Surgical instruments

Information

  • Patent Grant
  • 9504483
  • Patent Number
    9,504,483
  • Date Filed
    Tuesday, July 3, 2012
    12 years ago
  • Date Issued
    Tuesday, November 29, 2016
    8 years ago
Abstract
A surgical instrument includes an elongated transmission waveguide defining a longitudinal axis. The transmission waveguide has a distal end and a proximal end. The at least one strike surface is formed on the proximal end and is configured to receive vibratory energy.
Description
BACKGROUND

The present application is related to the following, U.S. patent applications, filed on Mar. 22, 2007 which are incorporated herein by reference in their respective entireties:


(1) U.S. patent application Ser. No. 11/726,625, published as U.S. Patent Application Publication No. 2008/0234710 on Sep. 25, 2008, entitled ULTRASONIC SURGICAL INSTRUMENTS;


(2) U.S. patent application Ser. No. 11/726,620, now U.S. Pat. No. 8,142,461, issued Mar. 27, 2012, entitled SURGICAL INSTRUMENTS; and


(3) U.S. patent application Ser. No. 11/726,621, published as U.S. Patent Application Publication No. 2008/0234709 on Sep. 25, 2008, entitled ULTRASONIC SURGICAL INSTRUMENTS AND CARTILAGE BONE SHAPING BLADES THEREFOR.


Ultrasonic instruments, including both hollow core and solid core instruments, are used for the safe and effective treatment of many medical conditions. Ultrasonic instruments, and particularly solid core ultrasonic instruments, are advantageous because they may be used to cut and/or coagulate organic tissue using energy in the form of mechanical vibrations transmitted to a surgical end effector at ultrasonic frequencies. Ultrasonic vibrations, when transmitted to organic tissue at suitable energy levels and using a suitable end effector, may be used to cut, dissect, elevate, coagulate or cauterize tissue, or to separate muscle tissue off bone. Ultrasonic instruments utilizing solid core technology are particularly advantageous because of the amount of ultrasonic energy that may be transmitted from an ultrasonic transducer, through a waveguide, to the surgical end effector. Such instruments may be used for open procedures or minimally invasive procedures, such as endoscopic or laparoscopic procedures, wherein the end effector is passed through a trocar to reach the surgical site.


Activating or exciting the end effector (e.g., cutting blade) of such instruments at ultrasonic frequencies induces longitudinal vibratory movement that generates localized heat within adjacent tissue, facilitating both cutting and coagulation. Because of the nature of ultrasonic instruments, a particular ultrasonically actuated end effector may be designed to perform numerous functions, including, for example, cutting and coagulating.


Ultrasonic vibration is induced in the surgical end effector by electrically exciting a transducer, for example. The transducer may be constructed of one or more piezoelectric or magnetostrictive elements in the instrument hand piece. Vibrations generated by the transducer section are transmitted to the surgical end effector via an ultrasonic waveguide extending from the transducer section to the surgical end effector. The waveguides and end effectors are designed to resonate at the same frequency as the transducer. Therefore, when an end effector is attached to a transducer the overall system frequency is the same frequency as the transducer itself.


The amplitude of the longitudinal ultrasonic vibration at the tip, d, of the end effector behaves as a simple sinusoid at the resonant frequency as given by:

d=A sin(ωt)

where:

  • ω=the radian frequency which equals 2π times the cyclic frequency, f; and
  • A=the zero-to-peak amplitude.
  • The longitudinal excursion is defined as the peak-to-peak (p-t-p) amplitude, which is just twice the amplitude of the sine wave or 2A.


Solid core ultrasonic instruments may be divided into two types, single element end effector devices and multiple-element end effector. Single element end effector devices include instruments such as scalpels and ball coagulators. Multiple-element end effectors may be employed when substantial pressure may be necessary to effectively couple ultrasonic energy to the tissue. Multiple-element end effectors such as clamping coagulators include a mechanism to press tissue against an ultrasonic blade. Ultrasonic clamp coagulators may be employed for cutting and coagulating tissue, particularly loose and unsupported tissue. Multiple-element end effectors that include an ultrasonic blade in conjunction with a clamp apply a compressive or biasing force to the tissue to promote faster coagulation and cutting of the tissue, with less attenuation of blade motion.


Orthopedic surgery or orthopedics is the branch of surgery concerned with acute, chronic, traumatic, and overuse injuries and other disorders of the musculoskeletal system. Orthopedic surgeons address most musculoskeletal ailments including arthritis, trauma and congenital deformities using both surgical and non-surgical means. Orthopedic procedures include hand surgery, shoulder and elbow surgery, total joint reconstruction (arthroplasty), pediatric orthopedics, foot and ankle surgery, spine surgery, musculoskeletal oncology, surgical sports medicine, and orthopedic trauma. These procedure often require the use of specialized surgical instruments to treat relatively softer musculoskeletal tissue (e.g., muscle, tendon, ligament) and relatively harder musculoskeletal tissue (e.g., bone). Quite often, these orthopedic surgical instruments are hand operated and a single procedure may require the exchange of a number of instruments. It may be desirable, therefore, for a variety of electrically powered and unpowered ultrasonic instruments to perform these orthopedic surgical procedures with more efficiency and precision than is currently achievable with conventional orthopedic surgical instruments while minimizing the need to exchange instruments when cutting, shaping, drilling different types of musculoskeletal tissue.


SUMMARY

In one general aspect, the various embodiments are directed to a surgical instrument that includes an elongated transmission waveguide defining a longitudinal axis. The transmission waveguide has a distal end and a proximal end. The at least one strike surface is formed on the proximal end and is configured to receive vibratory energy.





FIGURES

The novel features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1 illustrates one embodiment of an ultrasonic system.



FIG. 2 illustrates one embodiment of a connection union/joint for an ultrasonic instrument.



FIG. 3 illustrates one embodiment of an ultrasonic subassembly that may be configured to couple to the ultrasonic hand piece assembly of the ultrasonic system described in FIG. 1.



FIG. 4 is a top perspective view of one embodiment of an ultrasonic instrument.



FIG. 5 is a cross-sectional view of one embodiment of the ultrasonic instrument shown in FIG. 4 taken along the longitudinal axis “L”.



FIG. 6 is a cross-sectional view of one embodiment of an vibrational surgical instrument taken along the longitudinal axis “L”.



FIG. 7 is a cross-sectional view of one embodiment of a vibrational surgical instrument taken along the longitudinal axis “L”.



FIG. 8 is a cross-sectional view of one embodiment of an ultrasonic instrument taken along the longitudinal axis “L”.



FIG. 9 is a cross-sectional view of one embodiment of an ultrasonic instrument taken along the longitudinal axis “L”.



FIG. 10 illustrates a side view of one embodiment of an ultrasonic instrument comprising an impact zone.



FIG. 11 illustrates a side view of one embodiment of an ultrasonic instrument comprising an impact zone.



FIG. 12 illustrates a side view of one embodiment of an ultrasonic instrument comprising an impact zone.



FIG. 13 illustrates a side view of one embodiment of an ultrasonic instrument comprising an impact zone.



FIGS. 14-17 illustrate one embodiment of an ultrasonic instrument comprising an end effector at a distal end; FIG. 14 is a side perspective view of one embodiment of the ultrasonic instrument with the clamp jaw in a closed position; FIGS. 15 and 16 are side perspective views of the ultrasonic instrument with the clamp jaw in partially open positions; and FIG. 17 is side perspective view of the ultrasonic instrument with the clamp arm assembly in a closed position.



FIGS. 18-20 illustrate one embodiment of an end effector that may be employed with the ultrasonic instrument discussed in FIGS. 14-17; FIG. 18 is a top perspective view of one embodiment of the end effector with the clamp arm assembly in a closed position; FIG. 19 is a top perspective view of one embodiment of the end effector with the clamp arm assembly in an open position; and FIG. 20 is an exploded view of one embodiment of the end effector with the clamp jaw in an open position.



FIGS. 21-24 illustrate a clamp jaw transitioning from an open position in FIG. 21 to a closed position in FIG. 24 and intermediate positions in FIGS. 22 and 23.



FIGS. 25 and 26 illustrate one embodiment of an end effector that may be employed with the ultrasonic instrument discussed in FIGS. 14-17; FIG. 25 is a top perspective view of one embodiment of the end effector with the clamp arm assembly in an open position; and FIG. 26 is an exploded view of one embodiment of the end effector with the clamp jaw in an open position.





DESCRIPTION

Before explaining embodiments of the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. For example, the surgical instruments and blade configurations disclosed below are illustrative only and not meant to limit the scope or application of the invention. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.


The various embodiments described herein are generally directed to surgical instruments. Although these surgical instruments may be employed in orthopedic surgical procedures, the described embodiments are not limited in this context as these instruments may find useful applications outside of this particular branch of medicine. The various embodiments described herein are directed to surgical instruments that may be used in a stand alone or in combination with ultrasonically driven surgical instruments. In some embodiments, the surgical instruments may be driven either manually or electrically, or may be driven manually and electrically in combination. Surgical instruments configured to operate in multiple powered and unpowered states modes may reduce the total number of instruments in the operating room, reduces the number of instrument exchanges for a given procedure, and reduces the number of instruments that have to be sterilized for a given procedure. In other embodiments, surgical instruments may attain useful longitudinal vibrational resonance to assist cutting, reshaping, or coagulating tissue without an electrically driven actuator or an ultrasonic transducer. In yet other embodiments, electrically powered ultrasonic instruments may be used in combination with manual techniques to carry out surgical procedures with greater efficiency and precision.


Examples of ultrasonic instruments are disclosed in U.S. Pat. Nos. 5,322,055 and 5,954,736 and in combination with ultrasonic blades and surgical instruments disclosed in U.S. Pat. Nos. 6,309,400 B2, 6,278,218B1, 6,283,981 B1, and 6,325,811 B1, for example, are incorporated herein by reference in their entirety. These references disclose ultrasonic instrument design and blade designs where a longitudinal node of the blade is excited. Because of asymmetry or asymmetries, these blades exhibit transverse and/or torsional motion where the characteristic “wavelength” of this non-longitudinal motion is less than that of the general longitudinal motion of the blade and its extender portion. Therefore, the wave shape of the non-longitudinal motion will present nodal positions of transverse/torsional motion along the tissue effector while the net motion of the active blade along its tissue effector is non-zero (i.e., will have at least longitudinal motion along the length extending from its distal end, an antinode of longitudinal motion, to the first nodal position of longitudinal motion that is proximal to the tissue effector portion). Certain embodiments will now be described in the form of examples to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more of these embodiments are illustrated in the accompanying drawings in the form of illustrative examples. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting example embodiments and that the scope of the various embodiments is defined solely by the claims. The features illustrated or described in connection with one example embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the claims.



FIG. 1 illustrates one embodiment of an ultrasonic system 10. In the illustrated embodiment, the ultrasonic system 10 comprises an ultrasonic signal generator 12 coupled to an ultrasonic transducer 14, a hand piece assembly 60 comprising a hand piece housing 16, and an end effector 50. The end effector 50 may have a chisel like shape adapted and configured to cut bone tissue, may have a rounded end adapted and configured to drill small holes in bone tissue, and/or may configured to cut, coagulate, and/or shape tissue. The ultrasonic transducer 14, which is known as a “Langevin stack”, generally includes a transduction portion 18, a first resonator or end-bell 20, and a second resonator or fore-bell 22, and ancillary components. The ultrasonic transducer 14 is preferably an integral number of one-half system wavelengths (nλ/2) in length as will be described in more detail later. An acoustic assembly 24 includes the ultrasonic transducer 14, a mount 26, a velocity transformer 28, and a surface 30.


It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the hand piece assembly 60. Thus, the end effector 50 is distal with respect to the more proximal hand piece assembly 60. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the hand piece assembly 60. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.


The distal end of the end-bell 20 is connected to the proximal end of the transduction portion 18, and the proximal end of the fore-bell 22 is connected to the distal end of the transduction portion 18. The fore-bell 22 and the end-bell 20 have a length determined by a number of variables, including the thickness of the transduction portion 18, the density and modulus of elasticity of the material used to manufacture the end-bell 20 and the fore-bell 22, and the resonant frequency of the ultrasonic transducer 14. The fore-bell 22 may be tapered inwardly from its proximal end to its distal end to amplify the ultrasonic vibration amplitude as the velocity transformer 28, or alternately may have no amplification. A suitable vibrational frequency range may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-70 kHz and one example operational vibrational frequency may be approximately 55.5 kHz.


Piezoelectric elements 32 may be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, or other piezoelectric crystal material. Each of positive electrodes 34, negative electrodes 36, and the piezoelectric elements 32 has a bore extending through the center. The positive and negative electrodes 34 and 36 are electrically coupled to wires 38 and 40, respectively. The wires 38 and 40 are encased within a power cable 42 and electrically connectable to the ultrasonic signal generator 12 of the ultrasonic system 10.


The ultrasonic transducer 14 of the acoustic assembly 24 converts the electrical signal from the ultrasonic signal generator 12 into mechanical energy that results in primarily longitudinal vibratory motion of the ultrasonic transducer 14 and the end effector 50 at ultrasonic frequencies. A suitable generator is available as model number GEN04, from Ethicon Endo-Surgery, Inc., Cincinnati, Ohio. When the acoustic assembly 24 is energized, a vibratory motion standing wave is generated through the acoustic assembly 24. The amplitude of the vibratory motion at any point along the acoustic assembly 24 may depend upon the location along the acoustic assembly 24 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is usually minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node (i.e., where motion is usually maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).


The wires 38 and 40 transmit an electrical signal from the ultrasonic signal generator 12 to the positive electrodes 34 and the negative electrodes 36. The piezoelectric elements 32 are energized by the electrical signal supplied from the ultrasonic signal generator 12 in response to a foot switch 44 to produce an acoustic standing wave in the acoustic assembly 24. The electrical signal causes disturbances in the piezoelectric elements 32 in the form of repeated small displacements resulting in large compression forces within the material. The repeated small displacements cause the piezoelectric elements 32 to expand and contract in a continuous manner along the axis of the voltage gradient, producing longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly 24 to the end effector 50 via an ultrasonic transmission waveguide 46.


In order for the acoustic assembly 24 to deliver energy to the end effector 50, all components of the acoustic assembly 24 must be acoustically coupled to the end effector 50. The distal end of the ultrasonic transducer 14 may be acoustically coupled at the surface 30 to the proximal end of the ultrasonic transmission waveguide 46 by a threaded connection such as a stud 48.


The components of the acoustic assembly 24 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 24, and where n is any positive integer. It is also contemplated that the acoustic assembly 24 may incorporate any suitable arrangement of acoustic elements.


The ultrasonic end effector 50 may have a length substantially equal to an integral multiple of one-half system wavelengths (λ/2). A distal end 52 of the ultrasonic end effector 50 may be disposed near an antinode in order to provide the maximum longitudinal excursion of the distal end 52. When the transducer assembly is energized, the distal end 52 of the ultrasonic end effector 50 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 150 microns at a predetermined vibrational frequency.


The ultrasonic end effector 50 may be coupled to the ultrasonic transmission waveguide 46. The ultrasonic end effector 50 and the ultrasonic transmission guide 46 as illustrated are formed as a single unit construction from a material suitable for transmission of ultrasonic energy such as, for example, Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other known materials. Alternately, the ultrasonic end effector 50 may be separable (and of differing composition) from the ultrasonic transmission waveguide 46, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The ultrasonic transmission waveguide 46 may have a length substantially equal to an integral number of one-half system wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 46 may be preferably fabricated from a solid core shaft constructed out of material that propagates ultrasonic energy efficiently, such as titanium alloy (i.e., Ti-6Al-4V) or an aluminum alloy, for example.


The ultrasonic transmission waveguide 46 comprises a longitudinally projecting attachment post 54 at a proximal end to couple to the surface 30 of the ultrasonic transmission waveguide 46 by a threaded connection such as the stud 48. In the illustrated embodiment, the ultrasonic transmission waveguide 46 comprises a plurality of stabilizing silicone rings or compliant supports or silicon rings are 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from a removable sheath 58 assuring the flow of ultrasonic energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.


As shown in FIG. 1, the removable sheath 58 is coupled to the distal end of the handpiece assembly 60. The sheath 58 generally includes an adapter or nose cone 62 and an elongated tubular member 64. The tubular member 64 (e.g., outer tube) is attached to the adapter 62 and has an opening extending longitudinally therethrough. The sheath 58 may be threaded or snapped onto the distal end of the housing 16. The ultrasonic transmission waveguide 46 extends through the opening of the tubular member 64 and the silicone rings 56 isolate the ultrasonic transmission waveguide 46 therein.


The adapter 62 of the sheath 58 may be fabricated from plastic such as Ultem®, aluminum, or any suitable material, and the tubular member 64 may be fabricated from stainless steel. Alternatively, the ultrasonic transmission waveguide 46 may have polymeric material surrounding it to isolate it from outside contact.


