The present disclosure relates generally to surgical instruments suitable for sealing tissue and, more particularly, relates to surgical instruments comprising electrodes which are suitable for sealing tissue.
In various open, endoscopic, and/or laparoscopic surgeries, for example, it may be desirable to coagulate, seal, and/or fuse tissue. One method of sealing tissue relies upon the application of energy, such as electrical energy, for example, to tissue captured or clamped within an end effector or an end-effector assembly of a surgical instrument in order to cause thermal effects within the tissue. Various mono-polar and bi-polar radio frequency (Rf) surgical instruments and surgical techniques have been developed for such purposes. In general, the delivery of Rf energy to the captured tissue can elevate the temperature of the tissue and, as a result, the energy can at least partially denature proteins within the tissue. Such proteins, like collagen, for example, can be denatured into a proteinaceous amalgam that intermixes and fuses, or seals, together as the proteins renature. As the treated region heals over time, this biological seal may be reabsorbed by the body's wound healing process.
The foregoing discussion is intended only to illustrate various aspects of the related art and should not be taken as a disavowal of claim scope.
In one non-limiting embodiment, the present disclosure, in part, is directed to a surgical stapling assembly configured to be used to form a tissue seal comprising an arcuate portion. The surgical stapling assembly comprises a shaft comprising a proximal end and a distal end, a handle portion extending from the proximal end of the shaft, an actuation member operably engaged with the handle portion, and an end-effector extending from the distal end of the shaft. The end-effector comprises a first portion comprising an aperture extending through the first portion. A portion of the actuation member is configured to extend into the aperture. The first portion comprises a first face at least partially surrounding the aperture, a staple cavity defined in the first face, a staple removably positioned within the staple cavity, and a first electrode positioned one of on and proximate to the first face, wherein the first electrode comprises a first arcuate portion. The end-effector comprises a second portion configured to be engaged with the actuation member. The second portion is movable relative to the first portion when engaged with the actuation member to compress tissue positioned intermediate the first portion and the second portion. The second portion comprises a second face, wherein the second face substantially opposes the first face when the second portion is engaged with the actuation member. The second portion comprises an anvil pocket defined in the second face and a second electrode positioned one of on and proximate to the second face. The second electrode comprises a second arcuate portion. The first electrode has a different polarity than the second electrode.
In one non-limiting embodiment, the present disclosure, in part, is directed to a surgical instrument configured to be used to form a seal comprising an arcuate portion in tissue. The surgical instrument comprises a shaft comprising a proximal end and a distal end, a handle portion extending from the proximal end of the shaft, the handle portion comprising a trigger, an actuation member operably engaged with the handle portion, and an end-effector extending from the distal end of the shaft. The end-effector comprises a first portion comprising an aperture extending through the first portion. A portion of the actuation member is configured to extend into the aperture. The end-effector comprises a first face at least partially surrounding the aperture and a first electrode positioned one of on and proximate to the first face. The first electrode comprises an arcuate portion. The end-effector comprises a second portion configured to be engaged with the actuation member. The second portion is movable relative to the first portion when engaged with the actuation member to compress tissue positioned intermediate the first portion and the second portion. The second portion comprises a second face. The second face substantially opposes the first face when the second portion is engaged with the actuation member. The second portion comprises a second electrode having a different polarity than the first electrode. The end-effector comprises a positive temperature coefficient material positioned intermediate the first electrode and the second electrode. The positive temperature coefficient material is configured to selectively limit energy flow between the first electrode and the second electrode based on the temperature of the positive temperature coefficient material.
In one non-limiting embodiment, the present disclosure, in part, is directed to a surgical stapler configured to be used to form a substantially circular seal in tissue. The surgical stapler comprises a shaft comprising a proximal end, a distal end, and an electrically-conductive member extending intermediate the proximal end and the distal end. The surgical stapler comprises a handle portion extending from the proximal end of the shaft. The handle portion comprises a trigger. The surgical stapler comprises an actuation member operably engaged with the handle portion and an end-effector extending from the distal end of the shaft. The end-effector comprises a first portion comprising an aperture extending through the first portion. A portion of the actuation member is configured to extend into the aperture. The first portion comprises a first face at least partially surrounding the aperture, a staple cavity defined in the first face, and a first electrode positioned one of on and proximate to the first face. The first electrode forms a substantially circular shape. The end-effector comprises a second portion configured to be engaged with the actuation member. The second portion is movable relative to the first portion when engaged with the actuation member to capture tissue positioned intermediate the first portion and the second portion. The second portion comprises a second face and a second electrode. The first electrode has a different polarity than the second electrode. The electrically-conductive member is configured to be placed in electrical communication with one of the first electrode and the second electrode.
The foregoing discussion should not be taken as a disavowal of claim scope.
Various features of the embodiments described herein are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with the advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows.
a is a perspective view of an end-effector in accordance with one non-limiting embodiment of the present disclosure;
b is a cross-sectional view of the end-effector of
a is a perspective view of an end-effector in accordance with one non-limiting embodiment of the present disclosure;
b is a cross-sectional view of the end-effector of
a is a perspective view of an end-effector in accordance with one non-limiting embodiment of the present disclosure;
b is a cross-sectional view of the end-effector of
a is a perspective view of an end-effector in accordance with one non-limiting embodiment of the present disclosure;
b is a cross-sectional view of the end-effector of
a is a perspective view of an end-effector in accordance with one non-limiting embodiment of the present disclosure;
b is a cross-sectional view of the end-effector of
Corresponding reference characters indicate corresponding parts throughout the several views. The example embodiments set out herein illustrate various embodiments of the present disclosure, in one form, and such example embodiments are not to be construed as limiting the scope of the present disclosure in any manner.
Various embodiments are directed to apparatuses, systems, and methods for the treatment of tissue. Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. It will be understood by those skilled in the art, however, that the embodiments may be practiced without such specific details. In other instances, well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. Those of ordinary skill in the art will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” “certain embodiments,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” “in certain embodiments,” or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation.
The entire disclosures of the following non-provisional United States patents are hereby incorporated by reference herein:
U.S. Pat. No. 7,381,209 to Truckai et al., entitled ELECTROSURGICAL INSTRUMENT, which issued on Jun. 3, 2008;
U.S. Pat. No. 7,354,440 to Truckai et al., entitled ELECTROSURGICAL INSTRUMENT AND METHOD OF USE, which issued on Apr. 8, 2008;
U.S. Pat. No. 7,311,709 to Truckai et al., entitled ELECTROSURGICAL INSTRUMENT AND METHOD OF USE, which issued on Dec. 25, 2007;
U.S. Pat. No. 7,309,849 to Truckai et al., entitled POLYMER COMPOSITIONS EXHIBITING A PTC PROPERTY AND METHODS OF FABRICATION, which issued on Dec. 18, 2007;
U.S. Pat. No. 7,220,951 to Truckai et al., entitled SURGICAL SEALING SURFACES AND METHODS OF USE, which issued on May 22, 2007;
U.S. Pat. No. 7,189,233 to Truckai et al., entitled ELECTROSURGICAL INSTRUMENT, which issued on Mar. 13, 2007;
U.S. Pat. No. 7,186,253 to Truckai et al., entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, which issued on Mar. 6, 2007;
U.S. Pat. No. 7,169,146 to Truckai et al., entitled ELECTROSURGICAL PROBE AND METHOD OF USE, which issued on Jan. 30, 2007;
U.S. Pat. No. 7,125,409 to Truckai et al., entitled ELECTROSURGICAL WORKING END FOR CONTROLLED ENERGY DELIVERY, which issued on Oct. 24, 2006; and
U.S. Pat. No. 7,112,201 to Truckai et al., entitled ELECTROSURGICAL INSTRUMENT AND METHOD OF USE, which issued on Sep. 26, 2006.
Various embodiments of apparatuses, systems, and methods of the present disclosure relate to creating thermal “welds,” “seals,” and/or “fusion” within native tissue volumes. These terms may be used interchangeably herein to describe thermal treatments of a targeted tissue volume that result in a substantially uniform fused-together tissue mass, for example, in welding blood vessels that exhibit substantial burst strength immediately post-treatment. The strength of such welds is particularly useful for (i) permanently sealing blood vessels in vessel transection procedures; (ii) welding organ margins in resection procedures; (iii) welding other anatomic ducts wherein permanent closure is required; and also (iv) for performing vessel anastomosis, vessel closure or other procedures that join together anatomic structures or portions thereof. The sealing, welding, or fusion of tissue as disclosed herein is to be distinguished from “coagulation”, “hemostasis” and other similar descriptive terms that generally relate to the collapse and occlusion of blood flow within small blood vessels or vascularized tissue. For example, any surface application of thermal energy can cause coagulation or hemostasis—but does not fall into the category of “sealing” as the term is used herein. Such surface coagulation may not create a seal that provides any substantial strength in the treated tissue.
At the molecular level, the phenomena of truly “sealing” tissue as disclosed herein may result from the thermally-induced denaturation of collagen and other protein molecules in a targeted tissue volume to create a transient liquid or gel-like proteinaceous amalgam. A selected energy density can be provided in the targeted tissue to cause hydrothermal breakdown of intra- and intermolecular hydrogen crosslinks in collagen and other proteins. The denatured amalgam can be maintained at a selected level of hydration—without desiccation—for a selected time interval which can be very brief. The targeted tissue volume can be maintained under a selected very high level of mechanical compression to insure that the unwound strands of the denatured proteins are in close proximity to allow their intertwining and entanglement. Upon thermal relaxation, the intermixed amalgam results in protein entanglement as re-crosslinking or renaturation occurs to thereby cause a uniform fused-together mass.
Various embodiments disclosed herein provide electrosurgical jaw structures or portions adapted for transecting captured tissue between the jaws or portions and for contemporaneously sealing the captured tissue margins with controlled application of RF energy or other energy. The jaw structures can comprise a scoring or cutting element which can cut or score tissue independently of the tissue capturing and sealing functions of the jaw structures or portions. The jaw structures or portions can comprise first and second opposing jaws that carry fuses, such as positive temperature coefficient materials, for example, for modulating RF energy or other energy delivery to the engaged tissue.
The embodiments of the devices described herein may be introduced inside a patient using minimally invasive or open surgical techniques. In some instances, it may be advantageous to introduce the devices inside the patient using a combination of minimally invasive and open surgical techniques. Minimally invasive techniques may provide more accurate and effective access to the treatment region for diagnostic and treatment procedures. To reach internal treatment regions within the patient, the devices described herein may be inserted through natural openings of the body such as the mouth, anus, and/or vagina, for example. In some circumstances, the devices can then access various tissue treatment regions translumenally. In other instances, the devices may not access the various tissue treatment regions translumenally. In any event, such procedures can be combined with laparoscopic, percutaneous, and/or open approaches. Minimally invasive procedures performed by the introduction of various medical devices into the patient through a natural opening of the patient are known in the art as NOTES™ procedures. Some portions of the devices may be introduced to the tissue treatment region percutaneously or through small—keyhole—incisions. Laparoscopic approaches can comprise Single Site Laparoscopy (SSL), which can involve a single trocar usually placed in the umbilicus containing multiple ports. SSL can also include the placement of multiple trocars in a single location to minimize scarring. In one embodiment, these SSL approaches may be combined with most NOTES™ procedures, natural orifice procedures, and/or percutaneous procedures, for example. SSL can also be referred to as Single Incision Laparoscopic Surgery (SILS™) and Single Port Access (SPA). Robotic surgical approaches can also be used with the embodiments of the present disclosure.
