The present application is related to the following, concurrently-filed U.S. patent applications, which are incorporated herein by reference in their entirety:
(1) U.S. patent application Ser. No. 11/726,625, entitled (ULTRASONIC SURGICAL INSTRUMENTS);
(2) U.S. patent application Ser. No. 11/726,620, entitled (SURGICAL INSTRUMENTS); and
(3) U.S. patent application Ser. No. 11/726,621, entitled (ULTRASONIC SURGICAL INSTRUMENTS AND CARTILAGE BONE SHAPING BLADES THEREFOR).
Ultrasonic instruments, including both hollow core and solid core instruments, are used for the safe and effective treatment of many medical conditions. Ultrasonic instruments, and particularly solid core ultrasonic instruments, are advantageous because they may be used to cut and/or coagulate organic tissue using energy in the form of mechanical vibrations transmitted to a surgical end effector at ultrasonic frequencies. Ultrasonic vibrations, when transmitted to organic tissue at suitable energy levels and using a suitable end effector, may be used to cut, dissect, elevate, coagulate or cauterize tissue, or to separate muscle tissue off bone. Ultrasonic instruments utilizing solid core technology are particularly advantageous because of the amount of ultrasonic energy that may be transmitted from an ultrasonic transducer, through a waveguide, to the surgical end effector. Such instruments may be used for open procedures or minimally invasive procedures, such as endoscopic or laparoscopic procedures, wherein the end effector is passed through a trocar to reach the surgical site.
Activating or exciting the end effector (e.g., cutting blade) of such instruments at ultrasonic frequencies induces longitudinal vibratory movement that generates localized heat within adjacent tissue, facilitating both cutting and coagulation. Because of the nature of ultrasonic instruments, a particular ultrasonically actuated end effector may be designed to perform numerous functions, including, for example, cutting and coagulating.
Ultrasonic vibration is induced in the surgical end effector by electrically exciting a transducer, for example. The transducer may be constructed of one or more piezoelectric or magnetostrictive elements in the instrument hand piece. Vibrations generated by the transducer section are transmitted to the surgical end effector via an ultrasonic waveguide extending from the transducer section to the surgical end effector. The waveguides and end effectors are designed to resonate at the same frequency as the transducer. Therefore, when an end effector is attached to a transducer the overall system frequency is the same frequency as the transducer itself.
The amplitude of the longitudinal ultrasonic vibration at the tip, d, of the end effector behaves as a simple sinusoid at the resonant frequency as given by:
d=A sin(ωt)
where:
Solid core ultrasonic instruments may be divided into two types, single element end effector devices and multiple-element end effector. Single element end effector devices include instruments such as scalpels and ball coagulators. Multiple-element end effectors may be employed when substantial pressure may be necessary to effectively couple ultrasonic energy to the tissue. Multiple-element end effectors such as clamping coagulators include a mechanism to press tissue against an ultrasonic blade. Ultrasonic clamp coagulators may be employed for cutting and coagulating tissue, particularly loose and unsupported tissue. Multiple-element end effectors that include an ultrasonic blade in conjunction with a clamp apply a compressive or biasing force to the tissue to promote faster coagulation and cutting of the tissue, with less attenuation of blade motion.
Orthopedic surgery or orthopedics is the branch of surgery concerned with acute, chronic, traumatic, and overuse injuries and other disorders of the musculoskeletal system. Orthopedic surgeons address most musculoskeletal ailments including arthritis, trauma and congenital deformities using both surgical and non-surgical means. Orthopedic procedures include hand surgery, shoulder and elbow surgery, total joint reconstruction (arthroplasty), pediatric orthopedics, foot and ankle surgery, spine surgery, musculoskeletal oncology, surgical sports medicine, and orthopedic trauma. These procedure often require the use of specialized surgical instruments to treat relatively softer musculoskeletal tissue (e.g., muscle, tendon, ligament) and relatively harder musculoskeletal tissue (e.g., bone). Quite often, these orthopedic surgical instruments are hand operated and a single procedure may require the exchange of a number of instruments. It may be desirable, therefore, for a variety of electrically powered and unpowered ultrasonic instruments to perform these orthopedic surgical procedures with more efficiency and precision than is currently achievable with conventional orthopedic surgical instruments while minimizing the need to exchange instruments when cutting, shaping, drilling different types of musculoskeletal tissue.
In one general aspect, the various embodiments are directed to a surgical instrument that includes an elongated transmission waveguide defining a longitudinal axis. The transmission waveguide has a distal end and a proximal end. The at least one strike surface is formed on the proximal end and is configured to receive vibratory energy.
The novel features of the various embodiments are set forth with particularity in the appended claims. The various embodiments, however, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
Before explaining embodiments of the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. For example, the surgical instruments and blade configurations disclosed below are illustrative only and not meant to limit the scope or application of the invention. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.
The various embodiments described herein are generally directed to surgical instruments. Although these surgical instruments may be employed in orthopedic surgical procedures, the described embodiments are not limited in this context as these instruments may find useful applications outside of this particular branch of medicine. The various embodiments described herein are directed to surgical instruments that may be used in a stand alone or in combination with ultrasonically driven surgical instruments. In some embodiments, the surgical instruments may be driven either manually or electrically, or may be driven manually and electrically in combination. Surgical instruments configured to operate in multiple powered and unpowered states modes may reduce the total number of instruments in the operating room, reduces the number of instrument exchanges for a given procedure, and reduces the number of instruments that have to be sterilized for a given procedure. In other embodiments, surgical instruments may attain useful longitudinal vibrational resonance to assist cutting, reshaping, or coagulating tissue without an electrically driven actuator or an ultrasonic transducer. In yet other embodiments, electrically powered ultrasonic instruments may be used in combination with manual techniques to carry out surgical procedures with greater efficiency and precision.
Examples of ultrasonic instruments are disclosed in U.S. Pat. Nos. 5,322,055 and 5,954,736 and in combination with ultrasonic blades and surgical instruments disclosed in U.S. Pat. Nos. 6,309,400 B2, 6,278,218 B1, 6,283,981 B1, and 6,325,811 B1, for example, are incorporated herein by reference in their entirety. These references disclose ultrasonic instrument design and blade designs where a longitudinal node of the blade is excited. Because of asymmetry or asymmetries, these blades exhibit transverse and/or torsional motion where the characteristic “wavelength” of this non-longitudinal motion is less than that of the general longitudinal motion of the blade and its extender portion. Therefore, the wave shape of the non-longitudinal motion will present nodal positions of transverse/torsional motion along the tissue effector while the net motion of the active blade along its tissue effector is non-zero (i.e., will have at least longitudinal motion along the length extending from its distal end, an antinode of longitudinal motion, to the first nodal position of longitudinal motion that is proximal to the tissue effector portion). Certain embodiments will now be described in the form of examples to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more of these embodiments are illustrated in the accompanying drawings in the form of illustrative examples. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting example embodiments and that the scope of the various embodiments is defined solely by the claims. The features illustrated or described in connection with one example embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the claims.
It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the hand piece assembly 60. Thus, the end effector 50 is distal with respect to the more proximal hand piece assembly 60. It will be further appreciated that, for convenience and clarity, spatial terms such as “top” and “bottom” also are used herein with respect to the clinician gripping the hand piece assembly 60. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.
The distal end of the end-bell 20 is connected to the proximal end of the transduction portion 18, and the proximal end of the fore-bell 22 is connected to the distal end of the transduction portion 18. The fore-bell 22 and the end-bell 20 have a length determined by a number of variables, including the thickness of the transduction portion 18, the density and modulus of elasticity of the material used to manufacture the end-bell 20 and the fore-bell 22, and the resonant frequency of the ultrasonic transducer 14. The fore-bell 22 may be tapered inwardly from its proximal end to its distal end to amplify the ultrasonic vibration amplitude as the velocity transformer 28, or alternately may have no amplification. A suitable vibrational frequency range may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-70 kHz and one example operational vibrational frequency may be approximately 55.5 kHz.
Piezoelectric elements 32 may be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, or other piezoelectric crystal material. Each of positive electrodes 34, negative electrodes 36, and the piezoelectric elements 32 has a bore extending through the center. The positive and negative electrodes 34 and 36 are electrically coupled to wires 38 and 40, respectively. The wires 38 and 40 are encased within a power cable 42 and electrically connectable to the ultrasonic signal generator 12 of the ultrasonic system 10.
The ultrasonic transducer 14 of the acoustic assembly 24 converts the electrical signal from the ultrasonic signal generator 12 into mechanical energy that results in primarily longitudinal vibratory motion of the ultrasonic transducer 14 and the end effector 50 at ultrasonic frequencies. A suitable generator is available as model number GEN04, from Ethicon Endo-Surgery, Inc., Cincinnati, Ohio. When the acoustic assembly 24 is energized, a vibratory motion standing wave is generated through the acoustic assembly 24. The amplitude of the vibratory motion at any point along the acoustic assembly 24 may depend upon the location along the acoustic assembly 24 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is usually minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node (i.e., where motion is usually maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).