The distal end of the ultrasonic transmission waveguide 46 may be coupled to the proximal end of the end effector 50 by an internal threaded connection, preferably at or near an antinode. It is contemplated that the end effector 50 may be attached to the ultrasonic transmission waveguide 46 by any suitable means, such as a welded joint or the like. Although the end effector 50 may be detachable from the ultrasonic transmission waveguide 46, it is also contemplated that the end effector 50 and the ultrasonic transmission waveguide 46 may be formed as a single unitary piece.


In one embodiment, the handpiece housing 16 of the ultrasonic handpiece assembly 60 may be configured to receive or accommodate a mechanical impact such as, for example, a mallet blow or hand blow, and impart energy into the end effector 50 when the hand piece assembly 60 is in a powered or an unpowered state. In another embodiment, the handpiece assembly 60 may comprise a strike plate assembly such as those described below in FIGS. 10-13, for example. Thus, in use a clinician may employ the handpiece assembly 60 in a powered state using the ultrasonic vibrations generated by the transduction portion 18 to cut and coagulate relatively soft musculoskeletal tissue using a chisel shaped end effector 50. With the handpiece assembly 60 in a powered or an unpowered state, the clinician may deliver a strike to the distal end of the housing 16 manually or with employing an osteotome mallet to chisel relatively hard musculoskeletal tissue such as bone.



FIG. 2 illustrates one embodiment of a connection union/joint 70 for an ultrasonic instrument. In the illustrated embodiment, the connection union/joint 70 may be formed between the attachment post 54 of the ultrasonic transmission waveguide 46 and the surface 30 of the velocity transformer 28 at the distal end of the acoustic assembly 24. The proximal end of the attachment post 54 comprises a female threaded substantially cylindrical recess 66 to receive a portion of the threaded stud 48 therein. The distal end of the velocity transformer 28 also may comprise a female threaded substantially cylindrical recess 68 to receive a portion of the threaded stud 40. The recesses 66, 68 are substantially circumferentially and longitudinally aligned.



FIG. 3 illustrates one embodiment of an ultrasonic subassembly 118 that may be configured to couple to the ultrasonic hand piece assembly 60 of the ultrasonic system 10 described in FIG. 1. In the illustrated embodiment, the ultrasonic subassembly 118 may be configured to couple to the surface 30 of the ultrasonic system 10 described in FIG. 1. In one embodiment, the ultrasonic subassembly 118 comprises a sheath or outer tube 150, an ultrasonic transmission waveguide 152, and the end effector 50 having a distal end 52 at an anti-node. The outer tube 150 has an opening extending longitudinally therethrough. The ultrasonic transmission waveguide 152 comprises a distal end 122 and a proximal end 124 and defines a longitudinal axis “L”. The proximal end 124 comprises a neck or transition portion 126 to attach or couple to the ultrasonic transmission surface 30 of the hand-piece assembly 60 by a stud, weld, glue, quick connect, or other known attachment methods, for example. It will be appreciated the shape of the neck 126 may be configured to provide efficient ultrasonic coupling to the surface 30. In the illustrated embodiment, the neck 126 comprises a female threaded substantially cylindrical recess 128 to receive a portion of the threaded stud 48 therein. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from the removable outer tube 150. A flange or proximal stop 140 is integrally formed and tuned with the ultrasonic transmission waveguide 152 and is explained in further detail below.


Although the ultrasonic subassembly 118 may be ultrasonically coupled to the hand piece assembly 60 as described herein, those of ordinary skill in the art will understand that the various embodiments of the ultrasonic instruments disclosed herein as well as any equivalent structures thereof could conceivably be effectively used in connection with other known ultrasonic instruments without departing from the scope thereof. Thus, the embodiments disclosed herein should not be limited to use only in connection with the example ultrasonic instrument described above.



FIG. 4 is a top perspective view of one embodiment of an ultrasonic instrument 120. FIG. 5 is a cross-sectional view of one embodiment of the ultrasonic instrument 120 taken along the longitudinal axis “L”. With reference to FIGS. 4 and 5, in the illustrated embodiment, the surgical instrument 120 comprises the ultrasonic subassembly 118 shown in FIG. 3. The ultrasonic instrument 120 comprises the ultrasonic transmission waveguide 152, the outer tube 150, and the end effector 50. The ultrasonic instrument 120 is well-suited for effecting musculoskeletal tissue comprising bones, muscles, joints, and the associated periarticular tissues such as tendons, ligaments, cartilage, joints, and spinal discs. Tissue effects comprise cutting, coagulating, and drilling. The end effector 50 may have a chisel like shape adapted and configured to cut bone tissue or may have a rounded end adapted and configured to drill small holes in bone tissue. The ultrasonic instrument 120 is adapted to couple to the hand piece assembly 60 of the ultrasonic system 10 in the manner described with respect to ultrasonic subassembly 118 described in FIG. 3. In one embodiment, the ultrasonic instrument 120 may be coupled to the hand piece assembly 60 with by a threaded connection such as the stud 48 or may be coupled by weld, glue, quick connect, or other suitable known methods.


The ultrasonic instrument 120 comprises a distal end 122 and a proximal end 124 and defines a longitudinal axis “L”. The proximal end 124 comprises the neck or transition portion 126 that protrudes from the proximal end 124. The neck portion 126 may be attached to the ultrasonic transmission surface 30 by a stud, weld, glue, quick connect, or other known attachment methods, for example. The proximal end 124 comprises the female threaded substantially cylindrical recess 128 to receive a portion of the threaded stud 48 therein. The ultrasonic instrument 120 is ultrasonically coupled to the hand piece assembly 60.


The ultrasonic instrument 120 comprises a “slap hammer” portion 130, a gripping portion 132, and a longitudinally extending end effector portion 134. The slap hammer portion 130 comprises a slap hammer 136 that is slideably movable in the direction indicated by arrow 142 over a proximal shaft 138 to the flange or proximal stop 140. The gripping portion 132 comprises a grip 148 positioned distally beyond the proximal stop 140 positioned over a proximal sleeve 156 (e.g., bushing). A distal portion of the ultrasonic transmission waveguide 152 is positioned inside the longitudinal opening extending through the outer tube 150 portion of the end effector portion 134. The grip 148 is fixedly mounted by a ring or circumferential projection 154. The circumferential projection 154 may be formed integrally with the distal portion of the ultrasonic transmission waveguide 152 or may fixedly mounted thereto.


The distal portion of the ultrasonic transmission waveguide 152 comprises a plurality of the stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from the outer tube 150 assuring the flow of ultrasonic energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.


The transition portion 126, the proximal shaft 138, the proximal stop 140, and the distal portion of the ultrasonic transmission waveguide 152 may be formed as a single unitary piece or may be removably attached to each other. The transition portion 126, the proximal shaft 138, the proximal stop 140, and the distal portion of the ultrasonic transmission waveguide 152 form an ultrasonic transmission waveguide that may be tuned and coupled to the surface 30 of the hand piece assembly 60 to amplify the amplitude of the mechanical vibrations generated by the ultrasonic transducer 14 as discussed with reference to FIG. 1. The ultrasonic instrument 120 may be tuned such that the mechanical displacements caused by the ultrasonic vibrations are efficiently transferred from the ultrasonic transducer 14 to the end effector 50 such that the effector experiences axial longitudinal displacements.


The slap hammer 136 is slideably movable over the proximal shaft 138 in the direction indicated by arrow 142. The slap hammer 136 comprises a gripping surface 158 and a sliding weight 160 that travels axially in line with the end effector 50. When the slap hammer 136 is moved axially towards the distal end 122, a circumferential distal surface 144 of the slap hammer 136 impacts a proximal surface 146 of the proximal stop 140. The proximal surface 146 defines an area to receive vibratory energy in the form of mechanical impacts. The resulting impacts are transmitted through the ultrasonic transmission waveguide 152 to drive the end effector 50 at the distal end 122 into the musculoskeletal tissue to effect treatment. The sliding weight 160 assists in imparting energy upon impact. The circumferential proximal surface 146 forms an impact zone.


In use, a clinician may employ the ultrasonic hand piece assembly 60 coupled to the ultrasonic instrument 120 to effect musculoskeletal tissue. In one phase the end effector 50 may be operated ultrasonically (e.g., powered state). In this manner, the clinician holds the handpiece housing 16 of the handpiece assembly 60 with one hand and may hold either the slap hammer 136 or the grip 148 portions and employs substantially the energy generated by the ultrasonic transducer 14 for tissue effects. In another phase, the clinician may hold the grip 148 with one hand and slideably move the slap hammer 136 axially in the direction indicated by arrow 142 to impact the distal surface 144 of the weighted slap hammer 136 against the proximal surface 146 of the proximal stop 140. This action imparts a driving force or energy the end effector 50. The slap hammer 136 may be manually operated either with or without the assistance of the ultrasonic vibrations. For example, the slap hammer 136 may be employed with the ultrasonic hand piece assembly 60 either in a powered or unpowered state.



FIG. 6 is a cross-sectional view of one embodiment of an vibrational surgical instrument 170 taken along the longitudinal axis “L”. In the illustrated embodiment, the vibrational surgical instrument 170 comprises an end effector 50 that is well-suited for effecting (e.g., cutting, coagulating, drilling) musculoskeletal tissue comprising bones, muscles, joints, and the associated periarticular tissues such as tendons, ligaments, cartilage, joints, and spinal discs. As previously discussed, the end effector 50 may have a chisel like shape adapted to cut bone or may have a rounded end adapted to drill small holes in bone. The vibrational surgical instrument 170 comprises a distal end 122 and a proximal end 124 and defines a longitudinal axis “L”.


The proximal end 124 comprises a handpiece assembly 172. A housing 188 contains a generator 174 to drive a rotating cam 176 comprising a lobe 178. In the illustrated embodiment, the hand piece assembly 172 does not comprise a piezoelectric transducer to generate the ultrasonic vibrations. The generator 174 generates longitudinal vibrational displacement by mechanical action without the use of piezoelectric transducers. In one embodiment, the generator 174 produces longitudinal mechanical vibrations of various predetermined frequencies by driving the cam 176 about a hub 175. The lobe 178 may be configured as any suitable projecting part of the rotating cam 176 to strike or mechanically communicate with a surface 180 of a vibrational transmission waveguide 182 at one or more points on its circular path. The surface 180 has an area configured to receive vibratory energy in the form of mechanical impacts. The lobe 178 imparts vibratory energy into the vibrational transmission waveguide 182. The vibrational transmission waveguide 182 acts as a follower. This produces a smooth axial oscillating motion in the vibrational transmission waveguide 182 that makes contact with the lobe 178 via the surface 180. The lobe 178 may be a simple rounded smooth projection to deliver pulses of power to the surface 180 of the vibrational transmission waveguide 182. In alternative embodiments, the lobe 178 may be an eccentric disc or other shape that produces a smooth oscillating motion in the vibrational transmission waveguide 182 follower which is a lever making contact with the lobe 178. Accordingly, the lobe 178 translates the circular motion of the cam 176 to linear displacements creating longitudinal the oscillations or vibrations that are efficiently transferred to the distal end 52 of the end effector 50 by the vibrational transmission waveguide 182. Accordingly, the distal end 52 of the end effector 50 experiences longitudinal displacements to effect tissue. The generator 174 may employ either an electric, hydraulic, or pneumatic motor to drive the cam 176 about the hub 175. Those skilled in the art will appreciate that a hydraulic motor uses a high pressure water jet to turn a shaft coupled to the cam 176 about the hub 175.


The vibrational transmission waveguide 182 may be positioned inside a handle portion or grip 184 over a sleeve 186. The vibrational transmission waveguide 182 may be retained within the grip 184 and may be fixedly mounted by a ring or circumferential projection 190. The circumferential projection 190 may be formed integrally with the distal portion of the vibrational transmission waveguide 182 or may be fixedly mounted thereto. In principle, the vibrational transmission waveguide 182 operates in a manner similar to the ultrasonic transmission waveguide 46 discussed in FIG. 1. The vibrational transmission waveguide 182, however, may be tuned to amplify and transmit longitudinal vibrations at frequencies that may be suitably or practically achieved with the rotating cam 176 and lobe 178 arrangement. Nevertheless, it is contemplated that the vibrational transmission waveguide 182 may be driven at ultrasonic frequencies. As previously discussed, a suitable vibrational frequency range may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-70 kHz and one example operational vibrational frequency may be approximately 55.5 kHz.


The vibrational transmission waveguide 182 is positioned within the longitudinal opening defined through the outer tube 150. The vibrational transmission waveguide 182 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from the outer tube 150 assuring the flow of vibrational energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.


In use, a clinician may employ the vibrational surgical instrument 170 to effect musculoskeletal tissue. The end effector 50 is positioned at the desired tissue treatment region within a patient. The clinician holds the grip 184 portion and manipulates the end effector 50 to treat the musculoskeletal tissue. The vibrations generated by the rotating cam 176 and lobe 178 arrangement are efficiently transferred to the distal end 52 of the end effector 50 by the vibrational transmission waveguide 182. Accordingly, the distal end 52 of the end effector 50 experiences longitudinal displacements to assist the tissue effects of cutting, coagulating, drilling tissue. Accordingly, the vibrational surgical instrument 170 enables the clinician to perform tissue effects on musculoskeletal tissue with more precision that may be achieved with a slap hammer alone or using an osteotome (e.g., bone chisel) and mallet. An osteotome is a wedge-like instrument used for cutting or marking bone often called a chisel and is used by a clinician with a mallet.



FIG. 7 is a cross-sectional view of one embodiment of a vibrational surgical instrument 200 taken along the longitudinal axis “L”. In the illustrated embodiment, the vibrational surgical instrument 200 comprises an end effector 50 that is well-suited for effecting (e.g., cutting, coagulating, drilling) musculoskeletal tissue comprising bones, muscles, joints, and the associated periarticular tissues such as tendons, ligaments, cartilage, joints, and spinal discs. As previously discussed, the end effector 50 may have a chisel like shape adapted to cut bone or may have a rounded end adapted to drill small holes. The vibrational surgical instrument 200 comprises a distal end 122 and a proximal end 124 and defines a longitudinal axis “L”.


The vibrational surgical instrument 200 comprises a flange or strike plate 202 at the proximal end 124. The strike plate 202 defines a strikeable surface 203 having a flange area configured to receive vibratory energy in the form of mechanical impacts such as a mallet blow from an osteotome type mallet 204 and impart the resulting vibratory energy into the end effector 50. Striking the strike plate 202 with the mallet 204 generates a suitable vibrational resonance that may be sustained over time to mechanically displace the end effector 50 in accordance with the mechanical vibrations. The vibrational surgical instrument 200 comprises a vibrational transmission waveguide 206 positioned within an outer tubular member or outer tube 150. The vibrational transmission waveguide 206 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from a removable sheath 150 assuring the flow of vibrational energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.


The vibrational transmission waveguide 206 is positioned inside a handle portion or grip 208 over a sleeve 210 (e.g., bushing). The vibrational transmission waveguide 206 is retained within the grip 208 and is fixedly mounted by a ring or circumferential projection 212. The circumferential projection 212 may be formed integrally with the distal portion of the vibrational transmission waveguide 206 or may fixedly mounted thereto. In principle, the vibrational transmission waveguide 206 operates in a manner similar to the ultrasonic transmission waveguide 46 discussed above. The vibrational transmission waveguide 206 however may be tuned to amplify and transmit longitudinal vibrations at frequencies more suitably achievable with the osteotome type mallet 204 striking the strikeable surface 230 of the strike plate 202.


In use, a clinician may employ the vibrational surgical instrument 200 to effect musculoskeletal tissue. The end effector 50 is positioned at the desired tissue treatment region within a patient. The clinician holds the grip 208 portion with one hand and manipulates the end effector 50 to treat the musculoskeletal tissue. The vibrations generated by striking the strike plate 202 are efficiently transferred to the distal end 52 of the end effector 50, which experiences longitudinal displacements to assist in the tissue effect, to cut, coagulate, drill tissue. Accordingly, the vibrational surgical instrument 200 enables the clinician to perform tissue effects on musculoskeletal tissue with more precision that with using a slap hammer alone or using a bone chisel or tuned osteotome.



