This is the U.S. National Stage application of International Application No. PCT/CH2004/000411, filed Jun. 30, 2004.
The invention relates to a surgical nail, in particular an intramedullary nail for use in repairing bone fractures.
The securing function of intramedullary nails is already known in the state of the art. The locking screws or locking pins (hereinafter only the term “locking screw” is used, but this is also intended to include the term other fasteners, such as locking pins) are inserted into the transverse bores in an intramedullary nail either with the help of an imaging method (x-ray monitoring) or a fairly complex targeting device. In both cases, a certain target inaccuracy is unavoidable, i.e., the tip of the screw cannot be aligned precisely coaxially with the central axis of the transverse bore but instead there is a certain deviation. In order for the locking screw to open into and pass through the transverse bore despite this target error, the outside diameter of the screw is undersized in relation to the diameter of the transverse bore. If the target inaccuracy remains within the scope of this undersizing, then the locking screw can be passed through the transverse bore with no problem despite this target error. However—because of the undersizing—the locking screw does have a certain amount of play in relation to the transverse bore.
This play defines the allowed amount of movement of the main bone fragments, which are to be secured in the corresponding locking hole by means of locking screws, in relation to the nail, and therefore, owing to the rigidity of the nail, also in relation to other main bone fragments attached with the same nail. This play is unavoidable in order to be sure that the surgeon will be able to use this locking means, but is nevertheless undesirable clinically for certain indications (e.g., in the case of metaphysical fragments).
Nails having a solid cross section, which may have an inside thread in the locking hole, are also not free of play. The inside thread only prevents the nail from being displaced axially on the locking screw.
US 2002/173792 (Hover et al.) describes a hollow intramedullary nail made of metal having one or two plastic inserts in the jacket openings in the transverse bore, which are positioned diametrically opposite one another and are referred to as windows, the locking screw being insertable through these plastic inserts. This known intramedullary nail has the disadvantage that the window-like plastic inserts are easily pushed in, causing the desired function to be lost. But even with very careful manipulation, the two plastic inserts could be forced out of their “windows” when the locking screw is passed through, which also causes a loss of function.
In a special embodiment of the Hover patent, an insert on the distal tip of the intramedullary nail that can be inserted into the central cavity thereof is provided in both windows in the transverse opening, but its material composition and function remain unclear.
The present invention seeks to remedy this situation. The object of the invention is to create a surgical nail, in particular an intramedullary nail, with which the play between the nail and the locking screw can be eliminated at no risk and an improved holding force between the locking screw and the intramedullary nail can be achieved without requiring the user to employ a high level of precision in performing the work. Another object is to create a surgical nail with an insert that can be inserted into its longitudinal bore and can also be introduced and aligned intraoperatively after insertion of the nail without applying any great force and without thereby reducing the holding force of the insert having been introduced.
The present invention achieves this object with a surgical nail formed of material with a first modulus of elasticity, the nail having a tubular body with a longitudinal central axis, a longitudinal bore extending along the axis between proximal and distal ends of the tubular body, and a transverse opening configured to receive a bone fastener. An elongated insert formed of material with a second, lower modulus of elasticity and configured to fit within the longitudinal bore in an installed position extends across the path of movement of a bone fastener through the transverse opening, the insert having a longitudinal slot enabling compression of the insert, and further having an elevation configured to project from the longitudinal bore into the transverse opening to locate the insert in the installed position.
