Surgical instruments

Information

  • Patent Grant
  • 11607268
  • Patent Number
    11,607,268
  • Date Filed
    Thursday, August 8, 2019
    5 years ago
  • Date Issued
    Tuesday, March 21, 2023
    a year ago
Abstract
A surgical instrument is disclosed including a transducer configured to provide vibrations along a longitudinal axis, an end effector operably coupled to the transducer, and a stationary lower jaw extending parallel to the end effector. The end effector extends along the longitudinal axis. The end effector comprises a blade. The stationary lower jaw comprises a clamp face positioned distal to the blade. The end effector is movable relative to the stationary lower jaw to drive the blade distally towards the clamp face. The end effector comprises a hollow lumen. The end effector further comprises at least one member extended across a portion of the hollow lumen.
Description
BACKGROUND

Ultrasonic instruments, including both hollow core and solid core instruments, are used for the safe and effective treatment of many medical conditions. Ultrasonic instruments, are advantageous because they may be used to cut and/or coagulate organic tissue using energy in the form of mechanical vibrations transmitted to a surgical end effector at ultrasonic frequencies. Ultrasonic vibrations, when transmitted to organic tissue at suitable energy levels and using a suitable end effector, may be used to cut, dissect, elevate or cauterize tissue or to separate muscle tissue off bone. Such instruments may be used for open procedures or minimally invasive procedures, such as endoscopic or laparoscopic procedures, wherein the end effector is passed through a trocar to reach the surgical site.


Activating or exciting the end effector (e.g., cutting blade) of such instruments at ultrasonic frequencies induces longitudinal vibratory movement that generates localized heat within adjacent tissue, facilitating both cutting and coagulation. Because of the nature of ultrasonic instruments, a particular ultrasonically actuated end effector may be designed to perform numerous functions, including, for example, cutting and coagulation.


Ultrasonic vibration is induced in the surgical end effector by electrically exciting a transducer, for example. The transducer may be constructed of one or more piezoelectric or magnetostrictive elements in the instrument hand piece. Vibrations generated by the transducer section are transmitted to the surgical end effector via an ultrasonic waveguide extending from the transducer section to the surgical end effector. The waveguides and end effectors are designed to resonate at the same frequency as the transducer. Therefore, when an end effector is attached to a transducer the overall system frequency is the same frequency as the transducer itself.


The zero to peak amplitude of the longitudinal ultrasonic vibration at the tip, d, of the end effector behaves as a simple sinusoid at the resonant frequency as given by:

d=A sin(ωt)

where:


ω=the radian frequency which equals a times the cyclic frequency, f; and


A=the zero-to-peak amplitude.


The longitudinal excursion is defined as the peak-to-peak (p-t-p) amplitude, which is just twice the amplitude of the sine wave or 2A.


Ultrasonic surgical instruments may be divided into two types, single element end effector devices and multiple-element end effector devices. Single element end effector devices include instruments such as scalpels and ball coagulators. Single-element end effector instruments have limited ability to apply blade-to-tissue pressure when the tissue is soft and loosely supported. Sometimes, substantial pressure may be necessary to effectively couple ultrasonic energy to the tissue. This inability to grasp the tissue results in a further inability to fully coapt tissue surfaces while applying ultrasonic energy, leading to less-than-desired hemostasis and tissue joining. In these cases, multiple-element end effectors may be used. Multiple-element end effector devices, such as clamping coagulators, include a mechanism to press tissue against an ultrasonic blade that can overcome these deficiencies.


Many surgical procedures utilizing harmonic and non-harmonic instruments create extraneous tissue fragments and other materials at the surgical site. If this material is not removed, it may obstruct the clinician's view and also may interfere with the blade or other end effector of the surgical device. To remove the material, the clinician must remove the instrument from the surgical area and introduce an aspiration tool. This can break the clinician's concentration and also contribute to physical and mental fatigue.


Also, in some surgical procedures, it is desirable to remove a core or other integral portion of tissue. In these procedures, the clinician uses a first instrument to grasp and sometimes cut an outline of the tissue to be removed. Then a second instrument is utilized to remove the tissue from surrounding material, often while the tissue is still grasped by the first instrument. This process may be particularly challenging for clinicians because it can require the use of multiple instruments, often simultaneously. Also, many coring procedures are performed at very delicate portions of the anatomy that require precise cuts.


In addition, existing harmonic instruments allow the clinician to turn them on or off, but provide limited control over the power delivered to tissue once the instrument is turned on. This limits the usefulness of harmonic instruments in delicate surgical procedures, where fine cutting control is required.


SUMMARY

In one general aspect, the various embodiments are directed to a surgical device. The surgical device may comprise a transducer configured to provide vibrations along a longitudinal axis and an end effector coupled to the transducer and extending from the transducer along the longitudinal axis. The surgical device also may comprise a lower jaw extending parallel to the end effector. The lower jaw may comprise a clamp face extending toward the longitudinal axis. Also, the lower jaw may be slidable relative to the end effector to bring the clamp face toward a distal end of the end effector.


In another general aspect, the various embodiments are directed to another surgical device comprising an end effector. The end effector may comprise a hollow portion defining a central lumen and at least one member extended across at least a portion of the central lumen at about a distal end of the end effector.


In yet another general aspect, the various embodiments are directed to a surgical device comprising a central instrument and an outer sheath surrounding the central instrument. The central instrument may be configured to engage tissue, and may be slidable relative to the outer sheath. The outer sheath may comprise a distal edge configured to clamp the tissue when the central instrument is slid to a position proximal from the distal edge of the outer sheath.


According to still another general aspect, the various embodiments are directed to a surgical device comprising a transducer configured to energize an end effector and a trigger actuable to cause the end effector to be energized. The end effector may be coupled to the transducer. The surgical device may further comprise a sensor positioned to sense a force exerted on the trigger, and control circuit in communication with the sensor. The control circuit may be configured to increase power delivered to the end effector by the transducer in response to an increase of the force exerted on the trigger.


According to still another general aspect, the various embodiments are directed to a surgical instrument including a transducer configured to provide vibrations along a longitudinal axis, an end effector operably coupled to the transducer, and a stationary lower jaw extending parallel to the end effector. The end effector extends along the longitudinal axis. The end effector comprises a blade. The stationary lower jaw comprises a clamp face positioned distal to the blade. The end effector is movable relative to the stationary lower jaw to drive the blade distally towards the clamp face. The end effector comprises a hollow lumen. The end effector further comprises at least one member extended across a portion of the hollow lumen.


According to still another general aspect, the various embodiments are directed to a surgical instrument including a transducer configured to provide vibrations along a longitudinal axis, an end effector operably coupled to the transducer, and a stationary lower jaw extending parallel to the end effector. The end effector extends along the longitudinal axis. The end effector comprises a cutting edge. The stationary lower jaw comprises a clamp face extending towards the longitudinal axis. The end effector is slidable relative to the stationary lower jaw to drive the cutting edge distally towards the clamp face. The end effector comprises a hollow lumen. The end effector further comprises at least one member extended across a portion of the hollow lumen.


According to still another general aspect, the various embodiments are directed to a surgical instrument including a transducer, an end effector operably coupled to the transducer, and an immobile lower jaw extending parallel to the end effector. The end effector is configured to vibrate in response to ultrasonic vibrations provided by the transducer. The end effector comprises a blade defining a hollow lumen. The immobile lower jaw comprises a clamp face positioned distal to the blade. The end effector is translatable relative to the immobile lower jaw to drive the blade distally towards the clamp face. The surgical instrument further includes at least one member extended across a portion of the hollow lumen.





FIGURES

The novel features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1 illustrates one embodiment of a surgical system including a surgical instrument and an ultrasonic generator;



FIG. 2 illustrates one embodiment of the surgical instrument shown in FIG. 1;



FIG. 3 illustrates an exploded view of one embodiment the surgical instrument shown in FIG. 1;



FIG. 4 illustrates one embodiment of a clamping mechanism that may be used with the surgical instrument shown in FIG. 1;



FIG. 5 illustrates a cut-away view of one embodiment of the surgical instrument shown in FIG. 1;



FIG. 6 illustrates various internal components of one embodiment of the surgical instrument shown in FIG. 1;



FIG. 7 illustrates one embodiment of a drive yoke of the surgical instrument shown in FIG. 1;



FIG. 8 illustrates one embodiment of a drive collar of the surgical instrument shown in FIG. 1;



FIG. 9 illustrates one embodiment of a surgical system including a surgical instrument having single element end effector;



FIG. 10 illustrates one embodiment of a surgical device;



FIGS. 11-12 illustrate exploded views of one embodiment of the surgical device shown in FIG. 10;



FIG. 13 illustrates a side view of one embodiment of the surgical device shown in FIG. 10 with the blade and clamp face separated from one another;



FIG. 14 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10 with the blade and clamp face separated from one another;



FIG. 15 illustrates a side view of one embodiment of the surgical device shown in FIG. 10 with the blade and clamp face translated toward one another;



FIG. 16 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10 with the blade and clamp face translated toward one another;



FIGS. 17-18 illustrate one embodiment of a lower jaw and outer sheath of the surgical device shown in FIG. 10;



FIGS. 19-20 illustrate a handle region of one embodiment of the surgical device shown in FIG. 10;



FIG. 20A illustrates one embodiment of the surgical device shown in FIG. 10;



FIG. 20B illustrates one embodiment of the surgical device shown in FIG. 20A where the end effector is configured to rotate as it moves forward toward the clamp face;



FIG. 21 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10 including a blade defining a hollow lumen;



FIG. 22 illustrates one embodiment of the blade shown in FIG. 21;



FIG. 23 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10 including a blade defining a hollow lumen and having members extending across the hollow lumen;



FIG. 24 illustrates one embodiment of the blade shown in FIG. 23;



FIG. 25 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10 including a jaw member defining a lumen;



FIG. 26 illustrates one embodiment of a blade for use with the surgical device as shown in FIG. 25;



FIG. 26A illustrates an additional embodiment of the blade of FIG. 26 having cutting members positioned within a cavity of the blade.



FIG. 27 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10;



FIG. 28 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10 including a plug feature received into a hollow lumen of the end effector;



FIG. 28A illustrates one embodiment of the surgical device of FIG. 10 including a rotating end effector;



FIG. 28B illustrates one embodiment of an electric motor for use with the surgical device of FIG. 28A.



FIG. 28C illustrates one embodiment of the surgical device of FIG. 28A having an angled blade;



FIG. 29 illustrates one embodiment of a hollow core end effector comprising members extending across a lumen;



FIG. 30 illustrates one embodiment of a hollow core end effector comprising members extending across a lumen;



FIG. 31 illustrates a cut away view of one embodiment of the hollow core end effector shown in FIG. 30;



FIG. 31A illustrates one embodiment of a hollow core end effector having angled members;



FIG. 32 illustrates one embodiment of an end effector having a non-integral blade;



FIG. 33 illustrates one embodiment of an end effector having a member extended across a lumen and edges extending beyond the member;



FIG. 34 illustrates one embodiment of an end effector having an inter-lumen member positioned non-parallel to a longitudinal axis of the end effector;



FIG. 35 illustrates one embodiment of an end effector having a multi-section inter-lumen member;



FIG. 36 illustrates one embodiment of an end effector having inter-lumen members extending distally;



FIG. 37 illustrates one embodiment of a surgical device comprising a central instrument and an outer sheath;



FIG. 38 illustrates one embodiment of the surgical device shown in FIG. 37 where the central instrument is grasping tissue;



FIG. 39 illustrates one embodiment of the surgical device shown in FIG. 37 where the outer sheath has clamped the tissue;



FIG. 40 illustrates one embodiment of the surgical device shown in FIG. 37 where the tissue has been severed;



FIGS. 41-42 illustrate one embodiment of the surgical device shown in FIG. 37 where the outer sheath comprises edge members;



FIGS. 43 and 45 illustrate one embodiment of the outer sheath of the device shown in FIG. 37 comprising a pair of jaw members in an open position;



FIGS. 44 and 46 illustrate one embodiment of the outer sheath of the device shown in FIG. 37 where the jaw members are in a closed position;



FIG. 47 illustrates one embodiment of another surgical device having a central instrument and an outer sheath;



FIG. 48 illustrates one embodiment of the surgical instrument of FIG. 47 where the central instrument is extended into tissue;



FIG. 49 illustrates one embodiment of the surgical instrument of FIG. 47 where the central instrument has been retracted from the tissue;



FIG. 50 illustrates one embodiment of the surgical instrument of FIG. 47 where the outer sheath has been extended into the tissue;



FIG. 51 illustrates one embodiment of the surgical instrument of FIG. 47 where the outer sheath has been retracted from the tissue;



FIG. 52 illustrates a block diagram of one embodiment of a surgical device;



FIG. 53 illustrates one embodiment of a surgical device;



FIG. 54 illustrates one embodiment of a surgical device;



FIG. 55 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 54; and



FIG. 56 illustrates one embodiment of a surgical device 700 comprising a hand-piece adapter.





DESCRIPTION

Before explaining the various embodiments in detail, it should be noted that the embodiments are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. For example, the surgical instruments and blade configurations disclosed below are illustrative only and not meant to limit the scope or application thereof. Also, the blade and end effector designs described hereinbelow may be used in conjunction with any suitable device. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments for the convenience of the reader and are not to limit the scope thereof.


Examples of ultrasonic surgical instruments and blades are disclosed in U.S. Pat. Nos. 5,322,055 and 5,954,736, 6,309,400 B2, 6,278,218 B1, 6,283,981 B1, and 6,325,811 B1, which are incorporated herein by reference in their entirety. These references disclose ultrasonic surgical instrument designs and blade designs where a longitudinal mode of the blade is excited. The result is a longitudinal standing wave within the instrument. Accordingly, the instrument has nodes, where the transverse motion is equal to zero, and anti-nodes, where the transverse motion is at its maximum. The instrument's tissue end effector is often positioned at an anti-node to maximize its longitudinal motion.