FIG. 8 is a cross-sectional view of one embodiment of an ultrasonic instrument 240 taken along the longitudinal axis “L”. In the illustrated embodiment, the ultrasonic instrument 240 comprises an end effector 50 that is well-suited for effecting (e.g., cutting, coagulating, drilling) musculoskeletal tissue comprising bones, muscles, joints, and the associated periarticular tissues such as tendons, ligaments, cartilage, joints, and spinal discs. As previously discussed, the end effector 50 may have a chisel like shape adapted to cut bone or may have a rounded end adapted to drill small holes. The ultrasonic instrument 240 comprises a distal end 122 and a proximal end 124 and defines a longitudinal axis “L”. The ultrasonic instrument 240 may be employed as an ultrasonic osteo-hammer to help drive cutting instruments and other hardware such as “trial” devices into musculoskeletal tissue such as bone. In various other embodiments, however, the ultrasonic instrument 240 may be employed in combination with an ultrasonic end effector 50 comprising conventional ultrasonic blades for cutting, coagulating, and/or reshaping tissue. In the embodiment illustrated in FIG. 8, the ultrasonic instrument 240 may be employed to drive the end effector 50 into tissue or force distraction, e.g., separation of bony fragments or joint surfaces of a limb, and also may be employed to remove instruments that may be tightly wedged. The ultrasonic instrument 240 increases efficiency and speed during a procedure while providing more accuracy that a manually operated osteotome.


The ultrasonic instrument 240 comprises an ultrasonic slide hammer 242 at the proximal end 124. The ultrasonic slide hammer 242 is slideably movable over a proximal shaft 244 between a first flange or proximal stop 246 and a second flange or distal stop 248 in the directions indicated by arrows 290, 292. The ultrasonic slide hammer 242 comprises an ultrasonic transducer 250, which is known as a “Langevin stack”, and generally includes a transduction portion 252, a first resonator or end-bell 254, and a second resonator or fore-bell 256, and ancillary components. In the illustrated embodiment, the ultrasonic transducer 250 is the moving mass of the ultrasonic slide hammer 242. The ultrasonic transducer 250 is preferably an integral number of one-half system wavelengths (nλ/2) in length as previously discussed with reference to the ultrasonic system 10 in FIG. 1. An acoustic assembly 251 is formed by the ultrasonic transducer 250, the proximal shaft 244, the proximal stop 246, and the distal stop 248. In the illustrated embodiment, the length of the ultrasonic transducer 250 is λ/2 and the length of the proximal shaft 244 is at least 1λ as illustrated, with anti-nodes generally indicated at “A” (e.g., where axial displacement is usually maximal) being formed at the distal and proximal ends of the proximal shaft 244. The proximal shaft 244 may be made longer. Nevertheless, the length of the proximal shaft 244 should be an integer multiple of half-wavelengths (nλ/2) and should be at least one-half wavelength (λ/2) longer than the ultrasonic transducer 250. The length of the ultrasonic instrument 240 from the distal end of the proximal shaft 244 to the distal end 52 of the end effector 50 should be an integer multiple of one-half system wavelengths (nλ/2). These relationships are explained in more detail below.


The distal end of the end-bell 254 is connected to the proximal end of the transduction portion 252, and the proximal end of the fore-bell 256 is connected to the distal end of the transduction portion 252. The fore-bell 256 and the end-bell 254 have a length determined by a number of variables, including the thickness of the transduction portion 252, the density and modulus of elasticity of the material used to manufacture the end-bell 254 and the fore-bell 256, and the resonant frequency of the ultrasonic transducer 250. The ultrasonic transducer 250 creates impacts or vibrations at ultrasonic frequencies and imparts stress waves that are coupled to an ultrasonic transmission waveguide 262 to advance (e.g., drive) or remove (e.g., retract) the ultrasonic instrument 240. A distal surface of the fore-bell 256 acts a driving platen 288 when it is driven or coupled to a distal striking platen 258 formed by the proximal surface of the distal stop 248. The surface of the distal striking platen 258 has an area configured to receive vibratory energy in the form of vibrations and impart the vibratory energy into the end effector 50. The surface of the driving platen 288 is located at an anti-node “A”. When the driving platen 288 is coupled to the distal striking platen 258, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled through the ultrasonic transmission waveguide 262 and create impacts to drive the ultrasonic instrument 240 into tissue at the distal end 122 in the direction indicated by arrow 290. A proximal surface of the end-bell 254 acts as a removing platen 286 when it is driven or coupled to a proximal striking platen 260 formed by the distal surface of the proximal stop 246. The surface of the distal striking platen 260 has an area configured to receive vibratory energy in the form of vibrations and impart the vibratory energy into the proximal stop 246. The surface of the removing platen 286 is located at an anti-node “A”. When the removing platen 286 is coupled to the proximal striking platen 260, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled into the proximal stop 246 and create impacts to retract the ultrasonic instrument 240 in the proximal directions from the tissue in the direction indicated by arrow 292. A suitable vibrational frequency range for the ultrasonic slide hammer 242 may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-70 kHz and one example operational vibrational frequency may be approximately 55.5 kHz. As a general rule, lower frequencies tend to provide more power capability. In one embodiment, the ultrasonic transducer 250 does not couple to the end effector 50, but rather creates a vibratory “jackhammer”.


Piezoelectric elements 264 may be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, or other piezoelectric crystal material. Each of positive electrodes 266, negative electrodes 268, and piezoelectric elements 264 has a bore extending through the center. The positive and negative electrodes 266 and 268 are electrically coupled to wires 272 and 270, respectively. The wires 270, 272 are encased within a cable 274 and electrically connectable to an ultrasonic signal generator 276.


The ultrasonic transducer 250 converts the electrical signal from the ultrasonic signal generator 276 into mechanical energy that results in primarily longitudinal vibratory motion of the ultrasonic transducer 250 and the end effector 50 at ultrasonic frequencies. A suitable generator is available as model number GEN04, from Ethicon Endo-Surgery, Inc., Cincinnati, Ohio. When the acoustic assembly 251 is energized, a vibratory motion standing wave is generated through the acoustic assembly 251. The amplitude of the vibratory motion at any point along the acoustic assembly 251 may depend upon the location along the acoustic assembly 251 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is usually minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node (i.e., where motion is usually maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).


The wires 270 and 272 transmit an electrical signal from the ultrasonic signal generator 276 to the respective positive electrodes 268 and the negative electrodes 266. The piezoelectric elements 264 are energized by the electrical signal supplied from the ultrasonic signal generator 264 in response to a foot switch 278 to produce an acoustic standing wave in the acoustic assembly 251. The electrical signal causes disturbances in the piezoelectric elements 264 in the form of repeated small displacements resulting in large compression forces within the material. The repeated small displacements cause the piezoelectric elements 264 to expand and contract in a continuous manner along the axis of the voltage gradient, producing longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly 251 to the end effector 50 via the ultrasonic transmission waveguide 262. In order for the acoustic assembly 251 to deliver energy to the end effector 50, all components of the acoustic assembly 251 must be acoustically coupled to the end effector 50. In one mode of operation, the distal end 52 of the ultrasonic transducer 250 may be acoustically coupled to the proximal surface 258 of the distal stop 248 and to the ultrasonic transmission waveguide 262. In another mode of operation, the proximal end of the ultrasonic transducer 250 may be acoustically coupled to the distal surface 260 of the proximal stop 246 and to ultrasonic transmission waveguide 262 through the proximal shaft 244.


The components of the acoustic assembly 251 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 251, and where n is any positive integer. It is also contemplated that the acoustic assembly 251 may incorporate any suitable arrangement of acoustic elements.


The ultrasonic end effector 50 may have a length substantially equal to an integral multiple of one-half system wavelengths (λ/2). The distal end 52 of the ultrasonic end effector 50 may be disposed near an antinode “A” in order to provide the maximum longitudinal excursion of the distal end 52. When the ultrasonic transducer 250 is energized and the vibrations are coupled to the end effector 50 via the ultrasonic transmission waveguide 262, the distal end 52 of the ultrasonic end effector 50 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 150 microns at a predetermined vibrational frequency.


The ultrasonic end effector 50 may be coupled to the ultrasonic transmission waveguide 262. In the illustrated embodiment, the ultrasonic end effector 50, the ultrasonic transmission guide 262, the proximal and distal stops 246, 248, and the proximal shaft 244 are formed as a single unit construction from a material suitable for transmission of ultrasonic energy such as, for example, Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other known materials. Alternately, the ultrasonic end effector 50 may be separable (and of differing composition) from the ultrasonic transmission waveguide 262, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The ultrasonic transmission waveguide 262 may have a length substantially equal to an integral number n of one-half system wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 262 may be preferably fabricated from a solid core shaft constructed out of material that propagates ultrasonic energy efficiently, such as titanium alloy (i.e., Ti-6Al-4V) or an aluminum alloy, for example. In the illustrated embodiment, the ultrasonic transmission waveguide 262 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from the outer tube 150 assuring that the ultrasonic energy flows axially in a longitudinal direction “L” to the distal end 52 of the end effector 50 with maximum efficiency.


In alternative embodiments, the distal end of the distal stop 248 may be configured with an attachment feature such as a threaded connection to couple the ultrasonic transmission waveguide 262 or other ultrasonic (e.g., orthopedic) instruments with a stud. In other embodiments, the distal end of the distal stop 248 may be configured with a longitudinally projecting attachment post to couple to the ultrasonic transmission waveguide 262 or other ultrasonic instruments thereto. In other embodiments, the ultrasonic transmission waveguide 262 or other ultrasonic instruments may be attached to the distal end of the distal stop 248 by a weld, glue, quick connect, or other suitable known methods.


In use, a clinician can operate the ultrasonic instrument 240 in a driving mode and a retracting mode. In the illustrated embodiment, the ultrasonic slide hammer 242 is configured with a cylindrical grip 294 for the clinician to hold. In a driving mode, the ultrasonic slide hammer 242 is moved in the direction indicated by arrow 290 to drive the ultrasonic instrument 240 into tissue. In a retracting mode, the ultrasonic slide hammer 242 in the direction indicated by arrow 292 to retract the ultrasonic instrument 240. In alternative embodiments, the ultrasonic slide hammer 242 may be configured with a pistol-like grip so the clinician can hold the ultrasonic slide hammer 242 more-like a power drill, for example. When the driving platen 288 is forced in the direction indicated by arrow 290 into the distal striking platen 258, the ultrasonic transducer 250 creates impacts that are coupled by the ultrasonic transmission waveguide 262 to the end effector 50 to impart stress waves in the tissue being treated. Because the driving platen 288 and the distal striking platen 258 are both located at anti-nodes “A” a clinician needs only to apply enough load to force the driving platen 288 into the distal striking platen 258 together. At an anti-node “A” there is little vibrational stress so minimal vibrations are transferred to the hand of the clinician. The clinician applies a force until the desired effect is achieved.


The ultrasonic instrument 240 may comprise an optional grip 280 positioned distally beyond the proximal stop 248 over a proximal sleeve 282. The grip 280 is fixedly mounted to the ultrasonic transmission waveguide 262 by a ring or circumferential projection 284. The circumferential projection 284 may be formed integrally with the distal portion of the ultrasonic transmission waveguide 262 or may fixedly mounted thereto. The grip 280 provides an additional handle for a clinician to hold during a procedure to help support and guide the ultrasonic instrument 240.



FIG. 9 is a cross-sectional view of one embodiment of an ultrasonic instrument 300 taken along the longitudinal axis “L”. In the illustrated embodiment, the ultrasonic instrument 300 comprises an end effector 50 that is well-suited for effecting (e.g., cutting, coagulating, drilling) musculoskeletal tissue comprising bones, muscles, joints, and the associated periarticular tissues such as tendons, ligaments, cartilage, joints, and spinal discs, as previously discussed. The ultrasonic instrument 300 comprises a distal end 122 and a proximal end 124 and defines a longitudinal axis “L”. The ultrasonic instrument 300 may be employed as an ultrasonic osteo-hammer to help drive cutting instruments and other hardware such as “trial” devices into tissue. The ultrasonic instrument 300 may be employed to drive into tissue or force distraction and also may be employed to remove instruments that may be tightly wedged. The ultrasonic instrument 300 increases efficiency and speed during a procedure while providing more accuracy that a manually operated osteotome.


The ultrasonic instrument 300 comprises an ultrasonic slide hammer 242 at the proximal end 124 substantially as described with reference to FIG. 8. The ultrasonic slide hammer 242 is slideably movable over a proximal shaft 244 between a first flange or proximal stop 246 and a second flange or distal stop 302 in the directions indicated by arrows 290, 292. In the illustrated embodiment, the distal stop 302 has a generally frustoconical shape and is tapered inwardly from a proximal end to a distal end to amplify the ultrasonic vibration amplitude generated by the ultrasonic transducer 250. As shown in the embodiment illustrated in FIG. 9, the conical transition occurs at a node “N”. The ultrasonic slide hammer 242 comprises an ultrasonic transducer 250, as previously discussed with reference to FIG. 8. In the illustrated embodiment, the ultrasonic transducer 250 is the moving mass of the ultrasonic slide hammer 242. The ultrasonic transducer 250 is preferably an integral number of one-half system wavelengths (nλ/2) in length as previously discussed with reference to the ultrasonic system 10 in FIG. 1. An acoustic assembly 306 is formed by the ultrasonic transducer 250, the proximal shaft 244, and either one of the proximal stop 246 or the distal stop 302. In the illustrated embodiment, the length of the ultrasonic transducer 250 is λ/2 and the length of the proximal shaft 244 is λ, with anti-nodes generally indicated at “A” (e.g., where axial displacement is usually maximal) being formed at the distal and proximal ends of the proximal shaft 244. The length of the ultrasonic instrument 300 from the distal end of the proximal shaft 244 to the distal end 52 of the end effector 50 should be an integer multiple of one-half system wavelengths (nλ/2). These relationships were explained in more detail above with reference to FIG. 8.


As previously discussed, the ultrasonic transducer 250 creates impacts or vibrations at ultrasonic frequencies and imparts stress waves that are coupled by an ultrasonic transmission waveguide 304 to advance (e.g., drive) or remove (e.g., retract) the ultrasonic instrument 300. A distal driving platen 288 is driven or coupled to a distal striking platen 258 formed by the proximal surface of the distal stop 302 when the ultrasonic slide hammer 242 is moved in the direction indicated by arrow 290. The surface of the driving platen 288 is located at an anti-node “A”. When the driving platen 288 is coupled to the distal striking platen 258, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled through the ultrasonic transmission waveguide 304 and creates impacts to drive the ultrasonic instrument 300 into tissue at the distal end 122 in the direction indicated by arrow 290. A proximal removing platen 286 is driven or coupled to a proximal striking platen 260 formed by the distal surface of the proximal stop 246 when the ultrasonic slide hammer 242 is moved in the direction indicated by arrow 292. The surface of the removing platen 286 is located at an anti-node “A”. When the removing platen 286 is coupled to the proximal striking platen 260, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled into the proximal stop 246 and creates impacts to retract the ultrasonic instrument 300 in the proximal direction from the tissue in the direction indicated by arrow 292. As previously discussed, the distal stop 302 amplifies the amplitude of the ultrasonic vibrations generated by the ultrasonic transducer 250. A suitable vibrational frequency range for the ultrasonic slide hammer 242 may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-70 kHz and one example operational vibrational frequency may be approximately 55.5 kHz. As a general rule, lower frequencies tend to provide more power capability.


The ultrasonic transducer 250 converts the electrical signal from the ultrasonic signal generator 276 into mechanical energy that results in primarily longitudinal vibratory motion of the ultrasonic transducer 250 and the end effector 50 at ultrasonic frequencies. When the acoustic assembly 306 is energized, a vibratory motion standing wave is generated through the acoustic assembly 306. The amplitude of the vibratory motion at any point along the acoustic assembly 306 may depend upon the location along the acoustic assembly 306 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is usually minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node (i.e., where motion is usually maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).


The ultrasonic transducer 250 is energized by the electrical signal supplied from the ultrasonic signal generator 264 in response to a foot switch 278 to produce an acoustic standing wave in the acoustic assembly 306. The ultrasonic energy is transmitted through the acoustic assembly 306 to the end effector 50 via an ultrasonic transmission waveguide 304. In order for the acoustic assembly 306 to deliver energy to the end effector 50, all components of the acoustic assembly 306 must be acoustically coupled to the end effector 50. In one mode of operation, the distal end of the ultrasonic transducer 250 may be acoustically coupled to the distal striking platen 258, amplified by the distal stop 302 element, and to the ultrasonic transmission waveguide 304. In another mode of operation, the proximal end of the ultrasonic transducer 250 may be acoustically coupled to the proximal striking platen 260 through the ultrasonic transmission waveguide 304 and through the proximal shaft 244.


The components of the acoustic assembly 306 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 306, and where n is any positive integer. It is also contemplated that the acoustic assembly 306 may incorporate any suitable arrangement of acoustic elements.


The ultrasonic end effector 50 may have a length substantially equal to an integral multiple of one-half system wavelengths (λ/2). The distal end 52 of the ultrasonic end effector 50 may be disposed near an antinode in order to provide the maximum longitudinal excursion of the distal end. When the ultrasonic transducer 250 is energized and the vibrations are coupled to the end effector 50 via the ultrasonic transmission waveguide 304, the distal end 52 of the ultrasonic end effector 50 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 150 microns at a predetermined vibrational frequency.