The wires 38 and 40 transmit an electrical signal from the ultrasonic signal generator 12 to the positive electrodes 34 and the negative electrodes 36. The piezoelectric elements 32 are energized by the electrical signal supplied from the ultrasonic signal generator 12 in response to a foot switch 44 to produce an acoustic standing wave in the acoustic assembly 24. The electrical signal causes disturbances in the piezoelectric elements 32 in the form of repeated small displacements resulting in large compression forces within the material. The repeated small displacements cause the piezoelectric elements 32 to expand and contract in a continuous manner along the axis of the voltage gradient, producing longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly 24 to the end effector 50 via an ultrasonic transmission waveguide 46.
In order for the acoustic assembly 24 to deliver energy to the end effector 50, all components of the acoustic assembly 24 must be acoustically coupled to the end effector 50. The distal end of the ultrasonic transducer 14 may be acoustically coupled at the surface 30 to the proximal end of the ultrasonic transmission waveguide 46 by a threaded connection such as a stud 48.
The components of the acoustic assembly 24 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 24, and where n is any positive integer. It is also contemplated that the acoustic assembly 24 may incorporate any suitable arrangement of acoustic elements.
The ultrasonic end effector 50 may have a length substantially equal to an integral multiple of one-half system wavelengths (λ/2). A distal end 52 of the ultrasonic end effector 50 may be disposed near an antinode in order to provide the maximum longitudinal excursion of the distal end 52. When the transducer assembly is energized, the distal end 52 of the ultrasonic end effector 50 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 150 microns at a predetermined vibrational frequency.
The ultrasonic end effector 50 may be coupled to the ultrasonic transmission waveguide 46. The ultrasonic end effector 50 and the ultrasonic transmission guide 46 as illustrated are formed as a single unit construction from a material suitable for transmission of ultrasonic energy such as, for example, Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other known materials. Alternately, the ultrasonic end effector 50 may be separable (and of differing composition) from the ultrasonic transmission waveguide 46, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The ultrasonic transmission waveguide 46 may have a length substantially equal to an integral number of one-half system wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 46 may be preferably fabricated from a solid core shaft constructed out of material that propagates ultrasonic energy efficiently, such as titanium alloy (i.e., Ti-6Al-4V) or an aluminum alloy, for example.
The ultrasonic transmission waveguide 46 comprises a longitudinally projecting attachment post 54 at a proximal end to couple to the surface 30 of the ultrasonic transmission waveguide 46 by a threaded connection such as the stud 48. In the illustrated embodiment, the ultrasonic transmission waveguide 46 comprises a plurality of stabilizing silicone rings or compliant supports or silicon rings are 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from a removable sheath 58 assuring the flow of ultrasonic energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.
As shown in
The adapter 62 of the sheath 58 may be fabricated from plastic such as Ultem®, aluminum, or any suitable material, and the tubular member 64 may be fabricated from stainless steel. Alternatively, the ultrasonic transmission waveguide 46 may have polymeric material surrounding it to isolate it from outside contact.
The distal end of the ultrasonic transmission waveguide 46 may be coupled to the proximal end of the end effector 50 by an internal threaded connection, preferably at or near an antinode. It is contemplated that the end effector 50 may be attached to the ultrasonic transmission waveguide 46 by any suitable means, such as a welded joint or the like. Although the end effector 50 may be detachable from the ultrasonic transmission waveguide 46, it is also contemplated that the end effector 50 and the ultrasonic transmission waveguide 46 may be formed as a single unitary piece.
In one embodiment, the handpiece housing 16 of the ultrasonic handpiece assembly 60 may be configured to receive or accommodate a mechanical impact such as, for example, a mallet blow or hand blow, and impart energy into the end effector 50 when the hand piece assembly 60 is in a powered or an unpowered state. In another embodiment, the handpiece assembly 60 may comprise a strike plate assembly such as those described below in
Although the ultrasonic subassembly 118 may be ultrasonically coupled to the hand piece assembly 60 as described herein, those of ordinary skill in the art will understand that the various embodiments of the ultrasonic instruments disclosed herein as well as any equivalent structures thereof could conceivably be effectively used in connection with other known ultrasonic instruments without departing from the scope thereof. Thus, the embodiments disclosed herein should not be limited to use only in connection with the example ultrasonic instrument described above.
The ultrasonic instrument 120 comprises a distal end 122 and a proximal end 124 and defines a longitudinal axis “L”. The proximal end 124 comprises the neck or transition portion 126 that protrudes from the proximal end 124. The neck portion 126 may be attached to the ultrasonic transmission surface 30 by a stud, weld, glue, quick connect, or other known attachment methods, for example. The proximal end 124 comprises the female threaded substantially cylindrical recess 128 to receive a portion of the threaded stud 48 therein. The ultrasonic instrument 120 is ultrasonically coupled to the hand piece assembly 60.
The ultrasonic instrument 120 comprises a “slap hammer” portion 130, a gripping portion 132, and a longitudinally extending end effector portion 134. The slap hammer portion 130 comprises a slap hammer 136 that is slideably movable in the direction indicated by arrow 142 over a proximal shaft 138 to the flange or proximal stop 140. The gripping portion 132 comprises a grip 148 positioned distally beyond the proximal stop 140 positioned over a proximal sleeve 156 (e.g., bushing). A distal portion of the ultrasonic transmission waveguide 152 is positioned inside the longitudinal opening extending through the outer tube 150 portion of the end effector portion 134. The grip 148 is fixedly mounted by a ring or circumferential projection 154. The circumferential projection 154 may be formed integrally with the distal portion of the ultrasonic transmission waveguide 152 or may fixedly mounted thereto.
The distal portion of the ultrasonic transmission waveguide 152 comprises a plurality of the stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from the outer tube 150 assuring the flow of ultrasonic energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.
The transition portion 126, the proximal shaft 138, the proximal stop 140, and the distal portion of the ultrasonic transmission waveguide 152 may be formed as a single unitary piece or may be removably attached to each other. The transition portion 126, the proximal shaft 138, the proximal stop 140, and the distal portion of the ultrasonic transmission waveguide 152 form an ultrasonic transmission waveguide that may be tuned and coupled to the surface 30 of the hand piece assembly 60 to amplify the amplitude of the mechanical vibrations generated by the ultrasonic transducer 14 as discussed with reference to
The slap hammer 136 is slideably movable over the proximal shaft 138 in the direction indicated by arrow 142. The slap hammer 136 comprises a gripping surface 158 and a sliding weight 160 that travels axially in line with the end effector 50. When the slap hammer 136 is moved axially towards the distal end 122, a circumferential distal surface 144 of the slap hammer 136 impacts a proximal surface 146 of the proximal stop 140. The proximal surface 146 defines an area to receive vibratory energy in the form of mechanical impacts. The resulting impacts are transmitted through the ultrasonic transmission waveguide 152 to drive the end effector 50 at the distal end 122 into the musculoskeletal tissue to effect treatment. The sliding weight 160 assists in imparting energy upon impact. The circumferential proximal surface 146 forms an impact zone.
In use, a clinician may employ the ultrasonic hand piece assembly 60 coupled to the ultrasonic instrument 120 to effect musculoskeletal tissue. In one phase the end effector 50 may be operated ultrasonically (e.g., powered state). In this manner, the clinician holds the handpiece housing 16 of the handpiece assembly 60 with one hand and may hold either the slap hammer 136 or the grip 148 portions and employs substantially the energy generated by the ultrasonic transducer 14 for tissue effects. In another phase, the clinician may hold the grip 148 with one hand and slideably move the slap hammer 136 axially in the direction indicated by arrow 142 to impact the distal surface 144 of the weighted slap hammer 136 against the proximal surface 146 of the proximal stop 140. This action imparts a driving force or energy the end effector 50. The slap hammer 136 may be manually operated either with or without the assistance of the ultrasonic vibrations. For example, the slap hammer 136 may be employed with the ultrasonic hand piece assembly 60 either in a powered or unpowered state.
