the pivoting of the end effector 1006 away from the longitudinal axis 1002 as shown.


The shaft body 1004 and/or waveguide 1020 may be rotated in any suitable manner. For example, in manual or hand-operated surgical instruments, the shaft body 1004 and/or waveguide 1020 may be rotated in a manner similar to that described above with respect to the distal rotation assembly 13 and shaft assembly 14. In robotic surgical instruments, for example, the shaft body 1004 and/or waveguide 1020 may be rotated in a manner similar to those described above with respect to FIGS. 32-46C.



FIGS. 65-67 illustrate one example embodiment of a shaft 1100 coupled to an end effector 1106 comprising an ultrasonic blade 1108 and a pivotable clamp arm 1110. The shaft 11102 comprises a proximal tube 1102 and a flexible portion 1104 with the end effector 1106 coupled to the flexible portion 1104. A clamp arm 1110 is pivotably coupled to the end effector 1106 (e.g., an end effector member 1107) at pivot point 1112. FIGS. 66-67 are cut-away views showing components positioned inside of the shaft 1100. For example, a waveguide 1114 may be acoustically coupled to the ultrasonic blade 1108 and may comprise a bendable portion 1116 at about the position of the flexible portion 1104 of the shaft 1100. Articulation translating members 1113, 1115 may be coupled to the end effector member 1107 at points 1126 and 1124, respectively, to bring about articulation of the end effector 1106, as described below. A clamp arm member 1117 may be coupled to the clamp arm 1110 and may translate distally and proximally to open and close the clamp arm 1110, as described herein below.



FIG. 68 illustrates one embodiment of the end effector 1106 illustrating a first way to utilize the clamp arm member 1117 to open and close the clamp arm 1110. As described above, the clamp arm 1110 may be pivotably coupled to the end effector member 1107 at pivot point 1112. In the example embodiments shown in FIG. 68, the clamp arm member 1117 is a translating member that is coupled to the clamp arm 1110 at 1120. Distal translation of the clamp arm member 1117 may push the point 1120 of the clamp arm 1110 distally, causing the clamp arm 1110 to pivot about the pivot point 1112 to an open position (as illustrated by the dotted lines in FIG. 67). Alternately, pulling the clamp arm member 1117 proximally may pull the point 1120 proximally, causing the clamp arm 1110 to pivot back to the closed position shown in FIGS. 65-66 and 68. The translating clamp arm member 1117 may be translated distally and proximally in any suitable manner. For example, when the shaft 1100 is used in conjunction with a manual or hand held surgical instrument, the translating member 1117 may be translated distally and proximally in a manner similar to that described herein above with respect to the reciprocating tubular actuating member 58 of the instrument 10 and/or the axially moving member 378 of the instrument 300. Also, for example, when the shaft 1100 is used in conjunction with a surgical robot, the translating member 1117 may be translated distally and proximally in a manner similar to that described above with respect to the tissue cutting element 555 of the instrument 310.



FIGS. 69-70 illustrate another example embodiment of the end effector 1106 illustrating an additional way to utilize a clamp arm member 1117′ to open and close the clamp arm 1110. The clamp arm member 1117′ may be a flexible, threaded cable defining a threaded portion 1130 that may extend through a threaded hole 1134 of the end effector member 1107. A distal portion of the clamp arm member 1117′ may be coupled to a mount 1132 positioned distally from the pivot point 1112. As the clamp arm member 1117′ is rotated in a first direction, it may translate distally, pushing distally on the mount 1132 and clamp arm 1110 and tending to close the clamp arm 1110. As the clamp arm member 1117′ is rotated in a second direction opposite the first direction, it may translate proximally, pulling proximally on the mount 1132 and tending to open the clamp arm 1110. The clamp arm member 1117′ may be rotated in any suitable manner. For example, in manual or hand-operated surgical instruments, the clamp arm member 1117′ may be rotated in a manner similar to that described above with respect to the distal rotation assembly 13 and shaft assembly 14. In robotic surgical instruments, for example, the clamp arm member 1117′ may be rotated in a manner similar to those described above with respect to FIGS. 32-46C.


Referring now again to FIGS. 65-67, it will be appreciated that articulation of the end effector 1106 may be brought about in any suitable manner. For example, when the translating member 1113 is pulled proximally, the end effector 1106 may pivot toward the translating member 1113 as shown in FIG. 65. Conversely, when the translating member 1115 is pulled proximally, the end effector 1106 may pivot towards the translating member 1115.



FIGS. 71-72 illustrate one example embodiment of the shaft 1110 showing an example mechanism for managing differential translation of the translating members 1113, 1115. As shown in FIGS. 71-72, the translating members may comprise and/or define respective rack gears 1138, 1136. A pinion gear 1140 may be positioned to engage both of the rack gears 1138, 1136. When one of the translating members 1113 is translated along the longitudinal axis, rack gear 1138 may interface with the pinion gear 1140 causing corresponding and oppositely-directed translation of the opposite translating member 1115, and visa versa. This may facilitate differential translation of the members 1113, 1115. In some embodiments, the pinion gear 1140 may be driven, either manually via a lever and/or automatically (e.g., by a robotic surgical device). When the pinion gear 1140 is driven, it may, in turn, drive rack gears 1138, 1136 causing differential proximal and distal translation of the translating members 1113, 1115 and articulation of the end effector 1106.


Differential translation of the translating members 1113, 1115 may be accomplished in any suitable manner. For example, when the shaft 1100 is utilized in the context of a surgical robot, the members 1170, 1172 may be differentially translated utilizing any of the methods and/or mechanisms described herein above with respect to FIGS. 32-46C. Alternatively, FIGS. 73-74 illustrate one embodiment of a hand-held surgical instrument utilizing the shaft 1100 in the configuration shown in FIGS. 71-72. Pinion gear 1140 is shown in FIG. 73 as coupled to a lever 1142 that may be rotated by a clinician to bring about articulation of the end effector 1106, as described herein above. FIG. 74 shows the instrument 1150 including the lever 1142, demonstrating placement and use of the lever 1142 to bring about articulation.



FIGS. 75-76 illustrate one embodiment of an articulating shaft 1200 that may be utilized with various surgical instruments, including those described herein. The shaft 1200 comprises a distal tube 1202 pivotably coupled to a proximal tube 1204 via a hinge interface 1208. The hinge interface 1208 may be and/or comprise any suitable type of hinge and may, in some example embodiments, comprise a pin. An inner rotatable member 1206 may extend proximally through the proximal tube 1204 and at least a portion of the distal tube 1202. The inner rotatable member 1206 may define a slanted slot 1210. The distal tube 1202 may comprise a peg 1212 positioned to ride within the slanted slot 1210.


