Ultrasonic instruments, including both hollow core and solid core instruments, are used for the safe and effective treatment of many medical conditions. Ultrasonic instruments, are advantageous because they may be used to cut and/or coagulate organic tissue using energy in the form of mechanical vibrations transmitted to a surgical end effector at ultrasonic frequencies. Ultrasonic vibrations, when transmitted to organic tissue at suitable energy levels and using a suitable end effector, may be used to cut, dissect, elevate or cauterize tissue or to separate muscle tissue off bone. Such instruments may be used for open procedures or minimally invasive procedures, such as endoscopic or laparoscopic procedures, wherein the end effector is passed through a trocar to reach the surgical site.
Activating or exciting the end effector (e.g., cutting blade) of such instruments at ultrasonic frequencies induces longitudinal vibratory movement that generates localized heat within adjacent tissue, facilitating both cutting and coagulation. Because of the nature of ultrasonic instruments, a particular ultrasonically actuated end effector may be designed to perform numerous functions, including, for example, cutting and coagulation.
Ultrasonic vibration is induced in the surgical end effector by electrically exciting a transducer, for example. The transducer may be constructed of one or more piezoelectric or magnetostrictive elements in the instrument hand piece. Vibrations generated by the transducer section are transmitted to the surgical end effector via an ultrasonic waveguide extending from the transducer section to the surgical end effector. The waveguides and end effectors are designed to resonate at the same frequency as the transducer. Therefore, when an end effector is attached to a transducer the overall system frequency is the same frequency as the transducer itself.
The zero to peak amplitude of the longitudinal ultrasonic vibration at the tip, d, of the end effector behaves as a simple sinusoid at the resonant frequency as given by:
d=A sin(ωt)
where:
ω=the radian frequency which equals 2π times the cyclic frequency, f, and
A=the zero-to-peak amplitude.
The longitudinal excursion is defined as the peak-to-peak (p-t-p) amplitude, which is just twice the amplitude of the sine wave or 2A.
Ultrasonic surgical instruments may be divided into two types, single element end effector devices and multiple-element end effector devices. Single element end effector devices include instruments such as scalpels and ball coagulators. Single-element end effector instruments have limited ability to apply blade-to-tissue pressure when the tissue is soft and loosely supported. Sometimes, substantial pressure may be necessary to effectively couple ultrasonic energy to the tissue. This inability to grasp the tissue results in a further inability to fully coapt tissue surfaces while applying ultrasonic energy, leading to less-than-desired hemostasis and tissue joining. In these cases, multiple-element end effectors may be used. Multiple-element end effector devices, such as clamping coagulators, include a mechanism to press tissue against an ultrasonic blade that can overcome these deficiencies.
Many surgical procedures utilizing harmonic and non-harmonic instruments create extraneous tissue fragments and other materials at the surgical site. If this material is not removed, it may obstruct the clinician's view and also may interfere with the blade or other end effector of the surgical device. To remove the material, the clinician must remove the instrument from the surgical area and introduce an aspiration tool. This can break the clinician's concentration and also contribute to physical and mental fatigue.
Also, in some surgical procedures, it is desirable to remove a core or other integral portion of tissue. In these procedures, the clinician uses a first instrument to grasp and sometimes cut an outline of the tissue to be removed. Then a second instrument is utilized to remove the tissue from surrounding material, often while the tissue is still grasped by the first instrument. This process may be particularly challenging for clinicians because it can require the use of multiple instruments, often simultaneously. Also, many coring procedures are performed at very delicate portions of the anatomy that require precise cuts.
In addition, existing harmonic instruments allow the clinician to turn them on or off, but provide limited control over the power delivered to tissue once the instrument is turned on. This limits the usefulness of harmonic instruments in delicate surgical procedures, where fine cutting control is required.
In one general aspect, the various embodiments are directed to a surgical device. The surgical device may comprise a transducer configured to provide vibrations along a longitudinal axis and an end effector coupled to the transducer and extending from the transducer along the longitudinal axis. The surgical device also may comprise a lower jaw extending parallel to the end effector. The lower jaw may comprise a clamp face extending toward the longitudinal axis. Also, the lower jaw may be slidable relative to the end effector to bring the clamp face toward a distal end of the end effector.
In another general aspect, the various embodiments are directed to another surgical device comprising an end effector. The end effector may comprise a hollow portion defining a central lumen and at least one member extended across at least a portion of the central lumen at about a distal end of the end effector.
In yet another general aspect, the various embodiments are directed to a surgical device comprising a central instrument and an outer sheath surrounding the central instrument. The central instrument may be configured to engage tissue, and may be slidable relative to the outer sheath. The outer sheath may comprise a distal edge configured to clamp the tissue when the central instrument is slid to a position proximal from the distal edge of the outer sheath.
According to still another general aspect, the various embodiments are directed to a surgical device comprising a transducer configured to energize an end effector and a trigger actuable to cause the end effector to be energized. The end effector may be coupled to the transducer. The surgical device may further comprise a sensor positioned to sense a force exerted on the trigger, and control circuit in communication with the sensor. The control circuit may be configured to increase power delivered to the end effector by the transducer in response to an increase of the force exerted on the trigger.
The novel features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
Before explaining the various embodiments in detail, it should be noted that the embodiments are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. For example, the surgical instruments and blade configurations disclosed below are illustrative only and not meant to limit the scope or application thereof. Also, the blade and end effector designs described hereinbelow may be used in conjunction with any suitable device. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments for the convenience of the reader and are not to limit the scope thereof.
Examples of ultrasonic surgical instruments and blades are disclosed in U.S. Pat. Nos. 5,322,055 and 5,954,736, 6,309,400 B2, 6,278,218B1, 6,283,981 B1, and 6,325,811 B1, which are incorporated herein by reference in their entirety. These references disclose ultrasonic surgical instrument designs and blade designs where a longitudinal mode of the blade is excited. The result is a longitudinal standing wave within the instrument. Accordingly, the instrument has nodes, where the transverse motion is equal to zero, and anti-nodes, where the transverse motion is at its maximum. The instrument's tissue end effector is often positioned at an anti-node to maximize its longitudinal motion.