The proximal end 124 comprises a handpiece assembly 172. A housing 188 contains a generator 174 to drive a rotating cam 176 comprising a lobe 178. In the illustrated embodiment, the hand piece assembly 172 does not comprise a piezoelectric transducer to generate the ultrasonic vibrations. The generator 174 generates longitudinal vibrational displacement by mechanical action without the use of piezoelectric transducers. In one embodiment, the generator 174 produces longitudinal mechanical vibrations of various predetermined frequencies by driving the cam 176 about a hub 175. The lobe 178 may be configured as any suitable projecting part of the rotating cam 176 to strike or mechanically communicate with a surface 180 of a vibrational transmission waveguide 182 at one or more points on its circular path. The surface 180 has an area configured to receive vibratory energy in the form of mechanical impacts. The lobe 178 imparts vibratory energy into the vibrational transmission waveguide 182. The vibrational transmission waveguide 182 acts as a follower. This produces a smooth axial oscillating motion in the vibrational transmission waveguide 182 that makes contact with the lobe 178 via the surface 180. The lobe 178 may be a simple rounded smooth projection to deliver pulses of power to the surface 180 of the vibrational transmission waveguide 182. In alternative embodiments, the lobe 178 may be an eccentric disc or other shape that produces a smooth oscillating motion in the vibrational transmission waveguide 182 follower which is a lever making contact with the lobe 178. Accordingly, the lobe 178 translates the circular motion of the cam 176 to linear displacements creating longitudinal the oscillations or vibrations that are efficiently transferred to the distal end 52 of the end effector 50 by the vibrational transmission waveguide 182. Accordingly, the distal end 52 of the end effector 50 experiences longitudinal displacements to effect tissue. The generator 174 may employ either an electric, hydraulic, or pneumatic motor to drive the cam 176 about the hub 175. Those skilled in the art will appreciate that a hydraulic motor uses a high pressure water jet to turn a shaft coupled to the cam 176 about the hub 175.
The vibrational transmission waveguide 182 may be positioned inside a handle portion or grip 184 over a sleeve 186. The vibrational transmission waveguide 182 may be retained within the grip 184 and may be fixedly mounted by a ring or circumferential projection 190. The circumferential projection 190 may be formed integrally with the distal portion of the vibrational transmission waveguide 182 or may be fixedly mounted thereto. In principle, the vibrational transmission waveguide 182 operates in a manner similar to the ultrasonic transmission waveguide 46 discussed in
The vibrational transmission waveguide 182 is positioned within the longitudinal opening defined through the outer tube 150. The vibrational transmission waveguide 182 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from the outer tube 150 assuring the flow of vibrational energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.
In use, a clinician may employ the vibrational surgical instrument 170 to effect musculoskeletal tissue. The end effector 50 is positioned at the desired tissue treatment region within a patient. The clinician holds the grip 184 portion and manipulates the end effector 50 to treat the musculoskeletal tissue. The vibrations generated by the rotating cam 176 and lobe 178 arrangement are efficiently transferred to the distal end 52 of the end effector 50 by the vibrational transmission waveguide 182. Accordingly, the distal end 52 of the end effector 50 experiences longitudinal displacements to assist the tissue effects of cutting, coagulating, drilling tissue. Accordingly, the vibrational surgical instrument 170 enables the clinician to perform tissue effects on musculoskeletal tissue with more precision that may be achieved with a slap hammer alone or using an osteotome (e.g., bone chisel) and mallet. An osteotome is a wedge-like instrument used for cutting or marking bone often called a chisel and is used by a clinician with a mallet.
The vibrational surgical instrument 200 comprises a flange or strike plate 202 at the proximal end 124. The strike plate 202 defines a strikeable surface 203 having a flange area configured to receive vibratory energy in the form of mechanical impacts such as a mallet blow from an osteotome type mallet 204 and impart the resulting vibratory energy into the end effector 50. Striking the strike plate 202 with the mallet 204 generates a suitable vibrational resonance that may be sustained over time to mechanically displace the end effector 50 in accordance with the mechanical vibrations. The vibrational surgical instrument 200 comprises a vibrational transmission waveguide 206 positioned within an outer tubular member or outer tube 150. The vibrational transmission waveguide 206 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from a removable sheath 150 assuring the flow of vibrational energy in a longitudinal direction to the distal end 52 of the end effector 50 with maximum efficiency.
The vibrational transmission waveguide 206 is positioned inside a handle portion or grip 208 over a sleeve 210 (e.g., bushing). The vibrational transmission waveguide 206 is retained within the grip 208 and is fixedly mounted by a ring or circumferential projection 212. The circumferential projection 212 may be formed integrally with the distal portion of the vibrational transmission waveguide 206 or may fixedly mounted thereto. In principle, the vibrational transmission waveguide 206 operates in a manner similar to the ultrasonic transmission waveguide 46 discussed above. The vibrational transmission waveguide 206 however may be tuned to amplify and transmit longitudinal vibrations at frequencies more suitably achievable with the osteotome type mallet 204 striking the strikeable surface 230 of the strike plate 202.
In use, a clinician may employ the vibrational surgical instrument 200 to effect musculoskeletal tissue. The end effector 50 is positioned at the desired tissue treatment region within a patient. The clinician holds the grip 208 portion with one hand and manipulates the end effector 50 to treat the musculoskeletal tissue. The vibrations generated by striking the strike plate 202 are efficiently transferred to the distal end 52 of the end effector 50, which experiences longitudinal displacements to assist in the tissue effect, to cut, coagulate, drill tissue. Accordingly, the vibrational surgical instrument 200 enables the clinician to perform tissue effects on musculoskeletal tissue with more precision that with using a slap hammer alone or using a bone chisel or tuned osteotome.
The ultrasonic instrument 240 comprises an ultrasonic slide hammer 242 at the proximal end 124. The ultrasonic slide hammer 242 is slideably movable over a proximal shaft 244 between a first flange or proximal stop 246 and a second flange or distal stop 248 in the directions indicated by arrows 290, 292. The ultrasonic slide hammer 242 comprises an ultrasonic transducer 250, which is known as a “Langevin stack”, and generally includes a transduction portion 252, a first resonator or end-bell 254, and a second resonator or fore-bell 256, and ancillary components. In the illustrated embodiment, the ultrasonic transducer 250 is the moving mass of the ultrasonic slide hammer 242. The ultrasonic transducer 250 is preferably an integral number of one-half system wavelengths (nλ/2) in length as previously discussed with reference to the ultrasonic system 10 in
The distal end of the end-bell 254 is connected to the proximal end of the transduction portion 252, and the proximal end of the fore-bell 256 is connected to the distal end of the transduction portion 252. The fore-bell 256 and the end-bell 254 have a length determined by a number of variables, including the thickness of the transduction portion 252, the density and modulus of elasticity of the material used to manufacture the end-bell 254 and the fore-bell 256, and the resonant frequency of the ultrasonic transducer 250. The ultrasonic transducer 250 creates impacts or vibrations at ultrasonic frequencies and imparts stress waves that are coupled to an ultrasonic transmission waveguide 262 to advance (e.g., drive) or remove (e.g., retract) the ultrasonic instrument 240. A distal surface of the fore-bell 256 acts a driving platen 288 when it is driven or coupled to a distal striking platen 258 formed by the proximal surface of the distal stop 248. The surface of the distal striking platen 258 has an area configured to receive vibratory energy in the form of vibrations and impart the vibratory energy into the end effector 50. The surface of the driving platen 288 is located at an anti-node “A”. When the driving platen 288 is coupled to the distal striking platen 258, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled through the ultrasonic transmission waveguide 262 and create impacts to drive the ultrasonic instrument 240 into tissue at the distal end 122 in the direction indicated by arrow 290. A proximal surface of the end-bell 254 acts as a removing platen 286 when it is driven or coupled to a proximal striking platen 260 formed by the distal surface of the proximal stop 246. The surface of the distal striking platen 260 has an area configured to receive vibratory energy in the form of vibrations and impart the vibratory energy into the proximal stop 246. The surface of the removing platen 286 is located at an anti-node “A”. When the removing platen 286 is coupled to the proximal striking platen 260, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled into the proximal stop 246 and create impacts to retract the ultrasonic instrument 240 in the proximal directions from the tissue in the direction indicated by arrow 292. A suitable vibrational frequency range for the ultrasonic slide hammer 242 may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-70 kHz and one example operational vibrational frequency may be approximately 55.5 kHz. As a general rule, lower frequencies tend to provide more power capability. In one embodiment, the ultrasonic transducer 250 does not couple to the end effector 50, but rather creates a vibratory “jackhammer”.
Piezoelectric elements 264 may be fabricated from any suitable material, such as, for example, lead zirconate-titanate, lead meta-niobate, lead titanate, or other piezoelectric crystal material. Each of positive electrodes 266, negative electrodes 268, and piezoelectric elements 264 has a bore extending through the center. The positive and negative electrodes 266 and 268 are electrically coupled to wires 272 and 270, respectively. The wires 270, 272 are encased within a cable 274 and electrically connectable to an ultrasonic signal generator 276.