The peg 1212, as illustrated, may be positioned opposite the longitudinal axis 1002 from the hinge interface 1208. Due to the slant of the slot 1210, rotation of the inner rotatable member 1206 and slot 1210 in a first direction may tend to push the peg 1212, and thereby the distal tube 1202, distally. Rotation of the inner rotatable member 1206 and slot 1210 in a second direction opposite the first direction may tend to pull the peg 1212 and distal tube 1202 proximally. When the peg 1212 and distal tube 1202 are pushed distally by rotation of the member 1206 and slot 1210, the distal tube 1202 may pivot about the hinge interface 1208 away from the longitudinal axis 1002, as illustrated in FIG. 76. When the peg 1212 and distal tube 1202 are pulled proximally by rotation of the member 1206 and slot 1210, the distal tube 1202 may pivot back towards the longitudinal axis 1002 to the position illustrated in FIG. 75. Rotation of the rotatable member 1206 may be actuated in any suitable manner. For example, in manual or hand-operated surgical instruments, the member 1206 may be rotated in a manner similar to that described above with respect to the distal rotation assembly 13 and shaft assembly 14. In robotic surgical instruments, for example, the member 1206 may be rotated in a manner similar to those described above with respect to FIGS. 32-46C. It will be appreciated that the shaft 1200 may be used with any suitable type of surgical instrument including, for example, an ultrasonic surgical instrument, an electrosurgical instrument, etc. In some embodiments, wire, waveguides and/or other control devices for a surgical instrument may pass through the proximal and distal tubes 1204, 1202. For example, in some embodiments, a waveguide extending through the proximal and distal tubes 1204, 1202 may have a bendable portion 1046, for example, similar to the bendable portions 1506, 1530, 1576, etc., described herein above. The bendable portion may be positioned at about the hinge interface 1208 so as to bend as the distal tube 1202 pivots.



FIG. 77 illustrates one embodiment of a shaft 1300 that may be utilized with various surgical instruments, including those described herein. An end effector 1309 is positioned within an inner shaft 1322 and an outer shaft 1302. The end effector 1309 comprises an ultrasonic blade 1303. Moving proximally, the blade 1303 is acoustically coupled to a flange 1305 that extends through a slot 1312 in the outer shaft 1302. The flange 1305 is coupled to a second flange 1306 via a bendable waveguide portion 1316 (e.g., similar to the bendable portions 1506, 1530, 1576 described herein above). The second flange 1306 may be fixedly coupled to the inner shaft 1322 via supports 1308. The second flange 1306 and supports 1308 may form pivot point 1304. The outer shaft 1302 defines a slot 1312 that receives the flange 1305. When the outer shaft 1302 is translated distally relative to the inner shaft 1322, the flange 1305 may reach a proximal-most portion of the slot 1312, causing the blade 1303 to pivot about the pivot point 1304. The blade 1303 may return to its rest position when the outer shaft 1302 is pulled proximally again. In various embodiments, the respective flanges 1306, 1305 may be positioned at nodes of the waveguide 1308 at the resonant wavelength of the system. In some embodiments, the flanges 1306, 1305 are separated by a single resonant wavelength.


The outer shaft 1302 may be translated distally and proximally in any suitable manner. FIG. 78 illustrates a view showing additional details of one embodiment of the outer shaft 1302. In certain embodiments, the outer shaft 1302 biased distally by a spring 1310. Reciprocating control members 1320 may be utilized to pull the outer shaft 1302 proximally, overcoming the bias of the spring 1310. When tension on the control members 1320 is released, the spring 1310 may bias the outer shaft distally, causing articulation as described above. The control members 1320 may be translated distally and proximally in any suitable manner. For example, when the shaft 1200 is used in conjunction with a manual or hand held surgical instrument, the control members 1320 may be translated distally and proximally in a manner similar to that described herein above with respect to the reciprocating tubular actuating member 58 of the instrument 10 and/or the axially moving member 378 of the instrument 300. Also, for example, when the shaft 1300 is used in conjunction with a surgical robot, the control members 1320 may be translated distally and proximally in a manner similar to that described above with respect to the tissue cutting element 555 of the instrument 310. In certain embodiments, however, the spring 1310 may be omitted. For example, both proximal and distal force may be provided to the outer shaft 1302 by the reciprocating control members.



FIG. 79 illustrates a cut-away view of one embodiment of the shaft 1300. FIG. 79 shows additional features of the inner shaft 1322. For example, the inner shaft 1322 may define a slot 1324 which may also receive the flange 1305. The slot 1324 may have an area larger than that of the slot 1312. For example, the flange 1305 may not contact the edges of the slot 1324 during normal operation. FIG. 80 illustrates the cut-away view of one embodiment of the shaft 1300, with the outer shaft 1302 extended distally to articulate the blade 1303. As illustrated, a distal edge 1313 of the slot 1312 contacts the flange 1305 pushing it distally in the direction of arrow 1311. This, in turn, causes the blade 1303 and flange 1305 to pivot (at bendable waveguide portion 1316) to the position shown.



FIG. 81 illustrates one embodiment of the shaft 1300 having an additional distal flange 1307. The flange 1307 may extend substantially opposite the flange 1305. To prevent interference with articulation, the outer and inner shafts 1302, 1322 may define additional slots 1330, 1332 of a size sufficient such that the flange 1307 does not contact any edges of the slots 1330, 1332 during articulation. Also, although articulation in the described embodiment is provided by distal and proximal translation of the outer shaft 1302, it will be appreciated that similar shafts may be constructed having a reciprocating inner slotted shaft to perform the function provided by the outer shaft 1302 as described herein. For example, the inner shaft may be translatable within an outer shaft and may define a slot for receiving the flange 1305. As the inner shaft translates distally, its slot may contact the flange 1305, causing the blade 1303 to articulate, as shown in FIG. 80.


Non-Limiting Examples

Various embodiments are directed to articulatable surgical instruments comprising an end effector comprising an ultrasonic blade, a hollow shaft extending proximally from the end effector along a longitudinal axis and a waveguide extending through the shaft and acoustically coupled to the ultrasonic blade. In certain embodiments, the waveguide comprises a distally positioned flange positioned within the hollow shaft proximally from the blade. The waveguide may also be held stationary at a first pivot point positioned within the hollow shaft proximally from the flange. A reciprocating wedge may be positioned within the hollow shaft such that distal motion of the wedge pushes the wedge between the flange and the hollow shaft, causing the ultrasonic blade to pivot about the first pivot in a first direction.