The following advantages can be achieved in this way:
a) The insert is held axially in the longitudinal bore in the nail due to its radial initial stress;
b) The insert can be inserted into position without requiring any actual matching of play so that, for example, it is not necessary to maintain narrow tolerances as in the press fit;
c) The target accuracy in introducing the locking screw is unimpaired;
d) The nail and insert can be packaged separately in sterile packages and the surgeon can select whether to use the nail with or without the insert. If using the nail with the insert, the surgeon can insert the insert into the nail himself and optionally also remove it again. If the surgeon uses the nail without an insert, it still remains in the sterile package for the next use. The physician is thus able to decide intraoperative whether or not to use a stable-angle locking of the locking screw, where the term “stable angle” means a restriction of certain degrees of freedom; and
e) The possibility of stable angle fixation of the bone fragment in certain directions for a certain amount of load;
f) Form-fitting locking of the insert in the longitudinal bore of the nail and thus an increased holding force in the longitudinal bore, which is also advantageous in extraction of the nail;
g) Ease of introduction and alignment of the insert intraoperatively and after insertion of the nail with the same advantages with regard to holding force;
h) The elevations on the insert optimize alignability and the holding force as well as retention of the insert in the cannulation in the event of extraction of the nail and
i) The insert which has a longitudinal slot allows it to be inserted into the cannulated intramedullary nail because the projecting length of the elevations and the size of the diameter of the insert are radially flexible with a minor loss of holding power.
The insert is preferably designed in one piece. The longitudinal slot advantageously runs continuously over the entire length of the insert. The insert may also have multiple longitudinal slots that do not run over the entire length of the insert, so this results in increased stability of the insert. Furthermore, the longitudinal slots may also be arranged with an offset on the circumference of the insert, which results in an increased flexibility. The longitudinal slots may also be arranged axially one above the other.
In a special embodiment, at least one elevation is arranged in the same way as the at least one transverse opening and can be brought into engagement with the latter. The elevations corresponding to the transverse openings support the bracing effect of the locking screws in their installation.
The at least one elevation is preferably offset by 90° on the circumference of the insert in comparison with the at least one longitudinal slot. This yields the advantage that in radial compression of the insert, the elevations do not protrude beyond the diameter of the insert so that the latter can simply be pushed into the longitudinal bore in the nail. The height of the at least one elevation is preferably less than or equal to the width of the longitudinal slot.
The longitudinal slot preferably communicates with the longitudinal bore.
In a special embodiment, the nail has at least two transverse openings, preferably at least three transverse openings. In another embodiment the nail has at least two transverse openings in its distal half and at least two transverse openings in its proximal half.
A preferred further embodiment of the invention consists of the fact that the insert is designed in the form of a rod and can be inserted through the longitudinal bore in the nail up to the area of the transverse openings. The surgeon may also insert the insert after implantation of the nail (without insert) by advancing the insert from the proximal end into the longitudinal bore up to the area of the transverse openings.
The modulus of elasticity “e” of the insert is preferably “e”<0.8E and is typically “e”<0.7E.
In a special embodiment, the material m of the insert is a biocompatible plastic, preferably a polyethylene or a high molecular weight polyethylene (HMWPE). This has the advantage that there is no degradation of the plastic resulting in unknown degradation products.
In one alternative, the material introduced into the longitudinal bore in the hollow nail and having a lower hardness is a bioabsorbable plastic which is preferably a polylactide. In this embodiment, there is initially a play-free transverse locking of the intramedullary nail which is then canceled again successively with increasing absorption of the polymer so that the transverse locking screw becomes mobile again in relation to the intramedullary nail and thus also the bone fragments treated in this way. This allows a certain dynamic mobility of the bone fragments after successful fracture consolidation.
Another advantage of the bioabsorbable material is that chips formed in cutting of a thread by the locking screw through the nail can be absorbed by the body.
In another embodiment the nail has at least two transverse openings, preferably at least three transverse openings. The transverse opening preferably has a circular cross section, where a=b. However, the transverse opening may also be designed as an elongated hole having the cross-section profile F where the longer dimension “a” of the elongated hole is arranged in the axial direction of the nail.
The material “m” of the insert, preferably also has a lower density ρ1 and the material M having the density ρ2, whereby preferably ρ1<0.8ρ2.
The nail may comprise a locking screw or a locking pin insertable into the transverse opening (having the cross-sectional profile F) and through the insert, its outside thread and/or its unthreaded shaft having an outside diameter “d” which complies with the condition a>d<b.
In another embodiment the insert has a central longitudinal bore.