Various embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments and that the scope of the various embodiments is defined solely by the claims. The features illustrated or described in connection with one embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the claims.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a surgical device at its hand piece assembly, or other comparable piece. Thus, the end effector is distal with respect to the more proximal hand piece assembly. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the hand piece assembly, or comparable piece. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
The generator 30 of the surgical system 10 sends an electrical signal through a cable 32 at a selected excursion, frequency, and phase determined by a control system of the generator 30. As will be further described, the signal causes one or more piezoelectric elements of the acoustic assembly of the surgical instrument 120 to expand and contract along a longitudinal axis, thereby converting the electrical energy into mechanical motion. The mechanical motion results in longitudinal waves of ultrasonic energy that propagate through the acoustic assembly in an acoustic standing wave to vibrate the acoustic assembly at a selected frequency and excursion. The end effector 180 is placed in contact with tissue of the patient to transfer the ultrasonic energy to the tissue. For example, a distal portion of blade 180′ of the end effector may be placed in contact with the tissue. As further described below, a surgical tool, such as, a jaw or clamping mechanism, may be utilized to press the tissue against the blade 180′.
As the end effector 180 couples with the tissue, thermal energy or heat is generated as a result of friction, acoustic absorption, and viscous losses within the tissue. The heat is sufficient to break protein hydrogen bonds, causing the highly structured protein (e.g., collagen and muscle protein) to denature (e.g., become less organized). As the proteins are denatured, a sticky coagulum forms to seal or coagulate small blood vessels. Deep coagulation of larger blood vessels results when the effect is prolonged.
The transfer of the ultrasonic energy to the tissue causes other effects including mechanical tearing, cutting, cavitation, cell disruption, and emulsification. The amount of cutting as well as the degree of coagulation obtained varies with the excursion of the end effector 180, the frequency of vibration, the amount of pressure applied by the user, the sharpness of the end effector 180, and the coupling between the end effector 180 and the tissue.
In the embodiment illustrated in
When the generator 30 is activated via the triggering mechanism 36, electrical energy is continuously applied by the generator 30 to a transducer stack or assembly 40 of the acoustic assembly. A phase-locked loop in the control system of the generator 30 monitors feedback from the acoustic assembly. The phase lock loop adjusts the frequency of the electrical energy sent by the generator 30 to match the resonant frequency of the selected longitudinal mode of vibration of the acoustic assembly. In addition, a second feedback loop in the control system maintains the electrical current supplied to the acoustic assembly at a pre-selected constant level in order to achieve substantially constant excursion at the end effector 180 of the acoustic assembly.
The electrical signal supplied to the acoustic assembly will cause the distal end of the end effector 180, e.g., the blade 180′, to vibrate longitudinally in the range of, for example, approximately 20 kHz to 250 kHz. According to various embodiments, the blade 180′ may vibrate in the range of about 54 kHz to 56 kHz, for example, at about 55.5 kHz. In other embodiments, the blade 180′ may vibrate at other frequencies including, for example, about 31 kHz or about 80 kHz. The excursion of the vibrations at the blade can be controlled by, for example, controlling the amplitude of the electrical signal applied to the transducer assembly 40 of the acoustic assembly by the generator 30.
As noted above, the triggering mechanism 36 of the generator 30 allows a user to activate the generator 30 so that electrical energy may be continuously supplied to the acoustic assembly. The triggering mechanism 36 may comprise a foot activating switch that is detachably coupled or attached to the generator 30 by a cable or cord. Alternatively, the triggering mechanism can be configured as a hand switch incorporated in the ultrasonic drive unit 50 to allow the generator 30 to be activated by a user.
The generator 30 also has a power line 38 for insertion in an electro-surgical unit or conventional electrical outlet. It is contemplated that the generator 30 can also be powered by a direct current (DC) source, such as a battery. The generator 30 can comprise any suitable generator, such as Model No. GEN04, available from Ethicon Endo-Surgery, Inc.
In the embodiment illustrated in
The housing 52 of the ultrasonic drive unit 50 generally includes a proximal end, a distal end, and a cavity extending longitudinally therein. The distal end of the housing 52 includes an opening 60 configured to allow the acoustic assembly of the surgical system 10 to extend therethrough, and the proximal end of the housing 52 is coupled to the generator 30 by the cable 32. The cable 32 may include ducts or vents 62 to allow air or other fluids to be introduced into the housing 52 of the ultrasonic drive unit 50 to cool the transducer assembly 40 of the acoustic assembly.
The housing 52 of the ultrasonic drive unit 50 may be constructed from a durable plastic, such as ULTEM®. It is also contemplated that the housing 52 may alternatively be made from a variety of materials including other plastics (e.g. liquid crystal polymer (LCP), nylon, or polycarbonate) and/or metals (e.g., aluminum, steel, etc.). A suitable ultrasonic drive unit 50 is Model No. HP054, available from Ethicon Endo-Surgery, Inc.
The acoustic assembly of the surgical instrument generally includes a first acoustic portion and a second acoustic portion. The first acoustic portion may be carried by the ultrasonic drive unit 50, and the second acoustic portion (in the form of an end effector 180, as will be described) is carried by the ultrasonic clamp coagulator 120. The distal end of the first acoustic portion is operatively coupled to the proximal end of the second acoustic portion, preferably by a threaded connection.
In the embodiment illustrated in
The components of the acoustic assembly may be acoustically tuned such that the length of each component is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration frequency f0 of the acoustic assembly, and n is any non-negative integer. It is also contemplated that the acoustic assembly may incorporate any suitable arrangement of acoustic elements.
The transducer assembly 40 of the acoustic assembly converts the electrical signal from the generator 30 into mechanical energy that results in longitudinal vibratory motion of the end effector 180 at ultrasonic frequencies. When the acoustic assembly is energized, a vibratory motion standing wave is generated through the acoustic assembly. The excursion of the vibratory motion at any point along the acoustic assembly depends on the location along the acoustic assembly at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (e.g., where motion is usually minimal), and a local absolute value maximum or peak in the standing wave is generally referred to as an anti-node. The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).