In certain embodiments, the hollow shaft may comprise a first shaft defining a slot and a second shaft. The first and second shafts may be translatable relative to one another along the longitudinal axis. The waveguide may comprise a distally positioned first flange positioned within the hollow shaft proximally from the blade, a bendable portion positioned proximally from the first flange, and a second flange positioned proximally from the bendable portion and fixedly coupled to the second shaft. The first flange may extend through the slot. Also, the first shaft may be translatable from a distal position where a proximal edge of the slot pushes the first flange distally, bending the ultrasonic blade away from the longitudinal axis to a proximal position.


In certain embodiments, an interior portion of the hollow shaft defines a shaft cam feature directed towards the longitudinal axis. Further, the waveguide may define a waveguide cam feature directed away from the longitudinal axis. In this way, rotation of the hollow shaft relative to the waveguide causes the shaft cam feature to come into contact with the waveguide cam feature, resulting in bending of the waveguide and ultrasonic blade away from the longitudinal axis about the first pivot point in a first direction. In certain embodiments, the end effector comprises a clamp arm coupled to a member positioned around the ultrasonic blade. The clamp arm may be pivotably coupled to the member at a pivot point. A flexible control cable may be coupled to the clamp arm at a point offset from the pivot point. Distal and proximal translation of the control cable may cause the clamp arm to pivot relative to the ultrasonic blade. In certain embodiments, the member may define a threaded hole through which extends a flexible, threaded cable. The cable may also be coupled to the clamp arm such that rotation of the cable causes it to translate proximally and distally, depending on the direction of rotation. Such proximally and distal translation may cause the clamp arm to open and close.


Also, various embodiments are directed to articulatable surgical instruments comprising an end effector comprising an ultrasonic blade and a hollow shaft extending proximally from the end effector. An interior wall of the hollow shaft may define a groove, where different positions of the groove are positioned at different axial distances from the end effector. A first interface member may be coupled to either a waveguide or the ultrasonic blade at a coupling point and extending proximally. The first interface member may comprise a first peg member positioned within the groove. A second interface member may be coupled to the waveguide or the ultrasonic blade at the coupling point and may extend proximally. The second interface member may also comprise a peg member positioned within the groove. Upon rotation of the hollow shaft relative to the waveguide, the first and second peg members may translate within the groove causing bending of the first and second interface members and deflection of the first and second interface members away from the longitudinal axis.


Various embodiments are directed to articulatable surgical instruments comprising an end effector and a shaft extending proximally from the end effector along a longitudinal axis. The shaft may comprise a proximal tube and a distal tube pivotably coupled to the proximal tube at a hinge interface offset from the longitudinal axis. The distal tube may comprise an axially directed peg member. The surgical instruments may further comprise an inner rotatable member extending proximally through at least a portion of the proximal tube and at least a portion of the distal tube. The inner rotatable member may define a slanted slot such that the axially directed peg member rides at least partially within the slanted slot and such that rotation of the inner rotatable member in a first direction pushes the peg member and distal tube distally and rotation of the inner rotatable member in a second direction opposite the first direction pushes the peg member and distal tube proximally.


Applicant also owns the following patent applications that are each incorporated by reference in their respective entireties:

  • U.S. patent application Ser. No. 13/536,271, filed on Jun. 28, 2012 and entitled “Flexible Drive Member,” now U.S. Pat. No. 9,204,879;
  • U.S. patent application Ser. No. 13/536,288, filed on Jun. 28, 2012 and entitled “Multi-Functional Powered Surgical Device with External Dissection Features,” now U.S. Patent Application Publication No. 2014-0005718 A1;
  • U.S. patent application Ser. No. 13/536,295, filed on Jun. 28, 2012 and entitled “Rotary Actuatable Closure Arrangement for Surgical End Effector,” now U.S. Pat. No. 9,119,657;
  • U.S. patent application Ser. No. 13/536,326, filed on Jun. 28, 2012 and entitled “Surgical End Effectors Having Angled Tissue-Contacting Surfaces,” now U.S. Pat. No. 9,289,256;
  • U.S. patent application Ser. No. 13/536,303, filed on Jun. 28, 2012 and entitled “Interchangeable End Effector Coupling Arrangement,” now U.S. Pat. No. 9,028,494;
  • U.S. patent application Ser. No. 13/536,393, filed on Jun. 28, 2012 and entitled “Surgical End Effector Jaw and Electrode Configurations,” now U.S. Patent Application Publication No. 2014-0005640 A1;
  • U.S. patent application Ser. No. 13/536,362, filed on Jun. 28, 2012 and entitled “Multi-Axis Articulating and Rotating Surgical Tools,” now U.S. Pat. No. 9,125,662; and
  • U.S. patent application Ser. No. 13/536,417, filed on Jun. 28, 2012 and entitled “Electrode Connections for Rotary Driven Surgical Tools,” now U.S. Pat. No. 9,101,385.


It will be appreciated that the terms “proximal” and “distal” are used throughout the specification with reference to a clinician manipulating one end of an instrument used to treat a patient. The term “proximal” refers to the portion of the instrument closest to the clinician and the term “distal” refers to the portion located furthest from the clinician. It will further be appreciated that for conciseness and clarity, spatial terms such as “vertical,” “horizontal,” “up,” or “down” may be used herein with respect to the illustrated embodiments. However, surgical instruments may be used in many orientations and positions, and these terms are not intended to be limiting or absolute.


Various embodiments of surgical instruments and robotic surgical systems are described herein. It will be understood by those skilled in the art that the various embodiments described herein may be used with the described surgical instruments and robotic surgical systems. The descriptions are provided for example only, and those skilled in the art will understand that the disclosed embodiments are not limited to only the devices disclosed herein, but may be used with any compatible surgical instrument or robotic surgical system.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one example embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one example embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one example embodiment,” or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics illustrated or described in connection with one example embodiment may be combined, in whole or in part, with features, structures, or characteristics of one or more other embodiments without limitation.


While various embodiments herein have been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. For example, each of the disclosed embodiments may be employed in endoscopic procedures are, laparoscopic procedures, as well as open procedures, without limitations to its intended use.


It is to be understood that at least some of the figures and descriptions herein have been simplified to illustrate elements that are relevant for a clear understanding of the disclosure, while eliminating, for purposes of clarity, other elements. Those of ordinary skill in the art will recognize, however, that these and other elements may be desirable. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the disclosure, a discussion of such elements is not provided herein.