Various embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments and that the scope of the various embodiments is defined solely by the claims. The features illustrated or described in connection with one embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the claims.


It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a surgical device at its hand piece assembly, or other comparable piece. Thus, the end effector is distal with respect to the more proximal hand piece assembly. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the hand piece assembly, or comparable piece. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.



FIG. 1 illustrates one embodiment of a surgical system including a surgical instrument and an ultrasonic generator. FIG. 2 illustrates one embodiment of the apparatus shown in FIG. 1. In the embodiment illustrated in FIGS. 1-2, the surgical system 10 includes an ultrasonic clamp coagulator instrument 120 and an ultrasonic generator 30. The surgical instrument 120 includes an ultrasonic drive unit 50. As will be further described, an ultrasonic transducer of the drive unit 50, and an ultrasonic end effector 180 of the clamp instrument 120, together provide an acoustic assembly of the surgical system 10, with the acoustic assembly providing ultrasonic energy for surgical procedures when powered by generator 30. It will be noted that, in some applications, the ultrasonic drive unit 50 is referred to as a “hand piece assembly” because the surgical instrument 120 of the surgical system 10 is configured such that a clinician grasps and manipulates the ultrasonic drive unit 50 during various procedures and operations. The instrument 120 may include a scissors-like grip arrangement which facilitates positioning and manipulation of the instrument 120 apart from manipulation of the ultrasonic drive unit 50.


The generator 30 of the surgical system 10 sends an electrical signal through a cable 32 at a selected excursion, frequency, and phase determined by a control system of the generator 30. As will be further described, the signal causes one or more piezoelectric elements of the acoustic assembly of the surgical instrument 120 to expand and contract along a longitudinal axis, thereby converting the electrical energy into mechanical motion. The mechanical motion results in longitudinal waves of ultrasonic energy that propagate through the acoustic assembly in an acoustic standing wave to vibrate the acoustic assembly at a selected frequency and excursion. The end effector 180 is placed in contact with tissue of the patient to transfer the ultrasonic energy to the tissue. For example, a distal portion of blade 180′ of the end effector may be placed in contact with the tissue. As further described below, a surgical tool, such as, a jaw or clamping mechanism, may be utilized to press the tissue against the blade 180′.


As the end effector 180 couples with the tissue, thermal energy or heat is generated as a result of friction, acoustic absorption, and viscous losses within the tissue. The heat is sufficient to break protein hydrogen bonds, causing the highly structured protein (e.g., collagen and muscle protein) to denature (e.g., become less organized). As the proteins are denatured, a sticky coagulum forms to seal or coagulate small blood vessels. Deep coagulation of larger blood vessels results when the effect is prolonged.


The transfer of the ultrasonic energy to the tissue causes other effects including mechanical tearing, cutting, cavitation, cell disruption, and emulsification. The amount of cutting as well as the degree of coagulation obtained varies with the excursion of the end effector 180, the frequency of vibration, the amount of pressure applied by the user, the sharpness of the end effector 180, and the coupling between the end effector 180 and the tissue.


In the embodiment illustrated in FIG. 1, the generator 30 includes a control system integral with the generator 30, a power switch 34, and a triggering mechanism 36. The power switch 34 controls the electrical power to the generator 30, and when activated by the triggering mechanism 36, the generator 30 provides energy to drive the acoustic assembly of the surgical system 10 frequency and to drive the end effector 180 at a predetermined excursion level. The generator 30 drives or excites the acoustic assembly at any suitable resonant frequency of the acoustic assembly.


When the generator 30 is activated via the triggering mechanism 36, electrical energy is continuously applied by the generator 30 to a transducer stack or assembly 40 of the acoustic assembly. A phase-locked loop in the control system of the generator 30 monitors feedback from the acoustic assembly. The phase lock loop adjusts the frequency of the electrical energy sent by the generator 30 to match the resonant frequency of the selected longitudinal mode of vibration of the acoustic assembly. In addition, a second feedback loop in the control system maintains the electrical current supplied to the acoustic assembly at a pre-selected constant level in order to achieve substantially constant excursion at the end effector 180 of the acoustic assembly.


The electrical signal supplied to the acoustic assembly will cause the distal end of the end effector 180, e.g., the blade 180′, to vibrate longitudinally in the range of, for example, approximately 20 kHz to 250 kHz. According to various embodiments, the blade 180′ may vibrate in the range of about 54 kHz to 56 kHz, for example, at about 55.5 kHz. In other embodiments, the blade 180′ may vibrate at other frequencies including, for example, about 31 kHz or about 80 kHz. The excursion of the vibrations at the blade can be controlled by, for example, controlling the amplitude of the electrical signal applied to the transducer assembly 40 of the acoustic assembly by the generator 30.


As noted above, the triggering mechanism 36 of the generator 30 allows a user to activate the generator 30 so that electrical energy may be continuously supplied to the acoustic assembly. The triggering mechanism 36 may comprise a foot activating switch that is detachably coupled or attached to the generator 30 by a cable or cord. Alternatively, the triggering mechanism can be configured as a hand switch incorporated in the ultrasonic drive unit 50 to allow the generator 30 to be activated by a user.


The generator 30 also has a power line 38 for insertion in an electro-surgical unit or conventional electrical outlet. It is contemplated that the generator 30 can also be powered by a direct current (DC) source, such as a battery. The generator 30 can comprise any suitable generator, such as Model No. GEN04, available from Ethicon Endo-Surgery, Inc.


In the embodiment illustrated in FIGS. 1 and 3, the ultrasonic drive unit 50 of the surgical instrument includes a multi-piece housing 52 adapted to isolate the operator from the vibrations of the acoustic assembly. The drive unit housing 52 can be shaped to be held by a user in a conventional manner, but it is contemplated that the present clamp coagulator instrument 120 principally be grasped and manipulated by a scissors-like arrangement provided by a housing of the apparatus, as will be described. While the multi-piece housing 52 is illustrated, the housing 52 may comprise a single or unitary component.


The housing 52 of the ultrasonic drive unit 50 generally includes a proximal end, a distal end, and a cavity extending longitudinally therein. The distal end of the housing 52 includes an opening 60 configured to allow the acoustic assembly of the surgical system 10 to extend therethrough, and the proximal end of the housing 52 is coupled to the generator 30 by the cable 32. The cable 32 may include ducts or vents 62 to allow air or other fluids to be introduced into the housing 52 of the ultrasonic drive unit 50 to cool the transducer assembly 40 of the acoustic assembly.


The housing 52 of the ultrasonic drive unit 50 may be constructed from a durable plastic, such as ULTEM®. It is also contemplated that the housing 52 may alternatively be made from a variety of materials including other plastics (e.g. liquid crystal polymer (LCP), nylon, or polycarbonate) and/or metals (e.g., aluminum, steel, etc.). A suitable ultrasonic drive unit 50 is Model No. HP054, available from Ethicon Endo-Surgery, Inc.


The acoustic assembly of the surgical instrument generally includes a first acoustic portion and a second acoustic portion. The first acoustic portion may be carried by the ultrasonic drive unit 50, and the second acoustic portion (in the form of an end effector 180, as will be described) is carried by the ultrasonic clamp coagulator 120. The distal end of the first acoustic portion is operatively coupled to the proximal end of the second acoustic portion, preferably by a threaded connection.


In the embodiment illustrated in FIG. 2, the first acoustic portion includes the transducer stack or assembly 40 and a mounting device 84, and the second acoustic portion includes the end effector 180. The end effector 180 may in turn comprise a transmission component, or waveguide 181 (FIG. 3), as well as a distal portion, or blade 180′, for interfacing with tissue.


The components of the acoustic assembly may be acoustically tuned such that the length of each component is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration frequency f0 of the acoustic assembly, and n is any non-negative integer. It is also contemplated that the acoustic assembly may incorporate any suitable arrangement of acoustic elements.


The transducer assembly 40 of the acoustic assembly converts the electrical signal from the generator 30 into mechanical energy that results in longitudinal vibratory motion of the end effector 180 at ultrasonic frequencies. When the acoustic assembly is energized, a vibratory motion standing wave is generated through the acoustic assembly. The excursion of the vibratory motion at any point along the acoustic assembly depends on the location along the acoustic assembly at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (e.g., where motion is usually minimal), and a local absolute value maximum or peak in the standing wave is generally referred to as an anti-node. The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).


In the embodiment illustrated in FIG. 2, the transducer assembly 40 of the acoustic assembly, which is also known as a “Langevin stack”, generally includes a transduction portion 90, a first resonator 92, and a second resonator 94. The transducer assembly 40 may be an integral number of one-half system wavelengths (nλ/2) in length. It is to be understood that other embodiments of the transducer assembly 40 may comprise a magnetostrictive, electromagnetic or electrostatic transducer.


The distal end of the first resonator 92 is connected to the proximal end of transduction section 90, and the proximal end of the second resonator 94 is connected to the distal end of transduction portion 90. The first and second resonators 92 and 94 may be fabricated from titanium, aluminum, steel, or any other suitable material, and most preferably, the first resonator 92 is fabricated from 303 stainless steel and the second resonator 94 is fabricated from 7075-T651 Aluminum. The first and second resonators 92 and 94 have a length determined by a number of variables, including the length of the transduction section 90, the speed of sound of material used in the resonators 92 and 94, and the desired fundamental frequency f0 of the transducer assembly 40. The second resonator 94 can be tapered inwardly from its proximal end to its distal end to function as a velocity transformer and amplify the ultrasonic vibration excursion.


The transduction portion 90 of the transducer assembly 40 may comprise a piezoelectric section of alternating positive electrodes 96 and negative electrodes 98, with the piezoelectric elements 100 alternating between the electrodes 96 and 98. The piezoelectric elements 100 can be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead metaniobate, lead titanate, or other piezoelectric material. Each of the positive electrodes 96, negative electrodes 98, and piezoelectric elements 100 have a bore extending through the center. The positive and negative electrodes 96 and 98 are electrically coupled to wires 102 and 104, respectfully. The wires 102 and 104 transmit the electrical signal from the generator 30 to the electrodes 96 and 98.


The piezoelectric elements 100 may be held in compression between the first and second resonators 92 and 94 by a bolt 106. The bolt 106 may have a head, a shank, and a threaded distal end. The bolt 106 may be inserted from the proximal end of the first resonator 92 through the bores of the first resonator 92, the electrodes 96 and 98, and piezoelectric elements 100. The threaded distal end of the bolt 106 is screwed into a threaded bore in the proximal end of second resonator 94. The bolt 106 may be fabricated from steel, titanium, aluminum, or other suitable material. For example, the bolt 106 may be fabricated from Ti-6Al-4V Titanium or from 4037 low alloy steel.


The piezoelectric elements 100 may be energized in response to the electrical signal supplied from the generator 30 to produce an acoustic standing wave in the acoustic assembly. The electrical signal causes an electromagnetic field across the piezoelectric elements 100, causing the piezoelectric elements 100 to expand and contract in a continuous manner along the longitudinal axis of the voltage gradient, producing high frequency longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly to the end effector 180.


The mounting device 84 of the acoustic assembly has a proximal end, a distal end, and may have a length substantially equal to an integral number of one-half system wavelengths (nλ/2). The proximal end of the mounting device 84 may be axially aligned and coupled to the distal end of the second resonator 94 by an internal threaded connection near an anti-node. It is also contemplated that the mounting device 84 may be attached to the second resonator 94 by any suitable means, and the second resonator 94 and mounting device 84 may be formed as a single or unitary component.


The mounting device 84 is coupled to the housing 52 of the ultrasonic drive unit 50 near a node. The mounting device 84 may include an integral mounting flange 108 disposed around its periphery. The mounting flange 108 may be disposed in an annular groove 110 formed in the housing 52 of the ultrasonic drive unit 50 to couple the mounting device 84 to the housing 52. A compliant member or material 112, such as a pair of silicone rubber O-rings attached by stand-offs, may be placed between the annular groove 110 of the housing 52 and the integral flange 108 of the mounting device 86 to reduce or prevent ultrasonic vibration from being transmitted from the mounting device 84 to the housing 52.


The mounting device 84 may be secured in a predetermined axial position by a plurality of pins 114, for example, four. The pins 114 are disposed in a longitudinal direction ninety (90) degrees apart from each other around the outer periphery of the mounting device 84. The pins 114 are coupled to the housing 52 of the ultrasonic drive unit 50 and are disposed through notches in the acoustic mounting flange 108 of the mounting device 84. The pins 114 may be fabricated from stainless steel. According to various embodiments, the pins 114 may be formed as integral components of the housing 52.


The mounting device 84 may be configured to amplify the ultrasonic vibration excursion that is transmitted through the acoustic assembly to the distal end of the end effector 180. In one embodiment, the mounting device 84 comprises a solid, tapered horn. As ultrasonic energy is transmitted through the mounting device 84, the velocity of the acoustic wave transmitted through the mounting device 84 is amplified. It is contemplated that the mounting device 84 be configured as any suitable shape, such as, for example, a stepped horn, a conical horn, an exponential horn, a unitary gain horn, or the like.


The mounting device 84 may be acoustically coupled to the second acoustic portion of the ultrasonic clamp coagulator instrument 120. The distal end of the mounting device 84 may be coupled to the proximal end of the second acoustic portion by an internal threaded connection near an anti-node, but alternative coupling arrangements can be employed.



FIG. 3 illustrates an exploded view of one embodiment the surgical instrument shown in FIG. 1. The proximal end of the ultrasonic clamp coagulator instrument 120 preferably receives and is fitted to the distal end of the ultrasonic drive unit 50 by insertion of the drive unit 50 into the housing 52, as shown in FIG. 2. The ultrasonic clamp coagulator instrument 120 may be attached to and removed from the ultrasonic drive unit 50 as a unit. The ultrasonic clamp coagulator 120 may be disposed of after a single use.