The ultrasonic end effector 50 may be coupled to the ultrasonic transmission waveguide 304. In the illustrated embodiment, the ultrasonic end effector 50, the ultrasonic transmission guide 304, the proximal and distal stops 246, 302, and the proximal shaft 244 are formed as a single unit construction from a material suitable for transmission of ultrasonic energy such as, for example, Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other known materials. Alternately, the ultrasonic end effector 50 may be separable (and of differing composition) from the ultrasonic transmission waveguide 304, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The ultrasonic transmission waveguide 304 may have a length substantially equal to an integral number n of one-half system wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 304 may be preferably fabricated from a solid core shaft constructed out of material that propagates ultrasonic energy efficiently, such as titanium alloy (i.e., Ti-6Al-4V) or an aluminum alloy, for example. In the illustrated embodiment, the ultrasonic transmission waveguide 304 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from a removable sheath or outer tube 150 assuring the flow of ultrasonic energy axially in a longitudinal direction “L” to the distal end 52 of the end effector 50 with maximum efficiency.


In alternative embodiments, the distal end of the distal stop 302 may be configured with an attachment feature such as a threaded connection to couple the ultrasonic transmission waveguide 304 or other ultrasonic (e.g., orthopedic) instruments with a stud. In other embodiments, the distal end of the distal stop 302 may be configured with a longitudinally projecting attachment post to couple to the ultrasonic transmission waveguide 304 or other ultrasonic instruments thereto. In other embodiments, the ultrasonic transmission waveguide 304 or other ultrasonic instruments may be attached to the distal end of the distal stop 302 by a weld, glue, quick connect, or other suitable known methods.


In use, a clinician can operate the ultrasonic instrument 300 in a substantially similar manner as previously described with reference to FIG. 8. In the illustrated embodiment, the ultrasonic slide hammer 242 is configured with a cylindrical grip 294 so the clinician can hold the ultrasonic slide hammer 242 while moving it. To drive the ultrasonic instrument 300, the clinician moves the ultrasonic slide hammer 242 in the direction indicated by arrow 290. To retract the ultrasonic instrument 300, the clinician moves the slide hammer 242 in the direction indicated by arrow 292. In alternative embodiments, the ultrasonic slide hammer 242 may be configured with a pistol-like grip so the clinician can hold the ultrasonic slide hammer 242 more-like a power drill, for example. When the driving platen 288 is forced in the direction indicated by arrow 290 into the distal striking platen 258, the ultrasonic transducer 250 creates impacts that are coupled by the ultrasonic transmission waveguide 304 to the end effector 50 to impart stress waves in the tissue being treated. Because the driving platen 288 and the distal striking platen 258 are both located at anti-nodes “A” a clinician needs only to apply enough load to force the driving platen 288 into the distal striking platen 258 together. At an anti-node “A” there is little vibrational stress so minimal vibrations are transferred to the hand of the clinician. The clinician applies the force until the desired effect is achieved.


With reference to the ultrasonic instruments 240, 300 illustrated in FIGS. 8 and 9, in order to drive into tissue, the distal end 52 of the end effector 50 must overcome the failure limit of the tissue. In a simple model, this may be represented as the tissue reaction force and is a measure of the force necessary at the distal end 52 of the end effector 50 acting normal to the tissue (e.g., bone) to penetrate the tissue. The ultrasonic force required at the tissue surface to overcome the failure limit of the tissue may be expressed in simplified form as the tissue reaction force Ft:

Ft=k·x+c·x+d·x2  (1)


Where


k=is the elastic component of the tissue;


c=the frictional component of the tissue; and


d=the hydraulic drag component of the tissue.



FIG. 10 illustrates a side view of one embodiment of an ultrasonic instrument 310 comprising an impact zone. In the illustrated embodiment, the ultrasonic instrument 310 extends longitudinally along axis “L” between a distal end 122 and a proximal end 124. In one embodiment, the ultrasonic instrument 310 comprises an ultrasonic hand piece assembly 312. Ultrasonically, the hand piece assembly 312 is substantially similar to and operates in substantially the same manner as the ultrasonic handpiece assembly 60 described in FIG. 1. The ultrasonic instrument 310 comprises a housing 314, a transduction portion 18, and an acoustic assembly 24 portion, as previously discussed with reference to FIG. 1. In one embodiment, the housing 314 comprises a substantially circular cross-section (not shown). The ultrasonic instrument 310 comprises the outer sheath 58 containing an ultrasonic transmission waveguide 46 (as previously discussed in FIG. 1) coupled to the end effector 50. In the illustrated embodiment, the end effector 50 has a chisel shape. A power cable 42 couples the ultrasonic handpiece assembly 312 to an ultrasonic generator (e.g., ultrasonic generator 12 shown in FIG. 1).


In one embodiment, the ultrasonic instrument 310 comprises a strike plate assembly 316. The strike plate assembly 316 comprises a flange or strike plate 318 defining a strikeable surface 320 having a flange area configured to receive or accommodate a mechanical impact and impart energy into the end effector 50 when the hand piece assembly 312 is in a powered or an unpowered state. The mechanical impact or strike may be delivered manually or with an osteotome mallet, for example. The strike plate 318 is suitable to receive a typical blow or strike from an osteotome mallet (e.g., similar to the mallet 204 shown in FIG. 7) at the strikeable surface 320 without damaging the ultrasonic hand piece assembly 312. In the illustrated embodiment, the strike plate assembly 316 comprises multiple longitudinally extending elongate support members 322 rigidly coupled to the strike plate 318 at a proximal end and fixedly coupled to the housing 314 at a distal end. In one embodiment, the housing 314 and the strike plate assembly 318 may be formed as a single unitary piece. In alternative embodiments, the housing 314 and the strike plate assembly 318 may be attached, coupled, or joined by, for example, stud, weld, glue, quick connect, or other suitable known methods.


In use, a clinician may employ the ultrasonic instrument 310 in a powered state using the ultrasonic vibrations generated by the transduction portion 18 to cut and coagulate relatively soft musculoskeletal tissue using the chisel shaped end effector 50. With the ultrasonic instrument 310 in a powered or an unpowered state, the clinician can employ an osteotome mallet to strike the strikeable surface 320 to chisel relatively hard musculoskeletal tissue such as bone.



FIG. 11 illustrates a side view of one embodiment of an ultrasonic instrument 330 comprising an impact zone. In the illustrated embodiment, the ultrasonic instrument 330 extends longitudinally along axis “L” between a distal end 122 and a proximal end 124. In one embodiment, the ultrasonic instrument 330 comprises an ultrasonic hand piece assembly 332. Ultrasonically, the hand piece assembly 332 is substantially similar to and operates in substantially the same manner as the handpiece assembly 60 described in FIG. 1. The ultrasonic instrument 330 comprises a housing 334, a transduction portion 18, and an acoustic assembly 24 portion, as previously discussed with reference to FIG. 1. In one embodiment, the housing 334 comprises a substantially circular cross-section (not shown). The ultrasonic instrument 330 comprises the sheath 58 containing the ultrasonic transmission waveguide 46 therein (as previously discussed in FIG. 1) coupled to the end effector 50. In the illustrated embodiment, the end effector 50 has a chisel shape. A power cable 42 couples the ultrasonic handpiece assembly 332 to an ultrasonic generator (e.g., ultrasonic generator 12 shown in FIG. 1).


In one embodiment, the ultrasonic instrument 330 comprises a strike plate assembly 336. The strike plate assembly 336 comprises a flange or strike plate 338 defining a strikeable surface 340 having a flange area configured to receive or accommodate a mechanical impact and impart energy into the end effector 50 when the ultrasonic hand piece assembly 332 is in a powered or an unpowered state. The mechanical impact or strike may be delivered manually or with an osteotome mallet, for example. The strike plate 338 is suitable to receive a typical blow or strike from an osteotome mallet (e.g., similar to the mallet 204 shown in FIG. 7) at the strikeable surface 330 without damaging the ultrasonic hand piece assembly 332. In the illustrated embodiment, the strike plate assembly 336 comprises one or more longitudinally extending elongate support members 342 and a transverse compression member 344 to removably couple the strike plate assembly 336 to the housing 334. In one embodiment, the transverse compression member 344 may be configured as a radially assembled “C” or “U” shaped compression member. The transverse compression member 344 may be radially assembled on the groove 346 by slidingly pressing the transverse compression member 344 in the direction indicated by arrow 350 to engage and compress the groove 346 formed on the housing 334. The transverse compression member 344 may be readily removed by applying a force in the direction indicated by arrow 348. The transverse compression member 344 may be configured to compress the groove 346 with a force suitable to withstand strikes against the strikeable surface 340 while it is engaged. In one embodiment, the groove 346 may be a groove extending substantially around a circumferential portion or circular cross-sectional portion of the housing 334.


As previously discussed with reference to FIG. 10, in use, a clinician may employ the ultrasonic instrument 330 in a powered state using the ultrasonic vibrations generated by the transduction portion 18 to cut and coagulate relatively soft musculoskeletal tissue using the chisel shaped end effector 50. With the ultrasonic instrument 330 in a powered or an unpowered state, the clinician can employ an osteotome mallet to strike the strikeable surface 340 to chisel relatively hard musculoskeletal tissue such as bone.



FIG. 12 illustrates a side view of one embodiment of an ultrasonic instrument 360 comprising an impact zone. In the illustrated embodiment, the ultrasonic instrument 360 extends longitudinally along axis “L” between a distal end 122 and a proximal end 124. In one embodiment, the ultrasonic instrument 360 comprises an ultrasonic hand piece assembly 362. Ultrasonically, the hand piece assembly 362 is substantially similar to and operates in substantially the same manner as the handpiece assembly 60 described in FIG. 1. The ultrasonic instrument 360 comprises a housing 364, a transduction portion 18, and an acoustic assembly 24 portion, as previously discussed with reference to FIG. 1. In one embodiment, the housing 364 comprises a substantially circular cross-section (not shown). The ultrasonic instrument 360 comprises the sheath 58 containing the ultrasonic transmission waveguide 46 therein (as previously discussed in FIG. 1) coupled to the end effector 50. In the illustrated embodiment, the end effector 50 has a chisel shape. A power cable 42 couples the ultrasonic handpiece assembly 362 to an ultrasonic generator (e.g., ultrasonic generator 12 shown in FIG. 1).


In one embodiment, the ultrasonic instrument 360 comprises a strike plate assembly 366. The strike plate assembly 366 comprises a flange or strike plate 368 defining a strikeable surface 370 having a flange area configured to receive or accommodate a mechanical impact and impart energy into the end effector 50 when the hand piece assembly 362 is in a powered or an unpowered state. The mechanical impact or strike may be delivered manually or with an osteotome mallet, for example. The strike plate 368 is suitable to receive a typical blow or strike from an osteotome mallet (e.g., similar to the mallet 204 shown in FIG. 7) at the strikeable surface 370 without damaging the ultrasonic hand piece assembly 362. In the illustrated embodiment, the strike plate assembly 366 comprises one or more longitudinally extending elongate support members 372 a threaded connection 375. The threaded connection 375 is formed of internal female threaded portion 374 to engage a corresponding external male threaded portion 376 formed circumferentially around a circular cross-sectional portion of the housing 364. The strike plate assembly 366 may be engaged with the housing 364 by screwing the female threaded portion 374 over the male threaded portion 376. A stop 378 is rigidly attached or formed integrally with the housing 364 to contact distal wall portions 380 of the support members 372. The strike plate 368 comprises a sleeve 382 extending longitudinally from a proximal end to a distal end. The sleeve 382 comprises a flange 390 at a distal end to engage a compression spring element 384 positioned within the sleeve 382. The proximal end 386 of the support member 372 comprises a flange 388 formed to engage the proximal end of the compression spring element 384. The compression spring element 384 is positioned around the proximal end 386 of the support member 372. The proximal end of the strike plate 368 also comprises a ball 394 and a compression spring element 396 configured to engage and compress the surface of the ball 394 to retain the strike plate 386 in position.


As previously discussed with reference to FIGS. 10 and 11, in use, a clinician may employ the ultrasonic instrument 360 in a powered state using the ultrasonic vibrations generated by the transduction portion 18 to cut and coagulate relatively soft musculoskeletal tissue using the chisel shaped end effector 50. With the ultrasonic instrument 360 in a powered or an unpowered state, the clinician can employ an osteotome mallet to strike the strikeable surface 370 to chisel relatively hard musculoskeletal tissue such as bone.



FIG. 13 illustrates a side view of one embodiment of an ultrasonic instrument 400 comprising an impact zone. In the illustrated embodiment, the ultrasonic instrument 400 extends longitudinally along axis “L” between a distal end 122 and a proximal end 124. In one embodiment, the ultrasonic instrument 400 comprises an ultrasonic hand piece assembly 402. Ultrasonically, the hand piece assembly 402 is substantially similar to and operates in substantially the same manner as the handpiece assembly 60 described in FIG. 1. The ultrasonic instrument 400 comprises a housing 404, a transduction portion 18, and an acoustic assembly 24 portion, as previously discussed with reference to FIG. 1. In one embodiment, the housing 404 comprises a substantially circumferential cross-section (not shown). The ultrasonic instrument 400 comprises the sheath 58 containing the ultrasonic transmission waveguide 46 therein (as previously discussed in FIG. 1) coupled to the end effector 50. In the illustrated embodiment, the end effector 50 has a chisel shape. A power cord 42 couples the ultrasonic handpiece assembly 402 to an ultrasonic generator (e.g., ultrasonic generator 12 shown in FIG. 1).


In one embodiment, the ultrasonic instrument 400 comprises a strike plate assembly 406. The strike plate assembly 406 comprises a flange or strike plate 408 defining a strikeable surface 410 having a flange area configured to receive or accommodate a blow from a slide (slap) hammer 414. The slide hammer 414 has an opening extending longitudinally therethrough. The slide hammer 420 comprises a striking surface 422 at a distal end suitable to impart a blow to or strike the strikeable surface 410. A blow from the slide hammer 414 imparts energy into the end effector 50 when the hand piece assembly 402 is in a powered or an unpowered state. The strike plate 408 is suitable to receive a typical blow or strike from the slide hammer 414 at the strikeable surface 410 without damaging the ultrasonic hand piece assembly 402. In the illustrated embodiment, the strike plate assembly 406 comprises one or more longitudinally extending elongate support members 412 rigidly attached to the housing 404. The strike plate 408 is formed with a shaft 416 protruding from a distal end to a proximal end. The proximal end of the shaft 416 comprises a flange 418. The slide (slap) hammer 414 is slideably movable axially on the shaft 416 in the direction indicated by arrow 420.


As previously discussed with reference to FIGS. 10-12, in use, a clinician may employ the ultrasonic instrument 400 in a powered state using the ultrasonic vibrations generated by the transduction portion 18 to cut and coagulate relatively soft musculoskeletal tissue using the chisel shaped end effector 50. With the ultrasonic instrument 400 in a powered or an unpowered state, the clinician may strike the strikeable surface 410 manually or may employ an osteotome mallet to chisel relatively hard musculoskeletal tissue such as bone.



FIGS. 14-17 illustrate one embodiment of an ultrasonic instrument 450 comprising an end effector 452 at a distal end 122. The ultrasonic instrument 450 extends longitudinally along axis “L” between a distal end 122 and a proximal end 124. The end effector 452 comprises a non-vibrating clamp jaw 454 and an ultrasonic blade 456. In the embodiments illustrated in FIGS. 14-17, the clamp jaw 454 is pivotally mounted to pivot point 472 and is rotatable from a distal end to a proximal end as shown by arrow 458 to an open folded back position that leaves the ultrasonic blade 456 exposed for reshaping and coagulating tissue. The clamp jaw 454 is rotatable up to about 180° such that either in the open or the closed position, the clamp jaw 454 is substantially aligned with the longitudinal axis so as to be in line or in parallel with the longitudinal axis. The clamp jaw 454 is rotatable from a distal end to a proximal end as shown by arrow 459 to a closed position for squeezing the tissue between the blade 456 and the clamp jaw 454 against a side of the blade 456, to use the shearing action of the vibration to enhance tissue cutting/coagulating effects. FIG. 14 is a side perspective view of one embodiment of the ultrasonic instrument 450 with the clamp jaw 454 in a closed position. FIGS. 15 and 16 are side perspective views of the ultrasonic instrument 450 with the clamp jaw 454 in partially open positions. FIG. 17 is side perspective view of the ultrasonic instrument 450 with the clamp arm assembly in a closed position.