While several embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the disclosure. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosure as defined by the appended claims.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. An articulatable surgical instrument, comprising: an end effector to treat tissue, wherein the end effector comprises an ultrasonic blade;a hollow shaft extending proximally from the end effector along a longitudinal axis;a waveguide extending through the hollow shaft and acoustically coupled to the ultrasonic blade, wherein the waveguide comprises a distally positioned flange positioned within the hollow shaft proximally from the ultrasonic blade, and wherein the waveguide is held stationary at a pivot point positioned within the hollow shaft proximally from the distally positioned flange; anda reciprocatable wedge configured to interact with the distally positioned flange to cause the ultrasonic blade to pivot about the pivot point in a first direction.
  • 2. The articulatable surgical instrument of claim 1, wherein the waveguide comprises a bendable portion proximal to the ultrasonic blade and distal to the pivot point.
  • 3. The articulatable surgical instrument of claim 1, further comprising a translatable component coupled to and extending proximally from the reciprocatable wedge, wherein the translatable component is arranged to reciprocate the reciprocatable wedge distally and proximally.
  • 4. The articulatable surgical instrument of claim 1, wherein the pivot point is positioned at a first node of the waveguide at a resonant frequency of the waveguide and the distally positioned flange is positioned at a second node of the waveguide at the resonant frequency of the waveguide.
  • 5. The articulatable surgical instrument of claim 1, wherein an interior wall of the hollow shaft defines a longitudinally directed slot, and wherein at least a portion of the reciprocatable wedge is positioned within the longitudinally directed slot.
  • 6. The articulatable surgical instrument of claim 1, wherein the distally positioned flange defines at least one notch, wherein the reciprocatable wedge comprises a step corresponding to each of the at least one notch, and wherein each step is configured to ride within its corresponding notch as the reciprocatable wedge is reciprocated distally and proximally.
  • 7. The articulatable surgical instrument of claim 1, wherein the reciprocatable wedge defines: a first wedge portion comprising a first slope, wherein the first wedge portion is configured to pivot the ultrasonic blade about the pivot point by a first amount when the reciprocatable wedge is translated distally to a first position;a flat portion comprising substantially no slope, wherein the flat portion is positioned proximally from the first wedge portion, and wherein the flat portion is configured to maintain the pivot of the ultrasonic blade about the pivot point by the first amount when the reciprocatable wedge is translated distally from the first position to a second position; anda second wedge portion comprising a second slope, wherein the second wedge portion is configured to pivot the ultrasonic blade about the pivot point by an additional amount when the reciprocatable wedge is translated distally from the second position to a third position.
  • 8. The articulatable surgical instrument of claim 1, wherein the reciprocatable wedge is a first reciprocatable wedge, and wherein the articulatable surgical instrument further comprises: a second reciprocatable wedge positioned opposite the first reciprocatable wedge, wherein the second reciprocatable wedge is configured to interact with the distally positioned flange to cause the ultrasonic blade to pivot about the pivot point in a second direction.
  • 9. A surgical system, comprising: an articulatable surgical instrument, comprising: an end effector to treat tissue, wherein the end effector comprises an ultrasonic blade;a cylindrical shaft extending proximally from the end effector along a longitudinal axis;a waveguide extending through the cylindrical shaft and acoustically coupled to the ultrasonic blade, wherein the waveguide comprises a distal flange positioned proximal to the ultrasonic blade, and wherein the waveguide is held stationary at a pivot point positioned proximal to the distal flange; andat least one reciprocatable member configured to interact with the distal flange to cause the ultrasonic blade to pivot about the pivot point away from the longitudinal axis, wherein one or more of the at least one reciprocatable member comprises a reciprocatable component including at least one longitudinal slope; andan instrument mounting portion coupled to and extending proximally from the cylindrical shaft, wherein the instrument mounting portion is configured to reciprocate the at least one reciprocatable member distally and proximally.
  • 10. The surgical system of claim 9, wherein the waveguide comprises a bendable portion proximal to the ultrasonic blade and distal to the pivot point.
  • 11. The surgical system of claim 9, wherein the reciprocatable component including the at least one longitudinal slope comprises a wedge.
  • 12. The surgical system of claim 9, wherein each of the at least one longitudinal slope is configured to pivot the ultrasonic blade about the pivot point by a respective amount.
  • 13. The surgical system of claim 9, wherein the pivot point comprises a proximal flange positioned within the cylindrical shaft proximal to the distal flange.
  • 14. The surgical system of claim 13, wherein the at least one reciprocatable member comprises a second cylindrical shaft, wherein a wall of the second cylindrical shaft defines a longitudinally directed slot, and wherein at least a portion of the distal flange is positioned within the longitudinally directed slot.
  • 15. The surgical system of claim 13, wherein the proximal flange is positioned at a first node of the waveguide at a resonant frequency of the waveguide and the distal flange is positioned at a second node of the waveguide at the resonant frequency of the waveguide.
  • 16. The surgical system of claim 9, wherein the instrument mounting portion is arranged to translate at least one translatable component to reciprocate the at least one reciprocatable member.
  • 17. The surgical system of claim 16, wherein the instrument mounting portion comprises a drive mechanism to differentially translate the at least one translatable component.
  • 18. The surgical system of claim 17, wherein the drive mechanism comprises at least one of a rack and pinion gear mechanism, a worm gear mechanism, or a double cam mechanism.
  • 19. A surgical system, comprising: a surgical instrument, comprising: an end effector comprising an ultrasonic blade;a hollow shaft extending proximally from the end effector along a longitudinal axis;a waveguide extending through the hollow shaft and acoustically coupled to the ultrasonic blade, wherein the waveguide comprises a distal flange positioned within the hollow shaft proximally from the ultrasonic blade, wherein the waveguide is held stationary at a pivot point positioned within the hollow shaft proximally from the distal flange, and wherein the waveguide comprises a bendable portion proximal to the ultrasonic blade and distal to the pivot point;at least one reciprocatable component configured to interact with the distal flange to cause the ultrasonic blade to pivot about the pivot point away from the longitudinal axis, wherein each of the at least one reciprocatable components comprises a tapered face portion; anda translatable member coupled to and extending proximally from each of the at least one reciprocatable components, wherein the translatable member is arranged to reciprocate its respective reciprocatable component distally and proximally, andan instrument mounting portion coupled to and extending proximally from the hollow shaft, wherein the instrument mounting portion comprises a drive mechanism to differentially translate each translatable member.
  • 20. The surgical system of claim 19, wherein the drive mechanism comprises at least one of a rack and pinion gear mechanism, a worm gear mechanism, or a double cam mechanism.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 13/538,700, filed Jun. 29, 2012, entitled “Surgical Instruments with Articulating Shafts,” now U.S. Patent Application Publication No. 2014/0005703, the entire disclosure of which is hereby incorporated by reference herein.