In the embodiment illustrated in
The distal end of the first resonator 92 is connected to the proximal end of transduction section 90, and the proximal end of the second resonator 94 is connected to the distal end of transduction portion 90. The first and second resonators 92 and 94 may be fabricated from titanium, aluminum, steel, or any other suitable material, and most preferably, the first resonator 92 is fabricated from 303 stainless steel and the second resonator 94 is fabricated from 7075-T651 Aluminum. The first and second resonators 92 and 94 have a length determined by a number of variables, including the length of the transduction section 90, the speed of sound of material used in the resonators 92 and 94, and the desired fundamental frequency f0 of the transducer assembly 40. The second resonator 94 can be tapered inwardly from its proximal end to its distal end to function as a velocity transformer and amplify the ultrasonic vibration excursion.
The transduction portion 90 of the transducer assembly 40 may comprise a piezoelectric section of alternating positive electrodes 96 and negative electrodes 98, with the piezoelectric elements 100 alternating between the electrodes 96 and 98. The piezoelectric elements 100 can be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead metaniobate, lead titanate, or other piezoelectric material. Each of the positive electrodes 96, negative electrodes 98, and piezoelectric elements 100 have a bore extending through the center. The positive and negative electrodes 96 and 98 are electrically coupled to wires 102 and 104, respectfully. The wires 102 and 104 transmit the electrical signal from the generator 30 to the electrodes 96 and 98.
The piezoelectric elements 100 may be held in compression between the first and second resonators 92 and 94 by a bolt 106. The bolt 106 may have a head, a shank, and a threaded distal end. The bolt 106 may be inserted from the proximal end of the first resonator 92 through the bores of the first resonator 92, the electrodes 96 and 98, and piezoelectric elements 100. The threaded distal end of the bolt 106 is screwed into a threaded bore in the proximal end of second resonator 94. The bolt 106 may be fabricated from steel, titanium, aluminum, or other suitable material. For example, the bolt 106 may be fabricated from Ti-6Al-4V Titanium or from 4037 low alloy steel.
The piezoelectric elements 100 may be energized in response to the electrical signal supplied from the generator 30 to produce an acoustic standing wave in the acoustic assembly. The electrical signal causes an electromagnetic field across the piezoelectric elements 100, causing the piezoelectric elements 100 to expand and contract in a continuous manner along the longitudinal axis of the voltage gradient, producing high frequency longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly to the end effector 180.
The mounting device 84 of the acoustic assembly has a proximal end, a distal end, and may have a length substantially equal to an integral number of one-half system wavelengths (nλ/2). The proximal end of the mounting device 84 may be axially aligned and coupled to the distal end of the second resonator 94 by an internal threaded connection near an anti-node. It is also contemplated that the mounting device 84 may be attached to the second resonator 94 by any suitable means, and the second resonator 94 and mounting device 84 may be formed as a single or unitary component.
The mounting device 84 is coupled to the housing 52 of the ultrasonic drive unit 50 near a node. The mounting device 84 may include an integral mounting flange 108 disposed around its periphery. The mounting flange 108 may be disposed in an annular groove 110 formed in the housing 52 of the ultrasonic drive unit 50 to couple the mounting device 84 to the housing 52. A compliant member or material 112, such as a pair of silicone rubber O-rings attached by stand-offs, may be placed between the annular groove 110 of the housing 52 and the integral flange 108 of the mounting device 86 to reduce or prevent ultrasonic vibration from being transmitted from the mounting device 84 to the housing 52.
The mounting device 84 may be secured in a predetermined axial position by a plurality of pins 114, for example, four. The pins 114 are disposed in a longitudinal direction ninety (90) degrees apart from each other around the outer periphery of the mounting device 84. The pins 114 are coupled to the housing 52 of the ultrasonic drive unit 50 and are disposed through notches in the acoustic mounting flange 108 of the mounting device 84. The pins 114 may be fabricated from stainless steel. According to various embodiments, the pins 114 may be formed as integral components of the housing 52.
The mounting device 84 may be configured to amplify the ultrasonic vibration excursion that is transmitted through the acoustic assembly to the distal end of the end effector 180. In one embodiment, the mounting device 84 comprises a solid, tapered horn. As ultrasonic energy is transmitted through the mounting device 84, the velocity of the acoustic wave transmitted through the mounting device 84 is amplified. It is contemplated that the mounting device 84 be configured as any suitable shape, such as, for example, a stepped horn, a conical horn, an exponential horn, a unitary gain horn, or the like.
The mounting device 84 may be acoustically coupled to the second acoustic portion of the ultrasonic clamp coagulator instrument 120. The distal end of the mounting device 84 may be coupled to the proximal end of the second acoustic portion by an internal threaded connection near an anti-node, but alternative coupling arrangements can be employed.
The ultrasonic clamp coagulator instrument 120 may include a handle assembly or a housing 130, which may comprise mating housing portions 131, 132, and an elongated or endoscopic portion 150. When the present apparatus is configured for endoscopic use, the construction can be dimensioned such that portion 150 has an outside diameter of about 5.5 mm. The elongated portion 150 of the ultrasonic clamp coagulator instrument 120 may extend substantially orthogonally from the apparatus housing 130. The elongated portion 150 can be selectively rotated with respect to the housing 130 as described below. The elongated portion 150 may include an outer tubular member or sheath 160, an inner tubular actuating member 170, and the second acoustic portion of the acoustic system in the form of an end effector 180 including a blade 180′. As will be described, the outer sheath 160, the actuating member 170, and the end effector 180 may be joined together for indexed rotation as a unit (together with ultrasonic drive unit 50) relative to housing 130.
The proximal end of the end effector 180 of the second acoustic portion may be detachably coupled to the mounting device 84 of the ultrasonic drive unit 50 near an anti-node as described above. The end effector 180 may have a length substantially equal to an integer number of one-half system wavelengths (nλ/2). The end effector 180 may be fabricated from a solid core shaft constructed out of material which propagates ultrasonic energy efficiently, such as a titanium alloy (e.g., Ti-6Al-4V) or an aluminum alloy. It is contemplated that the end effector 180 can alternatively be fabricated from any other suitable material.
As described, the end effector 180 may include a waveguide 181. The waveguide 181 may be substantially semi-flexible. It will be recognized that the waveguide 181 can alternatively be substantially rigid or may comprise a flexible wire. The waveguide 181 may be configured to amplify the mechanical vibrations transmitted through the waveguide to the blade as is well known in the art. The waveguide 181 may further have features to control the gain of the longitudinal vibration along the waveguide 181 and features to tune the waveguide to the resonant frequency of the system.