With reference now to FIGS. 14-17, the ultrasonic instrument 450 comprises an ultrasonic hand piece assembly 464. Ultrasonically, the hand piece assembly 464 is substantially similar to and operates in substantially the same manner as the ultrasonic handpiece assembly 60 described in FIG. 1. Accordingly, the ultrasonic hand piece assembly 464 also comprises a transduction portion 18 and an acoustic assembly 24 portion, as previously discussed with reference to FIG. 1. The ultrasonic instrument 450 comprises an outer tubular member or outer tube 462 that extends from the handpiece assembly 464 to a proximal end of the end effector 452. The outer tube 462 has a substantially circular cross-section and a longitudinal opening or aperture 466 to receive the clamp jaw 454 in its retracted or folded back position. An inner actuator tubular member or inner tube 468 extends longitudinally within the outer tube 462. The inner tube 468 has an opening extending longitudinally therethrough. The outer tube 462 and the inner tube 468 may be fabricated from stainless steel. It will be recognized that the outer tube 462 may be constructed from any suitable material and may have any suitable cross-sectional shape. The end-effector 452 is configured to perform various tasks, such as, for example, grasping tissue, cutting tissue and the like. It is contemplated that the end-effector 452 may be formed in any suitable configuration.


As previously discussed, the end-effector 452 comprises a non-vibrating clamp jaw 454 and an ultrasonic blade 456. A tissue engaging portion of the clamp arm assembly 454 comprises a clamp pad 470. The non-vibrating clamp jaw 454 is to grip tissue or compress tissue against the ultrasonic blade 456, for example.


The ultrasonic blade 456 may comprise a chisel shape and is suitable to cut and coagulate relatively soft musculoskeletal tissue and to chisel or drill relatively hard musculoskeletal tissue such as bone. Nevertheless, the ultrasonic blade 456 may be employed in various other therapeutic procedures. In one embodiment, the ultrasonic blade 456 may comprise a cutting chisel edge at a distal portion. The ultrasonic blade 456 is coupled to an ultrasonic transmission waveguide positioned within the outer tube 462.


The clamp jaw 454 is preferably pivotally mounted to the distal end of the outer tube 462 at pivot point 472 such that the clamp jaw 454 can rotate in the in an arcuate direction shown by arrows 458, 459. A pivot pin 474 is inserted through the pivot point 472. The distal end of the outer tube 462 comprises projections 476A and 476B that define corresponding holes 478A and 478B (not shown) to receive the pivot pin 474. The pivot pin 474 may be retained within the holes 478A, B in any suitable configuration. The inner tube 468 opening contains an actuator rod 490 that is mounted to a proximal end of the clamp jaw 454. When the actuator rod 490 is moved axially from the proximal end to the distal end in the direction indicated by arrow 482 the actuator rod 490 drives the clamp arm assembly to rotate about the pivot point 472 in the direction indicated by arrow 458 to its open position. A longitudinal channel 486 formed on a top surface of the clamp jaw 454 receives a longitudinal portion of the inner tube 468 therein when the clamp jaw 454 is in the open position. The axially moveable actuator rod 490 may be moved in any suitable manner and in one embodiment may be controlled by switch 480. When the actuator rod 490 is moved axially from the distal end to the proximal end in the direction indicated by arrow 484 the actuator rod 490 drives the clamp jaw 454 to rotate about the pivot point 472 in the direction indicated by arrow 459 to its closed or clamping position.


The clamp pad 470 is attached to the clamp jaw 454 and is for squeezing tissue between the ultrasonic blade 456 and the clamp jaw 454. The clamp pad 470 may be mounted to the clamp jaw 454 by an adhesive, or preferably by a mechanical fastening arrangement. Serrations 488 may be formed in the clamping surfaces of the clamp pad 470 and extend perpendicular to the axis of the ultrasonic blade 456 to allow tissue to be grasped, manipulated, coagulated and cut without slipping between the clamp jaw 454 and the ultrasonic blade 456.


The clamp pad 470 may be formed of a polymeric or other compliant material and engages the ultrasonic blade 456 when the clamp jaw 454 is in its closed position. Preferably, the clamp pad 470 is formed of a material having a low coefficient of friction but which has substantial rigidity to provide tissue-grasping capability, such as, for example, TEFLON®, a trademark name of E.I. Du Pont de Nemours and Company for the polymer polytetraflouroethylene (PTFE). The clamp pad 470 may be formed of other materials, such as, polyimide materials and/or other filled materials, for example, graphite or TEFLON filled polyimide materials. One example of a polyimide material may be VESPEL®, a trademark name of E.I. Du Pont de Nemours and Company. Polyimide provides a unique combination of the physical properties of plastics, metals, and ceramics, for example. In one embodiment, the clamp pad 470 may be formed of multiple components and multiple materials. For example, the clamp pad 470 may comprise one component formed of TEFLON and another component formed of polyimide. The clamp pad 470 may comprise a base material and at least two filler materials to allow the base material and the at-least-two filler materials to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the clamp pad 470, which is important when high clamping forces are employed because the clamp pad 470 wears faster at higher clamping forces than at lower clamping forces. For example, a 15% graphite-filled, 30% PTFE-filled polyimide clamp pad 470 may provide substantially the same or better wear with a 4.5 pound clamping force as a 100% polytetrafluoroethylene clamp pad provides with a 1.5 pound clamping force. The advantage of a 15% graphite-filled, 30% PTFE-filled polyimide clamp pad 470 is increased heat resistance, which improves the overall wear resistance of the clamp pad 470. This polyimide-composite clamp pad has a useful heat resistance up about 800° F. to about 1200° F., as compared to a useful heat resistance up to about 660° F. of a PTFE clamp pad. Alternatively, other materials may be useful for a portion of the clamp pad 470, such as ceramics, metals, glasses and graphite.


In alternative embodiments, the clamp jaw 454 may be configured to retract rather than to fold back. In one embodiment, the ultrasonic blade 456 also may be configured to retract in any suitable manner.



FIGS. 18-20 illustrate one embodiment of an end effector that may be employed with the ultrasonic instrument 450 discussed in FIGS. 14-17. In the illustrated embodiment, the ultrasonic instrument 450 adapted and configured with the end effector 502 illustrated in FIGS. 18-20 is shown generally as ultrasonic instrument 500. One embodiment of the ultrasonic instrument 500 comprises the end effector 502 at a distal end 122. The ultrasonic instrument 500 extends longitudinally along axis “L” between a distal end 122 and a proximal end 124. The end effector 502 comprises a non-vibrating clamp jaw 504 and the ultrasonic blade 456. The clamp jaw 504 provides an increased mechanical advantage over the clamp jaw 454 of the end effector 452 shown in FIGS. 14-17. FIG. 18 is a top perspective view of one embodiment of the end effector 502 with the clamp arm assembly 504 in a closed position. FIG. 19 is a top perspective view of one embodiment of the end effector 502 with the clamp arm assembly 504 in an open position. FIG. 20 is an exploded view of one embodiment of the end effector 502 with the clamp jaw 504 in an open position.


With reference to FIGS. 18-20, the clamp jaw 504 is pivotally mounted at a pivot point 506 and is rotatable from a distal end to a proximal end as shown by arrow 458 to an open position that leaves the ultrasonic blade 456 exposed for reshaping and coagulating tissue. The clamp jaw 504 is rotatable from a distal end to a proximal end as shown by arrow 459 to a closed position for squeezing tissue between the blade 456 and the clamp jaw 504 against a side of the blade 456, to use the shearing action of the vibration to enhance tissue cutting/coagulating effects. The clamp jaw 504 comprises the clamp pad 470 configured with serrations 488 formed thereon that extend perpendicular to the axis “L” of the ultrasonic blade 456. The serrations 488 allow tissue to be grasped, manipulated, coagulated, and cut without slipping between the clamp jaw 504 and the ultrasonic blade 456.


The ultrasonic instrument 500 comprises the outer tube 462. As previously discussed, the outer tube 462 has a substantially circular cross-section and the longitudinal opening or aperture 466 to receive the clamp jaw 504 in its retracted or folded back open position. The outer tube 462 is configured to receive a first inner tube 518 comprising a “D” shaped cross-section and defines an aperture 520 therein to receive a distal portion of an elongated member 512. The elongated member 512 comprises a pivot base member 515 and a channel 514. The channel 514 is configured to receive an actuator rod 516. The outer tube 462 contains a second inner tube 522 configured to receive an ultrasonic transmission waveguide 457 portion of the blade 456.


The pivot point 506 is provided at the distal end of the elongated member 512. The clamp jaw 504 is pivotally mounted to the pivot point 506 by a pivot pin 508 that is received through a first hole 510A, a second hole 510B, and a third hole 510C. The clamp jaw 504 is coupled to the actuator rod 516 with a first link 532A and a second link 532B. The first and second links 532A, B are coupled to the clamp jaw 504 with pin 534 received through a first hole 528B formed at a distal end of the first link 532A, a second hole 530B formed at a distal end of the second link 532B, and a slot 536 formed in the clamp jaw 504. The slot 536 is formed at an angle to the longitudinal axis “L” to enable the pin 534 some freedom of motion within the slot 536 during the rotation of the clamp jaw 504. The first and second links 532A, B are coupled to the actuator rod 516 with a pin 526 received through a first hole 528A formed at a proximal end of the first link 532A, a second hole 530A formed at a proximal end of the second link 532B, and a third hole 540 formed at a distal end 524 of the actuator rod 516.



FIGS. 21-24 illustrate the clamp jaw 504 transitioning from an open position in FIG. 21 to a closed position in FIG. 24 and intermediate positions in FIGS. 22 and 23. As shown, when the actuator rod 516 is advanced in the direction indicated by arrow 482, an advancing force is applied at the proximal ends of the first and second links 532A, B and the clamp jaw 504 is pivoted in a direction indicated by arrow 459 about pivot point 506 into the clamp jaw 504 closed position shown in FIG. 18. The clamp pad 470 now bears against the blade 456. When the actuator rod 516 is retracted in the direction indicated by arrow 484, a retracting force is applied at the proximal ends of the first and second links 532A, B and the clamp jaw 504 is pivoted in a direction indicated by arrow 458 about the pivot point 506 into the clamp jaw 504 open position illustrated in FIG. 19.



FIGS. 25 and 26 illustrate one embodiment of an end effector 552 that may be employed with the ultrasonic instrument 450 discussed in FIGS. 14-17. The ultrasonic instrument 450 adapted and configured with the end effector 552 illustrated in FIGS. 25 and 26 is generally referred to as ultrasonic instrument 550. One embodiment of the ultrasonic instrument 550 comprises an end effector 552 at a distal end 122. The ultrasonic instrument 550 extends longitudinally along axis “L” between a distal end 122 and a proximal end 124. The end effector 552 comprises a non-vibrating clamp jaw 504 and an ultrasonic blade 556. The clamp jaw 504 provides an increased mechanical advantage over the clamp jaw 454 of the end effector 452 shown in FIGS. 14-17. FIG. 25 is a top perspective view of one embodiment of the end effector 552 with the clamp arm assembly 504 in an open position. FIG. 26 is an exploded view of one embodiment of the end effector 552 with the clamp jaw 504 in an open position.


With reference to FIGS. 25 and 26, the end effector 552 comprises the clamp jaw 504 pivotally mounted at the pivot point 506 as previously described with respect to FIGS. 18-24. The end effector 552 comprises an ultrasonic blade 556 having a broad generally flat top surface 558 and a smooth generally round bottom surface 560 and is well-suited for coagulation and tissue reshaping applications. The broad generally flat top surface of the blade 556 is substantially wide and thin relative to the width and is well suited for removing muscle tissue from bone and may be referred to as an ultrasonic elevator blade.


The ultrasonic instrument 550 comprises the outer tube 462. As previously discussed, the outer tube 462 has a substantially circular cross-section and defines a longitudinal opening or aperture 466 to receive the clamp jaw 504 in its retracted or folded back open position. The outer tube 462 is configured to receive an inner tube 562 comprising a circular cross-section with a wall 554 defining a first aperture 566 to receive the elongated member 512 and a second aperture to receive an ultrasonic transmission waveguide portion 557 of the blade 556. The elongate member 512 comprises a pivot base member 515 and a channel 514. The channel 514 is configured to receive an actuator rod 516.


The pivot point 506 is formed at a distal end of the elongated member 512. The clamp jaw 504 is pivotally mounted to the pivot point 506 by the pivot pin 508 that is received through a first hole 510A, a second hole 510B, and a third hole 510C. The clamp jaw 504 is coupled to the actuator rod 516 with a first link 532A and a second link 532B. The first and second links 532A, B are coupled to the clamp jaw 504 with pin 534 received through a first hole 528B formed at a distal end of the first link 532A, a second hole 530B formed at a distal end of the second link 532B, and a slot 536 formed in the clamp jaw 504. The slot 536 is formed at an angle to the longitudinal axis “L” to enable the pin 534 some freedom of motion within the slot 536 as the clamp law 504 is rotated. The first and second links 532A, B are coupled to the actuator rod 516 with a pin 526 received through a first hole 528A formed at a proximal end of the first link 532A, a second hole 530A formed at a proximal end of the second link 532B, and a third hole 540 formed at a distal end 524 of the actuator rod 516. FIGS. 21-24 illustrate the clamp jaw 504 transitioning from an open position in FIG. 21 to a closed position in FIG. 24 and intermediate positions in FIGS. 22 and 23.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular elements, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular elements or components of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular components, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


It is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam, autoclaving, soaking in sterilization liquid, or other known processes.


Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical instrument, comprising: a sheath;an elongated vibrational transmission waveguide positioned at least partially within the sheath, the waveguide defining a longitudinal axis and configured to transmit vibrations along the longitudinal axis at a predetermined wavelength, the waveguide comprising: a distal end;a proximal end;at least one node defined between the proximal end and the distal end; andat least one anti-node defined between the proximal end and the distal end, wherein the locations of the at least one node and the at least one anti-node between the proximal end and the distal end are determined by the predetermined wavelength of the vibrations;an end effector acoustically coupled to and extending from the distal end of the waveguide, wherein the end effector comprises: an end; anda distal-most anti-node positioned at the end of the end effector;at least one strike surface formed on the proximal end, the at least one strike surface being configured to receive vibratory energy in the form of mechanical impacts;at least one compliant member extending between the sheath and the waveguide, wherein the at least one compliant member is located at the at least one node defined along the waveguide to isolate the vibrations from the sheath; anda cam and lobe arrangement positioned at the proximal end, wherein the cam is coupled to a generator to move the cam in a circular path, and wherein the lobe is in mechanical communication with the strike surface on at least one point on the circular path.
  • 2. The surgical instrument of claim 1, wherein the generator comprises an electric motor.
  • 3. The surgical instrument of claim 1, wherein the generator comprises a hydraulic motor.
  • 4. The surgical instrument of claim 1, wherein the generator comprises a pneumatic motor.
  • 5. The surgical instrument of claim 1, comprising a grip defining a longitudinal channel configured to engage a portion of the vibrational transmission waveguide at a distal end of the at least one strike surface.
  • 6. A method for processing a surgical instrument for surgery, comprising: obtaining the surgical instrument of claim 1;sterilizing the surgical instrument; andstoring the surgical instrument in a sterile container.
  • 7. A surgical instrument, comprising: a sheath;an elongated ultrasonic transmission waveguide positioned at least partially within the sheath, the waveguide defining a longitudinal axis and configured to transmit vibrations along the longitudinal axis at an ultrasonic wavelength, the waveguide comprising: a distal end;a proximal end;a node defined between the proximal end and the distal end, wherein the location of the node between the proximal end and the distal end is determined by the ultrasonic wavelength of the vibrations; andan anti-node defined between the proximal end and the distal end, wherein the location of the anti-node between the proximal end and the distal end is determined by the ultrasonic wavelength of the vibrations;an end effector acoustically coupled to and extending from the distal end of the waveguide, wherein the end effector comprises: an end; anda distal-most anti-node positioned at the end of the end effector;a strike plate coupled to the proximal end of the waveguide;a drive plate moveably positioned adjacent to the strike plate, wherein the drive plate is configured to impart vibratory energy in the form of mechanical impacts to the strike plate, and wherein the strike plate couples the vibrations to the waveguide; anda compliant member extending between the sheath and the waveguide, wherein the compliant member is located at the node of the waveguide to isolate the vibrations from the sheath:wherein the drive plate comprises a cam, wherein the cam is coupled to a generator that operably moves the cam in a circular path, and wherein the cam is in mechanical communication with the strike surface on at least one point on the circular path.
  • 8. The surgical instrument of claim 7, wherein the generator comprises a motor selected from a group of motors comprising: an electric motor, a hydraulic motor, and a pneumatic motor.
  • 9. The surgical instrument of claim 7, comprising: a housing to enclose the cam;an annular projection on the waveguide, wherein the housing is mounted to the waveguide at the annular projection; anda bushing around a portion of the waveguide, wherein the housing fits over the bushing.
  • 10. A surgical instrument, comprising: a sheath;a waveguide positioned at least partially within the sheath and comprising: a distal end;a proximal end;at least one node defined between the distal end and the proximal end;at least one anti-node defined between the distal end and the proximal end; anda longitudinal axis extending between the proximal end and the distal end, wherein the waveguide is configured to transmit ultrasonic vibrations along the longitudinal axis at a predetermined ultrasonic wavelength that establishes the locations of the at least one node and the at least one anti-node between the distal end and the proximal end of the waveguide;an end effector acoustically coupled to and extending from the distal end, wherein the end effector comprises: an end; anda distal-most anti-node positioned at the end;a strike surface coupled to the proximal end, wherein the strike surface is configured to receive vibratory energy in the form of mechanical impacts, and wherein the strike surface imparts the vibrations to the waveguide;at least one compliant member extending between the sheath and the waveguide, wherein the at least one compliant member is located at the at least one node of the waveguide to isolate the vibrations from the sheath; anda driver moveably positioned adjacent to the strike surface, wherein the driver is configured to impart vibratory energy in the form of mechanical impacts to the strike surface, wherein the driver rotates about a hub, and wherein rotation of the driver generates longitudinal vibrations along the waveguide.
  • 11. The surgical instrument of claim 10, wherein the driver comprises a projection, and wherein the projection impacts the strike surface as the driver rotates about the hub.
  • 12. The surgical instrument of claim 10, wherein the driver is coupled to a motor that generates rotation thereof.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a divisional application claiming the benefit under 35 U.S.C. §121 to U.S. patent application Ser. No. 11/726,760, entitled SURGICAL INSTRUMENTS, filed on Mar. 22, 2007, now U.S. Pat. No. 8,226,675, the entire disclosure of which is hereby incorporated by reference herein.