Endoscopic minimally invasive surgical and diagnostic medical procedures can be used to evaluate and treat internal organs by inserting a small tube into the body. The endoscope may have a rigid or a flexible tube. A flexible endoscope may be introduced either through a natural body opening (e.g., mouth, anus, and/or vagina) or via a trocar through a relatively small—keyhole—incision incisions (usually 0.5-1.5 cm). The endoscope can be used to observe surface conditions of internal organs, including abnormal or diseased tissue such as lesions and other surface conditions and capture images for visual inspection and photography. The endoscope may be adapted and configured with working channels for introducing medical instruments to the treatment region for taking biopsies, retrieving foreign objects, and/or performing surgical procedures.
Certain example embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting example embodiments and that the scope of the various embodiments of the present disclosure is defined solely by the claims. The features illustrated or described in connection with one example embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure.
In various embodiments, surgical instruments, such as circular staplers, for example, have been developed for use in a surgical procedure known as an anastomosis. Circular staplers useful for performing an anastomosis are disclosed, for example, in U.S. Pat. No. 5,104,025 to Main et al. entitled INTRALUMINAL ANASTOMOTIC SURGICAL STAPLER WITH DETACHED ANVIL, which was issued on Apr. 14, 1992, U.S. Pat. No. 5,205,459 to Brinkerhoff et al., entitled SURGICAL ANASTOMOSIS STAPLING INSTRUMENT, which was issued on Apr. 27, 1993, U.S. Pat. No. 5,285,945 to Brinkerhoff et al., entitled SURGICAL ANASTOMOSIS STAPLING INSTRUMENT, which was issued on Feb. 15, 1994, and U.S. Pat. No. 5,309,927 to Welch, entitled CIRCULAR STAPLER TISSUE RETENTION SPRING METHOD, which was issued on May 10, 1994, and in U.S. patent application Ser. No. 12/408,905 to Measamer et al., entitled CIRCULAR SURGICAL STAPLING INSTRUMENT WITH ANVIL LOCKING SYSTEM, filed on Mar. 23, 2009, which are each herein incorporated by reference in their respective entireties.
One form of an anastomosis comprises a surgical procedure where two tubular sections of intestine are joined together after a diseased portion of the intestine has been excised. The procedure usually requires re-joining ends of the two tubular sections together to form a continuous tubular pathway. Previously, this surgical procedure was a laborious and time consuming operation. In most instances, the surgeon had to precisely cut and align the ends of the two tubular sections of intestine and maintain the alignment while joining the ends with numerous suture stitches. The development of surgical instruments, such as circular staplers, for example, has greatly simplified the anastomosis procedure and has also decreased the time required to perform an anastomosis.
In one embodiment, referring to
In one embodiment, the handle portion 18 can comprise a trigger 22 operably engaged with an actuation mechanism 24. The actuation mechanism 24 can extend from the handle portion 18 to or proximate to a portion of the end-effector 20. In various embodiments, the actuation mechanism 24, or portions thereof, can be rigid, semi-rigid, or flexible. In an embodiment, where the actuation mechanism 24 is flexible, or comprises flexible portions, the material can still be rigid enough to drive a staple driver 42 and/or a cutting member 40 distally within the end-effector 20. The trigger 22 can be moved toward the handle portion 18 in the direction indicated generally by arrow 23 to cause the actuation mechanism 24 to move distally and fire or drive staples positioned within a portion of the end-effector 20 distally into tissue compressed within the end-effector 20, as described in further detail below. When the trigger 22 is moved toward the handle portion 18, thereby moving the actuation mechanism 24 distally, the cutting member 40 can also be moved distally to incise tissue compressed within the end-effector 20, as described in further detail below. In one embodiment, the actuation mechanism 24 or portions of the end-effector 20 can be steerable, for example.
In one embodiment, referring again to
In one embodiment, when the projection 32 of the second portion 28 is operably engaged with the actuation member 31, the second portion 28 can be moved relative (e.g., distal/proximal movement) to the first portion 26 using an adjustment knob 34 located on a proximal portion of the handle portion 18, for example. The adjustment knob 34 can be operably engaged with the actuation member 31 such that as the adjustment knob 34 is moved or rotated, the actuation member 31 can move distally and/or proximally within the surgical instrument 10 (i.e., rotational motion of the adjustment knob 34 is converted into linear motion of the actuation member 31). In one embodiment, referring to
In one embodiment, referring to
In one embodiment, the adjustment knob 34 can be fixedly attached to the proximal end of the threaded rod 36 such that as the adjustment knob 34 is rotated in the clockwise direction, for example, the threaded rod 36 can also be rotated in the clockwise direction. Likewise, as the adjustment knob 34 is rotated in the counter-clockwise direction, the threaded rod 36 can also be rotated in the counter-clockwise direction. In one embodiment, when the adjustment knob 34 is rotated in the clockwise direction, the adjustment tube 37 can be moved distally and when the adjustment knob 34 is rotated in the counter-clockwise direction the adjustment tube 37 can be moved proximally. Such movement can adjust the distance between the first portion 26 and the second portion 28 when the portion of the projection 32 is engaged with the distal end or portion of the adjustment tube 37. In various embodiments, the adjustment tube 37 can comprise a flexible, a semi-rigid, and/or a rigid material, for example. In one embodiment, although not illustrated, an adjustment tube may extend fully through the aperture 30 in the first portion 26 such that it can be engaged with the second portion 28. In such an embodiment, the second portion 28 of the end-effector 20 may not comprise a projection.
In one embodiment, the adjustment knob 34 and the actuation member 31 can be configured to move the second portion 28 to at least one predetermined distance from the first portion 26 to cause tissue positioned between the first portion 26 and the second portion 28 to be compressed or clamped. In various embodiments, the adjustment knob 34, during rotation, can encounter a stop (not illustrated) when the predetermined distance or a minimum distance between the second portion 28 and the first portion 26 is reached so as to not allow a surgeon to over compress tissue positioned intermediate the first portion 26 and the second portion 28. In one embodiment, a tissue compression indicator 27 can be provided on the surgical instrument 10. The tissue compression indicator 27 can be operably or electronically linked to the adjustment knob 34, the actuation member 31, or the end-effector 20 such that the tissue compression indicator 27 can provide the surgeon with visual, audible, or tactile feedback of the tissue compression or the distance between the first portion 26 or the second portion 28. In one embodiment, the tissue compression indicator 27 can indicate to a surgeon the degree to which staple legs will be deformed, for example, based on the distance between the first portion 26 and the second portion 28. Various embodiments of such tissue compression indicators are known to those of skill in the art. In one embodiment, the projected tissue compression and projected staple leg deformation can be measured by measuring the impedance of the tissue across the thickness of the tissue, for example.
In one embodiment, referring to
In one embodiment, the trigger 22 can be normally-biased away from the handle portion 18 such that after the proximal portion of the trigger 22 is pulled toward the handle portion 18 and the force applied by the surgeon to the trigger 22 is released, the trigger 22 can again be biased into the position shown in
In one embodiment, referring to
In various embodiments, the first portion 26 can also comprise the cutting member 40 and the staple driver member 42. The staple driver member 42, upon a force applied to it by the actuation mechanism 24, can drive the cutting member 40 and the staples 38 distally into tissue positioned intermediate the first portion 26 and the second portion 28. In one embodiment, the staple driver member 42 can be configured to move the one or more staples 38 between a first stored position in which the staples 38 are at least partially positioned within the staple cavities 46 and a second position in which the staples 38 are at least partially deployed from the staple cavities 46 into the tissue positioned intermediate the first face 44 of the first portion 26 and a second face of the second portion 28.
In one embodiment, the first portion 26 can also comprise a first electrode 54, such as an electrode comprising an arcuate or circular shape, for example, that can at least partially surround the aperture 30. In one embodiment, the first electrode 54 can function as a positive electrode that provides energy to the end-effector 20. The first electrode 54 can be positioned one of on and proximate to the first face 44, as discussed in further detail below. In various embodiments, the cutting member 40 and/or the staples 38 can also act as electrodes when driven by the actuation mechanism 24, as described herein. In one embodiment, the first portion 26 can comprise a fuse, such as a positive temperature coefficient material, for example, and an insulator as discussed in further detail herein.
In one embodiment, still referring to
In one embodiment, the fuse 62 can be positioned intermediate or at least partially intermediate the first electrode 54 of the first portion 26 and the second electrode 60 of the second portion 28. In other embodiments, the fuse 62 can be positioned on, attached to, or form a portion of the first portion 26 and/or the second portion 28. In still other embodiments, the fuse can be positioned on portions of the staples 38 and/or within the anvil pockets 58, for example. In various embodiments, the fuse 62 can function like a conventional fuse. In one embodiment, the fuse 62 can selectively interrupt energy flowing from the first electrode 54 to the second electrode 60 to at least inhibit over sealing or over heating of the tissue during sealing of the tissue positioned intermediate the first electrode 54 and the second electrode 60. As will be recognized by those of skill in the art, heat is generated in tissue when energy, such as electrical current, for example, flows from one electrode, such as the first electrode 54, through the tissue, to another electrode, such as the second electrode 60. This heat is caused by the resistance that the tissue provides to the energy flow between the two electrodes. In one embodiment, the fuse 62 can be used to control the amount of heat generated, i.e., by limiting or stopping the energy flow between the electrodes if the temperature of the tissue exceeds a predetermined temperature, such as a temperature of 100 degrees C., for example.
In one embodiment, the fuse 62 can comprise a positive temperature coefficient material (hereafter “PTC material”), for example. As the PTC material increases in temperature, the electrical impedance of the PTC material can increase. Thus, the PTC material can become power limiting when the temperature of the PTC material rises above a desired level and, thus, the impedance can rise above the desired level. In one embodiment, if a PTC material is used, a constant voltage source can be used. The electrical characteristics of the heating thus can be sensed to indirectly sense tissue temperature. Examples of PTC materials and their functions are described in greater detail in U.S. Pat. No. 5,624,452 to Yates, entitled HEMOSTATIC SURGICAL CUTTING OR STAPLING INSTRUMENT, which was issued on Apr. 29, 1997 U.S. Pat. No. 6,929,644 to Truckai et al., entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, which was issued on Aug. 16, 2005, U.S. Pat. No. 6,770,072, to Truckai et al., entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, which was issued on Aug. 3, 2004, and U.S. Pat. No. 6,929,622 to Chian, entitled SAFETY SYRINGE CYLINDER, which was issued on Aug. 16, 2005, the entire disclosures of which are hereby fully incorporated by reference.
In one embodiment, temperature measuring devices or sensors, such as thermocouples, RTD's (resistive thermal devices), thermistors, and other suitable devices can be embedded at strategic locations within the end-effector 20 or other end-effectors or end-effector assemblies to sense the temperature of the tissue positioned within the end-effector 20. As a result, the delivery of energy to at least one of the electrodes can be controlled in response to feedback from these devices, for example.
In one embodiment, the surgical instrument 10 can be configured to supply energy, such as electrical energy, RF energy, ultrasonic energy, and/or thermal energy, for example, to the tissue compressed between the first face 44 and the second face 56 using the first and second electrodes 54 and 60 to seal or otherwise energize the tissue. As discussed above, the heat can be generated by the resistance to energy flow between the first and second electrodes 54 and 60 or other electrodes that the tissue creates. In various embodiments, the surgical instrument 10 can comprise an activation button 64 or a trigger on the handle portion 18 configured to cause the energy to flow to the first electrode 54, for example, when depressed or retracted. The activation button 64 can essentially act as a switch that is closed when the activation button 64 is depressed. The switch can remain closed until a predetermined time has lapsed to ensure adequate tissue sealing. In one embodiment, the switch can be normally-open such that energy does not flow to the end-effector at undesirable times. In other embodiments, the trigger 22 can activate the energy flow or can contact a switch when the proximal end of the trigger 22 is moved toward the handle portion 18 to allow the energy to flow to the first electrode 54 or another suitable electrode.