The ultrasonic transducer 250 converts the electrical signal from the ultrasonic signal generator 276 into mechanical energy that results in primarily longitudinal vibratory motion of the ultrasonic transducer 250 and the end effector 50 at ultrasonic frequencies. A suitable generator is available as model number GEN04, from Ethicon Endo-Surgery, Inc., Cincinnati, Ohio. When the acoustic assembly 251 is energized, a vibratory motion standing wave is generated through the acoustic assembly 251. The amplitude of the vibratory motion at any point along the acoustic assembly 251 may depend upon the location along the acoustic assembly 251 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is usually minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node (i.e., where motion is usually maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).
The wires 270 and 272 transmit an electrical signal from the ultrasonic signal generator 276 to the respective positive electrodes 268 and the negative electrodes 266. The piezoelectric elements 264 are energized by the electrical signal supplied from the ultrasonic signal generator 264 in response to a foot switch 278 to produce an acoustic standing wave in the acoustic assembly 251. The electrical signal causes disturbances in the piezoelectric elements 264 in the form of repeated small displacements resulting in large compression forces within the material. The repeated small displacements cause the piezoelectric elements 264 to expand and contract in a continuous manner along the axis of the voltage gradient, producing longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly 251 to the end effector 50 via the ultrasonic transmission waveguide 262. In order for the acoustic assembly 251 to deliver energy to the end effector 50, all components of the acoustic assembly 251 must be acoustically coupled to the end effector 50. In one mode of operation, the distal end 52 of the ultrasonic transducer 250 may be acoustically coupled to the proximal surface 258 of the distal stop 248 and to the ultrasonic transmission waveguide 262. In another mode of operation, the proximal end of the ultrasonic transducer 250 may be acoustically coupled to the distal surface 260 of the proximal stop 246 and to ultrasonic transmission waveguide 262 through the proximal shaft 244.
The components of the acoustic assembly 251 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 251, and where n is any positive integer. It is also contemplated that the acoustic assembly 251 may incorporate any suitable arrangement of acoustic elements.
The ultrasonic end effector 50 may have a length substantially equal to an integral multiple of one-half system wavelengths (λ/2). The distal end 52 of the ultrasonic end effector 50 may be disposed near an antinode “A” in order to provide the maximum longitudinal excursion of the distal end 52. When the ultrasonic transducer 250 is energized and the vibrations are coupled to the end effector 50 via the ultrasonic transmission waveguide 262, the distal end 52 of the ultrasonic end effector 50 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 150 microns at a predetermined vibrational frequency.
The ultrasonic end effector 50 may be coupled to the ultrasonic transmission waveguide 262. In the illustrated embodiment, the ultrasonic end effector 50, the ultrasonic transmission guide 262, the proximal and distal stops 246, 248, and the proximal shaft 244 are formed as a single unit construction from a material suitable for transmission of ultrasonic energy such as, for example, Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other known materials. Alternately, the ultrasonic end effector 50 may be separable (and of differing composition) from the ultrasonic transmission waveguide 262, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The ultrasonic transmission waveguide 262 may have a length substantially equal to an integral number n of one-half system wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 262 may be preferably fabricated from a solid core shaft constructed out of material that propagates ultrasonic energy efficiently, such as titanium alloy (i.e., Ti-6Al-4V) or an aluminum alloy, for example. In the illustrated embodiment, the ultrasonic transmission waveguide 262 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from the outer tube 150 assuring that the ultrasonic energy flows axially in a longitudinal direction “L” to the distal end 52 of the end effector 50 with maximum efficiency.
In alternative embodiments, the distal end of the distal stop 248 may be configured with an attachment feature such as a threaded connection to couple the ultrasonic transmission waveguide 262 or other ultrasonic (e.g., orthopedic) instruments with a stud. In other embodiments, the distal end of the distal stop 248 may be configured with a longitudinally projecting attachment post to couple to the ultrasonic transmission waveguide 262 or other ultrasonic instruments thereto. In other embodiments, the ultrasonic transmission waveguide 262 or other ultrasonic instruments may be attached to the distal end of the distal stop 248 by a weld, glue, quick connect, or other suitable known methods.
In use, a clinician can operate the ultrasonic instrument 240 in a driving mode and a retracting mode. In the illustrated embodiment, the ultrasonic slide hammer 242 is configured with a cylindrical grip 294 for the clinician to hold. In a driving mode, the ultrasonic slide hammer 242 is moved in the direction indicated by arrow 290 to drive the ultrasonic instrument 240 into tissue. In a retracting mode, the ultrasonic slide hammer 242 in the direction indicated by arrow 292 to retract the ultrasonic instrument 240. In alternative embodiments, the ultrasonic slide hammer 242 may be configured with a pistol-like grip so the clinician can hold the ultrasonic slide hammer 242 more-like a power drill, for example. When the driving platen 288 is forced in the direction indicated by arrow 290 into the distal striking platen 258, the ultrasonic transducer 250 creates impacts that are coupled by the ultrasonic transmission waveguide 262 to the end effector 50 to impart stress waves in the tissue being treated. Because the driving platen 288 and the distal striking platen 258 are both located at anti-nodes “A” a clinician needs only to apply enough load to force the driving platen 288 into the distal striking platen 258 together. At an anti-node “A” there is little vibrational stress so minimal vibrations are transferred to the hand of the clinician. The clinician applies a force until the desired effect is achieved.
The ultrasonic instrument 240 may comprise an optional grip 280 positioned distally beyond the proximal stop 248 over a proximal sleeve 282. The grip 280 is fixedly mounted to the ultrasonic transmission waveguide 262 by a ring or circumferential projection 284. The circumferential projection 284 may be formed integrally with the distal portion of the ultrasonic transmission waveguide 262 or may fixedly mounted thereto. The grip 280 provides an additional handle for a clinician to hold during a procedure to help support and guide the ultrasonic instrument 240.
The ultrasonic instrument 300 comprises an ultrasonic slide hammer 242 at the proximal end 124 substantially as described with reference to
As previously discussed, the ultrasonic transducer 250 creates impacts or vibrations at ultrasonic frequencies and imparts stress waves that are coupled by an ultrasonic transmission waveguide 304 to advance (e.g., drive) or remove (e.g., retract) the ultrasonic instrument 300. A distal driving platen 288 is driven or coupled to a distal striking platen 258 formed by the proximal surface of the distal stop 302 when the ultrasonic slide hammer 242 is moved in the direction indicated by arrow 290. The surface of the driving platen 288 is located at an anti-node “A”. When the driving platen 288 is coupled to the distal striking platen 258, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled through the ultrasonic transmission waveguide 304 and creates impacts to drive the ultrasonic instrument 300 into tissue at the distal end 122 in the direction indicated by arrow 290. A proximal removing platen 286 is driven or coupled to a proximal striking platen 260 formed by the distal surface of the proximal stop 246 when the ultrasonic slide hammer 242 is moved in the direction indicated by arrow 292. The surface of the removing platen 286 is located at an anti-node “A”. When the removing platen 286 is coupled to the proximal striking platen 260, ultrasonic vibrations generated by the ultrasonic transducer 250 are coupled into the proximal stop 246 and creates impacts to retract the ultrasonic instrument 300 in the proximal direction from the tissue in the direction indicated by arrow 292. As previously discussed, the distal stop 302 amplifies the amplitude of the ultrasonic vibrations generated by the ultrasonic transducer 250. A suitable vibrational frequency range for the ultrasonic slide hammer 242 may be about 20 Hz to 120 kHz and a well-suited vibrational frequency range may be about 30-70 kHz and one example operational vibrational frequency may be approximately 55.5 kHz. As a general rule, lower frequencies tend to provide more power capability.
The ultrasonic transducer 250 converts the electrical signal from the ultrasonic signal generator 276 into mechanical energy that results in primarily longitudinal vibratory motion of the ultrasonic transducer 250 and the end effector 50 at ultrasonic frequencies. When the acoustic assembly 306 is energized, a vibratory motion standing wave is generated through the acoustic assembly 306. The amplitude of the vibratory motion at any point along the acoustic assembly 306 may depend upon the location along the acoustic assembly 306 at which the vibratory motion is measured. A minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e., where motion is usually minimal), and an absolute value maximum or peak in the standing wave is generally referred to as an anti-node (i.e., where motion is usually maximal). The distance between an anti-node and its nearest node is one-quarter wavelength (λ/4).
The ultrasonic transducer 250 is energized by the electrical signal supplied from the ultrasonic signal generator 264 in response to a foot switch 278 to produce an acoustic standing wave in the acoustic assembly 306. The ultrasonic energy is transmitted through the acoustic assembly 306 to the end effector 50 via an ultrasonic transmission waveguide 304. In order for the acoustic assembly 306 to deliver energy to the end effector 50, all components of the acoustic assembly 306 must be acoustically coupled to the end effector 50. In one mode of operation, the distal end of the ultrasonic transducer 250 may be acoustically coupled to the distal striking platen 258, amplified by the distal stop 302 element, and to the ultrasonic transmission waveguide 304. In another mode of operation, the proximal end of the ultrasonic transducer 250 may be acoustically coupled to the proximal striking platen 260 through the ultrasonic transmission waveguide 304 and through the proximal shaft 244.