The ultrasonic clamp coagulator instrument 120 may include a handle assembly or a housing 130, which may comprise mating housing portions 131, 132, and an elongated or endoscopic portion 150. When the present apparatus is configured for endoscopic use, the construction can be dimensioned such that portion 150 has an outside diameter of about 5.5 mm. The elongated portion 150 of the ultrasonic clamp coagulator instrument 120 may extend substantially orthogonally from the apparatus housing 130. The elongated portion 150 can be selectively rotated with respect to the housing 130 as described below. The elongated portion 150 may include an outer tubular member or sheath 160, an inner tubular actuating member 170, and the second acoustic portion of the acoustic system in the form of an end effector 180 including a blade 180′. As will be described, the outer sheath 160, the actuating member 170, and the end effector 180 may be joined together for indexed rotation as a unit (together with ultrasonic drive unit 50) relative to housing 130.


The proximal end of the end effector 180 of the second acoustic portion may be detachably coupled to the mounting device 84 of the ultrasonic drive unit 50 near an anti-node as described above. The end effector 180 may have a length substantially equal to an integer number of one-half system wavelengths (nλ/2). The end effector 180 may be fabricated from a solid core shaft constructed out of material which propagates ultrasonic energy efficiently, such as a titanium alloy (e.g., Ti-6Al-4V) or an aluminum alloy. It is contemplated that the end effector 180 can alternatively be fabricated from any other suitable material.


As described, the end effector 180 may include a waveguide 181. The waveguide 181 may be substantially semi-flexible. It will be recognized that the waveguide 181 can alternatively be substantially rigid or may comprise a flexible wire. The waveguide 181 may be configured to amplify the mechanical vibrations transmitted through the waveguide to the blade as is well known in the art. The waveguide 181 may further have features to control the gain of the longitudinal vibration along the waveguide 181 and features to tune the waveguide to the resonant frequency of the system.


It will be recognized that the end effector 180 may have any suitable cross-sectional dimension. For example, the end effector 180 may have a substantially uniform cross-section or the end effector 180 may be tapered at various sections or may be tapered along its entire length.


Referring now to FIG. 3, the waveguide 181 portion of the end effector 180 is shown to comprise a first section 182, a second section 184, and a third section 186. The first section 182 of may extend distally from the proximal end of the end effector 180, and has a substantially continuous cross-section dimension. The first section 182 may include at least one radial hole or aperture 188 extending diametrically therethrough, substantially perpendicular to the axis of the end effector 180. The aperture 188 may be positioned at a node, but may be otherwise positioned. It will be recognized that the aperture 188 may have any suitable depth and may be any suitable shape. The aperture 188 is configured to receive a connector pin member which connects the wave guide 181, the tubular actuating member 170, and the tubular outer sheath 160 together for conjoint, indexed rotation relative to apparatus housing 130.


The second section 184 of the wave guide 181 extends distally from the first section 182. The second section 184 preferably also has a substantially continuous cross-section. The diameter of the second section 184 may be smaller than the diameter of the first section 182 and larger than the diameter of the third section 186. As ultrasonic energy passes from the first section 182 of the end effector 180 into the second section 184, narrowing of the second section 184 will result in an increased amplitude of the ultrasonic energy passing therethrough.


The third section 186 extends distally from the distal end of the second section 184. The third section 186 also has a substantially continuous cross-section. The third section 186 also may include small diameter changes along its length. According to various embodiments, the transition from the second section 184 to the third section 186 may be positioned at an anti-node so that the diameter change in the third section does not bring about an increase in the amplitude of vibration.


The third section 186 may have a plurality of grooves or notches (not shown) formed in its outer circumference. The grooves may be located at nodes of the end effector 180 to act as alignment indicators for the installation of a damping sheath (not shown) and stabilizing silicone rings or compliant supports during manufacturing. A seal may be provided at the distal-most node, nearest the blade 180′, to abate passage of tissue, blood, and other material in the region between the waveguide and actuating member 170.


The blade 180′ of the end effector 180 may be integral therewith and formed as a single unit. The blade 180′ may alternately be connected by a threaded connection, or by a welded joint. According to various embodiments, the blade 180′ may be mechanically sharp or mechanically blunt. The distal end of the blade 180′ is disposed near an anti-node in order to tune the acoustic assembly to a preferred resonant frequency f0 when the acoustic assembly is not loaded by tissue. When the transducer assembly is energized, the distal end of the blade 180′ is configured to move longitudinally in the range of, for example, approximately 10-500 microns peak-to-peak, and preferably in the range of about 10 to about 100 microns at a predetermined vibrational frequency f0.


In accordance with the illustrated embodiment, the blade 180′ may be cylindrical for cooperation with the associated clamping mechanism of the clamp coagulator 120. The end effector 180 may receive suitable surface treatment, as is known in the art.



FIG. 4 illustrates one embodiment of a clamping mechanism that may be used with the surgical instrument shown in FIG. 1. The clamping mechanism may be configured for cooperative action with the blade 180′ of the end effector 180. The clamping mechanism includes a pivotally movable clamp arm 190, which is pivotally connected at the distal end thereof to the distal end of outer tubular sheath 160. The clamp arm 190 includes a clamp arm tissue pad 192, preferably formed from TEFLON® or other suitable low-friction material, which is mounted for cooperation with the blade 180′, with pivotal movement of the clamp arm 190 positioning the clamp pad 192 in substantially parallel relationship to, and in contact with, the blade 180′. By this construction, tissue to be clamped is grasped between the tissue pad 192 and the blade 180′. The tissue pad 192 may be provided with a sawtooth-like configuration including a plurality of axially spaced, proximally extending gripping teeth 197 to enhance the gripping of tissue in cooperation with the blade 180′.


Pivotal movement of the clamp arm 190 with respect to the blade 180′ is effected by the provision of at least one, and preferably a pair of lever portions 193 of the clamp arm 190 at the proximal end thereof. The lever portions 193 are positioned on respective opposite sides of the end effector 180 and blade 180′, and are in operative engagement with a drive portion 194 of the reciprocal actuating member 170. Reciprocal movement of the actuating member 170, relative to the outer tubular sheath 160 and the end effector 180, thereby effects pivotal movement of the clamp arm 190 relative to the blade 180′. The lever portions 193 can be respectively positioned in a pair of openings defined by the drive portion 194, or otherwise suitably mechanically coupled therewith, whereby reciprocal movement of the actuating member 170 acts through the drive portion 194 and lever portions 193 to pivot the clamp arm 190.



FIG. 5 illustrates a cut-away view of one embodiment of the surgical instrument shown in FIG. 1, while FIG. 6 illustrates various internal components of one embodiment of the surgical instrument shown in FIG. 1. FIG. 7 illustrates one embodiment of a drive yoke, and FIG. 8 illustrates one embodiment of a drive collar of the surgical instrument shown in FIG. 1. In the embodiment illustrated in FIGS. 3 and 5-8, reciprocal movement of the actuating member 170 is effected by the provision of a drive collar 200 mounted on the proximal end of the actuating member 170 for conjoint rotation. The drive collar 200 may include a pair of diametrically opposed axially extending arms 202 each having a drive lug 204, with the drive lugs 204 being biased by the arms 202 into engagement with suitable openings 206 defined by the proximal portion of tubular actuating member 170. Rotation of the drive collar 200 together with the actuating member 170 is further effected by the provision of a pair of keys 208 diametrically engageable with suitable openings 210 defined by the proximal end of the actuating member 170. A circumferential groove 211 on the actuating member 170 receives an O-ring 211′ (FIG. 3) for engagement with the inside surface of outer sheath 160.


Rotation of the actuating member 170 together with the tubular outer sheath 160 and inner end effector 180 is provided by a connector pin 212 extending through these components of the instrument 120. The tubular actuating member 170 defines an elongated slot 214 through which the connector pin 212 extends to accommodate reciprocal movement of the actuating member relative to the outer tubular sheath and inner waveguide.


A rotation knob 216 mounted on the outer tubular sheath facilitates rotational positioning of the elongated portion 150 with respect to the housing 130 of the clamp coagulator instrument 120. Connector pin 212 preferably joins the knob 216 together with the sheath 160, member 170, and the end effector 180 for rotation as a unit relative to the housing 130. In the embodiment, hub portion 216′ of the rotation knob 216 acts to rotatably mount the outer sheath 160, the actuating member 170, and the end effector 180 (as a unit with the knob 216), on the housing 130.


The drive collar 200 provides a portion of the clamp drive mechanism of the instrument 120, which effects pivotal movement of the clamp arm 190 by reciprocation of the actuating member 170. The clamp drive mechanism further includes a drive yoke 220 which is operatively connected with an operating lever 222, with the operating lever thus interconnected with the reciprocal actuating member 170 via drive yoke 220 and drive collar 200. The operating lever 222 is pivotally connected to the housing 130 of the apparatus (by a pivot mount 223) for cooperation in a scissors-like fashion with a handgrip portion 224 of the housing. Movement of the lever 222 toward the handgrip portion 224 translates the actuating member 170 proximally, thereby pivoting the clamp arm 190 toward the blade 180′.


Operative connection of the drive yoke 220 with the operating lever 222 is provided by a spring 226, preferably comprising a compression coil spring 226. The spring 226 fits within a spring slot 228 defined by the drive yoke 220, which in turn is positioned between a pair of spring retainer flanges 230 of the operating lever 222. The drive yoke 220 is pivotally movable with respect to the spring flanges 230 (about pivot mount 223 of housing 130) in opposition to the compression coil spring, which bears against the surfaces of the spring slots defined by each of the spring flanges 230. In this manner, the force which can be applied to the actuating member 170, by pivotal movement of the operating lever 222 acting through the drive yoke 220 and the drive collar 200, is limited by the force with which the spring 226 bears against the spring flanges 230. Application of excessive force results in pivotal displacement of the drive yoke 220 relative to the spring flanges 230 of the operating lever 222 in opposition to spring 226. Stop portions of the housing 130 limit the travel of the operating lever 222 to prevent excessive compression of spring 226. In various embodiments, the force applied to the actuating member 170 may be limited by one or more springs (not shown) operatively positioned between the drive collar 200 and the member 170. For example, one or more cylindrical springs, such as a wave springs, may be used. An example embodiment utilizing a wave spring in this manner is described in U.S. Pat. No. 6,458,142, which is incorporated herein by reference.


Indexed rotational positioning of the elongated portion 150 of the present clamp coagulator instrument 120 may be provided by the provision of a detent mechanism incorporated into the clamp drive mechanism of the instrument 120. Specifically, the drive collar 200 may include a pair of axially spaced apart drive flanges 232. A detent-receiving surface may be provided between the drive flanges 232, and may define a plurality of circumferentially spaced teeth 234. The teeth 234 may define detent-receiving depressions generally about the periphery of the drive collar 200. In the embodiment illustrated in FIG. 7, twelve (12) of the teeth 234 are provided, thereby providing indexed positioning of the elongated portion 150 of the apparatus at 30° intervals relative to the housing 130 of the apparatus.


Indexed rotational movement may be further achieved by the provision of at least one, and preferably a pair, of diametrically opposed detents 236 respectively provided on cantilevered yoke arms 238 of the drive yoke 220. By this arrangement, the yoke arms 238 are positioned between the drive flanges 232 for engagement with the confronting surfaces thereof, and bias the detents 236 into engagement with the drive collar 200. Indexed relative rotation is thus achieved, with the detents 236 of the yoke arms 238 cooperating with the drive flanges 238 for effecting reciprocation of the actuating member 170. According to various embodiments, the drive yoke 220 may be formed from suitable polymeric material, with the biasing force created by the yoke arms 238 acting on the detents 236 thereof cooperating with the radial depressions defined by the drive collar to resist relative rotational torque less than about 5 to 20 inch-ounces. Accordingly, the elongated portion 150 of the clamp coagulator instrument 120 is maintained in any of its selected indexed rotational positions, relative to the housing 130, unless a torque is applied (such as by the rotation knob 216) exceeding this predetermined torque level. A snap-like indexing action is thus provided.


Rotation of the elongated proportion 150 of the present clamp coagulator instrument 120 may be effected together with relative rotational movement of ultrasonic drive unit 50 with respect to housing 130. In order to join the elongated portion 150 to the ultrasonic drive unit 50 in ultrasonic-transmitting relationship, the proximal portion of the outer tubular sheath 160 may be provided with a pair of wrench flats 240 (FIG. 3). The wrench flats allow torque to be applied by a suitable torque wrench or the like to thereby permit the end effector 180 to be joined to the ultrasonic drive unit 50. The ultrasonic drive unit 50, as well as the elongated portion 150, are thus rotatable, as a unit, by suitable manipulation of the rotation knob 216, relative to the housing 130 of the apparatus. The interior of housing 130 is dimensioned to accommodate such relative rotation of the drive unit 50.



FIG. 9 illustrates one embodiment of a surgical system 250 including a surgical instrument 251 having single element end effector 256. The system 250 may include a transducer assembly 252 coupled to the end effector 256 and a sheath 254 positioned around the proximal portions of the end effector 256 as shown. The transducer assembly 252 and end effector 256 may operate in a manner similar to that of the transducer assembly 50 and end effector 180 described above to produce ultrasonic energy that may be transmitted to tissue via blade 256



FIG. 10 illustrates one embodiment of a surgical device 300. FIGS. 11-12 illustrate exploded views of one embodiment of the surgical device 300 shown in FIG. 10. Generally, the surgical instrument 300 may comprise a transducer assembly 302, an end effector 304 and a lower jaw 306. The end effector 304 may be at least partially enclosed by a sheath 314. The lower jaw 306 may include a clamp face 308, and may be slidable relative to the end effector to bring the clamp face 308 toward a distal end of the end effector 304. According to various embodiments, the end effector 304 and/or the lower jaw 306 may define a lumen for aspirating a surgical site. Also, various blades 304′ may be included with the end effector 304, for example, to bring about different surgical results.