In various embodiments, referring to
In various embodiments, further to the above, the first electrical conductor 70 of the surgical instrument 10 can comprise a wire, such as insulated wire, for example, which can extend between the input 66 and the activation button 64 and extend between the activation button 64 and the first electrode 54, for example. As discussed above, the activation button 64 can act as a switch to allow energy to pass through the first electrical conductor 70 from one side of the activation button 64 to the other side of the activation button 64 when the activation button 64 is depressed or engaged. The energy can then be in electrical communication with the first electrode 54, for example, until the activation button 64 is released or until a predetermined time has lapsed, such as after 2 to 6 seconds, after 4 seconds, after 5 to 20 seconds, or after 10 to 15 seconds, for example. In one embodiment, the first electrical conductor 70 can comprise a conductive insert, comprised of copper or other conductive material, for example, which can be at least partially positioned within an insulative jacket or sheath, for example. In certain circumstances, the insulative jacket can be molded over the first electrical conductor 70 during an injection molding process, for example.
In one embodiment, energy can be transmitted from the first electrical conductor 70 to the first electrode 54, pass through the tissue compressed intermediate the first portion 26 and the second portion 28, and then flow to the second electrode 60. The second electrode 60 can be in electrical communication with a second electrical conductor 72. In one embodiment, the second electrical conductor 72 can be formed with the activation member 31, a portion of the activation member 31, or can be an electrical conductor attached to, formed on, formed within, or positioned within the activation member 31. As a result, the energy can pass from the second electrode 60 to a contact 59 on the projection 32 or the actuation member 31 to the second electrical conductor 72 to an electrical output or terminal 74 and back to the energy source 68. The contact 59 can be in electrical communication with the second electrode 60. In other embodiments, a second electrical conductor can extend from a contact on the distal end or portion of the actuation member 31 to the electrical output or terminal 74. The contact 59 can be in conductive communication with the second electrode 60 when the projection 32 is engaged with the actuation member 31 such that return energy can flow to the output or terminal 74 and then back to the energy source 68 to complete the circuit of the energy source 68.
In various embodiments, insulative materials or non-conductive portions can be suitably positioned within the end-effector 20 and/or the surgical instrument, such that the energy can flow appropriately along a predetermined path through the end-effector 20 and/or the surgical instrument 10. Those of skill in the art will recognize the suitable placement of the various insulative materials and non-conductive portions within the end-effector 20 and/or the surgical instrument 10.
In one embodiment, referring to
In one embodiment, the cutting member 40 and/or the staples 38 can function as an additional or a third electrode. In other embodiments, the cutting member 40 can function as a third electrode and the staples 38 can function as a fourth electrode, or vice versa, for example. In such embodiments, the cutting member 40 and/or the staples 38 can comprise a conductive material, such as a metal, for example, such that the energy from the energy source 68 can flow therethrough. In one embodiment, the input or terminal 66 can be in electrical communication with an electrical conductor (not illustrated) formed with, formed on, positioned on, attached to, positioned within, or formed of the actuation mechanism 24. As a result, when the actuation mechanism 24 is brought into contact with the staple driver member 42, the cutting member 40 and/or the staples 38 can be energized with the energy owing to the fact that the staple driver member 42, the cutting member 40, and/or the staples 38 can comprise electrically conductive portions or can be comprised of electrically conductive materials, for example. The energy can flow through the staples 38 and/or the cutting member 40, through the tissue compressed between the first face 44 and the second face 56, and to the second electrode 60 and exit the surgical instrument 10 through the second electrical conductor 72, as discussed above. The energy can also flow through the fuse 62 or another suitable fuse. In other embodiments, the energy can flow through the staples, through the tissue, and be returned to the energy source 68 using the cutting member 40 or the second electrode 60 as a return electrode, for example. Here, again, the energy can also flow through the fuse 62 or another suitable fuse. In one embodiment, a separate electrical conductor (not illustrated) can be provided in communication with the cutting member 40 to assist the cutting member 40 in acting as the return electrode for the energy passing through the tissue from the staples 38. The separate electrical conductor can be used to complete the circuit with the energy source 68. In one embodiment, by energizing the staples 38 and/or the cutting member 40, a seal can be created at the site of piercing and/or cutting of the tissue (i.e., where the staple legs pierce the tissue and/or where the cutting member 40 cuts the tissue), thereby reducing bleeding through the creation of a seal at the piercing and/or cutting site. In one embodiment, energy flowing through the staples 38 as they are fired can tend to have its highest flux density at the tips of the staples 38 owing to the tips being pointed (minimum surface area) and the closest to the return electrode. In various embodiments, energy flowing through the cutting member 40 can also have its highest flux density at the tip of the cutting member 40 owing to the tip having a reduced surface area compared to the remainder of the cutting member 40. The above can result in enhanced mechanical sharpness and reduced force to fire of the staples 38 and/or the cutting member.
In one embodiment, the activation button 64 can be used to allow energy to flow to the staples 38 and/or to the cutting member 40. Although not illustrated, a separate activation button can also be used to allow energy to pass to the staples 38 and/or to the cutting member 40. The separate activation button can be configured and operate similar to the activation button 64 described above. In other embodiments, other convention types of activation buttons or switches can be used with the surgical instrument 10, for example.
In various embodiments, a separate energy source (not illustrated) can be used to provide energy to the cutting member 40 and/or the staples 38 for example. In such an embodiment, a circuit can be created through the use of electrical conductors from the separate energy source, to the cutting member 40 and/or the staple driver member 42, and back to the separate energy source. In one embodiment, the separate energy source can be similar to or the same as the energy source 68 described above and can be controlled by a controller similar to or the same as the controller 70.
By providing energy to the cutting member 40 and/or the staples 38, a seal can be created where the cutting member 40 cuts the tissue and/or where legs of the staples 38 pierce the tissue. These seals at the point of tissue cutting and/or piercing can reduce bleeding of the tissue. In one embodiment, the seals formed where the cutting member 40 cuts the tissue and/or where the legs of the staples 38 pierce the tissue can be used to seal the tissue in place of the seal 76 formed by the first and second electrodes 54 and 60. In other embodiments, the seals formed where the cutting member 40 cuts the tissue and/or where the legs of the staples 38 pierce the tissue can be used to seal the tissue as a supplementary seal to the seal 76 formed by the first and second electrodes 54 and 60.
In various configurations, by using more than two electrodes of the end-effector 20, the thermal spread of heat within the tissue compressed between the first face 44 and the second face 56 can be minimalized thereby reducing heating of the tissue adjacent to the end-effector 20 (i.e., tissue outside of the end-effector 20). Such minimalization can occur owing to a controlled path of the energy through the various electrodes.
In the embodiments described below, like numerals (e.g., 26, 126, 126′, 226 etc.) describe similar components, as those described above, unless otherwise indicated. A full description of each like numbered component below has been omitted for brevity.
In one embodiment, referring to
In one embodiment,
In one embodiment, although not illustrated, a first electrode can be positioned a depth within a first face of a first portion of an end-effector. A fuse, such as PTC material, for example, can be positioned over the first electrode and be flush, or substantially flush with a plane of the first face of the first portion. In such an embodiment, a portion of a second electrode may be positioned on a second face of the second portion. In one embodiment, the second electrode can be positioned a depth within a second face of the second portion of the end-effector. A fuse, such as PTC material, for example, can be positioned over the second electrode and be flush, or substantially flush with the plane of the second face of the second portion. In other embodiments, the fuse may only be provided on the first portion or the second portion. The portions of the first face and the second face not comprising the fuse can be comprised of an insulative material, such that energy from the first electrode can be directed through the fuse toward the second electrode and may be inhibited from bypassing the fuse to get to the second electrode. As discussed herein, the fuse can limit or stop the energy flow from the first electrode to the second electrode, when appropriate, to maintain the temperature of the tissue in the end-effector within a reasonable sealing temperature, such as 100 degrees C., for example.
In one embodiment, referring to
In one embodiment,
In one embodiment, referring to
In one embodiment,
In one embodiment, referring to
In one embodiment,
In one embodiment, referring to
In one embodiment,
In one embodiment, the surgical instruments disclosed herein can be operated in at least two ways. In a first method of operation, the second portion of the end-effector can be engaged with the first portion of the end-effector inside separated pieces of tubular tissue, such as an intestine, for example, such that the actuation mechanism is operably engaged with the second portion. Next, the actuation knob can be rotated about its longitudinal axis to compress the tissue positioned intermediate the first portion and the second portion. After the tissue has been compressed to the surgeon's liking or to a suitable predetermined thickness for adequate staple formation in the tissue or sealing of the tissue, possibly using a tissue compression indicator, such as tissue compression indicator 27, for example, the proximal end of the trigger can be moved or pulled toward the handle portion of the surgical instrument to move the actuation mechanism distally within the surgical instrument to fire the staples and move the cutting member distally and optionally to energize the first electrode. In other embodiments, the first electrode can be energized when the activation button is depressed, for example. In various embodiments, energy can also be supplied to the staples, such as the staples 38, and to the cutting member, such as the cutting member 40, as discussed above. By causing the actuation mechanism to move distally, the staples can be fired into the tissue and formed against the second portion of the end-effector or the anvil pockets and the cutting member can be advanced distally to excise the tissue. In one embodiment, the surgeon can hold, pull, or bias the proximal end of the trigger against the handle portion of the surgical instrument, or can hold the activation button in a depressed position, until an indicator informs the surgeon that the tissue has been adequately sealed. In various embodiments, the indicator can be a visual indicator, such as a light emitting diode, for example, or an audible indicator, such as a buzzer or an alarm, for example. In certain embodiments, the time required to fully seal the tissue can be in the range of 2 to 6 seconds, 4 seconds, 2 to 15 seconds, or 3 to 10 seconds, for example.
In one embodiment, further to the above, the surgical instrument can comprise a trigger lockout (not illustrated) configured to maintain the proximal end of the trigger proximal to the handle portion (i.e., in the actuated position) until a suitable sealing time has lapsed. In such an embodiment, upon retraction of the proximal end of the trigger toward the handle portion, a solenoid, for example, positioned proximate to the trigger can be energized to drive a piston from the body of the solenoid and engage an aperture or detent in the trigger to maintain the trigger in the actuated position. The solenoid can be de-energized and the piston can retract into the body of the solenoid after a predetermined tissue sealing time has lapsed to allow the trigger to be biased back into the position illustrated in
In one embodiment, a similar solenoid can be operably engaged with a portion of the activation button. The solenoid can be activated or energized when the activation button is depressed. While energized, the piston of this solenoid can be extended to engage a portion of the activation button to hold the activation button in the depressed position and maintain energy flow to the electrodes for a predetermined or suitable period of time. The solenoid can be de-energized and the piston can then be retracted and withdrawn from contact with the portion of the activation button after the predetermined or suitable period of time has passed to allow energy flow to the electrodes to cease.
In the second method of operation, the second portion of the end-effector can be engaged with the first portion of the end-effector inside separate pieces of tubular tissue, such as an intestine, for example, such that the actuation member is operably engaged with the second portion. Next, the actuation knob can be rotated about its longitudinal axis to compress the tissue positioned intermediate the first portion and the second portion. After the tissue has been compressed to the surgeon's liking or to a suitable predetermined thickness for adequate staple formation in the tissue or sealing of the tissue, possibly using a tissue compression indicator, such as tissue compression indicator 27, for example, the surgeon can depress the activation button 64 or other suitable activation button to supply energy to the first electrode or to another electrode. In various embodiments, energy can also be supplied to the staples, such as the staples 38, and to the cutting member, such as cutting member 40, as discussed above. While energy is being supplied to the first electrode, the staples, and/or the cutting member, the trigger can be locked in the biased position illustrated in
In one embodiment, referring to
Although multiple example embodiments of the first portion and the second portion of the end-effector of the present disclosure are discussed herein, those of skill in the art will recognize that various other configurations are also within the scope of the present disclosure. For example, a first portion of an end-effector can have three sets of staple cavities positioned radially inward or radially outward of an electrode, while the second portion can have a corresponding electrode and/or fuse positioning and anvil pocket positioning. In certain other embodiments, one or more rows of staple cavities can be positioned radially outward from an electrode and one or more rows of staple cavities can be positioned radially inward from the electrode in a first portion of an end-effector. In such an embodiment, a second portion of the end-effector can have corresponding anvil pocket positioning and electrode and/or fuse positioning. In such an embodiment, a staple line can be formed in tissue compressed within the end-effector intermediate one or more rows of staples. Other various embodiments and configurations of the electrodes, the fuse, the staple cavities, and the anvil pockets are envisioned and are within the scope of the present disclosure. It will be understood that the example embodiments presented herein are not intended to limit the scope of the appended claims.