It will be recognized that the end effector 180 may have any suitable cross-sectional dimension. For example, the end effector 180 may have a substantially uniform cross-section or the end effector 180 may be tapered at various sections or may be tapered along its entire length.
Referring now to
The second section 184 of the wave guide 181 extends distally from the first section 182. The second section 184 preferably also has a substantially continuous cross-section. The diameter of the second section 184 may be smaller than the diameter of the first section 182 and larger than the diameter of the third section 186. As ultrasonic energy passes from the first section 182 of the end effector 180 into the second section 184, narrowing of the second section 184 will result in an increased amplitude of the ultrasonic energy passing therethrough.
The third section 186 extends distally from the distal end of the second section 184. The third section 186 also has a substantially continuous cross-section. The third section 186 also may include small diameter changes along its length. According to various embodiments, the transition from the second section 184 to the third section 186 may be positioned at an anti-node so that the diameter change in the third section does not bring about an increase in the amplitude of vibration.
The third section 186 may have a plurality of grooves or notches (not shown) formed in its outer circumference. The grooves may be located at nodes of the end effector 180 to act as alignment indicators for the installation of a damping sheath (not shown) and stabilizing silicone rings or compliant supports during manufacturing. A seal may be provided at the distal-most node, nearest the blade 180′, to abate passage of tissue, blood, and other material in the region between the waveguide and actuating member 170.
The blade 180′ of the end effector 180 may be integral therewith and formed as a single unit. The blade 180′ may alternately be connected by a threaded connection, or by a welded joint. According to various embodiments, the blade 180′ may be mechanically sharp or mechanically blunt. The distal end of the blade 180′ is disposed near an anti-node in order to tune the acoustic assembly to a preferred resonant frequency f0 when the acoustic assembly is not loaded by tissue. When the transducer assembly is energized, the distal end of the blade 180′ is configured to move longitudinally in the range of, for example, approximately 10-500 microns peak-to-peak, and preferably in the range of about 10 to about 100 microns at a predetermined vibrational frequency f0.
In accordance with the illustrated embodiment, the blade 180′ may be cylindrical for cooperation with the associated clamping mechanism of the clamp coagulator 120. The end effector 180 may receive suitable surface treatment, as is known in the art.
Pivotal movement of the clamp arm 190 with respect to the blade 180′ is effected by the provision of at least one, and preferably a pair of lever portions 193 of the clamp arm 190 at the proximal end thereof. The lever portions 193 are positioned on respective opposite sides of the end effector 180 and blade 180′, and are in operative engagement with a drive portion 194 of the reciprocal actuating member 170. Reciprocal movement of the actuating member 170, relative to the outer tubular sheath 160 and the end effector 180, thereby effects pivotal movement of the clamp arm 190 relative to the blade 180′. The lever portions 193 can be respectively positioned in a pair of openings defined by the drive portion 194, or otherwise suitably mechanically coupled therewith, whereby reciprocal movement of the actuating member 170 acts through the drive portion 194 and lever portions 193 to pivot the clamp arm 190.
Rotation of the actuating member 170 together with the tubular outer sheath 160 and inner end effector 180 is provided by a connector pin 212 extending through these components of the instrument 120. The tubular actuating member 170 defines an elongated slot 214 through which the connector pin 212 extends to accommodate reciprocal movement of the actuating member relative to the outer tubular sheath and inner waveguide.
A rotation knob 216 mounted on the outer tubular sheath facilitates rotational positioning of the elongated portion 150 with respect to the housing 130 of the clamp coagulator instrument 120. Connector pin 212 preferably joins the knob 216 together with the sheath 160, member 170, and the end effector 180 for rotation as a unit relative to the housing 130. In the embodiment, hub portion 216′ of the rotation knob 216 acts to rotatably mount the outer sheath 160, the actuating member 170, and the end effector 180 (as a unit with the knob 216), on the housing 130.
The drive collar 200 provides a portion of the clamp drive mechanism of the instrument 120, which effects pivotal movement of the clamp arm 190 by reciprocation of the actuating member 170. The clamp drive mechanism further includes a drive yoke 220 which is operatively connected with an operating lever 222, with the operating lever thus interconnected with the reciprocal actuating member 170 via drive yoke 220 and drive collar 200. The operating lever 222 is pivotally connected to the housing 130 of the apparatus (by a pivot mount 223) for cooperation in a scissors-like fashion with a handgrip portion 224 of the housing. Movement of the lever 222 toward the handgrip portion 224 translates the actuating member 170 proximally, thereby pivoting the clamp arm 190 toward the blade 180′.
Operative connection of the drive yoke 220 with the operating lever 222 is provided by a spring 226, preferably comprising a compression coil spring 226. The spring 226 fits within a spring slot 228 defined by the drive yoke 220, which in turn is positioned between a pair of spring retainer flanges 230 of the operating lever 222. The drive yoke 220 is pivotally movable with respect to the spring flanges 230 (about pivot mount 223 of housing 130) in opposition to the compression coil spring, which bears against the surfaces of the spring slots defined by each of the spring flanges 230. In this manner, the force which can be applied to the actuating member 170, by pivotal movement of the operating lever 222 acting through the drive yoke 220 and the drive collar 200, is limited by the force with which the spring 226 bears against the spring flanges 230. Application of excessive force results in pivotal displacement of the drive yoke 220 relative to the spring flanges 230 of the operating lever 222 in opposition to spring 226. Stop portions of the housing 130 limit the travel of the operating lever 222 to prevent excessive compression of spring 226. In various embodiments, the force applied to the actuating member 170 may be limited by one or more springs (not shown) operatively positioned between the drive collar 200 and the member 170. For example, one or more cylindrical springs, such as a wave springs, may be used. An example embodiment utilizing a wave spring in this manner is described in U.S. Pat. No. 6,458,142, which is incorporated herein by reference.