FIGS. 13-14 illustrate one embodiment of the surgical device 300 shown in FIG. 10 configured in an open position with the blade 304′ and clamp 308 separated from one another. In use, a clinician may introduce the device 300 to a surgical site the open position illustrated in FIGS. 13-14. When the device 300 is properly positioned, the clinician may transition the device 300 to a closed position, for example, by actuating a trigger 310. FIGS. 15-16 illustrate one embodiment of the surgical device 300 shown in FIG. 10 configured in a closed position with the blade 304′ and clamp 308 translated towards one another. In the embodiment shown in FIGS. 15-16, the trigger has been rotated towards a handle 312, causing the lower jaw 306 to translate relative to the end effector 304, and bringing the clamp face 308 towards the blade 304′. In this way tissue may be clamped between the blade 304′ and the clamp face 308. Energizing the end effector 304 may cause coagulation and/or cutting of the clamped tissue.


The various components of the surgical device 300 may be arranged in any suitable way. FIGS. 19-20 illustrate a handle region of one embodiment of the device 300 shown in FIG. 10. According to various embodiments, a frame member 316 may couple to the handle 312 and the trigger 310. The handle 312 may include a slot 334 for receiving the trigger 310. When the trigger 310 is positioned within the slot 334, and the frame member 316 is fitted over the handle 312 and trigger 310, the bore holes 328, 330 and 332 may align (FIGS. 11-12). Pin 320 may pass through bore holes 328, 330 and 332 to secure the frame member 316, the handle 312 and the trigger 310. The transducer assembly 302 and the end effector 304 may be received into a cavity 334 of the frame member 316. The sheath 314 may be received into a distal end of the cavity 334. A pin 318 may be placed through bore holes 340, 338 and 342 to secure the sheath 314, the end effector 304 and the frame member 316. In addition, the sheath 314 may include a tongue feature 324 that may be received into a corresponding groove feature 336 of the handle 312. (FIG. 11) FIGS. 17-18 illustrate one embodiment of a lower jaw 306 and outer sheath 314 of the surgical device 300 shown in FIG. 10, including a view of the tongue feature 324 of the sheath 314.


The lower jaw 306 may be coupled to the trigger 310 as well as the sheath 314, allowing the lower jaw 306 to translate relative to the sheath 314 and the end effector 304 when the trigger 310 is drawn toward the handle 312. For example, the lower jaw 306 may define a groove feature 326 configured to receive the tongue feature 324 of the sheath (FIGS. 17-18). A proximal end 348 of the lower jaw 306 may define one or more bore holes 346. The bore hole(s) 346 may be aligned with a slot 344 of the trigger 312, allowing pin 322 to be inserted. As illustrated in FIG. 19, the trigger 310 may pivot toward the handle 312 about pin 320. This may cause the pin 322 to slide within the slot 344, exerting a proximally directed force on the lower jaw 306 and causing the clamp face 308 to translate toward the blade 304′ of the end effector 304.


In the embodiments described above, the lower jaw 306 is slidable while the end effector 304 remains stationary. FIG. 20A illustrates one embodiment of a surgical device 300′ where the lower jaw is stationary and the end effector is slidable. A frame member 316′ may couple the transducer 302, sheath 314 and end effector 304. A trigger 310′ may couple to a consolidated handle/lower jaw member 306′ at pivot point 380, and to the frame member 316′ at pivot point 382. According to various embodiments, the pivot points 380 and 382 may comprise a pin and slot, as described above. In use, the clinician may pull the trigger 310′ toward the proximal portion of the handle/lower jaw member 306′. This may cause the trigger 310′ to rotate about the pivot point 380 and exert a distal force on the frame member 316′, transducer 302 and end effector 304, pushing the blade 304′ of the end effector distally toward the clamp face 308.



FIG. 20B illustrates one embodiment of the surgical device 300′ where the end effector 304 is configured to rotate as it moves forward toward the clamp face 308. The frame member 316′ may include slots 390. The end effector 304 may include a pin 392, which may be received by the slots 390. As the end effector 304 is moved distally, as described above, the orientation of the slots 392 may exert a torque on the pint 392, and consequently the end effector 304, causing it to rotate as shown. In various embodiments, the pin 392 may be replaced with multiple pins (not shown). For example, one pin may be placed on a first side of the end effector 304 and may be received by a first slot 390, while another pin may be placed on a second side of the end effector 304 and may be received by a second slot 390 opposite the first.


The end effector 304 and the blade 304′ may be constructed according to any suitable solid or hollow-core configuration. FIG. 21 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10 including a blade 304′ defining a hollow lumen 350. FIG. 22 illustrates one embodiment of the blade 304′ shown in FIG. 21. According to various embodiments, suction may be provided through the lumen 350 to aspirate tissue that is cut and coagulated by the end effector 304. FIG. 23 illustrates a distal portion of one embodiment of the surgical device 300 shown in FIG. 10 including a blade 304′ defining a hollow lumen 350 and having two members 352 extending across the hollow lumen 350. FIG. 24 illustrates one embodiment of the blade 304′ shown in FIG. 21. The members 352 may serve to cut tissue into portions smaller than the diameter of the lumen 350, thus lessening the risk of clogging the lumen 350. Various embodiments may include more or fewer members 352 than are shown. Also, the members 352 are shown to intersect one another at a right angle, although any other suitable configuration may be used.



FIG. 25 illustrates a distal portion of one embodiment of the surgical device 300 shown in FIG. 10 including a jaw member 306 defining a lumen, while FIG. 26 illustrates one embodiment of a blade 304′ for use with the surgical device as shown in FIG. 25. The blade 304′ of the end effector 304 may define a cavity 360. When the clamp face 308 is brought toward the blade 304′, the cavity 360 may cover a corresponding well 356 defined by the lower jaw 306. They well 356 may define an opening 354 to a lumen located within the lower jaw 306. Tissue cut and or coagulated by the end effector 304 may be aspirated via the lumen and its opening 354. FIG. 26A illustrates an additional embodiment of the blade 304′ having cutting members 361 positioned within the cavity 360. In use, the cutting members may morcellate tissue, reducing the size of tissue pieces received into the opening 354 and lessening the risk that the lumen will clog. FIG. 27 illustrates a distal portion of one embodiment of the surgical device shown in FIG. 10. In the embodiment shown in FIG. 27, the end effector 304 may include a blade 304′ defining a sharp edge 364. The blade 304′ may cover the well 356 and lumen opening 354 as described above.



FIG. 28 illustrates a distal portion of one embodiment of the surgical device 300 shown in FIG. 10 including a plug feature 362 received into a hollow lumen 350 of the end effector 304. When the clamp face 308 is brought toward the end effector 304, the plug feature 362 may be received into a lumen 350 defined by the end effector 304. In this way, the plug feature may help to remove any clogs or blockages present within the lumen 350. According to various embodiments, the plug feature 362 may have a cross sectional area smaller than that of the lumen 350. This may generally limit tissue portions removed by the device 300 to sizes smaller than the diameter of the lumen 350, reducing the likelihood of clogs.



FIG. 28A illustrates one embodiment of the surgical device 300 including a rotating end effector 370. The rotating end effector 370 may mount to an electric motor 372. FIG. 28B illustrates one embodiment of the electric motor 372 mounted to the end effector 370. A rotor 376 of the motor 372 may be mounted around the end effector 370. A coil 374 of the motor 372 may, when energized, cause the rotor 376 and end effector 370 to rotate clockwise or counter-clockwise. In use, the lower jaw 306 may be translated with respect to the end effector 370, causing the clamp face 308 to translate toward a blade 370′ of the rotating end effector 370. According to various embodiments, the embodiment shown in FIGS. 28A and 28B also may include a transducer (not shown in FIGS. 28A and 28B) for ultrasonically exciting the end effector 370. Accordingly, the end effector 370 may be rotated and ultrasonically excited simultaneously. Also, FIG. 28A illustrates a clamp pad 377 positioned between the clamp face 308 and the blade 370′. The clamp pad 377 may be made from any suitable material including, for example, a polymeric material.



FIG. 28C illustrates one embodiment of the surgical device 300″ having an angled blade 304″. The lower jaw 306 and clamp face 308″ may slide relative to the end effector 304 and blade 304″ according to any suitable method including, for example, the methods described above with respect to FIGS. 10, 20A, and 20B. The blade 304″ may have a distal surface 381 that is angled relative to the device 300″. For example, the distal surface 381 of the blade 304″ may be angled at an angle of 45°. According to various embodiments, the clamp face 308″ may also be angled, as shown, to match the angle of the blade 304″.



FIGS. 29-36 show various embodiments of hollow core end effectors that may be utilized to cut and/or coagulate tissue. The end effectors may define a central lumen and may comprise at least one member extended across at least a portion of the central lumen at a distal end of the end effector. The member or members may serve to break-up bone or other tissue before it passes through the lumen, making it less likely that the lumen will be clogged by tissue material. According to various embodiments, the end effectors may be utilized with any suitable manual or ultrasonic instrument. For example, the end effectors may be utilized with the surgical devices 10, 250 and 300 described above.



FIG. 29 illustrates one embodiment of a hollow core end effector 400 comprising members 404, 406 extending across a lumen 402 defined by the end effector 400. The members 404 and 406 may comprise wires that may be bonded to the end effector 400 at various points including points 408 and 410. The wires may be bonded to the end effector 400 according to any suitable method including, welding, adhesive, etc. Also, although the embodiment shown in FIG. 29 includes two members 404 and 406 intersecting at about the center of the lumen 402, it will be appreciated that any other suitable configuration or number of members may be utilized. FIG. 30 illustrates one embodiment of a hollow core end effector 412 comprising members 414, 416 extending across a lumen 402, while FIG. 31 illustrates a cut away view of one embodiment of the hollow core end effector 412 shown in FIG. 30. In the embodiment shown in FIGS. 30-31, the members 414 and 416 may be machined into the end effector 412 itself. Accordingly, portions of the members 414, 416 may extend proximally into the lumen 402. FIG. 31A illustrates one embodiment of a hollow core end effector 413 having angled members 417. The members 417 may not extend across the lumen 402. Instead, some or all of the angled members 417 may terminate in a central portion of the lumen 402.



FIG. 32 illustrates one embodiment of an end effector 418 having a non-integral blade 420. The blade 420 may include one or more members 422, for example, as described above with respect to end effectors 400 and 412. The blade 420 may be bonded to the remainder of the end effector 418 according to any suitable method. For example, the surfaces 424 and 426 may be threaded, allowing the blade 420 to be threaded onto the remainder of the end effector 418. Also, the blade 420 and end effector 418 may be coupled by press fitting, welding, brazing, adhesive bonding, etc. According to various embodiments, the non-integral blade 420 and the remainder of the end effector 418 may be made from different materials. For example, the end effector 418 may be made from a titanium alloy or other material with a low resistance to ultrasonic wave transmission. The blade 420 may be, in turn, made from material that is easily machined, and/or holds an edge such as, for example, a steel.



FIG. 33 illustrates one embodiment of an end effector 428 having a member 430 extended across a lumen 434 and edges 432 extending beyond the member 430. The member 430, as shown, is positioned proximally from the distal edge of the end effector 428. For example, the member 430 may be recessed within the lumen 434 by a distance of up to 15 mm. FIG. 34 illustrates one embodiment of an end effector 436 having an inter-lumen member 442 positioned non-parallel to a longitudinal axis 440 of the end effector 436. The member 442 may extend proximally into the lumen 438 at an angle that is not parallel to the axis 440. This may facilitate the cutting and removing of small portions of tissue, such as tissue portion 441. FIG. 35 illustrates one embodiment of an end effector 444 having a multi-section inter-lumen member 448. Each of the sections 450, 452 of the inter-lumen member 448 may be positioned at different angles relative to the longitudinal axis 446. FIG. 36 illustrates one embodiment of an end effector 454 having inter-lumen members 458, 460 extending distally from the lumen 434. The members 458, 460 may be angled relative to the longitudinal axis 459, as described above. The members 458 and 460 also may extend beyond the distal edge of the other portions of the end effector 454.



FIGS. 37-54 illustrate various embodiments of surgical devices that may be used as an ultrasonic or unpowered device to remove tissue portions. The embodiments illustrated in FIGS. 37-54 may be useful in surgical applications where it is desirable to remove a core or other integral portion of bone or other tissue. The devices may generally comprise a central instrument configured to engage tissue and an outer sheath surrounding the central instrument. The central instrument and sheath may be slidable relative to one another. Also, the outer sheath may comprise a distal edge configured to clamp the tissue when the central instrument is slid to a position proximal from the distal edge of the outer sheath.



FIGS. 37-40 illustrate a sequence of one embodiment of a surgical device 500 in use. The surgical device 500 may comprise a central instrument 502 and an outer sheath 504. The central instrument 502 comprises two jaw members 506 and 508. In use, the jaw member 506 may be pivotable toward the jaw member 508. According to various embodiments, the jaw member 508 may be ultrasonically energized, for example, as described above. FIG. 37 illustrates one embodiment of the surgical device 500 with a portion of tissue 510 positioned between the jaw members 506, 508. FIG. 38 illustrates one embodiment of the surgical device 500 shown in FIG. 37 where the central instrument 502 is grasping tissue. This may occur when the jaw members 506, 508 are pivoted toward one another to engage the tissue 510. In the embodiment shown in FIG. 38, the outer sheath 504 has been moved distally relative to the central instrument 502. FIG. 39 illustrates one embodiment of the surgical device 500 shown in FIG. 37 where the outer sheath 504 has clamped the tissue 510. This may occur when a distal portion of the outer sheath 504 clears the distal edge of the central instrument 502, allowing the outer sheath 504, and/or a component thereof, to clamp the tissue 510. According to various embodiments, a distal edge 512 of the outer sheath 504 may define a sharp edge to sever the tissue. Also, according to various embodiments, outer sheath 504 may be ultrasonically activated to promote cutting and/or coagulation. Once the outer sheath 504 has clamped the tissue 510, a clinician may manipulate the device 500, causing the clamped tissue 510 to tear or break. FIG. 40 illustrates one embodiment of the surgical device 500 shown in FIG. 37 where the tissue 510 has been severed.