Although the surgical instrument 10 is illustrated and described with a first portion 26 that functions as the staple deploying portion and a second portion 28 that functions as an anvil for deforming the staples, the first portion can function as the anvil and the second portion can function as the staple deploying portion and/or staple cartridge. In such an embodiment, the staples can be positioned within a receiving slot, a staple cartridge, or staple cavities in the second portion and anvil pockets can be positioned within the first portion. A cutting member can also be engaged with the second portion. The electrode configuration can be similar to that discussed above. In such an embodiment, the second portion can be pulled toward the first portion to deploy the staples proximally against the first portion and to move the cutting member proximally toward the first portion.
In one embodiment, the end effector 20 can comprise a tissue thickness indicator (not illustrated) configured to sense a thickness of the tissue positioned intermediate the first face 44 and the second face 56. In various embodiments, the tissue thickness indicator can be positioned on the first face 44, the second face 56, or the first face 44 and the second face 56, for example. In other embodiments, the tissue thickness indicator can be positioned at other suitable locations on the end-effector 20. Suitable tissue thickness indicators will be apparent to those of skill in the art, such as proximity sensors, for example. In one embodiment, the projected tissue compression and projected staple leg deformation can be measured by measuring the impedance of the tissue across the thickness of the tissue, for example. The tissue thickness indicator can be in electrical communication with a processor, such as a microprocessor, for example, which can interpret the signal generated by the tissue thickness indicator and instruct a suitable element accordingly. In one embodiment, the staple driver member 42 can be activated separate from the cutting member 40. In such an embodiment, the staple driver member 42 may only be activated when a sensed tissue thickness is greater than a predetermined tissue thickness threshold. Tissue thicknesses above the predetermined tissue thickness threshold may benefit from staples being deployed into the tissue, while tissue thicknesses below the predetermined tissue thickness threshold may not require staples to be deployed into the tissue. In such an embodiment, only the cutting member 40 and the various electrodes (and not the staple driver member 42) may be activated to create a seal in the tissue owing to the relatively thin nature of the tissue clamped within the end-effector 20. In various circumstances, relatively thin tissue may not require that staples be deployed to effect a suitable seal in the tissue.
In one embodiment, a staple sensor (not illustrated) can be configured to sense when the staple 38 is in the first stored position or at least partially in the first stored position. The staple sensor 38 can also be in electrical communication with the processor described above, or another suitable processor, to interpret a signal received from the staple sensor. When the processor receives an indication from the staple sensor 38 that indicates a staple is not in the first stored position and the tissue thickness is above a predetermined tissue thickness threshold, the processor can activate a lockout device configured to selectively restrict movement of the cutting member 40 and/or the staple driver member 42 relative to the first face 44. In one embodiment, the lockout device can be a solenoid in electrical communication with the processor, for example. When the lockout device is activated by the processor, it can engage the cutting member 40 and/or the staple driver member 42 and restrict their movement relative to the first face 44, thereby preventing, or at least inhibiting, the cutting member 40 and/or the staple driver member 42 from cutting and deploying staples into the tissue clamped within the end-effector 20 at least until a staple is sensed by the staple sensor. In other embodiments, the lockout device can essentially function as a switch and can interrupt energy flow to the various electrodes, for example. In other various embodiments, the surgical instruments of the present disclosure can comprise other suitable sensors, lockout devices, and/or electronic controls as will be recognized by those of ordinary skill in the art.
In one embodiment,
In various embodiments, the surgical instrument 510 can comprise a handle portion 520 connected to an implement portion 522. The implement portion 522 can comprise a shaft 523 distally terminating in the end-effector assembly 512 or attached to the end-effector assembly 512. The handle portion 520 can comprise a pistol grip 524 toward which a closure trigger 526 can be pivotally drawn by the surgeon to cause clamping and/or closing of the first jaw 518 toward the second jaw 516 of the end-effector assembly 512. A firing trigger 528 can be positioned farther outboard of the closure trigger 526 and can be pivotally drawn by the surgeon to cause the stapling, sealing, and/or severing of tissue clamped within the end-effector assembly 512.
In one embodiment, the closure trigger 526 can first be actuated by the surgeon. Once the surgeon is satisfied with the positioning of the end-effector assembly 512 about the tissue, the surgeon can draw back the closure trigger 526 to its fully closed, locked position proximate to the pistol grip 524. Then, the firing trigger 528 can be actuated by the surgeon. The firing trigger 528 can springedly return to its unfired state when the surgeon removes pressure therefrom. A release button 530, when depressed, on the proximal end of the handle portion 520 can release the locked closure trigger 526 and allow it to return to its unretracted position.
In various embodiments, a closure sleeve 532 can enclose a frame 534, which in turn can enclose a firing drive member 536 that can be positioned by the firing trigger 528. The frame 534 can connect the handle portion 520 to the end-effector assembly 512. With the closure sleeve 532 withdrawn proximally by the closure trigger 526, the first jaw 518 can springedly open, pivoting away from the second jaw 516 and translating proximally with the closure sleeve 532. The second jaw 516 can be configured to receive a staple cartridge 537 comprising at least one staple.
In one embodiment, referring to
In one embodiment, the firing bar 514 can comprise a middle pin 546 that can pass through a firing drive slot 547 formed in a lower surface of the cartridge 537 and an upward surface of the second jaw 516, thereby driving the staples from within the cartridge 537 as described below. The middle pin 546, by sliding against the second jaw 516, can resist any tendency for the end-effector assembly 512 to be pinched shut at its distal end. To illustrate an advantage of the middle pin 546,
In various embodiments, again referring to
In one embodiment, the affirmative vertical spacing provided by the E-Beam firing bar 514 can be suitable for the limited size available for endoscopic devices. Moreover, the E-Beam firing bar 514 can enable fabrication of the first jaw 518 with a camber imparting a vertical deflection at its distal end, similar to the position illustrated in
In various embodiments, the E-Beam firing bar 514 can enable increased applications, especially in combination with a range of configurations of staple cartridges. For instance, a surgeon may select a gray staple cartridge yielding a 0.02 mm tissue gap, a white staple cartridge yielding a 0.04 mm tissue gap, a blue staple cartridge yielding a 0.06 mm tissue gap, and/or a green staple cartridge yielding a 0.10 mm tissue gap. The vertical height of each respective staple cartridge in combination with the length of staples and an integral wedge sled (described in more detail below) can predetermine this desired tissue thickness with the first jaw 518 appropriately vertically spaced by the E-Beam firing bar 514.
In various embodiments, referring to
In one embodiment, a rotating knob 560 can comprise a bore 562 extending completely therethrough for engaging and rotating the implement portion 522 about its longitudinal axis. The rotating knob 560 can comprise an inwardly protruding boss 564 extending along at least a portion of the bore 562. The protruding boss 564 can be received within a longitudinal slot 566 formed at a proximal portion of the closure sleeve 532 such that rotation of the rotating knob 560 can effect rotation of the closure sleeve 532. It will be appreciated that the boss 564 can extend through the frame 534 and into contact with a portion of the firing drive member 536 to effect their rotation as well. Thus, the end-effector assembly 512 (not illustrated in
In one embodiment, a proximal end 568 of the frame 534 can pass proximally through the rotating knob 560 and can comprise a circumferential notch 570 that can be engaged by opposing channel securement members 572 extending respectively from the base sections 550 and 552. Only the channel securement member 572 of the second base section 552 is illustrated. The channel securement members 572 extending from the first and second base sections 550 and 552 can serve to secure the frame 534 to the handle portion 520 such that the frame 534 does not move longitudinally relative to the handle portion 520.
In various embodiments, the closure trigger 526 can comprise a handle section 574, a gear segment section 576, and an intermediate section 578. A bore 580 can extend through the intermediate section 578. A cylindrical support member 582 extending from the second base section 552 can pass through the bore 580 for pivotably mounting the closure trigger 526 on the handle portion 520. A second cylindrical support member 583 extending from the second base section 552 can pass through a bore 581 of the firing trigger 528 for pivotally mounting on the handle portion 520. A hexagonal opening 584 can be provided in the cylindrical support member 583 for receiving a securement pin (not illustrated) extending from the first base section 550.
In one embodiment, a closure yoke 586 can be housed within the handle portion 520 for reciprocating movement therein and can serve to transfer motion from the closure trigger 526 to the closure sleeve 532. Support members 588 extending from the second base section 552 and a securement member 572, which extends through a recess 589 in the yoke 586, can support the yoke 586 within the handle portion 520.
In various embodiments, a proximal end 590 of the closure sleeve 532 can comprise a flange 592 that can be snap-fitted or otherwise fitted into a receiving recess 594 formed in a distal end 596 of the yoke 586. A proximal end 598 of the yoke 586 can comprise a gear rack 600 that can be engaged by the gear segment section 576 of the closure trigger 526. When the closure trigger 526 is moved toward the pistol grip 524 of the handle portion 520, the yoke 586 and, hence, the closure sleeve 532 can move distally, compressing a spring 602 that biases the yoke 586 proximally. Distal movement of the closure sleeve 532 can effect pivotal translational movement of the first jaw 518 distally and toward the second jaw 516 of the end-effector assembly 512 and proximal movement can effect closing, as discussed below.
In various embodiments, the closure trigger 526 can be forward biased to an open position by a front surface 630 interacting with an engaging surface 628 of the firing trigger 628. Clamp first hook 604 that can pivot top to rear in the handle portion 520 about a pin 606 can restrain movement of the firing trigger 528 toward the pistol grip 524 until the closure trigger 526 is clamped to its closed position. The first hook 604 can restrain the firing trigger 528 motion by engaging a lockout pin 607 in the firing trigger 528. The hook 604 can also be in contact with the closure trigger 526. In particular, a forward projection 608 of the hook 604 can engage a member 610 on the intermediate section 578 of the closure trigger 526, the member 610 being positioned outward of the bore 580 toward the handle section 574. The hook 604 can be biased toward contact with the member 610 of the closure trigger 526 and can be engaged with a lockout pin 607 in the firing trigger 528 by a release spring 612. As the closure trigger 526 is depressed, the hook 604 can be moved top to rear, compressing the release spring 612 that is captured between a rearward projection 614 on the hook 604 and a forward projection 616 on the release button 530.
In one embodiment, as the yoke 586 moves distally in response to proximal movement of the closure trigger 526, an upper latch arm 618 of the release button 530 can move along an upper surface 620 on the yoke 586 until dropping into an upwardly presented recess 622 in a proximal, lower portion of the yoke 586. The release spring 612 can urge the release button 530 outward, which can pivot the upper latch arm 618 downwardly into engagement with the upwardly presented recess 622, thereby locking the closure trigger 556 in a tissue clamping position, such as illustrated in
In various embodiments, the latch arm 618 can be moved out of the recess 622 to release the first jaw 518 by pushing the release button 530 inward. Specifically, the upper latch arm 618 can pivot upward about a pin 623 of the second base section 552. The yoke 586 can then be permitted to move proximally in response to return movement of the closure trigger 526.