The components of the acoustic assembly 306 are preferably acoustically tuned such that the length of any assembly is an integral number of one-half wavelengths (nλ/2), where the wavelength λ is the wavelength of a pre-selected or operating longitudinal vibration drive frequency fd of the acoustic assembly 306, and where n is any positive integer. It is also contemplated that the acoustic assembly 306 may incorporate any suitable arrangement of acoustic elements.
The ultrasonic end effector 50 may have a length substantially equal to an integral multiple of one-half system wavelengths (λ/2). The distal end 52 of the ultrasonic end effector 50 may be disposed near an antinode in order to provide the maximum longitudinal excursion of the distal end. When the ultrasonic transducer 250 is energized and the vibrations are coupled to the end effector 50 via the ultrasonic transmission waveguide 304, the distal end 52 of the ultrasonic end effector 50 may be configured to move in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 30 to 150 microns at a predetermined vibrational frequency.
The ultrasonic end effector 50 may be coupled to the ultrasonic transmission waveguide 304. In the illustrated embodiment, the ultrasonic end effector 50, the ultrasonic transmission guide 304, the proximal and distal stops 246, 302, and the proximal shaft 244 are formed as a single unit construction from a material suitable for transmission of ultrasonic energy such as, for example, Ti6Al4V (an alloy of Titanium including Aluminum and Vanadium), Aluminum, Stainless Steel, or other known materials. Alternately, the ultrasonic end effector 50 may be separable (and of differing composition) from the ultrasonic transmission waveguide 304, and coupled by, for example, a stud, weld, glue, quick connect, or other suitable known methods. The ultrasonic transmission waveguide 304 may have a length substantially equal to an integral number n of one-half system wavelengths (nλ/2), for example. The ultrasonic transmission waveguide 304 may be preferably fabricated from a solid core shaft constructed out of material that propagates ultrasonic energy efficiently, such as titanium alloy (i.e., Ti-6Al-4V) or an aluminum alloy, for example. In the illustrated embodiment, the ultrasonic transmission waveguide 304 comprises a plurality of stabilizing silicone rings or compliant supports 56 positioned at a plurality of nodes. The silicone rings 56 dampen undesirable vibration and isolate the ultrasonic energy from a removable sheath or outer tube 150 assuring the flow of ultrasonic energy axially in a longitudinal direction “L” to the distal end 52 of the end effector 50 with maximum efficiency.
In alternative embodiments, the distal end of the distal stop 302 may be configured with an attachment feature such as a threaded connection to couple the ultrasonic transmission waveguide 304 or other ultrasonic (e.g., orthopedic) instruments with a stud. In other embodiments, the distal end of the distal stop 302 may be configured with a longitudinally projecting attachment post to couple to the ultrasonic transmission waveguide 304 or other ultrasonic instruments thereto. In other embodiments, the ultrasonic transmission waveguide 304 or other ultrasonic instruments may be attached to the distal end of the distal stop 302 by a weld, glue, quick connect, or other suitable known methods.
In use, a clinician can operate the ultrasonic instrument 300 in a substantially similar manner as previously described with reference to
With reference to the ultrasonic instruments 240, 300 illustrated in
Ft=k·x+c·x+d·x2 (1).
Where
k=is the elastic component of the tissue;
c=the frictional component of the tissue; and
d=the hydraulic drag component of the tissue.
In one embodiment, the ultrasonic instrument 310 comprises a strike plate assembly 316. The strike plate assembly 316 comprises a flange or strike plate 318 defining a strikeable surface 320 having a flange area configured to receive or accommodate a mechanical impact and impart energy into the end effector 50 when the hand piece assembly 312 is in a powered or an unpowered state. The mechanical impact or strike may be delivered manually or with an osteotome mallet, for example. The strike plate 318 is suitable to receive a typical blow or strike from an osteotome mallet (e.g., similar to the mallet 204 shown in
In use, a clinician may employ the ultrasonic instrument 310 in a powered state using the ultrasonic vibrations generated by the transduction portion 18 to cut and coagulate relatively soft musculoskeletal tissue using the chisel shaped end effector 50. With the ultrasonic instrument 310 in a powered or an unpowered state, the clinician can employ an osteotome mallet to strike the strikeable surface 320 to chisel relatively hard musculoskeletal tissue such as bone.
In one embodiment, the ultrasonic instrument 330 comprises a strike plate assembly 336. The strike plate assembly 336 comprises a flange or strike plate 338 defining a strikeable surface 340 having a flange area configured to receive or accommodate a mechanical impact and impart energy into the end effector 50 when the ultrasonic hand piece assembly 332 is in a powered or an unpowered state. The mechanical impact or strike may be delivered manually or with an osteotome mallet, for example. The strike plate 338 is suitable to receive a typical blow or strike from an osteotome mallet (e.g., similar to the mallet 204 shown in
As previously discussed with reference to
In one embodiment, the ultrasonic instrument 360 comprises a strike plate assembly 366. The strike plate assembly 366 comprises a flange or strike plate 368 defining a strikeable surface 370 having a flange area configured to receive or accommodate a mechanical impact and impart energy into the end effector 50 when the hand piece assembly 362 is in a powered or an unpowered state. The mechanical impact or strike may be delivered manually or with an osteotome mallet, for example. The strike plate 368 is suitable to receive a typical blow or strike from an osteotome mallet (e.g., similar to the mallet 204 shown in
As previously discussed with reference to
In one embodiment, the ultrasonic instrument 400 comprises a strike plate assembly 406. The strike plate assembly 406 comprises a flange or strike plate 408 defining a strikeable surface 410 having a flange area configured to receive or accommodate a blow from a slide (slap) hammer 414. The slide hammer 414 has an opening extending longitudinally therethrough. The slide hammer 420 comprises a striking surface 422 at a distal end suitable to impart a blow to or strike the strikeable surface 410. A blow from the slide hammer 414 imparts energy into the end effector 50 when the hand piece assembly 402 is in a powered or an unpowered state. The strike plate 408 is suitable to receive a typical blow or strike from the slide hammer 414 at the strikeable surface 410 without damaging the ultrasonic hand piece assembly 402. In the illustrated embodiment, the strike plate assembly 406 comprises one or more longitudinally extending elongate support members 412 rigidly attached to the housing 404. The strike plate 408 is formed with a shaft 416 protruding from a distal end to a proximal end. The proximal end of the shaft 416 comprises a flange 418. The slide (slap) hammer 414 is slideably movable axially on the shaft 416 in the direction indicated by arrow 420.
As previously discussed with reference to
With reference now to
As previously discussed, the end-effector 452 comprises a non-vibrating clamp jaw 454 and an ultrasonic blade 456. A tissue engaging portion of the clamp arm assembly 454 comprises a clamp pad 470. The non-vibrating clamp jaw 454 is to grip tissue or compress tissue against the ultrasonic blade 456, for example.
The ultrasonic blade 456 may comprise a chisel shape and is suitable to cut and coagulate relatively soft musculoskeletal tissue and to chisel or drill relatively hard musculoskeletal tissue such as bone. Nevertheless, the ultrasonic blade 456 may be employed in various other therapeutic procedures. In one embodiment, the ultrasonic blade 456 may comprise a cutting chisel edge at a distal portion. The ultrasonic blade 456 is coupled to an ultrasonic transmission waveguide positioned within the outer tube 462.
The clamp jaw 454 is preferably pivotally mounted to the distal end of the outer tube 462 at pivot point 472 such that the clamp jaw 454 can rotate in the in an arcuate direction shown by arrows 458, 459. A pivot pin 474 is inserted through the pivot point 472. The distal end of the outer tube 462 comprises projections 476A and 476B that define corresponding holes 478A and 478B (not shown) to receive the pivot pin 474. The pivot pin 474 may be retained within the holes 478A, B in any suitable configuration. The inner tube 468 opening contains an actuator rod 490 that is mounted to a proximal end of the clamp jaw 454. When the actuator rod 490 is moved axially from the proximal end to the distal end in the direction indicated by arrow 482 the actuator rod 490 drives the clamp arm assembly to rotate about the pivot point 472 in the direction indicated by arrow 458 to its open position. A longitudinal channel 486 formed on a top surface of the clamp jaw 454 receives a longitudinal portion of the inner tube 468 therein when the clamp jaw 454 is in the open position. The axially moveable actuator rod 490 may be moved in any suitable manner and in one embodiment may be controlled by switch 480. When the actuator rod 490 is moved axially from the distal end to the proximal end in the direction indicated by arrow 484 the actuator rod 490 drives the clamp jaw 454 to rotate about the pivot point 472 in the direction indicated by arrow 459 to its closed or clamping position.