The outer sheath 504 may exert a clamping force on the tissue 510 according to various different methods. For example, the outer sheath 504 may be constructed such that the distal edge portion 512 is biased in upon itself. Accordingly, the rest state of the edge portion 512 may be a closed or clamped position, as illustrated in FIG. 40. When the central instrument 502 is extended distally through the outer sheath 504, it may separate the edge portion 512, for example, as illustrated in FIGS. 37-38. According to various embodiments, the distal edge 512 may include multiple distal edge portions separated by one or more longitudinal slots (not shown). This may allow the distal edge 512 to separate. When the central instrument 502 is retracted through the outer sheath 504 the edge portion 512 may contract to its closed or clamped position, cutting or otherwise clamping the tissue 510. According to various embodiments, the edge portion 512 of the outer sheath 504 may be ultrasonically activated to promote cutting and/or coagulation of the tissue 510.



FIGS. 41-42 illustrate one embodiment of the surgical device 500 shown in FIG. 37 where the outer sheath comprises edge members 514. The edge members 514 may extend distally, as shown in FIG. 41, in response to the actuation of a trigger or other component of the device (not shown). When the edge members 514 reach the distal end of the outer sheath, they contract toward one another, as shown in FIG. 42, to sever or otherwise clamp the tissue 510. According to various embodiments, the members 514 may be ultrasonically activated.



FIGS. 43-46 illustrate one embodiment of the outer sheath 504 including jaw members 520. The jaw members 520 may pivot toward one another about pivot points 524 in response to distal movement of extenders 522. For example, when the central instrument 502 is initially engaging tissue 510, as shown in FIGS. 37-38, the extenders 522 may be retracted, leaving the jaw members 520 in an open position as shown in FIGS. 43 and 45. When the outer sheath 504 is extended distally relative to the central instrument, the extenders 522 may be translated distally. Distal translation of the extenders 522 may be caused by various mechanical or automated forces, for example, in response to a clinician activating a trigger or other component of the device (not shown). This distal translation may cause the jaw members 520 to pivot about pivot points 524 to a closed position, as shown in FIGS. 44 and 46.



FIGS. 47-51 illustrate another sequence of one embodiment of a surgical device 500 in use. The embodiment shown in FIGS. 47-51 may comprise a central instrument 530 that includes an ultrasonic end effector defining a coring cavity 532. When the central instrument 530 is extended into tissue 510, it may cut and/or coagulate around a portion of the tissue 535 corresponding to the cavity 532. FIG. 47 illustrates one embodiment of the surgical instrument 500 brought into the proximity of a mass of tissue 510. FIG. 48 illustrates one embodiment of the surgical instrument 500 of FIG. 47 where the central instrument 530 is extended into the tissue 510. Ultrasonic energy may be provided to the central instrument 530, allowing it to cut into the tissue 510. FIG. 49 illustrates one embodiment of the surgical instrument 500 of FIG. 47 where the central instrument 530 has been retracted from the tissue 510, leaving a core section 535 that has been partially severed from the tissue 510. FIG. 50 illustrates one embodiment of the surgical instrument 500 of FIG. 47 where the outer sheath 504 has been extended into the tissue 510. The outer sheath 504 may either sever the core section 535, or clamp it, allowing the clinician to tear or otherwise loosen the core section 535. FIG. 51 illustrates one embodiment of the surgical instrument 500 of FIG. 47 where the outer sheath 504 has been retracted from the tissue 510, removing the core section 535. According to various embodiments, the device 500 may omit the central instrument 502. For example, the outer sheath 504 may be ultrasonically energized to cut a portion of the tissue 510 in a manner similar to that of the central instrument 530. The outer sheath 504 may then clamp the tissue 510 for severing or tearing, for example, as described above.


The surgical device 500 may be operated by a clinician from a handle portion (not shown) that may include one or more triggers for actuating the central instrument 502 and the outer sheath 504. For example, the central instrument 502 may be actuated by any suitable manual or automatic means including, for example, a mechanical design similar to that described above with respect to the blade 180′ and clamp arm 190. The outer sheath 504 may similarly be extended and actuated by any suitable manual or automatic means. For example, the outer sheath 504 may be extended distally in response to the actuation of a trigger in a manner similar to the way that the reciprocal actuating member 170 is extended distally in response to actuation of the operating lever 222 described above. According to various embodiments, the central instrument 502 and the outer sheath 504 may be actuated by a single pull of a trigger. For example, a single trigger pull may both actuate the central instrument 502 and also subsequently extend and actuate the outer sheath 504.



FIGS. 52-55 illustrate force-feedback surgical devices, according to various embodiments, configured to apply ultrasonic energy to tissue at a variable power level and/or end effector amplitude. The level of power or end effector amplitude provided to the devices may be determined, for example, based on the force applied to a trigger, and/or the position or travel of the trigger. It will be appreciated that force feedback surgical devices, such as the embodiments shown in FIGS. 52-55, may give clinicians an increased level of control over the ultrasonic power delivered by the devices, facilitating precise operations.



FIG. 52 illustrates a block diagram of one embodiment of a force feedback surgical device 600. The device 600 may include an ultrasonic end effector 602, which may be activated when a clinician operates a trigger 610. When the trigger 610 is actuated, a force sensor 612 may generate a signal indicating the amount of force being applied to the trigger 610. In addition to, or instead of force sensor 612, the device 600 may include a position sensor 613, which may generate a signal indicating the position of the trigger 610 (e.g., how far the trigger has been depressed or otherwise actuated). A control circuit 608 may receive the signals from the sensors 612 and/or 613. The control circuit 608 may include any suitable analog or digital circuit components. The control circuit 608 also may communicate with the generator 606 and/or the transducer 604 to modulate the power delivered to the end effector 602 and/or the generator level or blade amplitude of the end effector 602 based on the force applied to the trigger 610 and/or the position of the trigger 610. For example, as more force is applied to the trigger 610, more power and/or a higher blade amplitude may be delivered to the end effector 602. According to various embodiments, the force sensor 612 may be replaced by a multi-position switch (not shown). Each position of the switch may correspond to a different level of power to be delivered to the end effector 602.


According to various embodiments, the end effector 602 may include a clamping mechanism, for example, such as that described above with respect to FIG. 4. When the trigger 610 is initially actuated, clamping mechanism may close, clamping tissue between a clamp arm and the end effector 602. As the force applied to the trigger increases (e.g., as sensed by force sensor 612) the control circuit 608 may increase the power delivered to the end effector 602 by the transducer 604 and/or the generator level or blade amplitude brought about in the end effector 602. In one embodiment, trigger position, as sensed by position sensor 613, may be used by the control circuit 608 to set the power and/or amplitude of the end effector 602. For example, as the trigger is moved further towards a fully actuated position, the power and/or amplitude of the end effector 602 may be increased.


According to various embodiments, the surgical device 600 also may include one or more feedback devices for indicating the amount of power delivered to the end effector 602. For example, a speaker 614 may emit a signal indicative of the end effector power. According to various embodiments, the speaker 614 may emit a series of pulse sounds, where the frequency of the sounds indicates power. In addition to, or instead of the speaker 614, the device may include a visual display 616. The visual display 616 may indicate end effector power according to any suitable method. For example, the visual display 616 may include a series of light emitting diodes (LEDs), where end effector power is indicated by the number of illuminated LEDs. The speaker 614 and/or visual display 616 may be driven by the control circuit 608. According to various embodiments, the device 600 may include a ratcheting device (not shown) connected to the trigger 610. The ratcheting device may generate an audible sound as more force is applied to the trigger 610, providing an indirect indication of end effector power.


The device 600 may include other features that may enhance safety. For example, the control circuit 608 may be configured to prevent power from being delivered to the end effector 602 in excess of a predetermined threshold. Also, the control circuit 608 may implement a delay between the time when a change in end effector power is indicated (e.g., by speaker 614 or display 616), and the time when the change in end effector power is delivered. In this way, a clinician may have ample warning that the level of ultrasonic power that is to be delivered to the end effector 602 is about to change.


Force-feedback ultrasonic devices, such as the device 600, may be physically implemented in any suitable form. For example, FIG. 53 illustrates one embodiment of a force-feedback surgical device 620. The device 620 may comprise an ultrasonic end effector 622 excitable by a transducer 632. The transducer 632 may be in communication with a generator (not shown) via a wire 636. A clamp arm 624 may be pivotable towards the end effector 622 when a clinician pulls a trigger 628 towards a handle 626, similar to the clamp arm 190 and blade 180′ described above. A sensor 630 positioned on the trigger 628 may measure the force applied to the trigger 628 by the clinician and/or the position of the trigger 628. It will be appreciated that the sensor 630 may be alternatively placed at other locations within the device 620 including, for example, at trigger pivot point 634 or between the end effector 622 and clamp arm 624. A control circuit (not shown) may be positioned at any suitable location on or in the device 620 including, for example, within the handle 626 or trigger 628, the ultrasonic drive unit 50 or the generator 30.



FIG. 54-55 illustrate one embodiment of another force-feedback surgical device 640, which may be configured as an ultrasonic rongeur-type device. The device 640 may include a pair of handles 642, 644 that when squeezed towards one another about pivot point 646 may cause a pair of distally positioned jaw members 648, 650 to pivot towards one another to engage tissue by clamping or severing. One or both of the jaw members 648, 650 may include an ultrasonically active end effector. For example, FIG. 54 illustrates an ultrasonic end effector 652 positioned on jaw member 650 and driven by transducer 656. The transducer 656 may be in communication with a generator (not shown) via a wire 657. A clamp pad 654 may be positioned opposite the end effector 652. The transducer 656 may be positioned between the handles 642, 644, as shown, or at any other suitable position. For example, the transducer 656 may be positioned within one of the handles 642, 644. Force sensors 658, 660 may be positioned on the handles 642, 644 as shown, or may be positioned at various other locations within the device 640 including, for example, at the pivot point 646. Likewise, the control circuit (not shown) may be positioned at any suitable location on or in the device 640.



FIG. 56 illustrates one embodiment of another force feedback surgical device 700 comprising a hand-piece adapter 708. The device 700 may also comprise a transducer 704 configured to drive an end effector 702, for example, as described herein. The hand-piece adapter 708 may comprise one or more switches 706 for operating the transducer 704 and end effector 702. For example, actuating one or more of the switches 706 may cause the device 700 to activate. The switches 706 may correspond to the trigger 610 described with respect to FIG. 52. One or more sensors (not shown in FIG. 56) may be provided to sense the travel of the switches 706 and/or the amount of force applied to the switches 706 by the clinician. A control circuit (not shown in FIG. 56) may modulate the device power and/or end effector amplitude based on the output of the one or more sensors as described herein.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular elements, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular elements or components of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular components, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


It is preferred that the device is sterilized prior to surgery. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.


Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical instrument comprising: a transducer configured to provide vibrations along a longitudinal axis;an end effector operably coupled to the transducer, wherein the end effector extends along the longitudinal axis, and wherein the end effector comprises a blade; anda stationary lower jaw extending parallel to the end effector, wherein the stationary lower jaw comprises a clamp face positioned distal to the blade, wherein the end effector is movable relative to the stationary lower jaw to drive the blade distally towards the clamp face;wherein the end effector comprises a hollow lumen; andwherein the end effector further comprises at least one member extended across a portion of the hollow lumen.
  • 2. The surgical instrument of claim 1, further comprising a trigger, wherein rotation of the trigger is configured to drive the blade distally towards the clamp face.
  • 3. The surgical instrument of claim 2, further comprising a frame member operably coupled to the trigger and the end effector, wherein the rotation of the trigger exerts a force on the frame member to drive the blade distally towards the clamp face.
  • 4. The surgical instrument of claim 3, wherein the blade is non-rotatably driven distally towards the clamp face.
  • 5. The surgical instrument of claim 3, wherein the blade is rotatably driven distally towards the clamp face.
  • 6. The surgical instrument of claim 5, wherein the frame member comprises a slot, wherein the end effector comprises a pin, and wherein the slot is configured to exert a force on the pin to cause the blade to rotate as the blade is driven distally towards the clamp face.
  • 7. The surgical instrument of claim 1, wherein the at least one member comprises two members, and wherein the two members intersect one another at a right angle.
  • 8. A surgical instrument comprising: a transducer configured to provide vibrations along a longitudinal axis;an end effector operably coupled to the transducer, wherein the end effector extends along the longitudinal axis, and wherein the end effector comprises a cutting edge; anda stationary lower jaw extending parallel to the end effector, wherein the stationary lower jaw comprises a clamp face extending towards the longitudinal axis, wherein the end effector is slidable relative to the stationary lower jaw to drive the cutting edge distally towards the clamp face; andwherein the end effector comprises a hollow lumen; andwherein the end effector further comprises at least one member extended across a portion of the hollow lumen.
  • 9. The surgical instrument of claim 8, further comprising a trigger, wherein rotation of the trigger is configured to drive the cutting edge distally towards the clamp face.
  • 10. The surgical instrument of claim 9, further comprising a frame member operably coupled to the trigger and the end effector, wherein the rotation of the trigger exerts a force on the frame member to drive the cutting edge distally towards the clamp face.
  • 11. The surgical instrument of claim 10, wherein the cutting edge is non-rotatably driven distally towards the clamp face.
  • 12. The surgical instrument of claim 10, wherein the cutting edge is rotatably driven distally towards the clamp face.
  • 13. The surgical instrument of claim 12, wherein the frame member comprises a slot, wherein the end effector comprises a pin, and wherein the slot is configured to exert a force on the pin to cause the cutting edge to rotate as the cutting edge is driven distally towards the clamp face.
  • 14. The surgical instrument of claim 8, wherein the at least one member comprises two members, and wherein the two members intersect one another at a right angle.
  • 15. A surgical instrument comprising: a transducer;an end effector operably coupled to the transducer, wherein the end effector is configured to vibrate in response to ultrasonic vibrations provided by the transducer, and wherein the end effector comprises a blade defining a hollow lumen;an immobile lower jaw extending parallel to the end effector, wherein the immobile lower jaw comprises a clamp face positioned distal to the blade, and wherein the end effector is translatable relative to the immobile lower jaw to drive the blade distally towards the clamp face; andat least one member extended across a portion of the hollow lumen.
  • 16. The surgical instrument of claim 15, wherein the at least one member comprises two members, and wherein the two members intersect one another at an angle.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/653,366, entitled SURGICAL INSTRUMENTS, filed Jul. 18, 2017, now U.S. Patent Application Publication No. 2018/0092660, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/645,796, entitled SURGICAL INSTRUMENTS, filed Mar. 12, 2015, which issued on Jul. 18, 2017 as U.S. Pat. No. 9,707,004, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 14/444,335, entitled SURGICAL INSTRUMENTS, filed Jul. 28, 2014, which issued on Dec. 29, 2015 as U.S. Pat. No. 9,220,527, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 11/881,602, entitled SURGICAL INSTRUMENTS, filed Jul. 27, 2007, which issued on Aug. 19, 2014 as U.S. Pat. No. 8,808,319, the entire disclosures of which are hereby incorporated by reference herein.