Indexed rotational positioning of the elongated portion 150 of the present clamp coagulator instrument 120 may be provided by the provision of a detent mechanism incorporated into the clamp drive mechanism of the instrument 120. Specifically, the drive collar 200 may include a pair of axially spaced apart drive flanges 232. A detent-receiving surface may be provided between the drive flanges 232, and may define a plurality of circumferentially spaced teeth 234. The teeth 234 may define detent-receiving depressions generally about the periphery of the drive collar 200. In the embodiment illustrated in
Indexed rotational movement may be further achieved by the provision of at least one, and preferably a pair, of diametrically opposed detents 236 respectively provided on cantilevered yoke arms 238 of the drive yoke 220. By this arrangement, the yoke arms 238 are positioned between the drive flanges 232 for engagement with the confronting surfaces thereof, and bias the detents 236 into engagement with the drive collar 200. Indexed relative rotation is thus achieved, with the detents 236 of the yoke arms 238 cooperating with the drive flanges 238 for effecting reciprocation of the actuating member 170. According to various embodiments, the drive yoke 220 may be formed from suitable polymeric material, with the biasing force created by the yoke arms 238 acting on the detents 236 thereof cooperating with the radial depressions defined by the drive collar to resist relative rotational torque less than about 5 to 20 inch-ounces. Accordingly, the elongated portion 150 of the clamp coagulator instrument 120 is maintained in any of its selected indexed rotational positions, relative to the housing 130, unless a torque is applied (such as by the rotation knob 216) exceeding this predetermined torque level. A snap-like indexing action is thus provided.
Rotation of the elongated proportion 150 of the present clamp coagulator instrument 120 may be effected together with relative rotational movement of ultrasonic drive unit 50 with respect to housing 130. In order to join the elongated portion 150 to the ultrasonic drive unit 50 in ultrasonic-transmitting relationship, the proximal portion of the outer tubular sheath 160 may be provided with a pair of wrench flats 240 (
The various components of the surgical device 300 may be arranged in any suitable way.
The lower jaw 306 may be coupled to the trigger 310 as well as the sheath 314, allowing the lower jaw 306 to translate relative to the sheath 314 and the end effector 304 when the trigger 310 is drawn toward the handle 312. For example, the lower jaw 306 may define a groove feature 326 configured to receive the tongue feature 324 of the sheath (
In the embodiments described above, the lower jaw 306 is slidable while the end effector 304 remains stationary.
The end effector 304 and the blade 304′ may be constructed according to any suitable solid or hollow-core configuration.
The outer sheath 504 may exert a clamping force on the tissue 510 according to various different methods. For example, the outer sheath 504 may be constructed such that the distal edge portion 512 is biased in upon itself. Accordingly, the rest state of the edge portion 512 may be a closed or clamped position, as illustrated in
The surgical device 500 may be operated by a clinician from a handle portion (not shown) that may include one or more triggers for actuating the central instrument 502 and the outer sheath 504. For example, the central instrument 502 may be actuated by any suitable manual or automatic means including, for example, a mechanical design similar to that described above with respect to the blade 180′ and clamp arm 190. The outer sheath 504 may similarly be extended and actuated by any suitable manual or automatic means. For example, the outer sheath 504 may be extended distally in response to the actuation of a trigger in a manner similar to the way that the reciprocal actuating member 170 is extended distally in response to actuation of the operating lever 222 described above. According to various embodiments, the central instrument 502 and the outer sheath 504 may be actuated by a single pull of a trigger. For example, a single trigger pull may both actuate the central instrument 502 and also subsequently extend and actuate the outer sheath 504.
According to various embodiments, the end effector 602 may include a clamping mechanism, for example, such as that described above with respect to
According to various embodiments, the surgical device 600 also may include one or more feedback devices for indicating the amount of power delivered to the end effector 602. For example, a speaker 614 may emit a signal indicative of the end effector power. According to various embodiments, the speaker 614 may emit a series of pulse sounds, where the frequency of the sounds indicates power. In addition to, or instead of the speaker 614, the device may include a visual display 616. The visual display 616 may indicate end effector power according to any suitable method. For example, the visual display 616 may include a series of light emitting diodes (LEDs), where end effector power is indicated by the number of illuminated LEDs. The speaker 614 and/or visual display 616 may be driven by the control circuit 608. According to various embodiments, the device 600 may include a ratcheting device (not shown) connected to the trigger 610. The ratcheting device may generate an audible sound as more force is applied to the trigger 610, providing an indirect indication of end effector power.
The device 600 may include other features that may enhance safety. For example, the control circuit 608 may be configured to prevent power from being delivered to the end effector 602 in excess of a predetermined threshold. Also, the control circuit 608 may implement a delay between the time when a change in end effector power is indicated (e.g., by speaker 614 or display 616), and the time when the change in end effector power is delivered. In this way, a clinician may have ample warning that the level of ultrasonic power that is to be delivered to the end effector 602 is about to change.
Force-feedback ultrasonic devices, such as the device 600, may be physically implemented in any suitable form. For example,
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular elements, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular elements or components of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular components, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
It is preferred that the device is sterilized prior to surgery. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam.
Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
969528 | Disbrow | Sep 1910 | A |
1570025 | Young | Jan 1926 | A |
2704333 | Calosi et al. | Mar 1955 | A |
2736960 | Armstrong | Mar 1956 | A |
2849788 | Creek | Sep 1958 | A |
RE25033 | Balamuth et al. | Aug 1961 | E |
3015961 | Roney | Jan 1962 | A |
3513848 | Winston et al. | May 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3614484 | Shoh | Oct 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3830098 | Antonevich | Aug 1974 | A |
3854737 | Gilliam, Sr. | Dec 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
4156187 | Murry et al. | May 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4306570 | Matthews | Dec 1981 | A |
4445063 | Smith | Apr 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4504264 | Kelman | Mar 1985 | A |
4574615 | Bower et al. | Mar 1986 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4712722 | Hood et al. | Dec 1987 | A |
4827911 | Broadwin et al. | May 1989 | A |
4832683 | Idemoto et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4903696 | Stasz et al. | Feb 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4965532 | Sakurai | Oct 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5109819 | Custer et al. | May 1992 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5163537 | Radev | Nov 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176677 | Wuchinich | Jan 1993 | A |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grezeszykowski | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
5213569 | Davis | May 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5226909 | Evans et al. | Jul 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5322055 | Davison et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5326342 | Pflueger et al. | Jul 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5353474 | Good et al. | Oct 1994 | A |
5357164 | Imabayashi et al. | Oct 1994 | A |
5357423 | Weaver et al. | Oct 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
5371429 | Manna | Dec 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5411481 | Allen et al. | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5483501 | Park et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5507738 | Ciervo | Apr 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5601601 | Tal et al. | Feb 1997 | A |
5603773 | Campbell | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5713896 | Nardella | Feb 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733074 | Stöck et al. | Mar 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5808396 | Boukhny | Sep 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836897 | Sakurai et al. | Nov 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5878193 | Wang et al. | Mar 1999 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5883615 | Fago et al. | Mar 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897523 | Wright et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5906628 | Miyawaki et al. | May 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6027515 | Cimino | Feb 2000 | A |
6033375 | Brumbach | Mar 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6051010 | DiMatteo et al. | Apr 2000 | A |
6056735 | Okada et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6117152 | Huitema | Sep 2000 | A |
6126629 | Perkins | Oct 2000 | A |
6129735 | Okada et al. | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6139561 | Shibata et al. | Oct 2000 | A |
6142615 | Qiu et al. | Nov 2000 | A |
6147560 | Erhage et al. | Nov 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6165150 | Banko | Dec 2000 | A |
6204592 | Hur | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
6252110 | Uemura et al. | Jun 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6340352 | Okada et al. | Jan 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6428539 | Baxter et al. | Aug 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6524251 | Rabiner et al. | Feb 2003 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6527736 | Attinger et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6561983 | Cronin et al. | May 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6610059 | West, Jr. | Aug 2003 | B1 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6669690 | Okada et al. | Dec 2003 | B1 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679875 | Honda et al. | Jan 2004 | B2 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6689146 | Himes | Feb 2004 | B1 |
6716215 | David et al. | Apr 2004 | B1 |
6731047 | Kauf et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6762535 | Take et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6773444 | Messerly | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6923804 | Eggers et al. | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6933656 | Matsushita et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6942677 | Nita et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6974450 | Weber et al. | Dec 2005 | B2 |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
7001335 | Adachi et al. | Feb 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7033357 | Baxter et al. | Apr 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7090672 | Underwood et al. | Aug 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101378 | Salameh et al. | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
D531311 | Guerra et al. | Oct 2006 | S |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7144403 | Booth | Dec 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7285895 | Beaupré | Oct 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431704 | Babaev | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7488285 | Honda et al. | Feb 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7503895 | Rabiner et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7530986 | Beaupre et al. | May 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7549564 | Boudreaux | Jun 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7567012 | Namikawa | Jul 2009 | B2 |
7578820 | Moore et al. | Aug 2009 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7713202 | Boukhny et al. | May 2010 | B2 |
7714481 | Sakai | May 2010 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7751115 | Song | Jul 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7803152 | Honda et al. | Sep 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7837699 | Yamada et al. | Nov 2010 | B2 |
7846155 | Houser et al. | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7861906 | Doll et al. | Jan 2011 | B2 |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7892606 | Thies et al. | Feb 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7922651 | Yamada et al. | Apr 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
7998157 | Culp et al. | Aug 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8089197 | Rinner et al. | Jan 2012 | B2 |
8152825 | Madan et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8162966 | Connor et al. | Apr 2012 | B2 |