The clamp pad 470 is attached to the clamp jaw 454 and is for squeezing tissue between the ultrasonic blade 456 and the clamp jaw 454. The clamp pad 470 may be mounted to the clamp jaw 454 by an adhesive, or preferably by a mechanical fastening arrangement. Serrations 488 may be formed in the clamping surfaces of the clamp pad 470 and extend perpendicular to the axis of the ultrasonic blade 456 to allow tissue to be grasped, manipulated, coagulated and cut without slipping between the clamp jaw 454 and the ultrasonic blade 456.
The clamp pad 470 may be formed of a polymeric or other compliant material and engages the ultrasonic blade 456 when the clamp jaw 454 is in its closed position. Preferably, the clamp pad 470 is formed of a material having a low coefficient of friction but which has substantial rigidity to provide tissue-grasping capability, such as, for example, TEFLON®, a trademark name of E. I. Du Pont de Nemours and Company for the polymer polytetraflouroethylene (PTFE). The clamp pad 470 may be formed of other materials, such as, polyimide materials and/or other filled materials, for example, graphite or TEFLON filled polyimide materials. One example of a polyimide material may be VESPEL®, a trademark name of E. I. Du Pont de Nemours and Company. Polyimide provides a unique combination of the physical properties of plastics, metals, and ceramics, for example. In one embodiment, the clamp pad 470 may be formed of multiple components and multiple materials. For example, the clamp pad 470 may comprise one component formed of TEFLON and another component formed of polyimide. The clamp pad 470 may comprise a base material and at least two filler materials to allow the base material and the at-least-two filler materials to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the clamp pad 470, which is important when high clamping forces are employed because the clamp pad 470 wears faster at higher clamping forces than at lower clamping forces. For example, a 15% graphite-filled, 30% PTFE-filled polyimide clamp pad 470 may provide substantially the same or better wear with a 4.5 pound clamping force as a 100% polytetrafluoroethylene clamp pad provides with a 1.5 pound clamping force. The advantage of a 15% graphite-filled, 30% PTFE-filled polyimide clamp pad 470 is increased heat resistance, which improves the overall wear resistance of the clamp pad 470. This polyimide-composite clamp pad has a useful heat resistance up about 800° F. to about 1200° F., as compared to a useful heat resistance up to about 660° F. of a PTFE clamp pad. Alternatively, other materials may be useful for a portion of the clamp pad 470, such as ceramics, metals, glasses and graphite.
In alternative embodiments, the clamp jaw 454 may be configured to retract rather than to fold back. In one embodiment, the ultrasonic blade 456 also may be configured to retract in any suitable manner.
With reference to
The ultrasonic instrument 500 comprises the outer tube 462. As previously discussed, the outer tube 462 has a substantially circular cross-section and the longitudinal opening or aperture 466 to receive the clamp jaw 504 in its retracted or folded back open position. The outer tube 462 is configured to receive a first inner tube 518 comprising a “D” shaped cross-section and defines an aperture 520 therein to receive a distal portion of an elongated member 512. The elongated member 512 comprises a pivot base member 515 and a channel 514. The channel 514 is configured to receive an actuator rod 516. The outer tube 462 contains a second inner tube 522 configured to receive an ultrasonic transmission waveguide 457 portion of the blade 456.
The pivot point 506 is provided at the distal end of the elongated member 512. The clamp jaw 504 is pivotally mounted to the pivot point 506 by a pivot pin 508 that is received through a first hole 510A, a second hole 510B, and a third hole 510C. The clamp jaw 504 is coupled to the actuator rod 516 with a first link 532A and a second link 532B. The first and second links 532A, B are coupled to the clamp jaw 504 with pin 534 received through a first hole 528B formed at a distal end of the first link 532A, a second hole 530B formed at a distal end of the second link 532B, and a slot 536 formed in the clamp jaw 504. The slot 536 is formed at an angle to the longitudinal axis “L” to enable the pin 534 some freedom of motion within the slot 536 during the rotation of the clamp jaw 504. The first and second links 532A, B are coupled to the actuator rod 516 with a pin 526 received through a first hole 528A formed at a proximal end of the first link 532A, a second hole 530A formed at a proximal end of the second link 532B, and a third hole 540 formed at a distal end 524 of the actuator rod 516.
With reference to
The ultrasonic instrument 550 comprises the outer tube 462. As previously discussed, the outer tube 462 has a substantially circular cross-section and defines a longitudinal opening or aperture 466 to receive the clamp jaw 504 in its retracted or folded back open position. The outer tube 462 is configured to receive an inner tube 562 comprising a circular cross-section with a wall 554 defining a first aperture 566 to receive the elongated member 512 and a second aperture to receive an ultrasonic transmission waveguide portion 557 of the blade 556. The elongate member 512 comprises a pivot base member 515 and a channel 514. The channel 514 is configured to receive an actuator rod 516.
The pivot point 506 is formed at a distal end of the elongated member 512. The clamp jaw 504 is pivotally mounted to the pivot point 506 by the pivot pin 508 that is received through a first hole 510A, a second hole 510B, and a third hole 510C. The clamp jaw 504 is coupled to the actuator rod 516 with a first link 532A and a second link 532B. The first and second links 532A, B are coupled to the clamp jaw 504 with pin 534 received through a first hole 528B formed at a distal end of the first link 532A, a second hole 530B formed at a distal end of the second link 532B, and a slot 536 formed in the clamp jaw 504. The slot 536 is formed at an angle to the longitudinal axis “L” to enable the pin 534 some freedom of motion within the slot 536 as the clamp law 504 is rotated. The first and second links 532A, B are coupled to the actuator rod 516 with a pin 526 received through a first hole 528A formed at a proximal end of the first link 532A, a second hole 530A formed at a proximal end of the second link 532B, and a third hole 540 formed at a distal end 524 of the actuator rod 516.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular elements, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular elements or components of the device may be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular components, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device may utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the various embodiments described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
It is preferred that the device is sterilized. This can be done by any number of ways known to those skilled in the art including beta or gamma radiation, ethylene oxide, steam, autoclaving, soaking in sterilization liquid, or other known processes.