US Referenced Citations (2307)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 W Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Gw Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 Van Konynenburg et al. Dec 1980 A
4281785 Brooks Aug 1981 A
4300083 Heiges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 Van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4549147 Kondo Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4694835 Strand Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5001649 Lo et al. Mar 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5075839 Fisher et al. Dec 1991 A
5084052 Jacobs Jan 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5113139 Furukawa May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5163945 Ortiz et al. Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190517 Zieve et al. Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5231989 Middleman et al. Aug 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242339 Thornton Sep 1993 A
5242460 Klein et al. Sep 1993 A
5246003 Delonzor Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5339723 Huitema Aug 1994 A
5342356 Ellman et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Lmabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5449370 Vaitekunas Sep 1995 A
5451053 Garrido Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 MacKool Apr 1996 A
5507297 Slater et al. Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 Desantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522839 Pilling Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5548286 Craven Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5577654 Bishop Nov 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5600526 Russell et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5655100 Ebrahim et al. Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5707369 Vaitekunas et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5723970 Bell Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776155 Beaupre et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797958 Yoon Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810859 Dimatteo et al. Sep 1998 A
5817033 Desantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5911699 Anis et al. Jun 1999 A
5913823 Hedberg et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954717 Behl et al. Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 Dimatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080149 Huang et al. Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6117152 Huitema Sep 2000 A
H001904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6126658 Baker Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132429 Baker Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6356224 Wohlfarth Mar 2002 B1
6358246 Behl et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6390973 Ouchi May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H002037 Yates et al. Jul 2002 H
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 Lepivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6590733 Wilson et al. Jul 2003 B1
6599288 Maguire et al. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Lshikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6819027 Saraf Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6843789 Goble Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6898536 Wiener et al. May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6923806 Hooven et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6988295 Tillim Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Lida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001379 Behl et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7025732 Thompson et al. Apr 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 Ei-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252641 Thompson et al. Aug 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297149 Vitali et al. Nov 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357802 Palanker et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7412008 Lliev Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
7422582 Malackowski et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431704 Babaev Oct 2008 B2
7431720 Pendekanti et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473145 Ehr et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beau Pre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
7535233 Kojovic et al. May 2009 B2
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7554343 Bromfield Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7601136 Akahoshi Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7621930 Houser Nov 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645240 Thompson et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655003 Lorang et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7667592 Ohyama et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678105 McGreevy et al. Mar 2010 B2
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7751115 Song Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7768510 Tsai et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7871392 Sartor Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Likura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7956620 Gilbert Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972328 Wham et al. Jul 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057468 Konesky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8118276 Sanders et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147485 Wham et al. Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8226580 Govari et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246616 Amoah et al. Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8292905 Taylor et al. Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303579 Shibata Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357149 Govari et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361066 Long et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8397971 Yates et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stahler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8460284 Aronow et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Homer Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8521331 Ltkowitz Aug 2013 B2
8523882 Huitema et al. Sep 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562600 Kirkpatrick et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8585727 Polo Nov 2013 B2
8588371 Ogawa et al. Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8597193 Grunwald et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603089 Viola Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8657489 Ladurner et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8696666 Sanai et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8771293 Surti et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8808204 Irisawa et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8876726 Amit et al. Nov 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8926620 Chasmawala et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8932282 Gilbert Jan 2015 B2