The diameter of the longitudinal bore of the nail in the direction of its central axis may be variable and the longitudinal bore may preferably have a circular shoulder.
In another embodiment the rod-shaped insert may also have a recess running radially across its longitudinal axis. Thanks to this recess, it is easier to center a locking screw or a locking pin and it is easier to drill through the insert, resulting in fewer chips of the material “m.”
The insert may also have multiple recesses which are arranged in the same way as the transverse openings in the nail.
In another embodiment, the insert may be designed to be rod-shaped, preferably conical. Thanks to this shape, the insert is more easily inserted into the longitudinal bore of the nail from the distal end and furthermore a press fit is also possible.
In another embodiment the rod-shaped insert and the wall of the nail have cooperating means, preferably in the form of a groove and a matching elevation which secure the insert rotationally in a predetermined position in relation to the nail.
The elevations have a transverse extent “x” which is advantageously in the ratio 1<x/q<2 where “q” is the diameter of the insert. The advantage of this embodiment is that the elevations snap into the transverse openings on insertion of the insert into the longitudinal bore in the nail so that the insert is definitely and reliability positioned in the nail. The increased displacement volume also leads to an improved holding force, i.e., an increased angular stability.
The nail may already be made available to the surgeon with an insert already inserted into its longitudinal bore as far as the area of the transverse openings or alternatively they may be made available as separately packaged parts.
The nail may be used together with a locking screw having a screw shaft and an outside thread, whereby for the diameter d of the screw thread it holds that a>d<b, and “d” is preferably at least 5% smaller than the smaller of the two dimensions a, b.
In a special embodiment, the transverse openings are arranged in the distal half of the nail.
If the nail has only one transverse bore the insert may be inserted into the longitudinal bore into the area of this single transverse opening, but if the nail has two (or more) transverse bores, the insert may be inserted axially beyond the at least two transverse openings. Therefore a stable-angle fixation of the bone fragment is possible.
In another embodiment the insert is inserted axially beyond the at least two proximal transverse openings.
In a preferred embodiment, the insert has n≧2 elevations and the nail has N≧n, preferably N=n transverse openings in the area of the insert.
To manufacture the nail, a solid body made of a material “m” may be inserted into the longitudinal bore of the nail from the upper or lower end of the nail (made of the material M), so that the solid body comes to lie at least in the area of one of the transverse openings of the nail.
The present invention and further embodiments of the invention are described in greater detail below on the basis of the partial schematic diagrams of multiple exemplary embodiments.
The surgical nail 1 shown in
A fourth transverse opening is arranged proximally and is designed as an elongated hole 20, whereby the longer dimension is arranged in the axial direction. Two of the three transverse openings 5 are provided in the distal part of the intramedullary nail 1.
The intramedullary nail has a longitudinal bore 3 running coaxially with the central axis 2 and therefore a wall 4. A rod-shaped insert 7 (
As shown in
As shown in
The insert 7 has on its distal end a hemispherical enlargement 11 with a stop 10 directed proximally. Secure axial positioning of the insert 7 in the longitudinal bore 3 of the intramedullary nail is ensured by the stop 10 of the enlargement 11. A hexagonal cavity 26 is provided in the hemispherical enlargement 11 to hold a hex head screwdriver. The insert also has a number of radial elevations 14—fitting into the transverse openings 5 in the nail 1.