8177800 | Spitz et al. | May 2012 | B2 |
8182502 | Stulen et al. | May 2012 | B2 |
D661801 | Price et al. | Jun 2012 | S |
D661802 | Price et al. | Jun 2012 | S |
D661803 | Price et al. | Jun 2012 | S |
D661804 | Price et al. | Jun 2012 | S |
8253303 | Giordano et al. | Aug 2012 | B2 |
8287485 | Kimura et al. | Oct 2012 | B2 |
8323302 | Robertson et al. | Dec 2012 | B2 |
8372102 | Stulen et al. | Feb 2013 | B2 |
8382782 | Robertson et al. | Feb 2013 | B2 |
20010025183 | Shahidi et al. | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052617 | Anis et al. | May 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020156466 | Sakurai et al. | Oct 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20030036705 | Hare et al. | Feb 2003 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20030212422 | Fenton et al. | Nov 2003 | A1 |
20030229344 | Dycus et al. | Dec 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040054364 | Aranyi et al. | Mar 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040176686 | Hare et al. | Sep 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040204728 | Haefner | Oct 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20050021065 | Yamada et al. | Jan 2005 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050049546 | Messerly et al. | Mar 2005 | A1 |
20050070800 | Takahashi | Mar 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165345 | Laufer et al. | Jul 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050209620 | Du et al. | Sep 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050273090 | Nieman et al. | Dec 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060066181 | Bromfield et al. | Mar 2006 | A1 |
20060079876 | Houser et al. | Apr 2006 | A1 |
20060079878 | Houser | Apr 2006 | A1 |
20060084963 | Messerly | Apr 2006 | A1 |
20060095046 | Trieu et al. | May 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060206115 | Schomer et al. | Sep 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060235306 | Cotter et al. | Oct 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20060264809 | Hansmann et al. | Nov 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070056596 | Fanney et al. | Mar 2007 | A1 |
20070060915 | Kucklick | Mar 2007 | A1 |
20070060935 | Schwardt et al. | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070129716 | Daw et al. | Jun 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070131034 | Ehlert et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070162050 | Sartor | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070185380 | Kucklick | Aug 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260234 | McCullagh et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070282335 | Young et al. | Dec 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20080009848 | Paraschiv et al. | Jan 2008 | A1 |
20080051812 | Schmitz et al. | Feb 2008 | A1 |
20080058585 | Novak et al. | Mar 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080125768 | Tahara et al. | May 2008 | A1 |
20080171938 | Masuda et al. | Jul 2008 | A1 |
20080172051 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188878 | Young | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080234708 | Houser et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080234710 | Neurohr et al. | Sep 2008 | A1 |
20080234711 | Houser et al. | Sep 2008 | A1 |
20080243106 | Coe et al. | Oct 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249553 | Gruber et al. | Oct 2008 | A1 |
20080262490 | Williams | Oct 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20090030311 | Stulen et al. | Jan 2009 | A1 |
20090030351 | Wiener et al. | Jan 2009 | A1 |
20090030438 | Stulen | Jan 2009 | A1 |
20090030439 | Stulen | Jan 2009 | A1 |
20090036911 | Stulen | Feb 2009 | A1 |
20090036912 | Wiener et al. | Feb 2009 | A1 |
20090036913 | Wiener et al. | Feb 2009 | A1 |
20090036914 | Houser | Feb 2009 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090054886 | Yachi et al. | Feb 2009 | A1 |
20090054894 | Yachi | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090118802 | Mioduski et al. | May 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090143795 | Robertson | Jun 2009 | A1 |
20090143796 | Stulen et al. | Jun 2009 | A1 |
20090143797 | Smith et al. | Jun 2009 | A1 |
20090143798 | Smith et al. | Jun 2009 | A1 |
20090143799 | Smith et al. | Jun 2009 | A1 |
20090143800 | Deville et al. | Jun 2009 | A1 |
20090143801 | Deville et al. | Jun 2009 | A1 |
20090143802 | Deville et al. | Jun 2009 | A1 |
20090143803 | Palmer et al. | Jun 2009 | A1 |
20090143804 | Palmer et al. | Jun 2009 | A1 |
20090143805 | Palmer et al. | Jun 2009 | A1 |
20090143806 | Witt et al. | Jun 2009 | A1 |
20090149801 | Crandall et al. | Jun 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20090270899 | Carusillo et al. | Oct 2009 | A1 |
20090318945 | Yoshimine et al. | Dec 2009 | A1 |
20090327715 | Smith et al. | Dec 2009 | A1 |
20100004668 | Smith et al. | Jan 2010 | A1 |
20100004669 | Smith et al. | Jan 2010 | A1 |
20100016785 | Takuma | Jan 2010 | A1 |
20100030248 | Palmer et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100179577 | Houser | Jul 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100193567 | Scheib et al. | Aug 2010 | A1 |
20100228264 | Robinson et al. | Sep 2010 | A1 |
20100234906 | Koh | Sep 2010 | A1 |
20100268211 | Manwaring et al. | Oct 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100298851 | Nield | Nov 2010 | A1 |
20100331869 | Voegele et al. | Dec 2010 | A1 |
20100331870 | Wan et al. | Dec 2010 | A1 |
20100331871 | Nield et al. | Dec 2010 | A1 |
20100331872 | Houser et al. | Dec 2010 | A1 |
20110009850 | Main et al. | Jan 2011 | A1 |
20110015627 | DiNardo et al. | Jan 2011 | A1 |
20110015631 | Wiener et al. | Jan 2011 | A1 |
20110015660 | Wiener et al. | Jan 2011 | A1 |
20110082486 | Messerly et al. | Apr 2011 | A1 |
20110087212 | Aldridge et al. | Apr 2011 | A1 |
20110087213 | Messerly et al. | Apr 2011 | A1 |
20110087214 | Giordano et al. | Apr 2011 | A1 |
20110087215 | Aldridge et al. | Apr 2011 | A1 |
20110087216 | Aldridge et al. | Apr 2011 | A1 |
20110087217 | Yates et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087256 | Wiener et al. | Apr 2011 | A1 |
20110196286 | Robertson et al. | Aug 2011 | A1 |
20110196398 | Robertson et al. | Aug 2011 | A1 |
20110196399 | Robertson et al. | Aug 2011 | A1 |
20110196400 | Robertson et al. | Aug 2011 | A1 |
20110196402 | Robertson et al. | Aug 2011 | A1 |
20110196403 | Robertson et al. | Aug 2011 | A1 |
20110196404 | Dietz et al. | Aug 2011 | A1 |
20110196405 | Dietz | Aug 2011 | A1 |
20110288452 | Houser et al. | Nov 2011 | A1 |
20120029546 | Robertson | Feb 2012 | A1 |
20120059289 | Nield et al. | Mar 2012 | A1 |
20120078139 | Aldridge et al. | Mar 2012 | A1 |
20120078247 | Worrell et al. | Mar 2012 | A1 |
20120083783 | Davison et al. | Apr 2012 | A1 |
20120083784 | Davison et al. | Apr 2012 | A1 |
20120132450 | Timm et al. | May 2012 | A1 |