In one embodiment, a firing trigger return spring 624 can be located within the handle portion 520 with one end attached to the pin 606 of the second base section 552 and the other end attached to a pin 626 on the firing trigger 528. The firing return spring 624 can apply a return force to the pin 626 for biasing the firing trigger 528 in a direction away from the pistol grip 524 of the handle portion 520. The closure trigger 526 can also be biased away from pistol grip 524 by the engaging surface 628 of the firing trigger 528 biasing the front surface 630 of the closure trigger 526.
In various embodiments, as the closure trigger 526 is moved toward the pistol grip 524, its front surface 630 can be engaged with the engaging surface 628 on the firing trigger 528 causing the firing trigger 528 to move to its “firing” position. When in its firing position, the firing trigger 528 can be located at an angle of approximately 45 degrees, for example, to the pistol grip 524. After staple firing, the spring 624 can cause the firing trigger 528 to return to its initial unfired position. During the return movement of the firing trigger 528, its engaging surface 628 can push against the front surface 630 of the closure trigger 526 causing the closure trigger 526 to return to its initial position. A stop member 632 can extend from the second base section 552 to prevent the closure trigger 526 from rotating beyond its initial position.
In various embodiments, the surgical stapling, sealing, and/or severing instrument 510 additionally can comprise a reciprocating section 634, a multiplier 636, and a drive member 638. The reciprocating section 634 can comprise a wedge sled in the implement portion 522 (not illustrated in
In one embodiment, the drive member 638 can comprise first and second gear racks 641 and 642. A first notch 644 can be provided on the drive member 638 intermediate the first and second gear racks 641 and 642. During return movement of the firing trigger 528, a tooth 646 on the firing trigger 528 can be engaged with the first notch 644 for returning the drive member 638 to its initial position after staple firing. A second notch 648 can be located at a proximal end of the metal drive rod 640 for locking the metal drive rod 640 to the upper latch arm 618 of the release button 530 in its unfired position.
In various embodiments, the multiplier 636 can comprise first and second integral pinion gears 650 and 652. The first integral pinion gear 650 can be engaged with a first gear rack 654 provided on the metal drive rod 640 and the second integral pinion gear 652 can be engaged with the first gear rack 641 on the drive member 638. The first integral pinion gear 650 can have a first diameter and the second integral pinion gear 652 can have a second diameter that is smaller than the first diameter.
In various embodiments,
Because the first gear rack 641 on the drive member 638 and the gear rack 654 on the metal drive rod 640 are engaged with the multiplier 636, movement of the firing trigger 528 can cause the metal drive rod 640 to reciprocate between a first reciprocating position, illustrated in
It will be appreciated that the handle portion 520 is illustrative and that other actuation mechanisms may be employed. For instance, the closing and firing motions may be generated by automated means and/or can be generated by retracting a single trigger that can accomplish both closing and firing motions, for example.
In various embodiments, referring to
In one embodiment,
In one embodiment,
Having a wedge sled 718 integral to the staple cartridge 537 can enable a number of flexible design options as compared to incorporating camming surfaces onto a firing bar itself. For instance, a number of different staple cartridges may be selected for use in the surgical instrument 510 with each staple cartridge having a different configuration of one or more rows of staples, each thus having a unique wedge sled configured to contact the middle pin 546 of the firing bar 514 while causing the driving of the staples 722.
In one embodiment, the second jaw 516 can have a proximally placed attachment cavity 726 that can receive a channel anchoring member 728 on the distal end of the frame 534 for attaching the end-effector assembly 512 to the handle portion 520. The second jaw 516 can also have an anvil cam slot 730 that can pivotally receive an anvil pivot 732 of the first jaw 518. The closure sleeve 532 that encompasses the frame 534 can comprise a distally presented tab 734 that can engage an anvil feature 736 proximately on the first jaw 518 but distal to the anvil pivot 732 to thereby effect opening and closing of the first jaw 518. The firing drive member 536 is illustrated as being assembled to the firing bar 514 attached to a firing connector 738 by pins 740, which in turn is rotatingly and proximally attached to the metal drive rod 640. The firing bar 514 can be guided at a distal end of the frame by a slotted guide 739 inserted therein, for example.
In various embodiments, with particular reference to
In one embodiment,
In various embodiments,
In various embodiments,
In one embodiment,
The features of the surgical instrument 510 which enable sealing of tissue disposed and/or clamped within the end-effector assembly 512 will now be described. It will be understood by those of skill in the art that surgical instruments, other than the surgical instrument 510, can be configured or produced to comprise such sealing features. The present disclosure is not limited to the use of such features with the surgical instrument 510 and can be used with other surgical instruments.
In one embodiment, referring generally to
In one embodiment, the first conductor 571 can extend proximate to a portion of the firing bar 514 when the firing bar 514 is in the retracted position (see e.g.,
Various conductors 577, 577′, 577″, and/or other conductors can extend from the contact 575 or from portions of the conductive track 525 to energize various portions of the end-effector assembly 512 or the staple cartridge 537. The conductor 577, if provided, can extend from the contact 575 or the conductive track 525 to the cutting member 548 to supply energy to the cutting member 548. The conductor 577′, if provided, can extend from the contact 575 or the conductive track 525 to the driver 718, such as an electrically-conductive staple driver, for example, to supply energy to the staples 722 when contacted by the driver 718. The conductor 577″, if provided, can extend from the contact 575 or the conductive track 525 to an electrode on or in one of the first jaw 518 and the second jaw 516 (or on or in a staple cartridge of the second jaw 516) to supply energy to the electrode. In other various embodiments, the contact 575 or the first conductor 571 can be in electrical communication with an electrode on the first jaw 518 and/or the second jaw 516, for example, and may not be in contact with the firing bar 514. In any event, energy can be supplied to the end-effector assembly 512 such that tissue can be sealed by the end-effector assembly 512.
In various embodiments, the second conductor 573, which can act as the return or negative conductor, can extend from the energy source 768 to a portion of the end-effector assembly 512, such as the first jaw 518, for example. In one embodiment, the second conductor 573 can be in electrical communication with a contact on the first jaw 518 or can be directly attached to the first jaw 518 at a conductive section of the first jaw 518. The second conductor 573 can channel energy from the end-effector assembly 512 back to the energy source 768 and/or the controller 770, for example. Although the first conductor 571 is described as being the supply or positive conductor and the second conductor 573 is described as being the return or negative conductor, in various embodiments, the first conductor 571 can be the return or negative conductor and the second conductor 573 can be the supply or positive conductor, for example.
In one embodiment, at least one of the first and second conductors 571 and 573, such as the first conductor 571, can comprise a switch 579, optionally engaged with an activation button 764 on the surgical instrument 510. The switch 579 can act as a typical switch and can disrupt the flow of energy through the surgical instrument 510 and/or through the end-effector assembly 512 of the surgical instrument 510 when in an open position. In one embodiment, the switch 579 can be in a normally-open position and the activation button 764, when depressed, can be used to close the switch 579 to complete the circuit between the energy source 768 and the surgical instrument 510. In other embodiments, full retraction of the closure trigger 526 or the firing trigger 528 can close the switch 579 or another suitable switch and allow energy to flow to the surgical instrument 510. In any event, the switch 579 can be configured to remain closed until a predetermined time has lapsed such that energy can flow through portions of the end-effector assembly 512 and through the tissue to cause a suitable seal to be formed in the tissue. In one embodiment, the switch 579 can remain closed for a predetermined period of time although the activation button 764 is released or although the firing trigger 528 is released and allowed to retract into its unfired state.
In various embodiments, portions of the end-effector assembly 512 and/or portions of the surgical instrument 510 can comprise insulative materials or non-conductive materials, such as plastic or rubber, for example. Such insulative materials or non-conductive materials can aid in confining the energy within the end-effector assembly 512 within the conductive portions. For instance, an insulative material can be provided on the proximal portion of the first jaw 518 such that energy can be returned from the first jaw 518 though the second conductor 573 without coming into electrical contact with the firing bar 514, for example.
In one embodiment, the staples 722 positioned with the staple cavity 704 of the second jaw 516 can comprise the first electrode. Although referred to as the “first electrode”, those of ordinary skill in the art will recognize that each staple 722 or less than all of the staples 722 can comprise a first electrode (i.e., only some staples make comprise conductive portions). In various embodiments, the staples 722 can comprise conductive portions or can be comprised of conductive materials, such as metals, for example. To allow energy to flow to the staples 722, the first conductor 571 can supply energy to the contact 575. The contact 575 can then supply energy to the firing bar 514, the conductive track 525, and/or to the electrically conductive driver 718 optionally using the conductor 577′. In one embodiment, the staples 722 can supply energy to the tissue when they are in contact with the electrically-conductive driver 718. In one embodiment, the staples 722 can be removably positioned within staple cavities 704 in the second jaw 518 or the staple cartridge 537. In various embodiments, the electrically-conductive driver 718 can be configured to move each of the staples 722 between a first stored position in which the staple 722 is at least partially positioned within the staple cavity 704 and a second position in which the staples 722 are at least partially deployed from the staple cavity 704 into tissue positioned intermediate the first jaw 518 and the second jaw 516. In one embodiment, more than one staple 722 can be in electrical communication with the electrically-conductive driver 718 at one time or more than one electrically-conductive driver can be in communication with the staples 722 at one time. By supplying energy to the staples 722, the tissue can be sealed in the area in which staple legs of the staples 722 puncture the tissue. Such sealing about a perimeter of the staple legs can decrease bleeding caused by the puncturing of the tissue by the staple legs. In various embodiments, the staples 722 and/or the electrically-conductive driver 718 can comprise a fuse, such as the PTC material described above, for example, to regulate the energy flow of the energy from the staples 722 to another electrode within the end-effector 512.
In one embodiment, the end-effector assembly 512 and/or the staple cartridge 537 can comprise a second electrode on one of the first jaw 518 or the second jaw 516. The second electrode can have the same polarity or a different polarity than the first electrode. In various embodiments, a second electrode 754 can be positioned on or form a portion of the first jaw 518 and can be in electrical communication with the second conductor 573. In such an embodiment, the second electrode 754 can receive the energy supplied by the first electrode after such energy passes through and seals the tissue. In this configuration, portions of a tissue-contacting surface of the second jaw 516 and/or the staple cartridge 537 can be comprised of an insulative material such that energy flows from the first electrode (e.g., portions of the staples 722) toward the second electrode 754 on the first jaw 518. The first jaw 518 can comprise a fuse 762, such as the PTC material described above, to regulate or inhibit the energy flow between the first electrode and the second electrode 754. The fuse 762 can be positioned around or in the pockets of the first jaw 518 and the second electrode 754 can be positioned underneath the fuse 762, for example. In such an embodiment, a tissue-contacting surface of the first jaw 518 can comprise an insulative material such that energy can pass from the first electrode, through the fuse 762, to the second electrode 754, and then to the second conductor 573.
In one embodiment, the end-effector assembly 512 can comprise a third electrode. In various embodiments, a third electrode 756 can be positioned on or form the cutting member 548. In other various embodiments, the third electrode 756′ can be positioned on or form a portion of the second jaw 516. In various embodiments, the third electrode 756 or 756′ can have the same polarity or a different polarity than the first electrode and/or the second electrode 754, for example. In one embodiment, the third electrodes 756 and 756′ can both be provided on an end-effector assembly of a surgical instrument. In various configurations, energy can flow from the third electrode 756 or 756′, through the tissue, toward the first electrode and/or the second electrode 754, for example. By providing the third electrode 756 on the cutting member 548, tissue can be sealed as it is cut by the cutting member 548 thereby reducing bleeding at the cutting site. In one example embodiment, energy can travel from the first electrode (i.e., staples 722) and the cutting member (i.e., third electrode 756), through the tissue, and possibly through a fuse, to the second electrode 754 on the first jaw 518. The fuse 762 can be positioned adjacent to the second electrode 754 on the first jaw 518. In such an embodiment, the first electrode and the third electrode 756 can have the same polarity (e.g., positive) while the second electrode 754 can have a different polarity (e.g., negative). Other polarity configurations of the various electrodes are also within the scope of the present disclosure. In various embodiments, the various electrodes can be positioned within the end-effector assembly 512 in a fashion such that the flow of energy through the tissue and the end-effector assembly 512 can be controlled to control the thermal spread caused by the energy flow. As discussed herein, heat can be generated in the tissue by the resistance to energy flow that the tissue creates between the various electrodes.