Although various embodiments have been described herein, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
Number | Name | Date | Kind |
---|---|---|---|
2736960 | Armstrong | Mar 1956 | A |
2849788 | Creek | Sep 1958 | A |
3015961 | Roney | Jan 1962 | A |
3513848 | Garvey et al. | May 1970 | A |
3526219 | Balamuth | Sep 1970 | A |
3614484 | Shoh | Oct 1971 | A |
3636943 | Balamuth | Jan 1972 | A |
3776238 | Peyman et al. | Dec 1973 | A |
3805787 | Banko | Apr 1974 | A |
3862630 | Balamuth | Jan 1975 | A |
3900823 | Sokal et al. | Aug 1975 | A |
3918442 | Nikolaev et al. | Nov 1975 | A |
3946738 | Newton et al. | Mar 1976 | A |
3955859 | Stella et al. | May 1976 | A |
3956826 | Perdreaux, Jr. | May 1976 | A |
4156187 | Murry et al. | May 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200106 | Douvas et al. | Apr 1980 | A |
4445063 | Smith | Apr 1984 | A |
4491132 | Aikins | Jan 1985 | A |
4617927 | Manes | Oct 1986 | A |
4633119 | Thompson | Dec 1986 | A |
4634420 | Spinosa et al. | Jan 1987 | A |
4640279 | Beard | Feb 1987 | A |
4708127 | Abdelghani | Nov 1987 | A |
4832683 | Idemoto et al. | May 1989 | A |
4838853 | Parisi | Jun 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4865159 | Jamison | Sep 1989 | A |
4896009 | Pawlowski | Jan 1990 | A |
4922902 | Wuchinich et al. | May 1990 | A |
4981756 | Rhandhawa | Jan 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5112300 | Ureche | May 1992 | A |
5123903 | Quaid et al. | Jun 1992 | A |
5126618 | Takahashi et al. | Jun 1992 | A |
5162044 | Gahn et al. | Nov 1992 | A |
5167725 | Clark et al. | Dec 1992 | A |
D332660 | Rawson et al. | Jan 1993 | S |
5176695 | Dulebohn | Jan 1993 | A |
5184605 | Grezeszykowski | Feb 1993 | A |
5213569 | Davis | May 1993 | A |
5221282 | Wuchinich | Jun 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5241236 | Sasaki et al. | Aug 1993 | A |
5257988 | L'Esperance, Jr. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263957 | Davison | Nov 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5282800 | Foshee et al. | Feb 1994 | A |
5304115 | Pflueger et al. | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5322055 | Davison et al. | Jun 1994 | A |
5324299 | Davison et al. | Jun 1994 | A |
5344420 | Hilal et al. | Sep 1994 | A |
5346502 | Estabrook et al. | Sep 1994 | A |
5366466 | Christian et al. | Nov 1994 | A |
D354564 | Medema | Jan 1995 | S |
5381067 | Greenstein et al. | Jan 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5411481 | Allen et al. | May 1995 | A |
5419761 | Narayanan et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5483501 | Park et al. | Jan 1996 | A |
5486162 | Brumbach | Jan 1996 | A |
5500216 | Julian et al. | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5505693 | Mackool | Apr 1996 | A |
5562609 | Brumbach | Oct 1996 | A |
5562610 | Brumbach | Oct 1996 | A |
5601601 | Tal et al. | Feb 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5618492 | Auten et al. | Apr 1997 | A |
5628760 | Knoepfler | May 1997 | A |
5630420 | Vaitekunas | May 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5651780 | Jackson et al. | Jul 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5669922 | Hood | Sep 1997 | A |
5674235 | Parisi | Oct 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5713896 | Nardella | Feb 1998 | A |
5733074 | Stöck et al. | Mar 1998 | A |
5741226 | Strukel et al. | Apr 1998 | A |
5810859 | DiMatteo et al. | Sep 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5828160 | Sugishita | Oct 1998 | A |
5843109 | Mehta et al. | Dec 1998 | A |
5879364 | Bromfield et al. | Mar 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5897569 | Kellogg et al. | Apr 1999 | A |
5935143 | Hood | Aug 1999 | A |
5935144 | Estabrook | Aug 1999 | A |
5938633 | Beaupre | Aug 1999 | A |
5944718 | Austin et al. | Aug 1999 | A |
5944737 | Tsonton et al. | Aug 1999 | A |
5954736 | Bishop et al. | Sep 1999 | A |
5954746 | Holthaus et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957943 | Vaitekunas | Sep 1999 | A |
5968007 | Simon et al. | Oct 1999 | A |
5968060 | Kellogg | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5980510 | Tsonton et al. | Nov 1999 | A |
5989274 | Davison et al. | Nov 1999 | A |
5989275 | Estabrook et al. | Nov 1999 | A |
5993972 | Reich et al. | Nov 1999 | A |
6033375 | Brumbach | Mar 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6068647 | Witt et al. | May 2000 | A |
6077285 | Boukhny | Jun 2000 | A |
6083191 | Rose | Jul 2000 | A |
6086584 | Miller | Jul 2000 | A |
6090120 | Wright et al. | Jul 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110127 | Suzuki | Aug 2000 | A |
6113594 | Savage | Sep 2000 | A |
6139320 | Hahn | Oct 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159175 | Strukel et al. | Dec 2000 | A |
6204592 | Hur | Mar 2001 | B1 |
6206844 | Reichel et al. | Mar 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6214023 | Whipple et al. | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6238366 | Savage et al. | May 2001 | B1 |
D444365 | Bass et al. | Jul 2001 | S |
6254623 | Haibel, Jr. et al. | Jul 2001 | B1 |
6258034 | Hanafy | Jul 2001 | B1 |
6267761 | Ryan | Jul 2001 | B1 |
6270831 | Kumar et al. | Aug 2001 | B2 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6274963 | Estabrook et al. | Aug 2001 | B1 |
6277115 | Saadat | Aug 2001 | B1 |
6278218 | Madan et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6319221 | Savage et al. | Nov 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6328751 | Beaupre | Dec 2001 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6379320 | Lafon et al. | Apr 2002 | B1 |
D457958 | Dycus et al. | May 2002 | S |
6383194 | Pothula | May 2002 | B1 |
6387109 | Davison et al. | May 2002 | B1 |
6388657 | Natoli | May 2002 | B1 |
6391042 | Cimino | May 2002 | B1 |
6405733 | Fogarty et al. | Jun 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6423073 | Bowman | Jul 2002 | B2 |
6423082 | Houser et al. | Jul 2002 | B1 |
6432118 | Messerly | Aug 2002 | B1 |
6436114 | Novak et al. | Aug 2002 | B1 |
6436115 | Beaupre | Aug 2002 | B1 |
6443969 | Novak et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6454782 | Schwemberger | Sep 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6491708 | Madan et al. | Dec 2002 | B2 |
6497715 | Satou | Dec 2002 | B2 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500188 | Harper et al. | Dec 2002 | B2 |
6524316 | Nicholson et al. | Feb 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6537291 | Friedman et al. | Mar 2003 | B2 |
6543452 | Lavigne | Apr 2003 | B1 |
6543456 | Freeman | Apr 2003 | B1 |
6544260 | Markel et al. | Apr 2003 | B1 |
6561983 | Cronin et al. | May 2003 | B2 |
6572632 | Zisterer et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6589200 | Schwemberger et al. | Jul 2003 | B1 |
6589239 | Khandkar et al. | Jul 2003 | B2 |
6616450 | Mossle et al. | Sep 2003 | B2 |
6623501 | Heller et al. | Sep 2003 | B2 |
6626926 | Friedman et al. | Sep 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6656177 | Truckai et al. | Dec 2003 | B2 |
6662127 | Wiener et al. | Dec 2003 | B2 |
6663941 | Brown et al. | Dec 2003 | B2 |
6676660 | Wampler et al. | Jan 2004 | B2 |
6678621 | Wiener et al. | Jan 2004 | B2 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6731047 | Kauf et al. | May 2004 | B2 |
6733506 | McDevitt et al. | May 2004 | B1 |
6762535 | Take et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773444 | Messerly | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786383 | Stegelmann | Sep 2004 | B2 |
6790216 | Ishikawa | Sep 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6828712 | Battaglin et al. | Dec 2004 | B2 |
6869439 | White et al. | Mar 2005 | B2 |
6875220 | Du et al. | Apr 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
D509589 | Wells | Sep 2005 | S |
6945981 | Donofrio et al. | Sep 2005 | B2 |
D511145 | Donofrio et al. | Nov 2005 | S |
6976844 | Hickok et al. | Dec 2005 | B2 |
6976969 | Messerly | Dec 2005 | B2 |
6977495 | Donofrio | Dec 2005 | B2 |
6984220 | Wuchinich | Jan 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7041083 | Chu et al. | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7074219 | Levine et al. | Jul 2006 | B2 |
7077039 | Gass et al. | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7124932 | Isaacson et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7135018 | Ryan et al. | Nov 2006 | B2 |
7135030 | Schwemberger et al. | Nov 2006 | B2 |
7153315 | Miller | Dec 2006 | B2 |
D536093 | Nakajima et al. | Jan 2007 | S |