US Referenced Citations (1253)
Number Name Date Kind
969528 Disbrow Sep 1910 A
1570025 Young Jan 1926 A
1813902 Bovie Jul 1931 A
2442966 Wallace Jun 1948 A
2704333 Calosi et al. Mar 1955 A
2736960 Armstrong Mar 1956 A
2849788 Creek Sep 1958 A
2874470 Richards Feb 1959 A
2990616 Balamuth et al. Jul 1961 A
RE25033 Balamuth et al. Aug 1961 E
3015961 Roney Jan 1962 A
3053124 Balamuch et al. Sep 1962 A
3082805 Royce Mar 1963 A
3432691 Shoh Mar 1969 A
3433226 Boyd Mar 1969 A
3489930 Shoh Jan 1970 A
3513848 Winston et al. May 1970 A
3526219 Balamuth Sep 1970 A
3614484 Shoh Oct 1971 A
3616375 Inoue Oct 1971 A
3629726 Popescu Dec 1971 A
3636943 Balamuth Jan 1972 A
3668486 Silver Jun 1972 A
3702948 Balamuth Nov 1972 A
3776238 Peyman et al. Dec 1973 A
3805787 Banko Apr 1974 A
3809977 Balamuth et al. May 1974 A
3830098 Antonevich Aug 1974 A
3854737 Gilliam, Sr. Dec 1974 A
3862630 Balamuth Jan 1975 A
3875945 Friedman Apr 1975 A
3885438 Harris, Sr. et al. May 1975 A
3900823 Sokal et al. Aug 1975 A
3918442 Nikolaev et al. Nov 1975 A
3924335 Balamuth et al. Dec 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
4012647 Balamuth et al. Mar 1977 A
4074719 Semm Feb 1978 A
4156187 Murry et al. May 1979 A
4167944 Banko Sep 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203444 Bonnell et al. May 1980 A
4300083 Heiges Nov 1981 A
4302728 Nakamura Nov 1981 A
4306570 Matthews Dec 1981 A
4445063 Smith Apr 1984 A
4491132 Aikins Jan 1985 A
4494759 Kieffer Jan 1985 A
4504264 Kelman Mar 1985 A
4512344 Barber Apr 1985 A
4526571 Wuchinich Jul 1985 A
4545374 Jacobson Oct 1985 A
4574615 Bower et al. Mar 1986 A
4617927 Manes Oct 1986 A
4633119 Thompson Dec 1986 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4641053 Takeda Feb 1987 A
4646738 Trott Mar 1987 A
4646756 Watmough et al. Mar 1987 A
4649919 Thimsen et al. Mar 1987 A
4662068 Polonsky May 1987 A
4674502 Imonti Jun 1987 A
4708127 Abdelghani Nov 1987 A
4712722 Hood et al. Dec 1987 A
4808154 Freeman Feb 1989 A
4819635 Shapiro Apr 1989 A
4827911 Broadwin et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4836186 Scholz Jun 1989 A
4838853 Parisi Jun 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4852578 Companion et al. Aug 1989 A
4865159 Jamison Sep 1989 A
4867157 McGurk-Burleson et al. Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4881550 Kothe Nov 1989 A
4896009 Pawlowski Jan 1990 A
4903696 Stasz et al. Feb 1990 A
4915643 Samejima et al. Apr 1990 A
4922902 Wuchinich et al. May 1990 A
4965532 Sakurai Oct 1990 A
4979952 Kubota et al. Dec 1990 A
4981756 Rhandhawa Jan 1991 A
5013956 Kurozumi et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5026370 Lottick Jun 1991 A
5026387 Thomas Jun 1991 A
5042707 Taheri Aug 1991 A
5084052 Jacobs Jan 1992 A
5105117 Yamaguchi Apr 1992 A
5109819 Custer et al. May 1992 A
5112300 Ureche May 1992 A
5123903 Quaid et al. Jun 1992 A
5126618 Takahashi et al. Jun 1992 A
D327872 McMills et al. Jul 1992 S
5152762 McElhenney Oct 1992 A
5162044 Gahn et al. Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163537 Radev Nov 1992 A
5167725 Clark et al. Dec 1992 A
5174276 Crockard Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176677 Wuchinich Jan 1993 A
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
D334173 Liu et al. Mar 1993 S
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5214339 Naito May 1993 A
5218529 Meyer et al. Jun 1993 A
5221282 Wuchinich Jun 1993 A
5226909 Evans et al. Jul 1993 A
5226910 Kajiyama et al. Jul 1993 A
5241236 Sasaki et al. Aug 1993 A
5241968 Slater Sep 1993 A
5242460 Klein et al. Sep 1993 A
5254129 Alexander Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5264925 Shipp et al. Nov 1993 A
5275166 Vaitekunas et al. Jan 1994 A
5275609 Pingleton et al. Jan 1994 A
5282800 Foshee et al. Feb 1994 A
5282817 Hoogeboom et al. Feb 1994 A
5285795 Ryan et al. Feb 1994 A
5300068 Rosar et al. Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5312425 Evans et al. May 1994 A
5322055 Davison et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5344420 Hilal et al. Sep 1994 A
5345937 Middleman et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5353474 Good et al. Oct 1994 A
5357164 Imabayashi et al. Oct 1994 A
5357423 Weaver et al. Oct 1994 A
5359994 Krauter et al. Nov 1994 A
5366466 Christian et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5371429 Manna Dec 1994 A
5374813 Shipp Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5387215 Fisher Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5394187 Shipp Feb 1995 A
5396266 Brimhall Mar 1995 A
5403312 Yates et al. Apr 1995 A
5403334 Evans et al. Apr 1995 A
5408268 Shipp Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5423844 Miller Jun 1995 A
5438997 Sieben et al. Aug 1995 A
5445639 Kuslich et al. Aug 1995 A
5449370 Vaitekunas Sep 1995 A
5451220 Ciervo Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5471988 Fujio et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5483501 Park et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5490860 Middle et al. Feb 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5505693 Mackool Apr 1996 A
5507738 Ciervo Apr 1996 A
5527331 Kresch et al. Jun 1996 A
5540693 Fisher Jul 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562659 Morris Oct 1996 A
5573424 Poppe Nov 1996 A
5577654 Bishop Nov 1996 A
5591187 Dekel Jan 1997 A
5593414 Shipp et al. Jan 1997 A
5601601 Tal et al. Feb 1997 A
5603773 Campbell Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5618304 Hart et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5620447 Smith et al. Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
D381077 Hunt Jul 1997 S
5651780 Jackson et al. Jul 1997 A
5653713 Michelson Aug 1997 A
5669922 Hood Sep 1997 A
5674235 Parisi Oct 1997 A
5678568 Uchikubo et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5694936 Fujimoto et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5715817 Stevens-Wright et al. Feb 1998 A
5717306 Shipp Feb 1998 A
5728130 Ishikawa et al. Mar 1998 A
5730752 Alden et al. Mar 1998 A
5733074 Stöck et al. Mar 1998 A
5741226 Strukel et al. Apr 1998 A
5766164 Mueller et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5805140 Rosenberg et al. Sep 1998 A
5808396 Boukhny Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817084 Jensen Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5823197 Edwards Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5833696 Whitfield et al. Nov 1998 A
5836897 Sakurai et al. Nov 1998 A
5836957 Schulz et al. Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5858018 Shipp et al. Jan 1999 A
5873873 Smith et al. Feb 1999 A
5873882 Straub et al. Feb 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5883615 Fago et al. Mar 1999 A
5893835 Witt et al. Apr 1999 A
5897523 Wright et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5903607 Tailliet May 1999 A
5904681 West, Jr. May 1999 A
5906627 Spaulding May 1999 A
5906628 Miyawaki et al. May 1999 A
5911699 Anis et al. Jun 1999 A
5916229 Evans Jun 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
5974342 Petrofsky Oct 1999 A
D416089 Barton et al. Nov 1999 S
5980510 Tsonton et al. Nov 1999 A
5980546 Hood Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993465 Shipp et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
5994855 Lundell et al. Nov 1999 A
6024741 Williamson, IV et al. Feb 2000 A
6024750 Mastri et al. Feb 2000 A
6027515 Cimino Feb 2000 A
6031526 Shipp Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6036667 Manna et al. Mar 2000 A
6036707 Spaulding Mar 2000 A
6048224 Kay Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6051010 DiMatteo et al. Apr 2000 A
6056735 Okada et al. May 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6066151 Miyawaki et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068647 Witt et al. May 2000 A
6077285 Boukhny Jun 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6096033 Tu et al. Aug 2000 A
6099542 Cohn et al. Aug 2000 A
6109500 Alli et al. Aug 2000 A
6110127 Suzuki Aug 2000 A
6113594 Savage Sep 2000 A
6117152 Huitema Sep 2000 A
6126629 Perkins Oct 2000 A
6129735 Okada et al. Oct 2000 A
6129740 Michelson Oct 2000 A
6132368 Cooper Oct 2000 A
6132427 Jones et al. Oct 2000 A
6132448 Perez et al. Oct 2000 A
6139320 Hahn Oct 2000 A
6139561 Shibata et al. Oct 2000 A
6142615 Qiu et al. Nov 2000 A
6142994 Swanson et al. Nov 2000 A
6147560 Erhage et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6154198 Rosenberg Nov 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162194 Shipp Dec 2000 A
6165150 Banko Dec 2000 A
6174310 Kirwan, Jr. Jan 2001 B1
6179853 Sachse et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6193709 Miyawaki et al. Feb 2001 B1
6204592 Hur Mar 2001 B1
6205855 Pfeiffer Mar 2001 B1
6206844 Reichel et al. Mar 2001 B1
6210337 Dunham et al. Apr 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6245065 Panescu et al. Jun 2001 B1
6252110 Uemura et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
D445092 Lee Jul 2001 S
D445764 Lee Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6257241 Wampler Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6280407 Manna et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6287344 Wampler et al. Sep 2001 B1
6290575 Shipp Sep 2001 B1
6306157 Shchervinsky Oct 2001 B1
6309400 Beaupre Oct 2001 B2
6319221 Savage et al. Nov 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6332891 Himes Dec 2001 B1
6338657 Harper et al. Jan 2002 B1
6340352 Okada et al. Jan 2002 B1
6350269 Shipp et al. Feb 2002 B1
6352532 Kramer et al. Mar 2002 B1
6358264 Banko Mar 2002 B2
6364888 Niemeyer et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6384690 Wilhelmsson et al. May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6402743 Orszulak et al. Jun 2002 B1
6402748 Schoenman et al. Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6416486 Wampler Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6428539 Baxter et al. Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6440062 Ouchi Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6449006 Shipp Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458142 Faller et al. Oct 2002 B1
6475215 Tanrisever Nov 2002 B1
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6500312 Wedekamp Dec 2002 B2
6506208 Hunt et al. Jan 2003 B2
6511478 Burnside et al. Jan 2003 B1
6511493 Moutafis et al. Jan 2003 B1
6514267 Jewett Feb 2003 B2
6524251 Rabiner et al. Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6527736 Attinger et al. Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6543452 Lavigne Apr 2003 B1
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6565558 Lindenmeier et al. May 2003 B1
6572563 Ouchi Jun 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
D477408 Bromley Jul 2003 S
6588277 Giordano et al. Jul 2003 B2
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6607540 Shipp Aug 2003 B1
6610059 West, Jr. Aug 2003 B1
6616450 Mossle et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6623500 Cook et al. Sep 2003 B1
6623501 Heller et al. Sep 2003 B2
6626848 Neuenfeldt Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6629974 Penny et al. Oct 2003 B2
6633234 Wiener et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652539 Shipp et al. Nov 2003 B2
6652545 Shipp et al. Nov 2003 B2
6656132 Ouchi Dec 2003 B1
6656177 Truckai et al. Dec 2003 B2
6660017 Beaupre Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6666860 Takahashi Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6669690 Okada et al. Dec 2003 B1
6669710 Moutafis et al. Dec 2003 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Stulen et al. Jan 2004 B2
6679875 Honda et al. Jan 2004 B2
6679899 Wiener et al. Jan 2004 B2
6682544 Mastri et al. Jan 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685703 Pearson et al. Feb 2004 B2
6689145 Lee et al. Feb 2004 B2
6689146 Himes Feb 2004 B1
6716215 David et al. Apr 2004 B1
6719692 Kleffner et al. Apr 2004 B2
6719776 Baxter et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
D490059 Conway et al. May 2004 S
6731047 Kauf et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6739872 Turri May 2004 B1
6740079 Eggers et al. May 2004 B1
D491666 Kimmell et al. Jun 2004 S
6743245 Lobdell Jun 2004 B2
6746284 Spink, Jr. Jun 2004 B1
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6761698 Shibata et al. Jul 2004 B2
6762535 Take et al. Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773443 Truwit et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6778023 Christensen Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6790173 Saadat et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6809508 Donofrio Oct 2004 B2
6810281 Brock et al. Oct 2004 B2
6827712 Tovey et al. Dec 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6835082 Gonnering Dec 2004 B2
6849073 Hoey et al. Feb 2005 B2
6860878 Brock Mar 2005 B2
6863676 Lee et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Ratcliff et al. Apr 2005 B2
6882439 Ishijima Apr 2005 B2
6887209 Kadziauskas et al. May 2005 B2
6887252 Okada et al. May 2005 B1
6899685 Kermode et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6915623 Dey et al. Jul 2005 B2
6923804 Eggers et al. Aug 2005 B2
6926712 Phan Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929602 Hirakui et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6933656 Matsushita et al. Aug 2005 B2
D509589 Wells Sep 2005 S
6942660 Pantera et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6946779 Birgel Sep 2005 B2
6948503 Refior et al. Sep 2005 B2
D511145 Donofrio et al. Nov 2005 S
6974450 Weber et al. Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6979332 Adams Dec 2005 B2
6981628 Wales Jan 2006 B2
6984220 Wuchinich Jan 2006 B2
6994708 Manzo Feb 2006 B2
7001335 Adachi et al. Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7014638 Michelson Mar 2006 B2
7033357 Baxter et al. Apr 2006 B2
7037306 Podany May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044949 Orszulak et al. May 2006 B2
7066893 Hibner et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077845 Hacker et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090672 Underwood et al. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101378 Salameh et al. Sep 2006 B2
7104834 Robinson et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
D531311 Guerra et al. Oct 2006 S
7117034 Kronberg Oct 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7128720 Podany Oct 2006 B2
7131860 Sartor et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7144403 Booth Dec 2006 B2
7153315 Miller Dec 2006 B2
D536093 Nakajima et al. Jan 2007 S
7156189 Bar-Cohen et al. Jan 2007 B1
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7179254 Pendekanti et al. Feb 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7204820 Akahoshi Apr 2007 B2
7207997 Shipp et al. Apr 2007 B2
7210881 Greenberg May 2007 B2