8932299 Bono et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986297 Daniel et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 Dinardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9023071 Miller et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028478 Mueller May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039731 Joseph May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044238 Orszulak Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050123 Krause et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072523 Houser et al. Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113907 Allen, IV et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9144453 Rencher et al. Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9165114 Jain et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9186796 Ogawa Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192428 Houser et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198776 Young Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216051 Fischer et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9305497 Seo et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314261 Bales, Jr. et al. Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9333034 Hancock May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9385831 Marr et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9486236 Price et al. Nov 2016 B2
9492146 Kostrzewski et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9498275 Wham et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504520 Worrell et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9522032 Behnke Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9560995 Addison et al. Feb 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9597143 Madan et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9636165 Larson et al. May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9655670 Larson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9700309 Jaworek et al. Jul 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9705456 Gilbert Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9717548 Couture Aug 2017 B2
9717552 Cosman et al. Aug 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9743946 Faller et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9770285 Zoran et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9867651 Wham Jan 2018 B2
9867670 Brannan et al. Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9872726 Morisaki Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10004526 Dycus et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028761 Leimbach et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10045794 Witt et al. Aug 2018 B2
10045810 Schall et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10085792 Johnson et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10111703 Cosman, Jr. et al. Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130412 Wham Nov 2018 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002380 Bishop Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040142667 Lochhead et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193153 Sartor et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040267311 Viola et al. Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050088285 Jei Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050262175 Lino et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050271807 Iljima et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060025757 Heim Feb 2006 A1
20060030797 Zhou et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060109061 Dobson et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060264995 Fanton et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070067123 Jungerman Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208336 Kim et al. Sep 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070265620 Kraas et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20080005213 Holtzman Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080122496 Wagner May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090182322 D'amelio et al. Jul 2009 A1
20090182331 D'amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090240244 Malis et al. Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100042093 Wham et al. Feb 2010 A9
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228250 Brogna Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110087220 Felder et al. Apr 2011 A1
20110125149 Ei-Galley et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110238010 Kirschenman et al. Sep 2011 A1
20110276049 Gerhardt Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116266 Houser et al. May 2012 A1
20120116381 Houser et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120150049 Zielinski et al. Jun 2012 A1
20120150169 Zielinksi et al. Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120253328 Cunningham et al. Oct 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130085510 Stefanchik et al. Apr 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20130338647 Bacher et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140114327 Boudreaux et al. Apr 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140276659 Juergens et al. Sep 2014 A1
20140276754 Gilbert et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20140276970 Messerly et al. Sep 2014 A1
20140330271 Dietz et al. Nov 2014 A1
20150032100 Coulson et al. Jan 2015 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150080887 Sobajima et al. Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150088178 Stulen et al. Mar 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150182276 Wiener et al. Jul 2015 A1
20150182277 Wiener et al. Jul 2015 A1
20150230853 Johnson et al. Aug 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150257780 Houser Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150272660 Boudreaux et al. Oct 2015 A1
20150313667 Allen, IV Nov 2015 A1
20150320480 Cosman, Jr. et al. Nov 2015 A1
20150320481 Cosman, Jr. et al. Nov 2015 A1
20150340586 Wiener et al. Nov 2015 A1
20160030076 Faller et al. Feb 2016 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160051317 Boudreaux Feb 2016 A1
20160058492 Yates et al. Mar 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160128762 Harris et al. May 2016 A1
20160144204 Akagane May 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175024 Yates et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160175032 Yang Jun 2016 A1
20160199123 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160228171 Boudreaux Aug 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270840 Yates et al. Sep 2016 A1
20160270841 Strobl et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160287311 Friedrichs Oct 2016 A1
20160296249 Robertson Oct 2016 A1
20160296250 Olson et al. Oct 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296268 Gee et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20160317217 Batross et al. Nov 2016 A1
20160338726 Stulen et al. Nov 2016 A1
20160346001 Vakharia et al. Dec 2016 A1
20160367273 Robertson et al. Dec 2016 A1
20160367281 Gee et al. Dec 2016 A1
20160374708 Wiener et al. Dec 2016 A1
20160374709 Timm et al. Dec 2016 A1
20160374752 Hancock et al. Dec 2016 A1
20170000512 Conlon et al. Jan 2017 A1
20170000513 Conlon et al. Jan 2017 A1
20170000516 Stulen et al. Jan 2017 A1
20170000541 Yates et al. Jan 2017 A1
20170000542 Yates et al. Jan 2017 A1
20170000553 Wiener et al. Jan 2017 A1
20170000554 Yates et al. Jan 2017 A1