20120138660 | Shelton, IV | Jun 2012 | A1 |
20120177005 | Liang et al. | Jul 2012 | A1 |
20120184946 | Price et al. | Jul 2012 | A1 |
20120199630 | Shelton, IV | Aug 2012 | A1 |
20120199631 | Shelton, IV et al. | Aug 2012 | A1 |
20120199632 | Spivey et al. | Aug 2012 | A1 |
20120199633 | Shelton, IV et al. | Aug 2012 | A1 |
20120203247 | Shelton, IV et al. | Aug 2012 | A1 |
20120205421 | Shelton, IV | Aug 2012 | A1 |
20120210223 | Eppolito | Aug 2012 | A1 |
20120211546 | Shelton, IV | Aug 2012 | A1 |
20120259353 | Houser et al. | Oct 2012 | A1 |
20120265196 | Turner et al. | Oct 2012 | A1 |
20120269676 | Houser et al. | Oct 2012 | A1 |
20120289984 | Houser et al. | Nov 2012 | A1 |
20120310262 | Messerly et al. | Dec 2012 | A1 |
20120310263 | Messerly et al. | Dec 2012 | A1 |
20120310264 | Messerly et al. | Dec 2012 | A1 |
20120323265 | Stulen | Dec 2012 | A1 |
20130012970 | Houser | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
1634601 | Jul 2005 | CN |
1640365 | Jul 2005 | CN |
1694649 | Nov 2005 | CN |
1922563 | Feb 2007 | CN |
1951333 | Apr 2007 | CN |
101040799 | Sep 2007 | CN |
0171967 | Feb 1986 | EP |
0443256 | Aug 1991 | EP |
0456470 | Nov 1991 | EP |
0482195 | Apr 1992 | EP |
0482195 | Jan 1996 | EP |
0612570 | Jun 1997 | EP |
0908148 | Jan 2002 | EP |
0908155 | Jun 2003 | EP |
1199044 | Dec 2005 | EP |
1199043 | Mar 2006 | EP |
1433425 | Jun 2006 | EP |
1844720 | Oct 2007 | EP |
1862133 | Dec 2007 | EP |
1199045 | Jun 2008 | EP |
1974771 | Oct 2008 | EP |
1498082 | Dec 2008 | EP |
1832259 | Jun 2009 | EP |
2074959 | Jul 2009 | EP |
2298154 | Mar 2011 | EP |
2032221 | Apr 1980 | GB |
2379878 | Nov 2004 | GB |
2447767 | Aug 2011 | GB |
62-292153 | Dec 1987 | JP |
63-315049 | Dec 1988 | JP |
02-71510 | May 1990 | JP |
04-25707 | Feb 1992 | JP |
4-30508 | Mar 1992 | JP |
6-104503 | Apr 1994 | JP |
6-507081 | Aug 1994 | JP |
H 7-508910 | Oct 1995 | JP |
7-308323 | Nov 1995 | JP |
8-24266 | Jan 1996 | JP |
8-275951 | Oct 1996 | JP |
H 09-503146 | Mar 1997 | JP |
10-295700 | Nov 1998 | JP |
11-253451 | Sep 1999 | JP |
2000-041991 | Feb 2000 | JP |
2000-070279 | Mar 2000 | JP |
2001-309925 | Nov 2001 | JP |
2002-186901 | Jul 2002 | JP |
2002-263579 | Sep 2002 | JP |
2003-510158 | Mar 2003 | JP |
2003-126110 | May 2003 | JP |
2003-310627 | May 2003 | JP |
2003-339730 | Dec 2003 | JP |
2005027026 | Jan 2005 | JP |
2005-066316 | Mar 2005 | JP |
2005-074088 | Mar 2005 | JP |
2005-534451 | Nov 2005 | JP |
2006-158525 | Jun 2006 | JP |
2006217716 | Aug 2006 | JP |
2008-508065 | Mar 2008 | JP |
2008-119250 | May 2008 | JP |
2009-511206 | Mar 2009 | JP |
WO 9222259 | Dec 1992 | WO |
WO 9314708 | Aug 1993 | WO |
WO 9421183 | Sep 1994 | WO |
WO 9509572 | Apr 1995 | WO |
WO 9826739 | Jun 1998 | WO |
WO 9837815 | Sep 1998 | WO |
WO 0154590 | Aug 2001 | WO |
WO 0195810 | Dec 2001 | WO |
WO 2004037095 | May 2004 | WO |
WO 2005122917 | Dec 2005 | WO |
WO 2006012797 | Feb 2006 | WO |
WO 2006042210 | Apr 2006 | WO |
WO 2006058223 | Jun 2006 | WO |
WO 2006063199 | Jun 2006 | WO |
WO 2006083988 | Aug 2006 | WO |
WO 2006129465 | Dec 2006 | WO |
WO 2007008710 | Jan 2007 | WO |
WO 2007047531 | Apr 2007 | WO |
WO 2007143665 | Dec 2007 | WO |
WO 2008016886 | Feb 2008 | WO |
WO 2008042021 | Apr 2008 | WO |
WO 2008130793 | Oct 2008 | WO |
WO 2009018406 | Feb 2009 | WO |
WO 2009027065 | Mar 2009 | WO |
WO 2011144911 | Nov 2011 | WO |
Entry |
---|
International Search Report for PCT/US2008/070964, Dec. 15, 2008 (6 pages). |
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages). |
U.S. Appl. No. 11/998,758, filed Nov. 30, 2007. |
U.S. Appl. No. 12/245,158, filed Oct. 3, 2008. |
U.S. Appl. No. 29/292,295, filed Oct. 5, 2007. |
U.S. Appl. No. 11/998,543, filed Nov. 30, 2007. |
U.S. Appl. No. 29/327,737, filed Nov. 12, 2008. |
U.S. Appl. No. 12/274,884, filed Nov. 20, 2008. |
U.S. Appl. No. 12/469,293, filed May 20, 2009. |
U.S. Appl. No. 12/469,308, filed May 20, 2009. |
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages). |
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002. |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (date unknown). |
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003). |
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006). |
U.S. Appl. No. 12/503,775, filed Jul. 15, 2009. |
U.S. Appl. No. 12/503,769, filed Jul. 15, 2009. |
U.S. Appl. No. 12/503,770, filed Jul. 15, 2009. |
U.S. Appl. No. 12/503,766, filed Jul. 15, 2009. |
U.S. Appl. No. 12/490,906, filed Jun. 24, 2009. |
U.S. Appl. No. 12/490,922, filed Jun. 24, 2009. |
U.S. Appl. No. 12/490,933, filed Jun. 24, 2009. |
U.S. Appl. No. 12/490,948, filed Jun. 24, 2009. |
U.S. Appl. No. 12/703,860, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,864, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,866, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,870, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,875, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,877, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,879, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,885, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,893, filed Feb. 11, 2010. |
U.S. Appl. No. 12/703,899, filed Feb. 11, 2010. |
U.S. Appl. No. 29/361,917, filed May 17, 2010. |
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973). |
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached). |
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990). |
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds., Plenum, New York (1995). |
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008). |
U.S. Appl. No. 29/404,676, filed Oct. 24, 2011. |
U.S. Appl. No. 13/151,181, filed Jun. 2, 2011. |
U.S. Appl. No. 13/369,561, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,569, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,578, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,584, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,588, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,594, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,601, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,609, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,629, filed Feb. 9, 2012. |
U.S. Appl. No. 13/369,666, filed Feb. 9, 2012. |
U.S. Appl. No. 13/584,020, filed Aug. 13, 2012. |
U.S. Appl. No. 13/584,445, filed Aug. 13, 2012. |
U.S. Appl. No. 13/849,627, filed Mar. 25, 2013. |
U.S. Appl. No. 12/896,351, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,479, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,360, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,345, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,384, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,467, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,451, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,470, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,411, filed Oct. 1, 2010. |
U.S. Appl. No. 12/896,420, filed Oct. 1, 2010. |
Number | Date | Country | |
---|---|---|---|
20090030437 A1 | Jan 2009 | US |