The insert 7 shown in
As shown in
As shown in
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2004/000411 | 6/30/2004 | WO | 00 | 6/19/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/002551 | 1/12/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2834342 | Yost | May 1958 | A |
3255747 | Cochran et al. | Jun 1966 | A |
3433220 | Zickel | Mar 1969 | A |
4095591 | Graham, Jr. et al. | Jun 1978 | A |
4103683 | Neufeld | Aug 1978 | A |
4172452 | Forte et al. | Oct 1979 | A |
4274163 | Malcom et al. | Jun 1981 | A |
4438762 | Kyle | Mar 1984 | A |
4494535 | Haig | Jan 1985 | A |
4612920 | Lower | Sep 1986 | A |
4621628 | Brudermann | Nov 1986 | A |
4622959 | Marcus | Nov 1986 | A |
4657001 | Fixel | Apr 1987 | A |
4697585 | Williams | Oct 1987 | A |
4705027 | Klaue | Nov 1987 | A |
4754749 | Tsou | Jul 1988 | A |
4776330 | Chapman et al. | Oct 1988 | A |
4791918 | Von Hasselbach | Dec 1988 | A |
4805607 | Engelhardt et al. | Feb 1989 | A |
4817591 | Klaue | Apr 1989 | A |
4858602 | Seidel et al. | Aug 1989 | A |
4875474 | Border | Oct 1989 | A |
4973332 | Kummer | Nov 1990 | A |
5032125 | Durham et al. | Jul 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5041115 | Frigg et al. | Aug 1991 | A |
5120171 | Lasner | Jun 1992 | A |
5167663 | Brumfield | Dec 1992 | A |
5176681 | Lawes et al. | Jan 1993 | A |
5300074 | Frigg | Apr 1994 | A |
5312406 | Brumfield | May 1994 | A |
5364398 | Chapman et al. | Nov 1994 | A |
5374235 | Ahrens | Dec 1994 | A |
5454813 | Lawes | Oct 1995 | A |
5484439 | Olson et al. | Jan 1996 | A |
5549610 | Russell et al. | Aug 1996 | A |
5569249 | James et al. | Oct 1996 | A |
5573536 | Grosse et al. | Nov 1996 | A |
5578035 | Lin | Nov 1996 | A |
5591168 | Judet et al. | Jan 1997 | A |
5653000 | Lee | Aug 1997 | A |
5658287 | Hofmann et al. | Aug 1997 | A |
5658339 | Tronzo et al. | Aug 1997 | A |
5713901 | Tock | Feb 1998 | A |
5713902 | Friedl | Feb 1998 | A |
5728099 | Tellman et al. | Mar 1998 | A |
5741256 | Bresina | Apr 1998 | A |
5772662 | Chapman et al. | Jun 1998 | A |
5908422 | Bresina | Jun 1999 | A |
5928235 | Friedl | Jul 1999 | A |
5935127 | Border | Aug 1999 | A |
5976139 | Bramlet | Nov 1999 | A |
5993483 | Gianotti | Nov 1999 | A |
6010506 | Gosney et al. | Jan 2000 | A |
6059785 | Schavan et al. | May 2000 | A |
6106528 | Durham et al. | Aug 2000 | A |
6123708 | Kilpela et al. | Sep 2000 | A |
6126661 | Faccioli et al. | Oct 2000 | A |
6187007 | Frigg et al. | Feb 2001 | B1 |
6197065 | Martin et al. | Mar 2001 | B1 |
6200685 | Davidson | Mar 2001 | B1 |
6228086 | Wahl et al. | May 2001 | B1 |
6261290 | Friedl | Jul 2001 | B1 |
6292979 | Kuo | Sep 2001 | B1 |
6296645 | Hover et al. | Oct 2001 | B1 |
6443954 | Bramlet et al. | Sep 2002 | B1 |
6454810 | Lob | Sep 2002 | B1 |
6722810 | Tachikawa | Apr 2004 | B1 |
6783529 | Hover et al. | Aug 2004 | B2 |
7182765 | Roth et al. | Feb 2007 | B2 |