US Referenced Citations (2528)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2188497 Calva Jan 1940 A
2366274 Luth et al. Jan 1945 A
2425245 Johnson Aug 1947 A
2442966 Wallace Jun 1948 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2597564 Bugg May 1952 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2743726 Grieshaber May 1956 A
2748967 Roach Jun 1956 A
2845072 Shafer Jul 1958 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3033407 Alfons May 1962 A
3053124 Balamuth et al. Sep 1962 A
3082805 Royce Mar 1963 A
3166971 Stoecker Jan 1965 A
3322403 Murphy May 1967 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3503396 Pierie et al. Mar 1970 A
3503397 Fogarty et al. Mar 1970 A
3503398 Fogarty et al. Mar 1970 A
3513848 Winston et al. May 1970 A
3514856 Camp et al. Jun 1970 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3554198 Tatoian et al. Jan 1971 A
3580841 Cadotte et al. May 1971 A
3606682 Camp et al. Sep 1971 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3703651 Blowers Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3792701 Kloz et al. Feb 1974 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3832776 Sawyer Sep 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3989952 Hohmann Nov 1976 A
4005714 Hiltebrandt Feb 1977 A
4012647 Balamuth et al. Mar 1977 A
4034762 Cosens et al. Jul 1977 A
4057660 Yoshida et al. Nov 1977 A
4058126 Leveen Nov 1977 A
4074719 Semm Feb 1978 A
4085893 Durley, III Apr 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4169984 Parisi Oct 1979 A
4173725 Asai et al. Nov 1979 A
4188927 Harris Feb 1980 A
4193009 Durley, III Mar 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4203444 Bonnell et al. May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4281785 Brooks Aug 1981 A
4300083 Helges Nov 1981 A
4302728 Nakamura Nov 1981 A
4304987 van Konynenburg Dec 1981 A
4306570 Matthews Dec 1981 A
4314559 Allen Feb 1982 A
4352459 Berger et al. Oct 1982 A
4445063 Smith Apr 1984 A
4452473 Ruschke Jun 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4535773 Yoon Aug 1985 A
4541638 Ogawa et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4553544 Nomoto et al. Nov 1985 A
4562838 Walker Jan 1986 A
4574615 Bower et al. Mar 1986 A
4582236 Hirose Apr 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4663677 Griffith et al. May 1987 A
4674502 Imonti Jun 1987 A
4696667 Masch Sep 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4735603 Goodson et al. Apr 1988 A
4750488 Wuchinich et al. Jun 1988 A
4761871 O'Connor et al. Aug 1988 A
4783997 Lynnworth Nov 1988 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4821719 Fogarty Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4860745 Farin et al. Aug 1989 A
4862890 Stasz et al. Sep 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4869715 Sherburne Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4910389 Sherman et al. Mar 1990 A
4915643 Samejima et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4954960 Lo et al. Sep 1990 A
4965532 Sakurai Oct 1990 A
4978067 Berger et al. Dec 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
4983160 Steppe et al. Jan 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5020514 Heckele Jun 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5042461 Inoue et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5047043 Kubota et al. Sep 1991 A
5057119 Clark et al. Oct 1991 A
5058570 Idemoto et al. Oct 1991 A
5059210 Clark et al. Oct 1991 A
5061269 Muller Oct 1991 A
5084052 Jacobs Jan 1992 A
5088687 Stender Feb 1992 A
5096532 Neuwirth et al. Mar 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5105117 Yamaguchi Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
D330253 Burek Oct 1992 S
5152762 McElhenney Oct 1992 A
5156613 Sawyer Oct 1992 A
5156633 Smith Oct 1992 A
5159226 Montgomery Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5167619 Wuchinich Dec 1992 A
5167725 Clark et al. Dec 1992 A
5172344 Ehrlich Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5190518 Takasu Mar 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5209776 Bass et al. May 1993 A
5213103 Martin et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5217460 Knoepfler Jun 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5222937 Kagawa Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234428 Kaufman Aug 1993 A
5234436 Eaton et al. Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242385 Strukel Sep 1993 A
5242460 Klein et al. Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5269297 Weng et al. Dec 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275607 Lo et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5289436 Terhune Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5306280 Bregen et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312327 Bales et al. May 1994 A
5312425 Evans et al. May 1994 A
5318525 West et al. Jun 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5323055 Yamazaki Jun 1994 A
5324297 Hood et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5338292 Clement et al. Aug 1994 A
5339723 Huitema Aug 1994 A
5342292 Nita et al. Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5354265 Mackool Oct 1994 A
5356064 Green et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5372585 Tiefenbrun et al. Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383883 Wilk et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5391144 Sakurai et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5397293 Alliger et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5406503 Williams, Jr. et al. Apr 1995 A
5408268 Shipp Apr 1995 A
5409453 Lundquist et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5413107 Oakley et al. May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5428504 Bhatia Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5438997 Sieben et al. Aug 1995 A
5441499 Fritzsch Aug 1995 A
5443463 Stern et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5451220 Ciervo Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5490860 Middle et al. Feb 1996 A
5496317 Goble et al. Mar 1996 A
5496411 Candy Mar 1996 A
5499992 Meade et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5507738 Ciervo Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522832 Kugo et al. Jun 1996 A
5522839 Pilling Jun 1996 A
5527273 Manna et al. Jun 1996 A
5527331 Kresch et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540693 Fisher Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5562703 Desai Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573424 Poppe Nov 1996 A
5573534 Stone Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5582618 Chin et al. Dec 1996 A
5584830 Ladd et al. Dec 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5599350 Schulze et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609573 Sandock Mar 1997 A
5611813 Lichtman Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
5632717 Yoon May 1997 A
5640741 Yano Jun 1997 A
D381077 Hunt Jul 1997 S
5643301 Mollenauer Jul 1997 A
5647851 Pokras Jul 1997 A
5647871 Levine et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649955 Hashimoto et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5658281 Heard Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5695510 Hood Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704791 Gillio Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5716366 Yates Feb 1998 A
5717306 Shipp Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722980 Schulz et al. Mar 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5735875 Bonutti et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5776155 Beaupre et al. Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800448 Banko Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807310 Hood Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810828 Lightman et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5810869 Kaplan et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5853290 Winston Dec 1998 A
5853412 Mayenberger Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879363 Urich Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883615 Fago et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893880 Egan et al. Apr 1999 A
5895412 Tucker Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906625 Bito et al. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5910150 Saadat Jun 1999 A
5911699 Anis et al. Jun 1999 A
5916229 Evans Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5941887 Steen et al. Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5971949 Levin et al. Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5984938 Yoon Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6001120 Levin Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007552 Fogarty et al. Dec 1999 A
6013052 Durman et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6039734 Goble Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6053906 Honda et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063050 Manna et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6083191 Rose Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099483 Palmer et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6117152 Huitema Sep 2000 A
6120519 Weber et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126629 Perkins Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6144402 Norsworthy et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6156029 Mueller Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6162208 Hipps Dec 2000 A
6165150 Banko Dec 2000 A
6165186 Fogarty et al. Dec 2000 A
6165191 Shibata et al. Dec 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6174310 Kirwan, Jr. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6217591 Egan et al. Apr 2001 B1
6228080 Gines May 2001 B1
6228104 Fogarty et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270471 Hechel et al. Aug 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6273902 Fogarty et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6293954 Fogarty et al. Sep 2001 B1
6299591 Banko Oct 2001 B1
6299621 Fogarty et al. Oct 2001 B1
6306131 Hareyama et al. Oct 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6311783 Harpell Nov 2001 B1
6312445 Fogarty et al. Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6333488 Lawrence et al. Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6340878 Oglesbee Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6387112 Fogarty et al. May 2002 B1
6388657 Natoli May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6409743 Fenton, Jr. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416525 Shibata Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6425906 Young et al. Jul 2002 B1
6425907 Shibata et al. Jul 2002 B1
6428538 Blewett et al. Aug 2002 B1
6428539 Baxter et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6468286 Mastri et al. Oct 2002 B2
6475211 Chess et al. Nov 2002 B2
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6498421 Oh et al. Dec 2002 B1
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511480 Tetzlaff et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6514267 Jewett Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6526976 Baran Mar 2003 B1
6527736 Attinger et al. Mar 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562035 Levin May 2003 B1
6562037 Paton et al. May 2003 B2
6562059 Edwards et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6569109 Sakurai et al. May 2003 B2
6569178 Miyawaki et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575929 Sussman et al. Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
D477408 Bromley Jul 2003 S
6585735 Frazier et al. Jul 2003 B1
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6599288 Maguire et al. Jul 2003 B2
6602229 Coss Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6610060 Mulier et al. Aug 2003 B2
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623444 Babaev Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6648839 Manna et al. Nov 2003 B2
6648883 Francischelli et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656124 Flesch et al. Dec 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669696 Bacher et al. Dec 2003 B2
6669710 Moutafis et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689086 Nita et al. Feb 2004 B1
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6690960 Chen et al. Feb 2004 B2
6695782 Ranucci et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6699214 Gellman Mar 2004 B2
6702761 Damadian et al. Mar 2004 B1
6702821 Bonutti Mar 2004 B2
6712805 Weimann Mar 2004 B2
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6719766 Buelna et al. Apr 2004 B1
6719776 Baxter et al. Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752154 Fogarty et al. Jun 2004 B2
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6794027 Araki et al. Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6832988 Sproul Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6860880 Treat et al. Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887221 Baillargeon et al. May 2005 B1
6887252 Okada et al. May 2005 B1
6893435 Goble May 2005 B2
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908466 Bonutti et al. Jun 2005 B1
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929602 Hirakui et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6932876 Statnikov Aug 2005 B1
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942676 Buelna Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
6958070 Witt et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6988295 Tillim Jan 2006 B2
6989017 Howell et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7002283 Li et al. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7018354 Tazi Mar 2006 B2
7018389 Camerlengo Mar 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077036 Adams Jul 2006 B1
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7119516 Denning Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7131970 Moses et al. Nov 2006 B2
7131983 Murakami Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135029 Makin et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7144403 Booth Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156201 Peshkovskiy et al. Jan 2007 B2
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160259 Tardy et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7182762 Bortkiewicz Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7198635 Danek et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241294 Reschke Jul 2007 B2
7244262 Wiener et al. Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7258688 Shah et al. Aug 2007 B1
7264618 Murakami et al. Sep 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7282836 Kwon et al. Oct 2007 B2
7285895 Beaupre Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7318832 Young et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7338463 Vigil Mar 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7361172 Cimino Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7413123 Ortenzi Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431694 Stefanchik et al. Oct 2008 B2
7431704 Babaev Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442168 Novak et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455641 Yamada et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7491202 Odom et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520865 Radley Young et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7533830 Rose May 2009 B1
7534243 Chin et al. May 2009 B1
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7563259 Takahashi Jul 2009 B2
7563269 Hashiguchi Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7569057 Liu et al. Aug 2009 B2
7572266 Young et al. Aug 2009 B2
7572268 Babaev Aug 2009 B2
7578166 Ethridge et al. Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7586289 Andruk et al. Sep 2009 B2
7587536 McLeod Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7608054 Soring et al. Oct 2009 B2
7617961 Viola Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7627936 Bromfield Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645245 Sekino et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7645278 Ichihashi et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686763 Vaezy et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7696670 Sakamoto Apr 2010 B2