7211079 Treat May 2007 B2
7217128 Atkin et al. May 2007 B2
7217269 El-Galley et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7235071 Gonnering Jun 2007 B2
7244262 Wiener et al. Jul 2007 B2
7258688 Shah et al. Aug 2007 B1
7269873 Brewer et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
D552241 Bromley et al. Oct 2007 S
7282048 Goble et al. Oct 2007 B2
7285895 Beaupré Oct 2007 B2
7300431 Dubrovsky Nov 2007 B2
7300435 Wham et al. Nov 2007 B2
7300446 Beaupre Nov 2007 B2
7303531 Lee et al. Dec 2007 B2
7303557 Wham et al. Dec 2007 B2
7306597 Manzo Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311706 Schoenman et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7318831 Alvarez et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7335165 Truwit et al. Feb 2008 B2
7335997 Wiener Feb 2008 B2
7337010 Howard et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7408288 Hara Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7416437 Sartor et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7419490 Falkenstein et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7422463 Kuo Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431704 Babaev Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7455208 Wales et al. Nov 2008 B2
7462181 Kraft et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7481775 Weikel, Jr. et al. Jan 2009 B2
7488285 Honda et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7502234 Goliszek et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7503895 Rabiner et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530986 Beaupre et al. May 2009 B2
7534243 Chin et al. May 2009 B1
D594983 Price et al. Jun 2009 S
7540871 Gonnering Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7559450 Wales et al. Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7572266 Young et al. Aug 2009 B2
7578820 Moore et al. Aug 2009 B2
7582084 Swanson et al. Sep 2009 B2
7582095 Shipp et al. Sep 2009 B2
7585181 Olsen Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7601119 Shahinian Oct 2009 B2
7621930 Houser Nov 2009 B2
7641653 Dalla et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7659833 Warner et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7670338 Albrecht et al. Mar 2010 B2
7674263 Ryan Mar 2010 B2
7678069 Baker et al. Mar 2010 B1
7678125 Shipp Mar 2010 B2
7682366 Sakurai et al. Mar 2010 B2
7686770 Cohen Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7713202 Boukhny et al. May 2010 B2
7714481 Sakai May 2010 B2
7717312 Beetel May 2010 B2
7717915 Miyazawa May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7727177 Bayat Jun 2010 B2
7738969 Bleich Jun 2010 B2
7740594 Hibner Jun 2010 B2
7751115 Song Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766693 Sartor et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7771425 Dycus et al. Aug 2010 B2
7771444 Patel et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780593 Ueno et al. Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7796969 Kelly et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799020 Shores et al. Sep 2010 B2
7799045 Masuda Sep 2010 B2
7803152 Honda et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7811283 Moses et al. Oct 2010 B2
7819819 Quick et al. Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7834484 Sartor Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846155 Houser et al. Dec 2010 B2
7846161 Dumbauld et al. Dec 2010 B2
7854735 Houser et al. Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7876030 Taki et al. Jan 2011 B2
D631965 Price et al. Feb 2011 S
7878991 Babaev Feb 2011 B2
7879033 Sartor et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909824 Masuda et al. Mar 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7936203 Zimlich May 2011 B2
7951095 Makin et al. May 2011 B2
7951165 Golden et al. May 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7972329 Refior et al. Jul 2011 B2
7976544 McClurken et al. Jul 2011 B2
7981050 Ritchart et al. Jul 2011 B2
7998157 Culp et al. Aug 2011 B2
8038693 Allen Oct 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8070711 Bassinger et al. Dec 2011 B2
8070762 Escudero et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8089197 Rinner et al. Jan 2012 B2
8097012 Kagarise Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8142461 Houser et al. Mar 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162966 Connor et al. Apr 2012 B2
8172846 Brunnett et al. May 2012 B2
8172870 Shipp May 2012 B2
8177800 Spitz et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186877 Klimovitch et al. May 2012 B2
D661801 Price et al. Jun 2012 S
D661802 Price et al. Jun 2012 S
D661803 Price et al. Jun 2012 S
D661804 Price et al. Jun 2012 S
8197472 Lau et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8235917 Joseph et al. Aug 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8246575 Viola Aug 2012 B2
8246615 Behnke Aug 2012 B2
8252012 Stulen Aug 2012 B2
8253303 Giordano et al. Aug 2012 B2
8257377 Wiener et al. Sep 2012 B2
8257387 Cunningham Sep 2012 B2
8273087 Kimura et al. Sep 2012 B2
D669992 Schafer et al. Oct 2012 S
D669993 Merchant et al. Oct 2012 S
8286846 Smith et al. Oct 2012 B2
8287485 Kimura et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298223 Wham et al. Oct 2012 B2
8298225 Gilbert Oct 2012 B2
8303576 Brock Nov 2012 B2
8303580 Wham et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8323302 Robertson et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8337407 Quistgaard et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8344596 Nield et al. Jan 2013 B2
8357103 Mark et al. Jan 2013 B2
8372101 Smith et al. Feb 2013 B2
8374670 Selkee Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382748 Geisel Feb 2013 B2
8382775 Bender et al. Feb 2013 B1
8418349 Smith et al. Apr 2013 B2
8439912 Cunningham et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444637 Podmore et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
D687549 Johnson et al. Aug 2013 S
8506555 Morales Aug 2013 B2
8509318 Tailliet Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8568400 Gilbert Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
D695407 Price et al. Dec 2013 S
D696631 Price et al. Dec 2013 S
8602031 Reis et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8659208 Rose et al. Feb 2014 B1
8690582 Rohrbach et al. Apr 2014 B2
8696366 Chen et al. Apr 2014 B2
8704425 Giordano et al. Apr 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8754570 Voegele et al. Jun 2014 B2
8764735 Coe et al. Jul 2014 B2
8773001 Wiener et al. Jul 2014 B2
8779648 Giordano et al. Jul 2014 B2
8827992 Koss et al. Sep 2014 B2
8845537 Tanaka et al. Sep 2014 B2
8888776 Dietz et al. Nov 2014 B2
8968355 Malkowski et al. Mar 2015 B2
8974477 Yamada Mar 2015 B2
8986287 Park et al. Mar 2015 B2
8989903 Weir et al. Mar 2015 B2
9050124 Houser Jun 2015 B2
9066747 Robertson Jun 2015 B2
9095367 Olson et al. Aug 2015 B2
9107689 Robertson et al. Aug 2015 B2
20010025173 Ritchie et al. Sep 2001 A1
20010025183 Shahidi et al. Sep 2001 A1
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020052617 Anis et al. May 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020156466 Sakurai et al. Oct 2002 A1
20020156493 Houser et al. Oct 2002 A1
20030014087 Fang et al. Jan 2003 A1
20030036705 Hare et al. Feb 2003 A1
20030050572 Brautigam et al. Mar 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030144680 Kellogg et al. Jul 2003 A1
20030199794 Sakurai et al. Oct 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030212363 Shipp Nov 2003 A1
20030212392 Fenton et al. Nov 2003 A1
20030212422 Fenton et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040064151 Mollenauer Apr 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040097912 Gonnering May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040132383 Langford et al. Jul 2004 A1
20040147934 Kiester Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040176686 Hare et al. Sep 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040204728 Haefner Oct 2004 A1
20040243147 Lipow Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20050021018 Anderson et al. Jan 2005 A1
20050021065 Yamada et al. Jan 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050049546 Messerly et al. Mar 2005 A1
20050065529 Liu et al. Mar 2005 A1
20050070800 Takahashi Mar 2005 A1
20050096683 Ellins et al. May 2005 A1
20050099824 Dowling et al. May 2005 A1
20050103819 Racenet et al. May 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165345 Laufer et al. Jul 2005 A1
20050177184 Easley Aug 2005 A1
20050182339 Lee et al. Aug 2005 A1
20050188743 Land Sep 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050209620 Du et al. Sep 2005 A1
20050222598 Ho et al. Oct 2005 A1
20050234484 Houser et al. Oct 2005 A1
20050249667 Tuszynski et al. Nov 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261581 Hughes et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050273090 Nieman et al. Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060030797 Zhou et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060066181 Bromfield et al. Mar 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060079878 Houser Apr 2006 A1
20060079879 Faller et al. Apr 2006 A1
20060084963 Messerly Apr 2006 A1
20060095046 Trieu et al. May 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060206115 Schomer et al. Sep 2006 A1
20060211943 Beaupre Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060235306 Cotter et al. Oct 2006 A1
20060247558 Yamada Nov 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060264809 Hansmann et al. Nov 2006 A1
20060271030 Francis et al. Nov 2006 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070056596 Fanney et al. Mar 2007 A1
20070060915 Kucklick Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070074584 Talarico et al. Apr 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070129716 Daw et al. Jun 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070131034 Ehlert et al. Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070162050 Sartor Jul 2007 A1
20070166663 Telles et al. Jul 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070175949 Shelton, IV et al. Aug 2007 A1
20070185380 Kucklick Aug 2007 A1
20070191712 Messerly et al. Aug 2007 A1
20070219481 Babaev Sep 2007 A1
20070239028 Houser et al. Oct 2007 A1
20070239101 Kellogg Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260234 McCullagh et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070282335 Young et al. Dec 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080009848 Paraschiv et al. Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080051812 Schmitz et al. Feb 2008 A1
20080058585 Novak et al. Mar 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080077145 Boyden et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080114364 Goldin et al. May 2008 A1
20080125768 Tahara et al. May 2008 A1
20080140158 Hamel et al. Jun 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080171938 Masuda et al. Jul 2008 A1
20080172051 Masuda et al. Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188878 Young Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208108 Kimura Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080234710 Neurohr et al. Sep 2008 A1
20080243106 Coe et al. Oct 2008 A1
20080243162 Shibata et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249553 Gruber et al. Oct 2008 A1
20080255423 Kondo et al. Oct 2008 A1
20080262490 Williams Oct 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20090023985 Ewers Jan 2009 A1
20090030311 Stulen et al. Jan 2009 A1
20090030437 Houser et al. Jan 2009 A1
20090030438 Stulen Jan 2009 A1
20090030439 Stulen Jan 2009 A1
20090036912 Wiener et al. Feb 2009 A1
20090036913 Wiener et al. Feb 2009 A1
20090036914 Houser Feb 2009 A1
20090048537 Lydon et al. Feb 2009 A1
20090054886 Yachi et al. Feb 2009 A1
20090054894 Yachi Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090105750 Price et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090118751 Wiener et al. May 2009 A1
20090118802 Mioduski et al. May 2009 A1
20090138006 Bales et al. May 2009 A1
20090143797 Smith et al. Jun 2009 A1
20090143798 Smith et al. Jun 2009 A1
20090143799 Smith et al. Jun 2009 A1
20090143800 Deville et al. Jun 2009 A1
20090143801 Deville et al. Jun 2009 A1
20090143802 Deville et al. Jun 2009 A1
20090143803 Palmer et al. Jun 2009 A1
20090143804 Palmer et al. Jun 2009 A1
20090143805 Palmer et al. Jun 2009 A1
20090143806 Witt et al. Jun 2009 A1
20090149801 Crandall et al. Jun 2009 A1
20090207923 Dress Aug 2009 A1
20090216157 Yamada Aug 2009 A1
20090223033 Houser Sep 2009 A1
20090254077 Craig Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270812 Litscher et al. Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090270899 Carusillo et al. Oct 2009 A1
20090275940 Malackowski et al. Nov 2009 A1
20090318945 Yoshimine et al. Dec 2009 A1
20090327715 Smith et al. Dec 2009 A1
20100004508 Naito et al. Jan 2010 A1
20100004668 Smith et al. Jan 2010 A1
20100004669 Smith et al. Jan 2010 A1
20100016785 Takuma Jan 2010 A1
20100016852 Manzo et al. Jan 2010 A1
20100022825 Yoshie Jan 2010 A1
20100030233 Whitman et al. Feb 2010 A1
20100030248 Palmer et al. Feb 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100042077 Okada Feb 2010 A1
20100049180 Wells et al. Feb 2010 A1
20100063525 Beaupre et al. Mar 2010 A1
20100063528 Beaupré Mar 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100193567 Scheib et al. Aug 2010 A1
20100222714 Muir et al. Sep 2010 A1
20100228264 Robinson et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100262134 Jensen et al. Oct 2010 A1
20100268211 Manwaring et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100280407 Polster Nov 2010 A1
20100292691 Brogna Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20100298851 Nield Nov 2010 A1
20100331742 Masuda Dec 2010 A1
20100331870 Wan et al. Dec 2010 A1
20110004233 Muir et al. Jan 2011 A1
20110009850 Main et al. Jan 2011 A1
20110015627 DiNardo et al. Jan 2011 A1
20110015631 Wiener et al. Jan 2011 A1
20110015660 Wiener et al. Jan 2011 A1
20110077648 Lee et al. Mar 2011 A1
20110082486 Messerly et al. Apr 2011 A1
20110087212 Aldridge et al. Apr 2011 A1
20110087213 Messerly et al. Apr 2011 A1
20110087214 Giordano et al. Apr 2011 A1
20110087215 Aldridge et al. Apr 2011 A1
20110087216 Aldridge et al. Apr 2011 A1
20110087217 Yates et al. Apr 2011 A1
20110087218 Boudreaux et al. Apr 2011 A1
20110087256 Wiener et al. Apr 2011 A1
20110112526 Fritz et al. May 2011 A1
20110125151 Strauss et al. May 2011 A1
20110125174 Babaev May 2011 A1
20110144806 Sandhu et al. Jun 2011 A1
20110196286 Robertson et al. Aug 2011 A1
20110196398 Robertson et al. Aug 2011 A1
20110196399 Robertson et al. Aug 2011 A1
20110196400 Robertson et al. Aug 2011 A1
20110196401 Robertson et al. Aug 2011 A1
20110196402 Robertson et al. Aug 2011 A1