20170056056 Wiener et al. Mar 2017 A1
20170056058 Voegele et al. Mar 2017 A1
20170086876 Wiener et al. Mar 2017 A1
20170086908 Wiener et al. Mar 2017 A1
20170086909 Yates et al. Mar 2017 A1
20170086910 Wiener et al. Mar 2017 A1
20170086911 Wiener et al. Mar 2017 A1
20170086912 Wiener et al. Mar 2017 A1
20170086913 Yates et al. Mar 2017 A1
20170086914 Wiener et al. Mar 2017 A1
20170090507 Wiener et al. Mar 2017 A1
20170095267 Messerly et al. Apr 2017 A1
20170105757 Weir et al. Apr 2017 A1
20170105782 Scheib et al. Apr 2017 A1
20170105786 Scheib et al. Apr 2017 A1
20170105791 Yates et al. Apr 2017 A1
20170143371 Witt et al. May 2017 A1
20170143877 Witt et al. May 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170189096 Danziger et al. Jul 2017 A1
20170189101 Yates et al. Jul 2017 A1
20170196586 Witt et al. Jul 2017 A1
20170196587 Witt et al. Jul 2017 A1
20170202570 Shelton, IV et al. Jul 2017 A1
20170202571 Shelton, IV et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202592 Shelton, IV et al. Jul 2017 A1
20170202593 Shelton, IV et al. Jul 2017 A1
20170202594 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202596 Shelton, IV et al. Jul 2017 A1
20170202597 Shelton, IV et al. Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20170202599 Shelton, IV et al. Jul 2017 A1
20170202605 Shelton, IV et al. Jul 2017 A1
20170202607 Shelton, IV et al. Jul 2017 A1
20170202608 Shelton, IV et al. Jul 2017 A1
20170202609 Shelton, IV et al. Jul 2017 A1
20170207467 Shelton, IV et al. Jul 2017 A1
20170209167 Nield Jul 2017 A1
20170238991 Worrell et al. Aug 2017 A1
20170245875 Timm et al. Aug 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312016 Strobl et al. Nov 2017 A1
20170319228 Worrell et al. Nov 2017 A1
20170319265 Yates et al. Nov 2017 A1
20170348064 Stewart et al. Dec 2017 A1
20180014872 Dickerson Jan 2018 A1
20180028257 Yates et al. Feb 2018 A1
20180036061 Yates et al. Feb 2018 A1
20180036065 Yates et al. Feb 2018 A1
20180042658 Shelton, IV et al. Feb 2018 A1
20180064961 Wiener et al. Mar 2018 A1
20180098785 Price et al. Apr 2018 A1
20180098808 Yates et al. Apr 2018 A1
20180116706 Wiener et al. May 2018 A9
20180146976 Clauda et al. May 2018 A1
20180177545 Boudreaux et al. Jun 2018 A1
20180235691 Voegele et al. Aug 2018 A1
20180280083 Parihar et al. Oct 2018 A1
Foreign Referenced Citations (438)
Number Date Country
2003241752 Sep 2003 AU
2535467 Apr 1993 CA
1233944 Nov 1999 CN
1253485 May 2000 CN
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1640365 Jul 2005 CN
1694649 Nov 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
1951333 Apr 2007 CN
101035482 Sep 2007 CN
101040799 Sep 2007 CN
101396300 Apr 2009 CN
101467917 Jul 2009 CN
101474081 Jul 2009 CN
101674782 Mar 2010 CN
101883531 Nov 2010 CN
102160045 Aug 2011 CN
202027624 Nov 2011 CN
102834069 Dec 2012 CN
101313865 Jan 2013 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
4323585 Jan 1995 DE
19608716 Apr 1997 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0342448 Nov 1989 EP
0443256 Aug 1991 EP
0456470 Nov 1991 EP
0238667 Feb 1993 EP
0340803 Aug 1993 EP
0598976 Jun 1994 EP
0630612 Dec 1994 EP
0424685 May 1995 EP
0677275 Oct 1995 EP
0482195 Jan 1996 EP
0695535 Feb 1996 EP
0705571 Apr 1996 EP
0741996 Nov 1996 EP
0612570 Jun 1997 EP
0557806 May 1998 EP
0640317 Sep 1999 EP
1108394 Jun 2001 EP
1138264 Oct 2001 EP
0908148 Jan 2002 EP
1229515 Aug 2002 EP
0722696 Dec 2002 EP
1285634 Feb 2003 EP
0908155 Jun 2003 EP
0705570 Apr 2004 EP
0765637 Jul 2004 EP
0870473 Sep 2005 EP
0624346 Nov 2005 EP
1594209 Nov 2005 EP
1199044 Dec 2005 EP
1609428 Dec 2005 EP
1199043 Mar 2006 EP
1293172 Apr 2006 EP
0875209 May 2006 EP
1433425 Jun 2006 EP
1256323 Aug 2006 EP
1698289 Sep 2006 EP
1704824 Sep 2006 EP
1749479 Feb 2007 EP
1767157 Mar 2007 EP
1254637 Aug 2007 EP
1815950 Aug 2007 EP
1839599 Oct 2007 EP
1844720 Oct 2007 EP
1862133 Dec 2007 EP
1875875 Jan 2008 EP
1878399 Jan 2008 EP
1915953 Apr 2008 EP
1532933 May 2008 EP
1199045 Jun 2008 EP
1707143 Jun 2008 EP
1943957 Jul 2008 EP
1964530 Sep 2008 EP
1972264 Sep 2008 EP
1974771 Oct 2008 EP
1435852 Dec 2008 EP
1498082 Dec 2008 EP
1707131 Dec 2008 EP
1477104 Jan 2009 EP
2014218 Jan 2009 EP
1849424 Apr 2009 EP
2042112 Apr 2009 EP
2042117 Apr 2009 EP
2060238 May 2009 EP
1832259 Jun 2009 EP
2074959 Jul 2009 EP
1810625 Aug 2009 EP
2090256 Aug 2009 EP
2092905 Aug 2009 EP
2105104 Sep 2009 EP
1747761 Oct 2009 EP
2106758 Oct 2009 EP
2111813 Oct 2009 EP
2131760 Dec 2009 EP
1769766 Feb 2010 EP
2151204 Feb 2010 EP
2153791 Feb 2010 EP
2200145 Jun 2010 EP
1214913 Jul 2010 EP
2238938 Oct 2010 EP
2243439 Oct 2010 EP
2298154 Mar 2011 EP
2305144 Apr 2011 EP
1510178 Jun 2011 EP
1946708 Jun 2011 EP
2335630 Jun 2011 EP
1502551 Jul 2011 EP
1728475 Aug 2011 EP
2353518 Aug 2011 EP
2361562 Aug 2011 EP
2365608 Sep 2011 EP
2420197 Feb 2012 EP
2422721 Feb 2012 EP
1927321 Apr 2012 EP
2436327 Apr 2012 EP
2529681 Dec 2012 EP
1767164 Jan 2013 EP
2316359 Mar 2013 EP
2090238 Apr 2013 EP
2578172 Apr 2013 EP
1586275 May 2013 EP
1616529 Sep 2013 EP
1997438 Nov 2013 EP
2668922 Dec 2013 EP
2508143 Feb 2014 EP
2583633 Oct 2014 EP
2076195 Dec 2015 EP
2113210 Mar 2016 EP
2510891 Jun 2016 EP
2227155 Jul 2016 EP
2859858 Dec 2016 EP
2115068 Jun 1998 ES
1482943 Aug 1977 GB
2032221 Apr 1980 GB
2317566 Apr 1998 GB
2379878 Nov 2004 GB
2472216 Feb 2011 GB
2447767 Aug 2011 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
562227343 Oct 1987 JP
562292153 Dec 1987 JP
562292154 Dec 1987 JP
563109386 May 1988 JP
563315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Dec 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H0425707 May 1992 JP
H04150847 May 1992 JP
H04152942 May 1992 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H06217988 Aug 1994 JP
H06507081 Aug 1994 JP
H 07500514 Jan 1995 JP
H07508910 Oct 1995 JP
H07308323 Nov 1995 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336544 Dec 1996 JP
H08336545 Dec 1996 JP
H09503146 Mar 1997 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105237 Jan 1998 JP
H10295700 Nov 1998 JP
H11501543 Feb 1999 JP
H11128238 May 1999 JP
H11192235 Jul 1999 JP
H11253451 Sep 1999 JP
H11318918 Nov 1999 JP
2000041991 Feb 2000 JP
2000070279 Mar 2000 JP
2000210299 Aug 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2001029353 Feb 2001 JP
2001502216 Feb 2001 JP
2001309925 Nov 2001 JP
2002059380 Feb 2002 JP
2002177295 Jun 2002 JP
2002186901 Jul 2002 JP
2002204808 Jul 2002 JP
2002238919 Aug 2002 JP
2002263579 Sep 2002 JP
2002301086 Oct 2002 JP
2002306504 Oct 2002 JP
2002330977 Nov 2002 JP
2002542690 Dec 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003510158 Mar 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003530921 Oct 2003 JP
2003310627 Nov 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2005003496 Jan 2005 JP
2005027026 Jan 2005 JP
2005040222 Feb 2005 JP
2005066316 Mar 2005 JP
2005074088 Mar 2005 JP
2005507679 Mar 2005 JP
2005534451 Nov 2005 JP
2005337119 Dec 2005 JP
2006006410 Jan 2006 JP
2006068396 Mar 2006 JP
2006075376 Mar 2006 JP
2006081664 Mar 2006 JP
2006114072 Apr 2006 JP
2006512149 Apr 2006 JP
2006116194 May 2006 JP
2006158525 Jun 2006 JP
2006217716 Aug 2006 JP
2006218296 Aug 2006 JP
2006288431 Oct 2006 JP
2007050181 Mar 2007 JP
2007-524459 Aug 2007 JP
2007229454 Sep 2007 JP
2007527747 Oct 2007 JP
2007296369 Nov 2007 JP
200801876 Jan 2008 JP
2008018226 Jan 2008 JP
200833644 Feb 2008 JP
2008036390 Feb 2008 JP