7699846 Ryan Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7713202 Boukhny et al. May 2010 B2
7713267 Pozzato May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7721935 Racenet et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7734476 Wildman et al. Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7749240 Takahashi et al. Jul 2010 B2
7749273 Cauthen, III et al. Jul 2010 B2
7751115 Song Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
7762979 Wuchinich Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7815658 Murakami Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
7821143 Wiener Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7834521 Habu et al. Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7883475 Dupont et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7897792 Iikura et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7918848 Lau et al. Apr 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7922716 Malecki et al. Apr 2011 B2
7931611 Novak et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7997278 Utley et al. Aug 2011 B2
7998157 Culp et al. Aug 2011 B2
8002732 Visconti Aug 2011 B2
8006358 Cooke et al. Aug 2011 B2
8016843 Escaf Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025630 Murakami et al. Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8038693 Allen Oct 2011 B2
8048011 Okabe Nov 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8057467 Faller et al. Nov 2011 B2
8057468 Konesky Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8092475 Cotter et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105230 Honda et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8137263 Marescaux et al. Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142421 Cooper et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152801 Goldberg et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182501 Houser et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8207651 Gilbert Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8221306 Okada et al. Jul 2012 B2
8221415 Francischelli Jul 2012 B2
8226665 Cohen Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8231607 Takuma Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236018 Yoshimine et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241282 Unger et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8246642 Houser et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8298232 Unger Oct 2012 B2
8298233 Mueller Oct 2012 B2
8303576 Brock Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8303583 Hosier et al. Nov 2012 B2
8303613 Crandall et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328833 Cuny Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8366727 Witt et al. Feb 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8372102 Stulen et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8394096 Moses et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409234 Stahler et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8425161 Nagaya et al. Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8435258 Young et al. May 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444663 Houser et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8460326 Houser et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491578 Manwaring et al. Jul 2013 B2
8491625 Horner Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Ruiz Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512336 Couture Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8518067 Masuda et al. Aug 2013 B2
8523889 Stulen et al. Sep 2013 B2
8528563 Gruber Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8546996 Messerly et al. Oct 2013 B2
8546999 Houser et al. Oct 2013 B2
8551077 Main et al. Oct 2013 B2
8551086 Kimura et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568400 Gilbert Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8574253 Gruber et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
8591536 Robertson Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8597193 Grunwald et al. Dec 2013 B2
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8610334 Bromfield Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8628534 Jones et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641663 Kirschenman et al. Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8651230 Peshkovsky et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652132 Tsuchiya et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663262 Smith et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
8668710 Slipszenko et al. Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685016 Wham et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8690582 Rohrbach et al. Apr 2014 B2
8691268 Weimann Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709031 Stulen Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8715306 Faller et al. May 2014 B2
8721640 Taylor et al. May 2014 B2
8721657 Kondoh et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8734476 Rhee et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8749116 Messerly et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8764747 Cummings et al. Jul 2014 B2
8767970 Eppolito Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8771269 Sherman et al. Jul 2014 B2
8771270 Burbank Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8777944 Frankhouser et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801710 Ullrich et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821388 Naito et al. Sep 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8848808 Dress Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862955 Cesari Oct 2014 B2
8864709 Akagane et al. Oct 2014 B2
8864749 Okada Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870865 Frankhouser et al. Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8882792 Dietz et al. Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8900259 Houser et al. Dec 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8920412 Fritz et al. Dec 2014 B2
8920414 Stone et al. Dec 2014 B2
8920421 Rupp Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8968283 Kharin Mar 2015 B2
8968294 Maass et al. Mar 2015 B2
8968355 Malkowski et al. Mar 2015 B2
8974447 Kimball et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8974479 Ross et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
8991678 Wellman et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017355 Smith et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9023071 Miller et al. May 2015 B2
9023072 Young et al. May 2015 B2
9028397 Naito May 2015 B2
9028476 Bonn May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033973 Krapohl et al. May 2015 B2
9035741 Hamel et al. May 2015 B2
9039690 Kersten et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9043018 Mohr May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9050124 Houser Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9059547 McLawhorn Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9063049 Beach et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9066747 Robertson Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9072539 Messerly et al. Jul 2015 B2
9084624 Larkin et al. Jul 2015 B2
9084878 Kawaguchi et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107684 Ma Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
9107690 Bales, Jr. et al. Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9113940 Twomey Aug 2015 B2
9114245 Dietz et al. Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9125722 Schwartz Sep 2015 B2
9147965 Lee Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168055 Houser et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9168090 Strobl et al. Oct 2015 B2
9173656 Schurr et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186199 Strauss et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204891 Weitzman Dec 2015 B2
9204918 Germain et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9216062 Duque et al. Dec 2015 B2
9220483 Frankhouser et al. Dec 2015 B2
9220527 Houser et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226766 Aldridge et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9237921 Messerly et al. Jan 2016 B2
9237923 Worrell et al. Jan 2016 B2
9241060 Fujisaki Jan 2016 B1
9241692 Gunday et al. Jan 2016 B2
9241728 Price et al. Jan 2016 B2
9241730 Babaev Jan 2016 B2
9241731 Boudreaux et al. Jan 2016 B2
9241768 Sandhu et al. Jan 2016 B2
9247953 Palmer et al. Feb 2016 B2
9254165 Aronow et al. Feb 2016 B2
9254171 Trees et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9265973 Akagane Feb 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9301759 Spivey et al. Apr 2016 B2
9301772 Kimball et al. Apr 2016 B2
9307388 Liang et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9308009 Madan et al. Apr 2016 B2
9308014 Fischer Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9314301 Ben-Haim et al. Apr 2016 B2
9326754 Polster May 2016 B2
9326787 Sanai et al. May 2016 B2
9326788 Batross et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9339289 Robertson May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9345534 Artale et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351642 Nadkarni et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9352173 Yamada et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9358407 Akagane Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9370400 Parihar Jun 2016 B2
9370611 Ross et al. Jun 2016 B2
9375230 Ross et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9381058 Houser et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
D763442 Price et al. Aug 2016 S
9402680 Ginnebaugh et al. Aug 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414853 Stulen et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9427249 Robertson et al. Aug 2016 B2
9439668 Timm et al. Sep 2016 B2
9439669 Wiener et al. Sep 2016 B2
9439671 Akagane Sep 2016 B2
9445784 O'Keeffe Sep 2016 B2
9445832 Wiener et al. Sep 2016 B2
9445833 Akagane Sep 2016 B2
9451967 Jordan et al. Sep 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9468498 Sigmon, Jr. Oct 2016 B2
9474542 Slipszenko et al. Oct 2016 B2
9486235 Harrington et al. Nov 2016 B2
9486236 Price et al. Nov 2016 B2
9492187 Ravikumar et al. Nov 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9498245 Voegele et al. Nov 2016 B2
9504483 Houser et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9504855 Messerly et al. Nov 2016 B2
9510850 Robertson et al. Dec 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9545253 Worrell et al. Jan 2017 B2
9545497 Wenderow et al. Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9574644 Parihar Feb 2017 B2
9592072 Akagane Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9622729 Dewaele et al. Apr 2017 B2
9623237 Turner et al. Apr 2017 B2
9636135 Stulen May 2017 B2
9638770 Dietz et al. May 2017 B2
9642644 Houser et al. May 2017 B2
9642669 Takashino et al. May 2017 B2
9643052 Tchao et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649126 Robertson et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9671860 Ogawa et al. Jun 2017 B2
9675374 Stulen et al. Jun 2017 B2
9675375 Houser et al. Jun 2017 B2
9687290 Keller Jun 2017 B2
9700339 Nield Jul 2017 B2
9700343 Messerly et al. Jul 2017 B2
9707004 Houser et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713507 Stulen et al. Jul 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9737326 Worrell et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9737735 Dietz et al. Aug 2017 B2
9743947 Price et al. Aug 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9764164 Wiener et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9788851 Dannaher et al. Oct 2017 B2
9795405 Price et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9795808 Messerly et al. Oct 2017 B2
9801648 Houser et al. Oct 2017 B2
9801675 Sanai et al. Oct 2017 B2
9808308 Faller et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9820806 Lee et al. Nov 2017 B2
9826976 Parihar et al. Nov 2017 B2
9839443 Brockman et al. Dec 2017 B2
9839796 Sawada Dec 2017 B2
9848901 Robertson et al. Dec 2017 B2
9848902 Price et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9883884 Neurohr et al. Feb 2018 B2
9888958 Evans et al. Feb 2018 B2
9901339 Farascioni Feb 2018 B2
9901359 Faller et al. Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913655 Scheib et al. Mar 2018 B2
9913656 Stulen Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918736 Van Tol et al. Mar 2018 B2
9925003 Parihar et al. Mar 2018 B2
9943325 Faller et al. Apr 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9962182 Dietz et al. May 2018 B2
9987033 Neurohr et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10010341 Houser et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10022567 Messerly et al. Jul 2018 B2
10022568 Messerly et al. Jul 2018 B2
10028765 Hibner et al. Jul 2018 B2
10028786 Mucilli et al. Jul 2018 B2
10034684 Weisenburgh, II et al. Jul 2018 B2
10034685 Boudreaux et al. Jul 2018 B2
10034704 Asher et al. Jul 2018 B2
10039588 Harper et al. Aug 2018 B2
10045794 Witt et al. Aug 2018 B2
10045819 Jensen et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10085762 Timm et al. Oct 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10117667 Robertson et al. Nov 2018 B2
10117702 Danziger et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10154852 Conlon et al. Dec 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10179022 Yates et al. Jan 2019 B2
10182837 Isola et al. Jan 2019 B2
10188385 Kerr et al. Jan 2019 B2
10194972 Yates et al. Feb 2019 B2
10194973 Wiener et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10201365 Boudreaux et al. Feb 2019 B2
10201382 Wiener et al. Feb 2019 B2
10226273 Messerly et al. Mar 2019 B2
10231747 Stulen et al. Mar 2019 B2
10245064 Rhee et al. Apr 2019 B2
10245065 Witt et al. Apr 2019 B2
10245095 Boudreaux Apr 2019 B2
10251664 Shelton, IV et al. Apr 2019 B2
10263171 Wiener et al. Apr 2019 B2
10265094 Witt et al. Apr 2019 B2
10265117 Wiener et al. Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
D847990 Kimball May 2019 S
10278721 Dietz et al. May 2019 B2
10285723 Conlon et al. May 2019 B2
10285724 Faller et al. May 2019 B2
10299810 Robertson et al. May 2019 B2
10299821 Shelton, IV et al. May 2019 B2
10314638 Gee et al. Jun 2019 B2
10321950 Yates et al. Jun 2019 B2
10335182 Stulen et al. Jul 2019 B2
10335614 Messerly et al. Jul 2019 B2
10342602 Strobl et al. Jul 2019 B2
10357303 Conlon et al. Jul 2019 B2
10363058 Roberson et al. Jul 2019 B2
10368892 Stulen et al. Aug 2019 B2
10368894 Madan et al. Aug 2019 B2
10368957 Denzinger et al. Aug 2019 B2
10398466 Stulen et al. Sep 2019 B2
10398497 Batross et al. Sep 2019 B2
10413352 Thomas et al. Sep 2019 B2
10420579 Wiener et al. Sep 2019 B2
10420580 Messerly et al. Sep 2019 B2
10420607 Woloszko et al. Sep 2019 B2
10426507 Wiener et al. Oct 2019 B2
10426978 Akagane Oct 2019 B2
10433865 Witt et al. Oct 2019 B2
10433866 Witt et al. Oct 2019 B2
10433900 Harris et al. Oct 2019 B2
10441308 Robertson Oct 2019 B2
10441310 Olson et al. Oct 2019 B2
10441345 Aldridge et al. Oct 2019 B2
10463421 Boudreaux et al. Nov 2019 B2
10463887 Witt et al. Nov 2019 B2
10470788 Sinelnikov Nov 2019 B2
10512795 Voegele et al. Dec 2019 B2
10517627 Timm et al. Dec 2019 B2
10524854 Woodruff et al. Jan 2020 B2
10531910 Houser et al. Jan 2020 B2
10537351 Shelton, IV et al. Jan 2020 B2
10537352 Faller et al. Jan 2020 B2
10537667 Anim Jan 2020 B2
10543008 Vakharia et al. Jan 2020 B2
10555750 Conlon et al. Feb 2020 B2
10555769 Worrell et al. Feb 2020 B2
10561436 Asher et al. Feb 2020 B2
10575892 Danziger et al. Mar 2020 B2
10595929 Boudreaux et al. Mar 2020 B2
10595930 Scheib et al. Mar 2020 B2
10603064 Zhang Mar 2020 B2
10610286 Wiener et al. Apr 2020 B2
10624665 Noui et al. Apr 2020 B2
10624691 Wiener et al. Apr 2020 B2
10639092 Corbett et al. May 2020 B2
10677764 Ross et al. Jun 2020 B2
10687884 Wiener et al. Jun 2020 B2
10709469 Shelton, IV et al. Jul 2020 B2
10709906 Nield Jul 2020 B2
10716615 Shelton, IV et al. Jul 2020 B2
10722261 Houser et al. Jul 2020 B2
10729458 Stoddard et al. Aug 2020 B2
10736649 Messerly et al. Aug 2020 B2
10736685 Wiener et al. Aug 2020 B2
10751108 Yates et al. Aug 2020 B2
10758294 Jones Sep 2020 B2
10779845 Timm et al. Sep 2020 B2