In an embodiment, where the third electrode 756′ is positioned on the second jaw 516, the third electrode 756′ can act as a supply or a return electrode. In one embodiment, the third electrode 756′ can be positioned on or in the staple cartridge 537 positioned within the second jaw 516, for example. In other various embodiments, the third electrode 756′ can be positioned adjacent to a fuse, such as fuse 762, for example. The fuse 762 can be similar to the fuse 62 discussed herein and can be positioned more proximal to a tissue-contacting surface of the second jaw 516 than the third electrode 756′, such that energy can passes through the fuse 762 before reaching the third electrode 756′ or can pass through the fuse 762 after leaving the third electrode 756′. As discussed herein with respect to the fuse 62, the fuse 762 can be used to limit, restrict, and/or stop the energy flow from one electrode to another.
In one embodiment, temperature measuring devices or sensors, such as thermocouples, RTD's (resistive thermal devices), thermistors, and other suitable devices can be embedded at strategic locations within the end-effector assembly 512 to sense the temperature of the tissue positioned within the end-effector assembly 512. As a result, the delivery of energy to at least one of the electrodes can be controlled in response to feedback from these devices, for example.
In various embodiments, by using more than two electrodes (e.g., three or four), the thermal spread of heat within the tissue compressed between the first jaw 518 and the second jaw 516 can be minimalized thereby reducing heating of the tissue adjacent to the end-effector assembly 512. Such minimalization can occur owing to a controlled path of the energy through the various electrodes.
In various embodiments, in order to direct the energy flow through the end-effector assembly 512 through the various electrodes and the tissue properly, certain portions of the end-effector assembly 512 can comprise insulative materials or non-conductive portions. In one embodiment, portions of the tissue-contacting surfaces of the first jaw 518 and the second jaw 516 can comprise insulative materials or non-conductive portions to cause energy to flow from at least one electrode, through the fuse 762 or another fuse, to at least one other electrode. In other embodiments, portions of the first jaw 518 and the second jaw 516 adjacent to the electrodes can comprise insulative materials or non-conductive portions to maintain the energy flow between the various electrodes and at least inhibit energy from flowing to other portions of the end-effector assembly 512. Those of skill in the art will understand how and where, in various embodiments, the various insulative materials or non-conductive portions can be placed within the end-effector assembly 512.
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, another lockout device can be configured to deactivate the electrode system when the sensed thickness of the tissue is greater than the predetermined tissue thickness threshold and when the sensor 782 does not sense a staple 722 in or at least partially in the first, undeployed position. To accomplish the same, the lockout device can be in electrical communication with the processor and can essentially function as a switch. When the lockout device receives a signal from the processor that the tissue thickness is greater than the predetermined tissue thickness threshold and/or no staples 722 are sensed in or at least partially in the first position by the sensor 782, the lockout device can interrupt the energy flow to the various electrodes of the end-effector assembly 512 by opening a switch positioned in series with the conductor supplying energy to the electrode. The lockout device can then allow energy flow to the various electrodes when the staples 722 are sensed in or at least partially in the first position by the sensor 782. Such a feature can prevent, or at least inhibit, sealing of tissue that is too thick to be sealed without the use of fasteners, such as staples, for example.
In one embodiment, a predetermined tissue sealing time can be associated with each tissue thickness or each range of tissue thickness. For example, if the tissue thickness is in the range of 3 mm to 8 mm, the tissue sealing time (or time energy is flowing through the end-effector assembly 512) can be 5 to 10 seconds, for example. In one embodiment, for a 45 mm staple cartridge, the tissue sealing time can be 4 to 15 seconds or longer, for example. Longer tissue sealing times may be helpful or required for staple cartridges longer than 45 mm. In various embodiments, when the energy flow to the end-effector assembly 512 is activated by retraction of the firing trigger 528, the cutting member 548 can be restricted in its movement along the cutting member slot 549 in the staple cartridge 537 or the second jaw 516. Such restriction can be to cause adequate energy flow to the various electrodes and create a suitable seal in the tissue for a predetermined period of time prior to advancing the cutting member 548. In one embodiment, the speed of the cutting member 548 can be modulated by allowing the cutting member 548 to be energized so that energy at the cutting edge enhances the sharpness of the cutting edge. If the cutting member 548 moves too quickly along the cutting member slot 549, a seal may not be fully formed in the tissue depending on the thickness of the tissue. The restriction of the movement of the cutting member 548 can be effected by a resistive member acting on or against the firing bar 514 or another cutting member, for example. In one embodiment, the resistive member can comprise a biasing or biased member that pushes against a side surface or other portion of the firing bar 514 or another cutting member to create a frictional resistance to proximal to distal movement of the firing bar 514 or another cutting member. In other embodiments, magnets can be used as the resistive member to restrict proximal to distal movement of the firing bar 514 or another cutting member.
In use, in one embodiment, the surgical stapling and severing instrument 510 can be used as illustrated in
In various embodiments, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, the retraction of the firing trigger 528 can activate the electrode system of the surgical instrument 510 by closing a switch in the first conductor 571, for example, thereby allowing energy from the energy source 768 to flow to and through the end-effector assembly 512 and back to the energy source 768. The energy can flow from one electrode, such as the first electrode, in electrical communication with the first conductor 571, flow through the tissue clamped within the end-effector assembly 512 to create a seal in the tissue, and flow to the second electrode 754, for example. In other embodiments, the energy can flow to a third or a fourth electrode depending on the electrode configuration within the end-effector assembly 512. The energy can then flow back to the energy source 768, thereby completing the circuit between the surgical instrument 510 and the energy source 768.
In other various embodiments, referring to
The present disclosure has been illustrated by describing several embodiments and while the example embodiments have been described in detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will be readily apparent to those of skill in the art.
For example, the affirmative spacing of the first jaw 518 and the second jaw 516 can be achieved in part with two pins 544 and 546 on the firing bar 514 engaging opposite sides of a channel slot and a single upper pin 538 entrained within an first jaw slot 542. It would be consistent with aspects of the present disclosure for a first jaw to be captured by opposing pins on either side of a longitudinal slot and/or for a second jaw to have an internal slot that entrains a lower pin.
As another example, although the firing bar 514 has various advantages for an endoscopically employed surgical instrument 510, a similar firing bar may be used in other clinical procedures. It is generally accepted that endoscopic procedures are more common than laparoscopic procedures. Accordingly, the present disclosure has been discussed in terms of endoscopic procedures and apparatuses. However, use herein of terms such as “endoscopic,” should not be construed to limit the present disclosure to a surgical instrument for use only in conjunction with an endoscopic tube (i.e., trocar). On the contrary, it is believed that the present disclosure may find use in any procedure where access is limited to a small incision, including but not limited to laparoscopic procedures, as well as open procedures.
As still another example, although an illustrative handle portion 520 described herein is manually operated by a surgeon, it is consistent with aspects of the present disclosure for some or all of the functions of a handle portion to be powered (e.g., pneumatic, hydraulic, electromechanical, ultrasonic, robotic etc.). Furthermore, controls of each of these functions can be manually presented on a handle portion or be remotely controlled (e.g., wireless remote, automated remote console, etc.), for example.
In one embodiment, referring to
In one embodiment, the handle portion 918 can comprise an articulation knob 919 configured to rotate the end-effector 920 about a longitudinal axis of the elongate shaft 912. Such articulation can be useful in positioning the end-effector 920 during a surgical procedure. The handle portion 918 can also comprise a trigger 922 and a trigger 923. The trigger 922 can be used to close the end-effector 920 and clamp or compress tissue therein, while the trigger 923 can be used to distally advance a cutting member to cut tissue positioned within the end-effector 920 and/or distally advance a rivet driver to deploy or fire rivets from the end-effector 920 and into the tissue. In various embodiments, the cutting member can be part of the rivet driver, for example. In one embodiment, the trigger 923 can be geared such that more than one stroke of the trigger 923 can be used to distally advance the cutting member and/or the rivet driver. In other embodiments, only one trigger may be provided and that trigger can close the end-effector 920 and also distally advance the cutting member and/or the rivet driver. In various embodiments, the handle portion 918 or one of the triggers can comprise an activation button 964, as described herein.
In one embodiment, still referring to
In one embodiment, the second jaw 928 can comprise a rivet cartridge receiving portion 929 configured to receive or at least partially receive a rivet cartridge 949 in a snap-fit or a press-fit fashion, for example. In various embodiments, the rivet cartridge 949 and/or the rivet cartridge receiving portion 929 can comprise a second electrode 960 and an optional fuse 962, such as the PTC material, for example, as discussed in further detail herein. In certain embodiments, the fuse 962 can be provided on both of the first portion 926 and the second portion 928 or on one of the first portion 926 and the second portion 928. The rivet cartridge 949 and/or the second jaw 928 can also comprise one or more insulative materials to help direct the energy between the electrodes 954 and 960 or between other various electrodes. Although the present disclosure discusses the rivet cartridge 949 comprising rivets, it will be understood that the rivet cartridge 949 can also comprise staples or other fasteners in addition to the rivets. Such a cartridge may be suitable for various surgical procedures. Also, although the rivet cartridge 949 is illustrated and described herein, it will be understood that rivet cavities can be formed in the second jaw 928 and that a separate rivet cartridge may not be required. Further, those of skill in the art will understand that the rivet cartridge 949, if provided, can be formed with or formed on the second jaw 928. As such, an end-effector or a surgical instrument used to deploy rivets can be provided with or without the rivets and/or with or without the rivet cartridge 949. In various embodiments, the rivet cartridge 949 can be disposable or can be reusable after being reloaded with rivets.
In one embodiment, referring to
The general operation of a surgical instrument, such as surgical instrument 910 is described in further detail herein and in U.S. Pat. No. 7,000,818 to Shelton et al., entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006, the entire disclosure of which is incorporated herein by reference in its entirety. The surgical instrument 910 can also operate in other fashions and still be within the scope of the present disclosure. Surgical instruments operably engaged with energy sources are described in greater detail above.
In one embodiment, referring to
In various embodiments, referring to
In one embodiment, the rivets 938 can comprise a meltable and/or a deformable material. Example materials can comprise collagen, keratin, synthetic absorbable and non-absorbable polymers, amorphous (as opposed to crystalline) thermoplastics, such as Noryl (blend of polyphenylene oxide and polystyrene), ABS (acrylonitrile butadiene styrene), polycarbonate, Ultem (polyetherimide), and/or polystyrene, for example, although other suitable materials can also be used. In one embodiment, the materials of the rivets 938 can comprise polylactic acid (PLA), high density polyethylene (HDPE), poly(lactic-co-glycolic acid) (PLGA), polyether ether ketone (PEEK), ethylene-vinyl acetate (EVA), and/or polyethylene oxide (PEO), for example. In various embodiments, the rivets 938 can comprise meltable and/or deformable portions, such as the meltable and/or deformable portion 959 and the elongate portion 957, for example. In one embodiment, the rivets 938 comprising the meltable and/or deformable material can have portions thereof melted through heat generated in the end-effector 920 by the resistance to energy flow through the tissue. In other embodiments, the rivets 938 comprising the meltable and/or deformable material can have portions thereof deformed by the first portion 926. In one embodiment, the rivets 938 can comprise absorbable and/or dissolvable materials, such as collagen, keratin, and/or synthetic absorbable materials, for example. These various materials can comprise biologically active components, for example. As a result of the usage of such materials, after the rivets 938 are deployed into the tissue and the end-effector 920 is removed from the surgical site, the rivets 938, over time, can be absorbed and/or dissolved into tissue and/or the body. In other various embodiments, the rivets 938 can comprise or can be coated with a medication, a therapeutic agent, and/or a collagen-based material to aid the tissue surrounding the rivets 938 in the healing process.