2008508065 Mar 2008 JP
2008119250 May 2008 JP
2008515562 May 2008 JP
2008521503 Jun 2008 JP
2008188160 Aug 2008 JP
D1339835 Aug 2008 JP
2008212679 Sep 2008 JP
2008536562 Sep 2008 JP
2008284374 Nov 2008 JP
2009511206 Mar 2009 JP
2009082711 Apr 2009 JP
2009517181 Apr 2009 JP
4262923 May 2009 JP
2009523567 Jun 2009 JP
2009148557 Jul 2009 JP
2009236177 Oct 2009 JP
2009254819 Nov 2009 JP
2010000336 Jan 2010 JP
2010009686 Jan 2010 JP
2010514923 May 2010 JP
2010121865 Jun 2010 JP
2010534522 Nov 2010 JP
2010540186 Dec 2010 JP
2011505198 Feb 2011 JP
2012075899 Apr 2012 JP
2012071186 Apr 2012 JP
2012235658 Nov 2012 JP
5208761 Jun 2013 JP
5714508 May 2015 JP
2015515339 May 2015 JP
5836543 Dec 2015 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2304934 Aug 2007 RU
2405603 Dec 2010 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9222259 Dec 1992 WO
WO-9307817 Apr 1993 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9320877 Oct 1993 WO
WO-9322973 Nov 1993 WO
WO-9400059 Jan 1994 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9509572 Apr 1995 WO
WO-9510978 Apr 1995 WO
WO-9534259 Dec 1995 WO
WO-9630885 Oct 1996 WO
WO-9635382 Nov 1996 WO
WO-9639086 Dec 1996 WO
WO-9710764 Mar 1997 WO
WO-9800069 Jan 1998 WO
WO-9816156 Apr 1998 WO
WO-9826739 Jun 1998 WO
WO-9835621 Aug 1998 WO
WO-9837815 Sep 1998 WO
WO-9840020 Sep 1998 WO
WO-9847436 Oct 1998 WO
WO-9857588 Dec 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-9940857 Aug 1999 WO
WO-9940861 Aug 1999 WO
WO-9952489 Oct 1999 WO
WO-0024330 May 2000 WO
WO-0024331 May 2000 WO
WO-0025691 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0074585 Dec 2000 WO
WO-0124713 Apr 2001 WO
WO-0128444 Apr 2001 WO
WO-0154590 Aug 2001 WO
WO-0167970 Sep 2001 WO
WO-0172251 Oct 2001 WO
WO-0195810 Dec 2001 WO
WO-0224080 Mar 2002 WO
WO-0238057 May 2002 WO
WO-02062241 Aug 2002 WO
WO-02080797 Oct 2002 WO
WO-03001986 Jan 2003 WO
WO-03013374 Feb 2003 WO
WO-03020339 Mar 2003 WO
WO-03028541 Apr 2003 WO
WO-03030708 Apr 2003 WO
WO-03068046 Aug 2003 WO
WO-03082133 Oct 2003 WO
WO-2004011037 Feb 2004 WO
WO-2004012615 Feb 2004 WO
WO-2004026104 Apr 2004 WO
WO-2004032754 Apr 2004 WO
WO-2004032762 Apr 2004 WO
WO-2004032763 Apr 2004 WO
WO-2004037095 May 2004 WO
WO-2004060141 Jul 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2004112618 Dec 2004 WO
WO-2005052959 Jun 2005 WO
WO-2005117735 Dec 2005 WO
WO-2005122917 Dec 2005 WO
WO-2006012797 Feb 2006 WO
WO-2006021269 Mar 2006 WO
WO-2006036706 Apr 2006 WO
WO-2006042210 Apr 2006 WO
WO-2006055166 May 2006 WO
WO-2006058223 Jun 2006 WO
WO-2006063199 Jun 2006 WO
WO-2006083988 Aug 2006 WO
WO-2006101661 Sep 2006 WO
WO-2006119139 Nov 2006 WO
WO-2006119376 Nov 2006 WO
WO-2006129465 Dec 2006 WO
WO-2007008703 Jan 2007 WO
WO-2007008710 Jan 2007 WO
WO-2007038538 Apr 2007 WO
WO-2007040818 Apr 2007 WO
WO-2007047380 Apr 2007 WO
WO-2007047531 Apr 2007 WO
WO-2007056590 May 2007 WO
WO-2007087272 Aug 2007 WO
WO-2007089724 Aug 2007 WO
WO-2007143665 Dec 2007 WO
WO-2008016886 Feb 2008 WO
WO-2008020964 Feb 2008 WO
WO-2008042021 Apr 2008 WO
WO-2008045348 Apr 2008 WO
WO-2008049084 Apr 2008 WO
WO-2008051764 May 2008 WO
WO-2008089174 Jul 2008 WO
WO-2008099529 Aug 2008 WO
WO-2008101356 Aug 2008 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2009010565 Jan 2009 WO
WO-2009018067 Feb 2009 WO
WO-2009018406 Feb 2009 WO
WO-2009022614 Feb 2009 WO
WO-2009027065 Mar 2009 WO
WO-2009036818 Mar 2009 WO
WO-2009039179 Mar 2009 WO
WO-2009046234 Apr 2009 WO
WO-2009059741 May 2009 WO
WO-2009073402 Jun 2009 WO
WO-2009082477 Jul 2009 WO
WO-2009088550 Jul 2009 WO
WO-2009120992 Oct 2009 WO
WO-2009141616 Nov 2009 WO
WO-2009149234 Dec 2009 WO
WO-2010017149 Feb 2010 WO
WO-2010017266 Feb 2010 WO
WO-2010068783 Jun 2010 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044338 Apr 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2011084768 Jul 2011 WO
WO-2011089717 Jul 2011 WO
WO-2011100321 Aug 2011 WO
WO-2011144911 Nov 2011 WO
WO-2012044597 Apr 2012 WO
WO-2012044606 Apr 2012 WO
WO-2012061638 May 2012 WO
WO-2012061722 May 2012 WO
WO-2012128362 Sep 2012 WO
WO-2012135705 Oct 2012 WO
WO-2012135721 Oct 2012 WO
WO-2012150567 Nov 2012 WO
WO-2012166510 Dec 2012 WO
WO-2013018934 Feb 2013 WO
WO-2013034629 Mar 2013 WO
WO-2013062978 May 2013 WO
WO-2013102602 Jul 2013 WO
WO-2013154157 Oct 2013 WO
WO-2014092108 Jun 2014 WO
WO-2015197395 Dec 2015 WO
WO-2016009921 Jan 2016 WO
Non-Patent Literature Citations (59)
Entry
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Ast Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
Covidien Brochure, [Value Analysis Brief], LigaSure AdvanceTM Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure AtlasTM Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, LigaSure ImpactTM Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, the LigaSure PreciseTM Instrument, dated Mar. 2011 (2 pages).
Covidien Brochure, the LigaSureTM 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Dean, D. A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(34), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Douglas, S. C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pp., accessed Mar. 31, 2014 at http://www. erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Fowler, K. R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekaletorg/features/doe/2001-11/d1-mrs062802.php (Nov. 1, 2001).
Glaser and Subak-Sharpe,lntegrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: Url: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pp.).
Graff, K. F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pp. (Jan. 1997), Url: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=Ml&sp=1 . . ., accessed Aug. 25, 2009.
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
http://www.4-traders.com/Johnson-Johnson-4832/news/Johnson-Johnson-Ethicon-E.
http://www.apicalinstr.com/generators.htm.
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724.
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html.
http://www.megadyne.com/es_generator.php.
http://www.valleylab.com/product/es/generators/index.html.
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved 11 Jul. 2016, backdated to 11 Nov. 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636640 (Dec. 1973).
Hormann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book--not attached).
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pgs. 13-89, 199-293, 335393, 453-496, 535-549.
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
LaCourse, J. R.; Vogt, M. C.; Miller, W. T., III; Selikowitz, S. M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
National Semiconductors Temperature Sensor Handbook - http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, a. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, Ca, pp. 353-360, Mar. 2002.
Sullivan, “Cost-Constrained Selection of Strand Diameter and Noumber in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Sullivan, “Optimal Choice for No. Of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pp.).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
Weir, C. E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the Asme, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb., 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Related Publications (1)
Number Date Country
20160374712 A1 Dec 2016 US
Divisions (1)
Number Date Country
Parent 13538700 Jun 2012 US
Child 15212742 US