10779847 Messerly et al. Sep 2020 B2
10779848 Houser Sep 2020 B2
10779849 Shelton, IV et al. Sep 2020 B2
10779879 Yates et al. Sep 2020 B2
10820920 Scoggins et al. Nov 2020 B2
10820938 Fischer et al. Nov 2020 B2
10828056 Messerly et al. Nov 2020 B2
10828057 Neurohr et al. Nov 2020 B2
10828058 Shelton, IV et al. Nov 2020 B2
10828059 Price et al. Nov 2020 B2
10835307 Shelton, IV et al. Nov 2020 B2
10835768 Robertson et al. Nov 2020 B2
10842522 Messerly et al. Nov 2020 B2
10842523 Shelton, IV et al. Nov 2020 B2
10842580 Gee et al. Nov 2020 B2
10856896 Eichmann et al. Dec 2020 B2
10874418 Houser et al. Dec 2020 B2
10881449 Boudreaux et al. Jan 2021 B2
10881451 Worrell et al. Jan 2021 B2
10888347 Witt et al. Jan 2021 B2
10893883 Dannaher Jan 2021 B2
10912603 Boudreaux et al. Feb 2021 B2
10952759 Messerly et al. Mar 2021 B2
10959769 Mumaw et al. Mar 2021 B2
10966744 Rhee et al. Apr 2021 B2
10987123 Weir et al. Apr 2021 B2
11000707 Voegele et al. May 2021 B2
11006971 Faller et al. May 2021 B2
11020140 Gee et al. Jun 2021 B2
11033292 Green et al. Jun 2021 B2
11033322 Wiener et al. Jun 2021 B2
D924400 Kimball Jul 2021 S
11051840 Shelton, IV et al. Jul 2021 B2
11058447 Houser Jul 2021 B2
11058448 Shelton, IV et al. Jul 2021 B2
11058475 Wiener et al. Jul 2021 B2
11129670 Shelton, IV et al. Sep 2021 B2
11134978 Shelton, IV et al. Oct 2021 B2
11141213 Yates et al. Oct 2021 B2
20010011176 Boukhny Aug 2001 A1
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010032002 McClurken et al. Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020002378 Messerly Jan 2002 A1
20020016603 Wells Feb 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052595 Witt et al. May 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020099373 Schulze et al. Jul 2002 A1
20020107446 Rabiner et al. Aug 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020120266 Truckai et al. Aug 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20020165577 Witt et al. Nov 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030040758 Wang et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030093113 Fogarty et al. May 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030114874 Craig et al. Jun 2003 A1
20030120306 Burbank et al. Jun 2003 A1
20030130675 Kasahara et al. Jul 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030144652 Baker et al. Jul 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030160698 Andreasson et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030195496 Maguire et al. Oct 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030225332 Okada et al. Dec 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040039242 Tolkoff et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040087943 Dycus et al. May 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097911 Murakami et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040121159 Cloud et al. Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040147945 Fritzsch Jul 2004 A1
20040147946 Mastri et al. Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040199194 Witt et al. Oct 2004 A1
20040215132 Yoon Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040243157 Connor Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040267298 Cimino Dec 2004 A1
20050015125 Mioduski et al. Jan 2005 A1
20050020967 Ono Jan 2005 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050021078 Vleugels et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050070800 Takahashi Mar 2005 A1
20050085728 Fukuda Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050192611 Houser Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050228425 Boukhny et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060030797 Zhou et al. Feb 2006 A1
20060030848 Craig et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079874 Faller et al. Apr 2006 A1
20060079877 Houser et al. Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060224160 Trieu et al. Oct 2006 A1
20060241580 Mittelstein et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060257819 Johnson Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070156163 Davison et al. Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070185474 Nahen Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070276419 Rosenthal Nov 2007 A1
20070282333 Fortson et al. Dec 2007 A1
20070287933 Phan et al. Dec 2007 A1
20070288055 Lee Dec 2007 A1
20080013809 Zhu et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080033465 Schmitz et al. Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080097281 Zusman et al. Apr 2008 A1
20080097501 Blier Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080114364 Goldin et al. May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080147058 Horrell et al. Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080294051 Koshigoe et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090023985 Ewers Jan 2009 A1
20090043228 Northrop et al. Feb 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054889 Newton et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090069830 Mulvihill et al. Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090088785 Masuda Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090163807 Sliwa Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090248021 McKenna Oct 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090259149 Tahara et al. Oct 2009 A1
20090264909 Beaupre Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270891 Beaupre Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20090299141 Downey et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100034605 Huckins et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100042126 Houser et al. Feb 2010 A1
20100049180 Wells et al. Feb 2010 A1
20100057118 Dietz et al. Mar 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupre Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100106173 Yoshimine Apr 2010 A1
20100109480 Forslund et al. May 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100168741 Sanai et al. Jul 2010 A1
20100181966 Sakakibara Jul 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204721 Young et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100228191 Alvarez et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100312186 Suchdev et al. Dec 2010 A1
20100331742 Masuda Dec 2010 A1
20100331873 Dannaher et al. Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110106141 Nakamura May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110291526 Abramovich et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120078249 Eichmann et al. Mar 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120136279 Tanaka et al. May 2012 A1
20120143211 Kishi Jun 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20120330338 Messerly Dec 2012 A1
20130023925 Mueller Jan 2013 A1
20130090576 Stulen et al. Apr 2013 A1
20130116717 Balek et al. May 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130231691 Houser Sep 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130277410 Fernandez et al. Oct 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20130331873 Ross et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140081299 Dietz et al. Mar 2014 A1
20140121569 Schafer et al. May 2014 A1
20140135663 Funakubo et al. May 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140207163 Eichmann et al. Jul 2014 A1
20140323926 Akagane Oct 2014 A1
20140371735 Long Dec 2014 A1
20150011889 Lee Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150083774 Measamer et al. Mar 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150289854 Cho et al. Oct 2015 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160114355 Sakai et al. Apr 2016 A1
20160128769 Rontal et al. May 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160206342 Robertson et al. Jul 2016 A1
20160240768 Fujii et al. Aug 2016 A1
20160262786 Madan et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160296251 Olson et al. Oct 2016 A1
20160296252 Olson et al. Oct 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20170027624 Wilson et al. Feb 2017 A1
20170036044 Ito Feb 2017 A1
20170086909 Yates et al. Mar 2017 A1
20170119426 Akagane May 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170164972 Johnson et al. Jun 2017 A1
20170189095 Danziger et al. Jul 2017 A1
20170202572 Shelton, IV et al. Jul 2017 A1
20170202591 Shelton, IV et al. Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170202598 Shelton, IV et al. Jul 2017 A1
20180055529 Messerly et al. Mar 2018 A1
20180125523 Johnson May 2018 A1
20190053822 Robertson et al. Feb 2019 A1
20190239919 Witt et al. Aug 2019 A1
20190262029 Messerly et al. Aug 2019 A1
20190350615 Messerly et al. Nov 2019 A1
20190380733 Stulen et al. Dec 2019 A1
20190381340 Voegele et al. Dec 2019 A1
20200008857 Conlon et al. Jan 2020 A1
20200015798 Wiener et al. Jan 2020 A1
20200015838 Robertson Jan 2020 A1
20200046401 Witt et al. Feb 2020 A1
20200054899 Wiener et al. Feb 2020 A1
20200085462 Robertson Mar 2020 A1
20200085466 Faller et al. Mar 2020 A1
20200323551 Faller et al. Oct 2020 A1
20210038248 Houser Feb 2021 A1
20210121197 Houser et al. Apr 2021 A1
20210128191 Messerly et al. May 2021 A1
20210145531 Gee et al. May 2021 A1
20210236157 Rhee et al. Aug 2021 A1
20210315605 Gee et al. Oct 2021 A1
20210378700 Houser Dec 2021 A1
Foreign Referenced Citations (166)
Number Date Country
837241 Mar 1970 CA
2535467 Apr 1993 CA
2214413 Sep 1996 CA
2460047 Nov 2001 CN
1634601 Jul 2005 CN
1775323 May 2006 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
202027624 Nov 2011 CN
102335778 Feb 2012 CN
103668171 Mar 2014 CN
103921215 Jul 2014 CN
106077718 Nov 2016 CN
2065681 Mar 1975 DE
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4300307 Jul 1994 DE
4434938 Feb 1996 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
10201569 Jul 2003 DE
0171967 Feb 1986 EP
0336742 Oct 1989 EP
0136855 Nov 1989 EP
0705571 Apr 1996 EP
1543854 Jun 2005 EP
1698289 Sep 2006 EP
1862133 Dec 2007 EP
1972264 Sep 2008 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
2131760 Dec 2009 EP
1214913 Jul 2010 EP
1946708 Jun 2011 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2510891 Jun 2016 EP
2454351 Nov 1980 FR
2964554 Mar 2012 FR
2032221 Apr 1980 GB
2317566 Apr 1998 GB
2318298 Apr 1998 GB
2425480 Nov 2006 GB
S50100891 Aug 1975 JP
S5968513 May 1984 JP
S59141938 Aug 1984 JP
S62221343 Sep 1987 JP
S62227343 Oct 1987 JP
S62292153 Dec 1987 JP
S62292154 Dec 1987 JP
S63109386 May 1988 JP
S63315049 Dec 1988 JP
H01151452 Jun 1989 JP
H01198540 Aug 1989 JP
H0271510 May 1990 JP
H02286149 Nov 1990 JP
H02292193 Dec 1990 JP
H0337061 Feb 1991 JP
H0425707 Feb 1992 JP
H0464351 Feb 1992 JP
H0430508 Mar 1992 JP
H04152942 May 1992 JP
H04161078 Jun 1992 JP
H0595955 Apr 1993 JP
H05115490 May 1993 JP
H0647048 Feb 1994 JP
H0670938 Mar 1994 JP
H06104503 Apr 1994 JP
H07185457 Jul 1995 JP
H07299415 Nov 1995 JP
H0824266 Jan 1996 JP
H08229050 Sep 1996 JP
H08275950 Oct 1996 JP
H08275951 Oct 1996 JP
H08299351 Nov 1996 JP
H08336545 Dec 1996 JP
H09135553 May 1997 JP
H09140722 Jun 1997 JP
H105236 Jan 1998 JP
H105237 Jan 1998 JP
H10295700 Nov 1998 JP
H11128238 May 1999 JP
2000139943 May 2000 JP
2000210296 Aug 2000 JP
2000210299 Aug 2000 JP
2000271145 Oct 2000 JP
2000287987 Oct 2000 JP
2000312682 Nov 2000 JP
2001029353 Feb 2001 JP
2001057985 Mar 2001 JP
2001170066 Jun 2001 JP
2001198137 Jul 2001 JP
2002186901 Jul 2002 JP
2002233533 Aug 2002 JP
2002263579 Sep 2002 JP
2002330977 Nov 2002 JP
2003000612 Jan 2003 JP
2003010201 Jan 2003 JP
2003116870 Apr 2003 JP
2003126104 May 2003 JP
2003126110 May 2003 JP
2003153919 May 2003 JP
2003230567 Aug 2003 JP
2003339730 Dec 2003 JP
2004129871 Apr 2004 JP
2004147701 May 2004 JP
2004209043 Jul 2004 JP
2005027026 Jan 2005 JP
2005074088 Mar 2005 JP
2005094552 Apr 2005 JP
2005253674 Sep 2005 JP
2006217716 Aug 2006 JP
2006288431 Oct 2006 JP
3841627 Nov 2006 JP
D1339835 Aug 2008 JP
2009071439 Apr 2009 JP
2009297352 Dec 2009 JP
2010009686 Jan 2010 JP
2010121865 Jun 2010 JP
2011160586 Aug 2011 JP
2012235658 Nov 2012 JP
2015529140 Oct 2015 JP
2016022136 Feb 2016 JP
100789356 Dec 2007 KR
2154437 Aug 2000 RU
22035 Mar 2002 RU
2201169 Mar 2003 RU
2405603 Dec 2010 RU
850068 Jul 1981 SU
WO-8103272 Nov 1981 WO
WO-9308757 May 1993 WO
WO-9314708 Aug 1993 WO
WO-9421183 Sep 1994 WO
WO-9424949 Nov 1994 WO
WO-9639086 Dec 1996 WO
WO-9800069 Jan 1998 WO
WO-9805437 Feb 1998 WO
WO-9816157 Apr 1998 WO
WO-9920213 Apr 1999 WO
WO-9923960 May 1999 WO
WO-0024322 May 2000 WO
WO-0024330 May 2000 WO
WO-0064358 Nov 2000 WO
WO-0128444 Apr 2001 WO
WO-0132087 May 2001 WO
WO-0167970 Sep 2001 WO
WO-0195810 Dec 2001 WO
WO-02076685 Oct 2002 WO
WO-02080799 Oct 2002 WO
WO-2004037095 May 2004 WO
WO-2004078051 Sep 2004 WO
WO-2004098426 Nov 2004 WO
WO-2005084250 Sep 2005 WO
WO-2007008710 Jan 2007 WO
WO-2008118709 Oct 2008 WO
WO-2008130793 Oct 2008 WO
WO-2008154338 Dec 2008 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011052939 May 2011 WO
WO-2011060031 May 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012066983 May 2012 WO
WO-2013048963 Apr 2013 WO
Non-Patent Literature Citations (62)
Entry
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Mitsui Chemicals Names DuPont™ Vespel® Business as Exclusive U.S., European Distributor of AUTUM® Thermoplastic Polyimide Resin, Feb. 24, 2003; http://www2.dupont.com/Vespel/en_US/news_events/article20030224.html.
Sadiq Muhammad et al: “High-performance planar ultrasonic tool based on d31-mode piezocrystal”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, vol. 62, No. 3, Mar. 30, 2015 (Mar. 30, 2015), pp. 428-438, XP011574640, ISSN: 0885-3010, DOI: 10.1109/TUFFC.2014.006437.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
http:/www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . . .
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724.
http://www.4-traders.com/JOHNSON-JOHNSON-4832/news/Johnson-Johnson-Ethicon-E . . . .
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” IEEE Transactions on Biomedical Engineering, vol. BME-31, No. 12, pp. 787-792, Dec. 1984.
Fowler, K.R., “A Programmable, Arbitrary Waveform Electrosurgical Device,” IEEE Engineering in Medicine and Biology Society 10th Annual International Conference, pp. 1324, 1325 (1988).
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-17(1), 1-6 (1970).
Makarov, S. N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy,” Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Morley, L. S. D., “Elastic Waves in a Naturally Curved Rod,” Quarterly Journal of Mechanics and Applied Mathematics, 14: 155-172 (1961).
Walsh, S. J., White, R. G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pp. 13-89, 199-293, 335-393, 453-496, 535-549.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=MI&sp=1 . . . , accessed Aug. 25, 2009.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
Glaser and Subak-Sharpe,Integrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Covidien 501 (k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
http://www.megadyne.com/es_generator.php.
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral Analysis Interpretation of Electrosurgical Generator Nerve and Muscle Stimulation,” IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, pp. 505-509, Jul. 1988.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
http://www.apicalinstr.com/generators.htm.
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html.
http://www.valleylab.com/product/es/generators/index.html.
Emam, Tarek A. et al., “How Safe is High-Power Ultrasonic Dissection?,” Annals of Surgery, (2003), pp. 186-191, vol. 237, No. 2, Lippincott Williams & Wilkins, Inc., Philadelphia, PA.
Feil, Wolfgang, M.D., et al., “Ultrasonic Energy for Cutting, Coagulating, and Dissecting,” (2005), pp. IV, 17, 21, and 23; ISBN 3-13-127521-9 (New York, NY, Thieme, New York).
McCarus, Steven D. M.D., “Physiologic Mechanism of the Ultrasonically Activated Scalpel,” The Journal of the American Association of Gynecologic Laparoscopists; (Aug. 1996), vol. 3, No. 4., pp. 601-606 and 608.
Related Publications (1)
Number Date Country
20200054386 A1 Feb 2020 US
Divisions (2)
Number Date Country
Parent 14444335 Jul 2014 US
Child 14645796 US
Parent 11881602 Jul 2007 US
Child 14444335 US
Continuations (2)
Number Date Country
Parent 15653366 Jul 2017 US
Child 16535514 US
Parent 14645796 Mar 2015 US
Child 15653366 US