In one embodiment, the rivets 938 can comprise a tissue-puncturing tip 967 or tissue-piercing tip on the meltable and/or deformable portion 959 or on the elongate portion 957. The tissue-puncturing tip 967 can be configured to pierce tissue and/or buttress material, such as a collagen-based buttress material, for example, when forced into the tissue by the driver 942. In various embodiments, the tissue-puncturing tip 967 can be comprised of the same material as the meltable and/or deformable portion 959 and/or the elongate portion 957 or can be comprised of a different material, such as titanium or other biocompatible alloy, for example. In an embodiment where the tissue-puncturing tip 967 comprises the same materials as the meltable and/or deformable portion 959 or other meltable and/or deformable materials, it may be advantageous to first cut the tissue and then energize the end-effector and deploy the rivets 938 to prevent, or at least inhibit, the tissue-puncturing tip 967 from melting prior to being deployed into the tissue, for example.
In one embodiment,
In one embodiment, the rivets 938 and the driver 942 can be comprised of or can comprise a conductive or electrically conductive portion such that energy can pass to the driver 942 and to the rivets 938 when the driver 942 is in contact with the rivets 938. In such an embodiment, the rivets 938 can be deformable, for example. Such a feature allows the rivets 938 to seal tissue as the rivets 938 are forced through the tissue by the driver 942, similar to that described above with respect to the staples 72.
In one embodiment, referring to
In one embodiment, referring to
In various embodiments, the rivets 938 in the rivet cavities 946 can be deployed by the driver 942 from the second portion 928 toward the first portion 926 or toward the anvil pockets 958 such that portions thereof can be deformed by the anvil pockets 958. In other embodiments, the rivets 938 can be deformed by the first face 944 of the first portion 926. At the same time, before, or after the rivets 938 are deployed into the tissue, the first electrode 954 or the second electrode 960 can be energized to supply energy to the tissue and to the first electrode 954 or the second electrode 954. The energy can be supplied to the first electrode 954 and returned from the second electrode 960 or can be supplied to the second electrode 960 and returned from the first electrode 954 similar to or the same as that described above. An activation button 964 (
In the example embodiments of
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
Although the rivets and rivet cartridges have been discussed herein with respect to the surgical instrument 910, it will be understood that the rivets and rivet cartridges disclosed herein can be used with other linear cutting instruments, other linear cutting and sealing instruments, or other circular stapling instruments, such as the circular stapling instrument 10, for example. In a circular stapling instrument, the rivet cartridge can be circular or substantially circular such that it can be positioned within a receiving slot defined in the first portion 26 or the second portion 28 of the surgical instrument 10, for example. In one embodiment, the rivet cartridges discussed herein can be disposable or reloadable after use.
While the present disclosure has been illustrated by description of several example embodiments and while the example embodiments have been described in considerable detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may be readily apparent to those of skill in the art. Furthermore, although the example embodiments disclosed herein have been described in connection with various surgical instrument, other embodiments are envisioned in connection with other suitable medical devices and/or surgical instruments, such as a linear cutter for open surgery techniques, as disclosed in U.S. Patent Application Publication No. 2010/0072251 to Baxter et al., entitled LOCKOUT ARRANGEMENT FOR A SURGICAL STAPLER, filed on Sep. 19, 2008, the entire disclosure of which is hereby incorporated by reference. Furthermore, adjustable staple formation height technology can be used with the present disclosure. Example embodiments of the adjustable staple formation height technology are disclosed in U.S. Patent Application Publication No. 2010/0032470 to Hess et al., entitled SURGICAL STAPLING SYSTEMS AND STAPLE CARTRIDGES FOR DEPLOYING SURGICAL STAPLES WITH TISSUE COMPRESSION FEATURES, filed on Oct. 16, 2009, the entire disclosure of which is hereby incorporated by reference. While this disclosure has been described as having exemplary designs, the disclosure may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the disclosure using its general principles. Further, this disclosure is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this disclosure pertains.
The various embodiments of the present disclosure have been described above in connection with cutting-type surgical instruments. It should be noted, however, that in other embodiments, the surgical instruments disclosed herein need not be a cutting-type surgical instrument. For example, it could be a non-cutting endoscopic instrument, a grasper, a stapler, a clip applier, an access device, a drug/gene therapy delivery device, an energy device using ultrasound, RF, laser, etc. In certain embodiments, an ultrasonic instrument can be utilized in accordance with the embodiments disclosed herein. In one such embodiment, an ultrasonic instrument can comprise a first portion comprising a handle portion and/or end effector, for example, and a second portion comprising radiation-sensitive electronics. Various ultrasonic instruments are disclosed in U.S. Pat. No. 6,063,098 to Houser et al., entitled ARTICULATABLE ULTRASONIC SURGICAL APPARATUS, which issued on May 16, 2000, the entire disclosure of which is hereby incorporated by reference in its entirety. Adjustable height staples and/or adjustable height staple formation technology may also be used with the embodiments of the present disclosure. An examples of such technology is disclosed in U.S. patent application Ser. No. 12/622,113 to Bedi et al., entitled SURGICAL STAPLER COMPRISING A STAPLE POCKET, filed on Nov. 19, 2009, the entire disclosure of which is incorporated herein by reference in its entirety. Although the present disclosure has been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Further to the above, the various staple cartridges and/or rivet cartridges disclosed herein can be disposable. In one embodiment, an expended staple cartridge or rivet cartridge, or an at least partially expended staple cartridge or rivet cartridge, can be removed from a surgical stapler and replaced with another staple cartridge or rivet cartridge. In other various embodiments, the staple cartridge or rivet cartridge may not be removable and/or replaceable during the ordinary use of the surgical instrument but, in some circumstances, may be replaceable while and/or after the surgical stapler is reconditioned as described in greater detail below. In various embodiments, the staple cartridge or rivet cartridge can be part of a disposable loading unit or end-effector which can comprise a staple cartridge carrier or rivet cartridge carrier, an anvil, a cutting member, and/or a staple or rivet driver. In one embodiment, the entire, or at least a portion of, the disposable loading unit or end-effector can be detachably connected to a surgical instrument and can be configured to be replaced.
The surgical instruments disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the surgical instruments can be reconditioned for reuse after at least one use. Reconditioning can comprise any combination of the steps of disassembly of the surgical instruments, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the surgical instruments can be disassembled, and any number of the particular pieces or parts of the surgical instruments can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the surgical instruments can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a surgical instrument can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned surgical instrument, are all within the scope of the present disclosure.
Although the various embodiments of the devices have been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
2366274 | Luth et al. | Jan 1945 | A |
2458152 | Eakins | Jan 1949 | A |
2510693 | Green | Jun 1950 | A |
3166971 | Stoecker | Jan 1965 | A |
3580841 | Cadotte et al. | May 1971 | A |
3703651 | Blowers | Nov 1972 | A |
4005714 | Hiltebrandt | Feb 1977 | A |
4058126 | Leveen | Nov 1977 | A |
4220154 | Semm | Sep 1980 | A |
4237441 | van Konynenburg et al. | Dec 1980 | A |
4281785 | Brooks | Aug 1981 | A |
4304987 | van Konynenburg | Dec 1981 | A |
4535773 | Yoon | Aug 1985 | A |
4545926 | Fouts, Jr. et al. | Oct 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4582236 | Hirose | Apr 1986 | A |
4761871 | O'Connor et al. | Aug 1988 | A |
4849133 | Yoshida et al. | Jul 1989 | A |
4910389 | Sherman et al. | Mar 1990 | A |
5104025 | Main et al. | Apr 1992 | A |
5106538 | Barma et al. | Apr 1992 | A |
5108383 | White | Apr 1992 | A |
5190541 | Abele et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5309927 | Welch | May 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5339723 | Huitema | Aug 1994 | A |
5361583 | Huitema | Nov 1994 | A |
5387207 | Dyer et al. | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395364 | Anderhub et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5428504 | Bhatla | Jun 1995 | A |
5429131 | Scheinman et al. | Jul 1995 | A |
5496317 | Goble et al. | Mar 1996 | A |
5504650 | Katsui et al. | Apr 1996 | A |
5511556 | DeSantis | Apr 1996 | A |
5522839 | Pilling | Jun 1996 | A |
5558671 | Yates | Sep 1996 | A |
5563179 | Stone et al. | Oct 1996 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5647871 | Levine et al. | Jul 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5665100 | Yoon | Sep 1997 | A |
5674220 | Fox et al. | Oct 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5709680 | Yates et al. | Jan 1998 | A |
5716366 | Yates | Feb 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5782834 | Lucey et al. | Jul 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5800432 | Swanson | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5817033 | DeSantis et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5880668 | Hall | Mar 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5984938 | Yoon | Nov 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6013052 | Durman et al. | Jan 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6068629 | Haissaguerre et al. | May 2000 | A |
6074389 | Levine et al. | Jun 2000 | A |
6099483 | Palmer et al. | Aug 2000 | A |
6099550 | Yoon | Aug 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
6206876 | Levine et al. | Mar 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6340878 | Oglesbee | Jan 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6443968 | Holthaus et al. | Sep 2002 | B1 |
6464702 | Schulze et al. | Oct 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6503248 | Levine | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6554829 | Schulze et al. | Apr 2003 | B2 |
6558376 | Bishop | May 2003 | B2 |
6572639 | Ingle et al. | Jun 2003 | B1 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6635057 | Harano et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656198 | Tsonton et al. | Dec 2003 | B2 |
6673248 | Chowdhury | Jan 2004 | B2 |
6679882 | Komerup | Jan 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6789939 | Schrödinger et al. | Sep 2004 | B2 |
6800085 | Selmon et al. | Oct 2004 | B2 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6811842 | Ehrnsperger et al. | Nov 2004 | B1 |
6821273 | Mollenauer | Nov 2004 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6860880 | Treat et al. | Mar 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908463 | Treat et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929622 | Chian | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7066936 | Ryan | Jun 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7101372 | Dycus et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7169156 | Hart | Jan 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7235073 | Levine et al. | Jun 2007 | B2 |