7763021 | Cole et al. | Jul 2010 | B2 |
20020103488 | Lower et al. | Aug 2002 | A1 |
20020151898 | Sohngen et al. | Oct 2002 | A1 |
20020173792 | Severns et al. | Nov 2002 | A1 |
20030069581 | Stinson et al. | Apr 2003 | A1 |
20030114855 | Wahl et al. | Jun 2003 | A1 |
20040006392 | Grusin et al. | Jan 2004 | A1 |
20060064095 | Senn et al. | Mar 2006 | A1 |
20060111716 | Schlienger et al. | May 2006 | A1 |
20060149248 | Schlienger et al. | Jul 2006 | A1 |
20060161155 | Schlienger et al. | Jul 2006 | A1 |
20060189988 | Schlienger et al. | Aug 2006 | A1 |
20060235395 | Frigg et al. | Oct 2006 | A1 |
20060241605 | Schlienger et al. | Oct 2006 | A1 |
20070125602 | Marbach | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
668 173 | Dec 1988 | CH |
668173 | Dec 1988 | CH |
674 613 | Jun 1990 | CH |
674613 | Jun 1990 | CH |
196 29 011 | Jan 1998 | DE |
196 29 011 | Jan 1998 | DE |
199 45 611 | Sep 2001 | DE |
199 45 611 | Sep 2001 | DE |
103 20 855 | Feb 2004 | DE |
0 251 583 | Jan 1988 | EP |
0 251 583 | Jan 1988 | EP |
0 321 170 | Jun 1989 | EP |
0 321 170 | Jun 1989 | EP |
0 381 462 | Aug 1990 | EP |
0 381 462 | Aug 1990 | EP |
0 411 273 | Feb 1991 | EP |
0 411 273 | Feb 1991 | EP |
0 471 418 | Feb 1992 | EP |
0 471 418 | Feb 1992 | EP |
0 838 199 | Apr 1998 | EP |
0 838 199 | Apr 1998 | EP |
0 845 245 | Jun 1998 | EP |
0 845 245 | Jun 1998 | EP |
0 853 923 | Jul 1998 | EP |
0 853 923 | Jul 1998 | EP |
0 882 431 | Dec 1998 | EP |
0 919 200 | Jun 1999 | EP |
0 919 200 | Jun 1999 | EP |
0 968 685 | Jun 1999 | EP |
0 968 685 | Jan 2000 | EP |
1 024 762 | Aug 2000 | EP |
1 053 718 | Nov 2000 | EP |
1 053 718 | Nov 2000 | EP |
1 214 914 | Jun 2002 | EP |
1 214 914 | Jun 2002 | EP |
1 260 188 | Nov 2002 | EP |
1 260 188 | Nov 2002 | EP |
2 784 283 | Apr 2000 | FR |
2 784 283 | Apr 2002 | FR |
2 209 947 | Jun 1989 | GB |
2209947 | Jun 1989 | GB |
09-066059 | Mar 1997 | JP |
09-066060 | Mar 1997 | JP |
09-066061 | Mar 1997 | JP |
11-137566 | May 1999 | JP |
2000-051224 | Feb 2000 | JP |
2000-51224 | Feb 2000 | JP |
2000-051225 | Feb 2000 | JP |
2000-51225 | Feb 2000 | JP |
2000-342596 | Dec 2000 | JP |
9315679 | Aug 1993 | WO |
WO 9315679 | Aug 1993 | WO |
9615737 | May 1996 | WO |
WO 9615737 | May 1996 | WO |
9737606 | Oct 1997 | WO |
WO 9737606 | Oct 1997 | WO |
9805263 | Feb 1998 | WO |
WO 9805263 | Feb 1998 | WO |
9830164 | Jul 1998 | WO |
WO 9830164 | Jul 1998 | WO |
9841161 | Sep 1998 | WO |
WO 9841161 | Sep 1998 | WO |
9846169 | Oct 1998 | WO |
WO 9846169 | Oct 1998 | WO |
WO 9920195 | Apr 1999 | WO |
WO 0044946 | Aug 2000 | WO |
0067653 | Nov 2000 | WO |
WO 0067653 | Nov 2000 | WO |
02060331 | Aug 2002 | WO |
WO 02060331 | Aug 2002 | WO |
03015649 | Feb 2003 | WO |
WO 03015649 | Feb 2003 | WO |
WO 03101320 | Dec 2003 | WO |
WO 2004082494 | Sep 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080262496 A1 | Oct 2008 | US |