7156189 | Bar-Cohen et al. | Jan 2007 | B1 |
7156853 | Muratsu | Jan 2007 | B2 |
7157058 | Marhasin et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7163548 | Stulen et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7179271 | Friedman et al. | Feb 2007 | B2 |
7186253 | Truckai et al. | Mar 2007 | B2 |
7189233 | Truckai et al. | Mar 2007 | B2 |
7204820 | Akahoshi | Apr 2007 | B2 |
7220951 | Truckai et al. | May 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7229455 | Sakurai et al. | Jun 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7309849 | Truckai et al. | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7331410 | Yong et al. | Feb 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7381209 | Truckai et al. | Jun 2008 | B2 |
7390317 | Taylor et al. | Jun 2008 | B2 |
7408288 | Hara | Aug 2008 | B2 |
D576725 | Shumer et al. | Sep 2008 | S |
D578643 | Shumer et al. | Oct 2008 | S |
D578644 | Shumer et al. | Oct 2008 | S |
D578645 | Shumer et al. | Oct 2008 | S |
7431704 | Babaev | Oct 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7479148 | Beaupre | Jan 2009 | B2 |
7479160 | Branch et al. | Jan 2009 | B2 |
7494468 | Rabiner et al. | Feb 2009 | B2 |
7503893 | Kucklick | Mar 2009 | B2 |
7534243 | Chin et al. | May 2009 | B1 |
D594983 | Price et al. | Jun 2009 | S |
7567012 | Namikawa | Jul 2009 | B2 |
D618797 | Price et al. | Jun 2010 | S |
7751115 | Song | Jul 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7780659 | Okada et al. | Aug 2010 | B2 |
D631155 | Peine et al. | Jan 2011 | S |
7876030 | Taki et al. | Jan 2011 | B2 |
D631965 | Price et al. | Feb 2011 | S |
7892606 | Thies et al. | Feb 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959626 | Hong et al. | Jun 2011 | B2 |
7976544 | McClurken et al. | Jul 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
20010025184 | Messerly | Sep 2001 | A1 |
20010031950 | Ryan | Oct 2001 | A1 |
20010039419 | Francischelli et al. | Nov 2001 | A1 |
20020002377 | Cimino | Jan 2002 | A1 |
20020019649 | Sikora et al. | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020077550 | Rabiner et al. | Jun 2002 | A1 |
20020156493 | Houser et al. | Oct 2002 | A1 |
20030055443 | Spotnitz | Mar 2003 | A1 |
20030204199 | Novak et al. | Oct 2003 | A1 |
20030212332 | Fenton et al. | Nov 2003 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20040047485 | Sherrit et al. | Mar 2004 | A1 |
20040092921 | Kadziauskas et al. | May 2004 | A1 |
20040097919 | Wellman et al. | May 2004 | A1 |
20040097996 | Rabiner et al. | May 2004 | A1 |
20040199193 | Hayashi et al. | Oct 2004 | A1 |
20040204728 | Haefner | Oct 2004 | A1 |
20040243157 | Connor et al. | Dec 2004 | A1 |
20040260300 | Gorensek et al. | Dec 2004 | A1 |
20050033337 | Muir et al. | Feb 2005 | A1 |
20050049546 | Messerly et al. | Mar 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050149108 | Cox | Jul 2005 | A1 |
20050165345 | Laufer et al. | Jul 2005 | A1 |
20050177184 | Easley | Aug 2005 | A1 |
20050192610 | Houser et al. | Sep 2005 | A1 |
20050209620 | Du et al. | Sep 2005 | A1 |
20050261581 | Hughes et al. | Nov 2005 | A1 |
20050261588 | Makin et al. | Nov 2005 | A1 |
20050288659 | Kimura et al. | Dec 2005 | A1 |
20060030797 | Zhou et al. | Feb 2006 | A1 |
20060063130 | Hayman et al. | Mar 2006 | A1 |
20060079878 | Houser | Apr 2006 | A1 |
20060084963 | Messerly | Apr 2006 | A1 |
20060190034 | Nishizawa et al. | Aug 2006 | A1 |
20060211943 | Beaupre | Sep 2006 | A1 |
20060235306 | Cotter et al. | Oct 2006 | A1 |
20060253050 | Yoshimine et al. | Nov 2006 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016236 | Beaupre | Jan 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070060915 | Kucklick | Mar 2007 | A1 |
20070063618 | Bromfield | Mar 2007 | A1 |
20070129716 | Daw et al. | Jun 2007 | A1 |
20070130771 | Ehlert et al. | Jun 2007 | A1 |
20070131034 | Ehlert et al. | Jun 2007 | A1 |
20070149881 | Rabin | Jun 2007 | A1 |
20070162050 | Sartor | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070185380 | Kucklick | Aug 2007 | A1 |
20070219481 | Babaev | Sep 2007 | A1 |
20070249941 | Salehi et al. | Oct 2007 | A1 |
20070260234 | McCullagh et al. | Nov 2007 | A1 |
20070265560 | Soltani et al. | Nov 2007 | A1 |
20070275348 | Lemon | Nov 2007 | A1 |
20070282335 | Young et al. | Dec 2007 | A1 |
20070287933 | Phan et al. | Dec 2007 | A1 |
20080009848 | Paraschiv et al. | Jan 2008 | A1 |
20080058585 | Novak et al. | Mar 2008 | A1 |
20080058775 | Darian et al. | Mar 2008 | A1 |
20080058845 | Shimizu et al. | Mar 2008 | A1 |
20080082039 | Babaev | Apr 2008 | A1 |
20080082098 | Tanaka et al. | Apr 2008 | A1 |
20080172051 | Masuda et al. | Jul 2008 | A1 |
20080177268 | Daum et al. | Jul 2008 | A1 |
20080188878 | Young | Aug 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080208231 | Ota et al. | Aug 2008 | A1 |
20080234708 | Houser et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080234710 | Neurohr et al. | Sep 2008 | A1 |
20080262490 | Williams | Oct 2008 | A1 |
20080281200 | Voic et al. | Nov 2008 | A1 |
20080287948 | Newton et al. | Nov 2008 | A1 |
20090030311 | Stulen et al. | Jan 2009 | A1 |
20090030351 | Wiener et al. | Jan 2009 | A1 |
20090030437 | Houser et al. | Jan 2009 | A1 |
20090030438 | Stulen | Jan 2009 | A1 |
20090030439 | Stulen | Jan 2009 | A1 |
20090036911 | Stulen | Feb 2009 | A1 |
20090036912 | Wiener et al. | Feb 2009 | A1 |
20090036913 | Wiener et al. | Feb 2009 | A1 |
20090036914 | Houser | Feb 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090082716 | Akahoshi | Mar 2009 | A1 |
20090105750 | Price et al. | Apr 2009 | A1 |
20090118802 | Mioduski et al. | May 2009 | A1 |
20090143795 | Robertson | Jun 2009 | A1 |
20090143796 | Stulen et al. | Jun 2009 | A1 |
20090143806 | Witt et al. | Jun 2009 | A1 |
20090270853 | Yachi et al. | Oct 2009 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100158307 | Kubota et al. | Jun 2010 | A1 |
20100179577 | Houser | Jul 2010 | A1 |
20100187283 | Crainich et al. | Jul 2010 | A1 |
20100298743 | Nield et al. | Nov 2010 | A1 |
20100298851 | Nield | Nov 2010 | A1 |
20100331869 | Voegele et al. | Dec 2010 | A1 |
20100331870 | Wan et al. | Dec 2010 | A1 |
20100331871 | Nield et al. | Dec 2010 | A1 |
20100331872 | Houser et al. | Dec 2010 | A1 |
20110009850 | Main et al. | Jan 2011 | A1 |
20110015627 | DiNardo et al. | Jan 2011 | A1 |
20110015631 | Wiener et al. | Jan 2011 | A1 |
20110015660 | Wiener et al. | Jan 2011 | A1 |
20110082486 | Messerly et al. | Apr 2011 | A1 |
20110087212 | Aldridge et al. | Apr 2011 | A1 |
20110087213 | Messerly et al. | Apr 2011 | A1 |
20110087214 | Giordano et al. | Apr 2011 | A1 |
20110087215 | Aldridge et al. | Apr 2011 | A1 |
20110087216 | Aldridge et al. | Apr 2011 | A1 |
20110087217 | Yates et al. | Apr 2011 | A1 |
20110087218 | Boudreaux et al. | Apr 2011 | A1 |
20110087256 | Wiener et al. | Apr 2011 | A1 |
20110125175 | Stulen et al. | May 2011 | A1 |
20110196286 | Robertson et al. | Aug 2011 | A1 |
20110196287 | Robertson et al. | Aug 2011 | A1 |
20110196398 | Robertson et al. | Aug 2011 | A1 |
20110196399 | Robertson et al. | Aug 2011 | A1 |
20110196400 | Robertson et al. | Aug 2011 | A1 |
20110196401 | Robertson et al. | Aug 2011 | A1 |
20110196402 | Robertson et al. | Aug 2011 | A1 |
20110196403 | Robertson et al. | Aug 2011 | A1 |
20110196404 | Dietz et al. | Aug 2011 | A1 |
20110196405 | Dietz | Aug 2011 | A1 |
20110288452 | Houser et al. | Nov 2011 | A1 |
20120029546 | Robertson | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
1634601 | Jul 2005 | CN |
1640365 | Jul 2005 | CN |
1694649 | Nov 2005 | CN |
1922563 | Feb 2007 | CN |
101040799 | Sep 2007 | CN |
0171967 | Feb 1986 | EP |
0443256 | Aug 1991 | EP |
0456470 | Nov 1991 | EP |
0482195 | Jan 1996 | EP |
0612570 | Jun 1997 | EP |
0908148 | Jan 2002 | EP |
0908155 | Jun 2003 | EP |
1199044 | Dec 2005 | EP |
1844720 | Oct 2007 | EP |
1862133 | Dec 2007 | EP |
1974771 | Oct 2008 | EP |
1832259 | Jun 2009 | EP |
2074959 | Jul 2009 | EP |
2032221 | Apr 1980 | GB |
2447767 | Aug 2011 | GB |
WO 9222259 | Dec 1992 | WO |
WO 9314708 | Aug 1993 | WO |
WO 9837815 | Sep 1998 | WO |
WO 0154590 | Aug 2001 | WO |
WO 2005122917 | Dec 2005 | WO |
WO 2006042210 | Apr 2006 | WO |
WO 2006058223 | Jun 2006 | WO |
WO 2006129465 | Dec 2006 | WO |
WO 2007047531 | Apr 2007 | WO |
WO 2007143665 | Dec 2007 | WO |
WO 2008016886 | Feb 2008 | WO |
WO 2008130793 | Oct 2008 | WO |
WO 2009018406 | Feb 2009 | WO |
WO 2009027065 | Mar 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20080234711 A1 | Sep 2008 | US |