7252667 | Moses et al. | Aug 2007 | B2 |
7267685 | Butaric et al. | Sep 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7307313 | Ohyanagi et al. | Dec 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7329257 | Kanehira et al. | Feb 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7435582 | Zimmermann et al. | Oct 2008 | B2 |
7445621 | Dumbauld et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7488319 | Yates | Feb 2009 | B2 |
7491201 | Shields et al. | Feb 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7513025 | Fischer | Apr 2009 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7550216 | Ofer et al. | Jun 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7628792 | Guerra | Dec 2009 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645277 | McClurken et al. | Jan 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666206 | Taniguchi et al. | Feb 2010 | B2 |
7703459 | Saadat et al. | Apr 2010 | B2 |
7708751 | Hughes et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7762445 | Heinrich et al. | Jul 2010 | B2 |
7766910 | Hixson et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7803156 | Eder et al. | Sep 2010 | B2 |
7815641 | Dodde et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7846159 | Morrison et al. | Dec 2010 | B2 |
7879035 | Garrison et al. | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7931649 | Couture et al. | Apr 2011 | B2 |
7935114 | Takashino et al. | May 2011 | B2 |
7955331 | Truckai et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7981113 | Truckai et al. | Jul 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8070036 | Knodel et al. | Dec 2011 | B1 |
8136712 | Zingman | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8246618 | Bucciaglia et al. | Aug 2012 | B2 |
8251994 | McKenna et al. | Aug 2012 | B2 |
8277446 | Heard | Oct 2012 | B2 |
8282669 | Gerber et al. | Oct 2012 | B2 |
8298232 | Unger | Oct 2012 | B2 |
8323310 | Kingsley | Dec 2012 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
20020165541 | Whitman | Nov 2002 | A1 |
20030105474 | Bonutti | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030125734 | Mollenauer | Jul 2003 | A1 |
20030130693 | Levin et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030158548 | Phan et al. | Aug 2003 | A1 |
20030216722 | Swanson | Nov 2003 | A1 |
20040019350 | O'Brien et al. | Jan 2004 | A1 |
20040138621 | Jahns et al. | Jul 2004 | A1 |
20040193150 | Sharkey et al. | Sep 2004 | A1 |
20040232196 | Shelton, IV et al. | Nov 2004 | A1 |
20040260273 | Wan | Dec 2004 | A1 |
20050072827 | Mollenauer | Apr 2005 | A1 |
20050085809 | Mucko et al. | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050203507 | Truckai et al. | Sep 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20060052778 | Chapman et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060069388 | Truckai et al. | Mar 2006 | A1 |
20060159731 | Shoshan | Jul 2006 | A1 |
20060217709 | Couture et al. | Sep 2006 | A1 |
20070027469 | Smith et al. | Feb 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070106158 | Madan et al. | May 2007 | A1 |
20070146113 | Truckai et al. | Jun 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070208312 | Norton et al. | Sep 2007 | A1 |
20070232920 | Kowalski et al. | Oct 2007 | A1 |
20070232926 | Stulen et al. | Oct 2007 | A1 |
20070232927 | Madan et al. | Oct 2007 | A1 |
20070232928 | Wiener et al. | Oct 2007 | A1 |
20070236213 | Paden et al. | Oct 2007 | A1 |
20070239025 | Wiener et al. | Oct 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20080071269 | Hilario et al. | Mar 2008 | A1 |
20080147062 | Truckai et al. | Jun 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080188851 | Truckai et al. | Aug 2008 | A1 |
20080221565 | Eder et al. | Sep 2008 | A1 |
20080262491 | Swoyer et al. | Oct 2008 | A1 |
20080294158 | Pappone et al. | Nov 2008 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090099582 | Isaacs et al. | Apr 2009 | A1 |
20090125026 | Rioux et al. | May 2009 | A1 |
20090125027 | Fischer | May 2009 | A1 |
20090138003 | Deville et al. | May 2009 | A1 |
20090206140 | Scheib et al. | Aug 2009 | A1 |
20090209979 | Yates et al. | Aug 2009 | A1 |
20090248002 | Takashino et al. | Oct 2009 | A1 |
20090320268 | Cunningham et al. | Dec 2009 | A1 |
20090326530 | Orban, III et al. | Dec 2009 | A1 |
20100010299 | Bakos et al. | Jan 2010 | A1 |
20100032470 | Hess et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036380 | Taylor et al. | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100076433 | Taylor et al. | Mar 2010 | A1 |
20100081863 | Hess et al. | Apr 2010 | A1 |
20100081864 | Hess et al. | Apr 2010 | A1 |
20100081880 | Widenhouse et al. | Apr 2010 | A1 |
20100081881 | Murray et al. | Apr 2010 | A1 |
20100081882 | Hess et al. | Apr 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100081995 | Widenhouse et al. | Apr 2010 | A1 |
20100094323 | Isaacs et al. | Apr 2010 | A1 |
20100237132 | Measamer et al. | Sep 2010 | A1 |
20100264194 | Huang et al. | Oct 2010 | A1 |
20100274278 | Fleenor et al. | Oct 2010 | A1 |
20110087208 | Boudreaux et al. | Apr 2011 | A1 |
20110087209 | Boudreaux et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087219 | Boudreaux et al. | Apr 2011 | A1 |
20110087220 | Felder et al. | Apr 2011 | A1 |
20110155781 | Swensgard et al. | Jun 2011 | A1 |
20110238065 | Hunt et al. | Sep 2011 | A1 |
20110251608 | Timm et al. | Oct 2011 | A1 |
20110251609 | Johnson et al. | Oct 2011 | A1 |
20110251612 | Faller et al. | Oct 2011 | A1 |
20110251613 | Guerra et al. | Oct 2011 | A1 |
20110264093 | Schall | Oct 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110282339 | Weizman et al. | Nov 2011 | A1 |
20110301605 | Horner | Dec 2011 | A1 |
20110306963 | Dietz et al. | Dec 2011 | A1 |
20110306964 | Stulen et al. | Dec 2011 | A1 |
20110306965 | Norvell et al. | Dec 2011 | A1 |
20110306966 | Dietz et al. | Dec 2011 | A1 |
20110306967 | Payne et al. | Dec 2011 | A1 |
20110306968 | Beckman et al. | Dec 2011 | A1 |
20110306972 | Widenhouse et al. | Dec 2011 | A1 |
20110306973 | Cummings et al. | Dec 2011 | A1 |
20120010615 | Cummings et al. | Jan 2012 | A1 |
20120010616 | Huang et al. | Jan 2012 | A1 |
20120012638 | Huang et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120022524 | Timm et al. | Jan 2012 | A1 |
20120022525 | Dietz et al. | Jan 2012 | A1 |
20120022526 | Aldridge et al. | Jan 2012 | A1 |
20120022527 | Woodruff et al. | Jan 2012 | A1 |
20120022528 | White et al. | Jan 2012 | A1 |
20120022529 | Shelton, IV et al. | Jan 2012 | A1 |
20120022530 | Woodruff et al. | Jan 2012 | A1 |
20120101488 | Aldridge et al. | Apr 2012 | A1 |
20120116379 | Yates et al. | May 2012 | A1 |
20120136353 | Romero | May 2012 | A1 |
20120150176 | Weizman | Jun 2012 | A1 |
20130023875 | Harris et al. | Jan 2013 | A1 |
20130053831 | Johnson et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
29623113 | Oct 1997 | DE |
20004812 | Sep 2000 | DE |
10201569 | Jul 2003 | DE |
0340803 | Aug 1993 | EP |
0630612 | Dec 1994 | EP |
0640317 | Sep 1999 | EP |
1749479 | Feb 2007 | EP |
1767157 | Mar 2007 | EP |
1878399 | Jan 2008 | EP |
1915953 | Apr 2008 | EP |
1532933 | May 2008 | EP |
1707143 | Jun 2008 | EP |
1943957 | Jul 2008 | EP |
1849424 | Apr 2009 | EP |
2042117 | Apr 2009 | EP |
2060238 | May 2009 | EP |
1810625 | Aug 2009 | EP |
2090238 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2092905 | Aug 2009 | EP |
2105104 | Sep 2009 | EP |
1747761 | Oct 2009 | EP |
1769766 | Feb 2010 | EP |
2151204 | Feb 2010 | EP |
2153791 | Feb 2010 | EP |
2243439 | Oct 2010 | EP |
1728475 | Aug 2011 | EP |
2353518 | Aug 2011 | EP |
0705571 | Apr 1996 | ER |
WO 9322973 | Nov 1993 | WO |
WO 9635382 | Nov 1996 | WO |
WO 9800069 | Jan 1998 | WO |
WO 9840020 | Sep 1998 | WO |
WO 9857588 | Dec 1998 | WO |
WO 9923960 | May 1999 | WO |
WO 9940861 | Aug 1999 | WO |
WO 0025691 | May 2000 | WO |
WO 0128444 | Apr 2001 | WO |
WO 03013374 | Feb 2003 | WO |
WO 03020339 | Mar 2003 | WO |
WO 03028541 | Apr 2003 | WO |
WO 03030708 | Apr 2003 | WO |
WO 03068046 | Aug 2003 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2005052959 | Jun 2005 | WO |
WO 2006021269 | Mar 2006 | WO |
WO 2006036706 | Apr 2006 | WO |
WO 2006055166 | Jun 2006 | WO |
WO 2008020964 | Feb 2008 | WO |
WO 2008045348 | Apr 2008 | WO |
WO 2008099529 | Aug 2008 | WO |
WO 2008101356 | Aug 2008 | WO |
WO 2009022614 | Feb 2009 | WO |
WO 2009036818 | Mar 2009 | WO |
WO 2009039179 | Mar 2009 | WO |
WO 2009059741 | May 2009 | WO |
WO 2009082477 | Jul 2009 | WO |
WO 2009149234 | Dec 2009 | WO |
WO 2010017266 | Feb 2010 | WO |
WO 2010104755 | Sep 2010 | WO |
WO 2011089717 | Jul 2011 | WO |
WO 03001986 | Jan 2013 | WO |
Entry |
---|
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949). |
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971). |
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947). |
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000). |
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C,” Journal of Biomechanics, 31, pp. 211-216 (1998). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997). |
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998). |
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998). |
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004). |
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003). |
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009. |
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995). |
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000). |
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999). |
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004). |
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001). |
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003). |
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997). |
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011. |
Glaser and Subak-Sharpe, Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached). |
U.S. Appl. No. 12/576,756, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,776, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,789, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,808, filed Oct. 9, 2009. |
U.S. Appl. No. 12/576,831, filed Oct. 9, 2009. |
U.S. Appl. No. 12/836,383, filed Jul. 14, 2010. |
U.S. Appl. No. 12/836,396, filed Jul. 14, 2010. |
U.S. Appl. No. 12/842,464, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,476, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,507, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,518, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,538, filed Jul. 23, 2010. |
U.S. Appl. No. 12/842,565, filed Jul. 23, 2010. |
U.S. Appl. No. 12/758,253, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,268, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,284, filed Apr. 12, 2010. |
U.S. Appl. No. 12/758,298, filed Apr. 12, 2010. |
U.S. Appl. No. 12/765,175, filed Apr. 22, 2010. |
U.S. Appl. No. 12/911,943, filed Oct. 26, 2010. |
U.S. Appl. No. 12/841,480, filed Jul. 22, 2010. |
U.S. Appl. No. 12/963,001, filed Dec. 8, 2010. |
U.S. Appl. No. 12/732,992, filed Mar. 26, 2010. |
U.S. Appl. No. 12/797,207, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,252, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,288, filed Jun. 9, 2010. |
U.S. Appl. No. 12/797,305, filed Jun. 9, 2010. |
U.S. Appl. No. 12/841,370, filed Jul. 22, 2010. |
U.S. Appl. No. 12/797,844, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,853, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,861, filed Jun. 10, 2010. |
U.S. Appl. No. 12/797,866, filed Jun. 10, 2010. |
U.S. Appl. No. 12/832,345, filed Jul. 8, 2010. |
U.S. Appl. No. 12/832,361, filed Jul. 8, 2010. |
U.S. Appl. No. 12/781,243, filed May 17, 2010. |
U.S. Appl. No. 12/775,724, filed May 7, 2010. |
U.S. Appl. No. 12/647,134, filed Dec. 24, 2009. |
Partial International Search Report for PCT/US2011/043844, Oct. 21, 2011 (2 pages). |
U.S. Appl. No. 13/221,410, filed Aug. 30, 2011. |
U.S. Appl. No. 13/189,169, filed Jul. 22, 2011. |
U.S. Appl. No. 12/622,113, filed Nov. 19, 2009. |
U.S. Appl. No. 12/635,415, filed Dec. 10, 2009. |
International Search Report for PCT/US2011/043844, Jun. 1, 2012 (6 pages). |
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26. |
Number | Date | Country | |
---|---|---|---|
20120012636 A1 | Jan 2012 | US |