20110196403 Robertson et al. Aug 2011 A1
20110196404 Dietz et al. Aug 2011 A1
20110196405 Dietz Aug 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110238065 Hunt et al. Sep 2011 A1
20110257650 Deville et al. Oct 2011 A1
20110270126 Gunday et al. Nov 2011 A1
20110288452 Houser et al. Nov 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20120004655 Kim et al. Jan 2012 A1
20120022525 Dietz et al. Jan 2012 A1
20120022530 Woodruff et al. Jan 2012 A1
20120022583 Sugalski et al. Jan 2012 A1
20120029546 Robertson Feb 2012 A1
20120059289 Nield et al. Mar 2012 A1
20120065628 Naito Mar 2012 A1
20120071863 Lee et al. Mar 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078243 Worrell et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120078247 Worrell et al. Mar 2012 A1
20120078278 Bales, Jr. et al. Mar 2012 A1
20120080332 Shelton, IV et al. Apr 2012 A1
20120083783 Davison et al. Apr 2012 A1
20120083784 Davison et al. Apr 2012 A1
20120101495 Young et al. Apr 2012 A1
20120109159 Jordan et al. May 2012 A1
20120116379 Yates et al. May 2012 A1
20120116391 Houser et al. May 2012 A1
20120116394 Timm et al. May 2012 A1
20120116395 Madan et al. May 2012 A1
20120130256 Buysse et al. May 2012 A1
20120130365 McLawhorn May 2012 A1
20120136354 Rupp May 2012 A1
20120138660 Shelton, IV Jun 2012 A1
20120143211 Kishi Jun 2012 A1
20120150170 Buysse et al. Jun 2012 A1
20120165816 Kersten et al. Jun 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120172904 Muir et al. Jul 2012 A1
20120177005 Liang et al. Jul 2012 A1
20120184946 Price et al. Jul 2012 A1
20120199630 Shelton, IV Aug 2012 A1
20120199632 Spivey et al. Aug 2012 A1
20120203143 Sanai et al. Aug 2012 A1
20120203247 Shelton, IV et al. Aug 2012 A1
20120203257 Stulen et al. Aug 2012 A1
20120209289 Duque et al. Aug 2012 A1
20120209303 Frankhouser et al. Aug 2012 A1
20120210223 Eppolito Aug 2012 A1
20120215220 Manzo et al. Aug 2012 A1
20120245582 Kimball et al. Sep 2012 A1
20120253370 Ross et al. Oct 2012 A1
20120259353 Houser et al. Oct 2012 A1
20120265196 Turner et al. Oct 2012 A1
20120289984 Houser et al. Nov 2012 A1
20120310262 Messerly et al. Dec 2012 A1
20120310263 Messerly et al. Dec 2012 A1
20120310264 Messerly et al. Dec 2012 A1
20120323265 Stulen Dec 2012 A1
20120330307 Ladtkow et al. Dec 2012 A1
20130012957 Shelton, IV et al. Jan 2013 A1
20130030433 Heard Jan 2013 A1
20130035680 Ben-Haim et al. Feb 2013 A1
20130053840 Krapohl et al. Feb 2013 A1
20130072856 Frankhouser et al. Mar 2013 A1
20130072857 Frankhouser et al. Mar 2013 A1
20130079762 Twomey et al. Mar 2013 A1
20130103023 Monson et al. Apr 2013 A1
20130103024 Monson et al. Apr 2013 A1
20130110145 Weitzman May 2013 A1
20130123776 Monson et al. May 2013 A1
20130123777 Monson et al. May 2013 A1
20130123782 Trees et al. May 2013 A1
20130123822 Wellman et al. May 2013 A1
20130131660 Monson et al. May 2013 A1
20130165929 Muir et al. Jun 2013 A1
20130211397 Parihar et al. Aug 2013 A1
20130217967 Mohr et al. Aug 2013 A1
20130226207 Stulen et al. Aug 2013 A1
20130226208 Wiener et al. Aug 2013 A1
20130245659 Robertson et al. Sep 2013 A1
20130267975 Timm et al. Oct 2013 A1
20130274734 Maass et al. Oct 2013 A1
20130282003 Messerly et al. Oct 2013 A1
20130282038 Dannaher et al. Oct 2013 A1
20130282039 Wiener et al. Oct 2013 A1
20130285758 Aldridge et al. Oct 2013 A1
20130289591 Boudreaux et al. Oct 2013 A1
20130296908 Schulte et al. Nov 2013 A1
20130338661 Behnke, II Dec 2013 A1
20130345689 Ruddenklau et al. Dec 2013 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005653 Shelton, IV et al. Jan 2014 A1
20140005654 Batross et al. Jan 2014 A1
20140005656 Mucilli et al. Jan 2014 A1
20140005661 Shelton, IV et al. Jan 2014 A1
20140005662 Shelton, IV et al. Jan 2014 A1
20140005667 Stulen et al. Jan 2014 A1
20140005668 Rhee et al. Jan 2014 A1
20140005676 Shelton, IV et al. Jan 2014 A1
20140005680 Shelton, IV et al. Jan 2014 A1
20140005681 Gee et al. Jan 2014 A1
20140005682 Worrell et al. Jan 2014 A1
20140005701 Olson et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005703 Stulen et al. Jan 2014 A1
20140005704 Vakharia et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005708 Shelton, IV et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140012299 Stoddard et al. Jan 2014 A1
20140066962 Robertson et al. Mar 2014 A1
20140087569 Lee Mar 2014 A1
20140107538 Wiener et al. Apr 2014 A1
20140114327 Boudreaux et al. Apr 2014 A1
20140135804 Weisenburgh, II et al. May 2014 A1
20140155921 Price et al. Jun 2014 A1
20140180280 Sigmon, Jr. Jun 2014 A1
20140243864 Voegele et al. Aug 2014 A1
20140276738 Price et al. Sep 2014 A1
20140276970 Messerly et al. Sep 2014 A1
20140336686 Houser et al. Nov 2014 A1
20150045819 Houser et al. Feb 2015 A1
20150066067 Stulen Mar 2015 A1
20150073460 Stulen Mar 2015 A1
20150112335 Boudreaux et al. Apr 2015 A1
20150119914 Neurohr et al. Apr 2015 A1
20150119915 Neurohr et al. Apr 2015 A1
20150119916 Dietz et al. Apr 2015 A1
20150123348 Robertson et al. May 2015 A1
20150157355 Price et al. Jun 2015 A1
20150157356 Gee Jun 2015 A1
20150164533 Felder et al. Jun 2015 A1
20150164534 Felder et al. Jun 2015 A1
20150164535 Felder et al. Jun 2015 A1
20150164536 Czarnecki et al. Jun 2015 A1
20150164537 Cagle et al. Jun 2015 A1
20150164538 Aldridge et al. Jun 2015 A1
20150182251 Messerly et al. Jul 2015 A1
20150182276 Wiener et al. Jul 2015 A1
20150182277 Wiener et al. Jul 2015 A1
20150196318 Messerly et al. Jul 2015 A1
Foreign Referenced Citations (260)
Number Date Country
2003241752 Sep 2003 AU
1634601 Jul 2005 CN
1640365 Jul 2005 CN
1694649 Nov 2005 CN
1922563 Feb 2007 CN
1951333 Apr 2007 CN
101040799 Sep 2007 CN
101467917 Jan 2009 CN
3904558 Aug 1990 DE
9210327 Nov 1992 DE
4323585 Jan 1995 DE
19608716 Apr 1997 DE
20021619 Mar 2001 DE
10042606 Aug 2001 DE
0136855 Sep 1984 EP
0171967 Feb 1986 EP
1839599 Oct 1987 EP
0336742 Apr 1989 EP
0342448 Nov 1989 EP
0424685 May 1991 EP
0443256 Aug 1991 EP
0456470 Nov 1991 EP
0598976 Jan 1994 EP
0677275 Mar 1995 EP
0482195 Jan 1996 EP
0695535 Feb 1996 EP
0741996 Nov 1996 EP
0612570 Jun 1997 EP
1108394 Jun 2001 EP
0908148 Jan 2002 EP
1229515 Aug 2002 EP
1285634 Feb 2003 EP
0908155 Jun 2003 EP
0705570 Apr 2004 EP
0765637 Jul 2004 EP
0870473 Sep 2005 EP
0624346 Nov 2005 EP
1594209 Nov 2005 EP
1199044 Dec 2005 EP
1609428 Dec 2005 EP
1199043 Mar 2006 EP
1433425 Jun 2006 EP
1256323 Sep 2006 EP
1698289 Sep 2006 EP
1704824 Sep 2006 EP
1749479 Feb 2007 EP
1815950 Aug 2007 EP
1844720 Oct 2007 EP
1862133 Dec 2007 EP
1875875 Jan 2008 EP
1199045 Jun 2008 EP
1964530 Sep 2008 EP
1972264 Sep 2008 EP
1974771 Oct 2008 EP
1435852 Dec 2008 EP
1498082 Dec 2008 EP
1707131 Dec 2008 EP
1997438 Dec 2008 EP
1477104 Jan 2009 EP
2014218 Jan 2009 EP
2042112 Apr 2009 EP
1832259 Jun 2009 EP
2074959 Jul 2009 EP
2106758 Oct 2009 EP
2111813 Oct 2009 EP
2200145 Jun 2010 EP
1214913 Jul 2010 EP
2238938 Oct 2010 EP
2298154 Mar 2011 EP
1510178 Jun 2011 EP
2305144 Jun 2011 EP
2335630 Jun 2011 EP
1502551 Jul 2011 EP
2361562 Aug 2011 EP
2365608 Sep 2011 EP
2422721 Feb 2012 EP
1927321 Apr 2012 EP
2510891 Oct 2012 EP
2316359 Mar 2013 EP
1586275 May 2013 EP
1616529 Sep 2013 EP
2583633 Oct 2014 EP
1482943 Aug 1977 GB
2032221 Apr 1980 GB
2379878 Nov 2004 GB
2447767 Aug 2011 GB
S 50-100891 Dec 1973 JP
S 5968513 Oct 1982 JP
S 59141938 Aug 1984 JP
62-221343 Sep 1987 JP
S 62227343 Oct 1987 JP
62-2292153 Dec 1987 JP
S 62292154 Dec 1987 JP
63-109386 May 1988 JP
63-315049 Dec 1988 JP
H 01-151452 Jun 1989 JP
H 01-198540 Aug 1989 JP
02-71510 May 1990 JP
2-286149 Nov 1990 JP
H 02-292193 Dec 1990 JP
H 03-37061 Feb 1991 JP
04-25707 Feb 1992 JP
H 04-64351 Feb 1992 JP
4-30508 Mar 1992 JP
H 04-150847 May 1992 JP
H 04-152942 May 1992 JP
05-095955 Apr 1993 JP
H 05-115490 May 1993 JP
H 06-070938 Mar 1994 JP
6-104503 Apr 1994 JP
6-507081 Aug 1994 JP
H 06-217988 Aug 1994 JP
H 7-508910 Oct 1995 JP
7-308323 Nov 1995 JP
8-24266 Jan 1996 JP
8-275951 Oct 1996 JP
H 08-299351 Nov 1996 JP
H 08-336545 Dec 1996 JP
H 09-503146 Mar 1997 JP
H 09-135553 May 1997 JP
H 09-140722 Jun 1997 JP
H 10-005237 Jan 1998 JP
10-295700 Nov 1998 JP
H 11-501543 Feb 1999 JP
H 11-128238 May 1999 JP
H 11-192235 Jul 1999 JP
11-253451 Sep 1999 JP
H 11-318918 Nov 1999 JP
2000-041991 Feb 2000 JP
2000-070279 Mar 2000 JP
2000-210299 Aug 2000 JP
2000-287987 Oct 2000 JP
2001-029353 Feb 2001 JP
2001-502216 Feb 2001 JP
2003612 Jun 2001 JP
2001-309925 Nov 2001 JP
2002-186901 Jul 2002 JP
2002-204808 Jul 2002 JP
2002-263579 Sep 2002 JP
2002-301086 Oct 2002 JP
2002-330977 Nov 2002 JP
2002-542690 Dec 2002 JP
2003-000612 Jan 2003 JP
2003-010201 Jan 2003 JP
2003-510158 Mar 2003 JP
2003-116870 Apr 2003 JP
2003-126110 May 2003 JP
2003-310627 May 2003 JP
2003-530921 Oct 2003 JP
2003-339730 Dec 2003 JP
2004-147701 May 2004 JP
2005027026 Jan 2005 JP
2005-040222 Feb 2005 JP
2005-066316 Mar 2005 JP
2005-074088 Mar 2005 JP
2005-534451 Nov 2005 JP
2006-6410 Jan 2006 JP
2006-512149 Apr 2006 JP
2006-16194 May 2006 JP
2006-158525 Jun 2006 JP
2006-218296 Aug 2006 JP
2006217716 Aug 2006 JP
2006-288431 Oct 2006 JP
2007-050181 Mar 2007 JP
2003-126104 May 2007 JP
2007-229454 Sep 2007 JP
2007-527747 Oct 2007 JP
2008-508065 Mar 2008 JP
2008-119250 May 2008 JP
2008-521503 Jun 2008 JP
2008-212679 Sep 2008 JP
2008-536562 Sep 2008 JP
2008-284374 Nov 2008 JP
2009-511206 Mar 2009 JP
2009-517181 Apr 2009 JP
4262923 May 2009 JP
2009-523567 Jun 2009 JP
2009-236177 Oct 2009 JP
2009-254819 Nov 2009 JP
2010-000336 Jan 2010 JP
2010-514923 May 2010 JP
2010-534522 Nov 2010 JP
2010-540186 Dec 2010 JP
2011-505198 Feb 2011 JP
2012-235658 Nov 2012 JP
528761 Jun 2013 JP
WO 9222259 Dec 1992 WO
WO 9308757 May 1993 WO
WO 2013062978 May 1993 WO
WO 9314708 Aug 1993 WO
WO 9316646 Sep 1993 WO
WO 9320877 Oct 1993 WO
WO 9321183 Sep 1994 WO
WO 9424949 Nov 1994 WO
WO 9509572 Apr 1995 WO
WO 9630885 Oct 1996 WO
WO 9639086 Dec 1996 WO
WO 9816156 Apr 1998 WO
WO 9826739 Jun 1998 WO
WO 9835621 Aug 1998 WO
WO 9837815 Sep 1998 WO
WO 9920213 Apr 1999 WO
WO 9952489 Oct 1999 WO
WO 0064358 Nov 2000 WO
WO 0074585 Dec 2000 WO
WO 0154590 Aug 2001 WO
WO 0167970 Sep 2001 WO
WO 0195810 Dec 2001 WO
WO 0224080 Mar 2002 WO
WO 0238057 May 2002 WO
WO 02062241 Aug 2002 WO
WO 03082133 Oct 2003 WO
WO 2004012615 Feb 2004 WO
WO 2004026104 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004037095 May 2004 WO
WO 2004984226 Nov 2004 WO
WO 2004112618 Dec 2004 WO
WO 2005122917 Dec 2005 WO
WO 2006012797 Feb 2006 WO
WO 2006042210 Apr 2006 WO
WO 2006058223 Jun 2006 WO
WO 2006063199 Jun 2006 WO
WO 2006083988 Aug 2006 WO
WO 2006119139 Nov 2006 WO
WO 2006119376 Nov 2006 WO
WO 2006129465 Dec 2006 WO
WO 2007008703 Jan 2007 WO
WO 2007008710 Jan 2007 WO
WO 2007040818 Apr 2007 WO
WO 2007047380 Apr 2007 WO
WO 2007047531 Apr 2007 WO
WO 2007056590 May 2007 WO
WO 2007087272 Aug 2007 WO
WO 2007143665 Dec 2007 WO
WO 2008016886 Feb 2008 WO
WO 2008042021 Apr 2008 WO
WO 2008049084 Apr 2008 WO
WO 2008051764 Apr 2008 WO
WO 2008089174 Jul 2008 WO
WO 2008118709 Oct 2008 WO
WO 2008130793 Oct 2008 WO
WO 2009018067 Feb 2009 WO
WO 2009018406 Feb 2009 WO
WO 2009027065 Mar 2009 WO
WO 2009046234 Apr 2009 WO
WO 2009073402 Jun 2009 WO
WO 2009120992 Oct 2009 WO
WO 2010068783 Jun 2010 WO
WO 2011008672 Jan 2011 WO
WO 2011052938 May 2011 WO
WO 2011100321 Aug 2011 WO
WO 2011144911 Nov 2011 WO
WO 2012061722 May 2012 WO
WO 2012128362 Sep 2012 WO
WO 2012135705 Oct 2012 WO
WO 2012135721 Oct 2012 WO
WO 2013018934 Feb 2013 WO
Non-Patent Literature Citations (46)
Entry
International Search Report for PCT/US08/57441, Nov. 4, 2008 (5 pages).
Australian Patent Examination Report No. 1, Application No. 2008231089, dated Sep. 7, 2012 (5 pages).
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Incropera et al., Fundamentals of Heat and Mass Transfer, Wiley, New York (1990). (Book—not attached).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
U.S. Appl. No. 29/404,676, filed Oct. 24, 2011.
U.S. Appl. No. 13/151,181, filed Jun. 2, 2011.
U.S. Appl. No. 13/369,561, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,569, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,578, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,584, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,588, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,594, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,601 filed Feb. 9, 2012.
U.S. Appl. No. 13/369,609, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,629, filed Feb. 9, 2012.
U.S. Appl. No. 13/369,666, filed Feb. 9, 2012.
U.S. Appl. No. 13/545,292, filed Jul. 10, 2012.
U.S. Appl. No. 13/584,020, filed Aug. 13, 2012.
U.S. Appl. No. 13/584,445, filed Aug. 13, 2012.
European Examination Report for 08732446.3, dated Oct. 30, 2013 (6 pages).
Sullivan, “Cost-Constrainted Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding”, IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding”, IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Graff, K.F., “Elastic Wave Propagation in a Curved Sonic Transmission Line,” IEEE Transactions on Sonics and Ultrasonics, SU-(17), 1-6 (1970).
Makarov, S.N., Ochmann, M., Desinger, K., “The longitudinal vibration response of a curved fiber used for laser ultrasound surgical therapy”, Journal of the Acoustical Society of America 102, 1191-1199 (1997).
Morley, L.S.D., “Elastic Waves in a Naturally Curved Rod”, Quarterly Journal of Mechanics and Applied Mathematics, 14:155-172 (1961).
Walsh, S.J., White, R.G., “Vibrational Power Transmission in Curved Beams,” Journal of Sound and Vibration, 233(3), 455-488 (2000).
http://www.apicalinstr.com/generators.htm.
http://www.dotmed.com/listing/electrosurical-unit/ethicon/ultracision-g110-/1466724.
http://www.ethicon.com/gb-en/healthcare-professionals/products/energy-devices/capital//ge . . . .
http://www.4-traders.com/JOHNSON-JOHNSON-4832/news/Johnson-Johnson-Ethicon-E . . . .
http://www.medicalexpo.com/medical-manufacturer/electrosurgical-generator-6951.html.
http://www.megadyne.com/es—generator.php.
http://www.valleylab.com/product/es/generators/index.html.
Covidien 501(k) Summary Sonicision, dated Feb. 24, 2011 (7 pages).
Gerhard, Glen C., “Surgical Electrotechnology: Quo Vadis?,” Biomedical Engineering, IEEE Transactions on, vol. BME-31, No. 12, pp. 787, 792, Dec. 1984.
Fowler, K.R., “A programmable, arbitrary waveform electrosurgical device,” Engineering in Medicine and Biology Society, 1998. Proceedings of the Annual International Conference of the IEEE, vol. No. pp. 1324, 1325 vol. 3, Nov. 4-7, 1988.
LaCourse, J.R.; Vogt, M.C.; Miller, W.T., III; Selikowitz, S.M., “Spectral analysis interpretation of electro-surgical generator nerve and muscle stimulation,” Biomedical Engineering, IEEE Transactions on, vol. 35, No. 7, pp. 505, 509, Jul. 1988.
U.S. Appl. No. 13/751,680, filed Jan. 28, 2013.
Related Publications (1)
Number Date Country
20120269676 A1 Oct 2012 US
Divisions (1)
Number Date Country
Parent 11726760 Mar 2007 US
Child 13540916 US