Not applicable
Not applicable
1. Field of the Invention
This invention relates generally to a surgical navigation system. More particularly, this invention relates to a system, a tracking device, and an adapter to assist the surgical navigation system orient a surgical instrument or device relative to a body of a patient.
2. Description of the Background of the Invention
The use of image guided surgical navigation systems for assisting surgeons during surgery is quite common. Such systems are especially widely used during procedures requiring precise location of instruments such as neurosurgery and more recently orthopedic surgery. Typical surgical navigation systems utilize specially developed tools that include built in tracking devices or tool and adapter combinations that allow a tracking device to be affixed to a surgical tool. These tracking devices allow a surgeon to see the position and/or orientation of the surgical tool overlaid on a monitor in conjunction with a preoperative image or an intraoperative image of the patient. Preoperative images are typically prepared by MRI or CT scans, while intraoperative may be prepared by using a fluoroscope, low level x-ray or any similar device. The tracking devices typically use a plurality of optical emitters that can be detected by the navigation system to determine the position and orientation of the surgical instrument.
One of the main challenges with present surgical navigation systems is the time required to properly apply and calibrate the tracking devices to work with conventional surgical instruments. Raab U.S. Pat. No. 5,251,127 teaches a computer aided surgery apparatus for positioning a surgical instrument that employs a computer driven instrumented linkage attached to a surgical instrument. Foley et al. U.S. Pat. No. 6,021,343 discloses a handheld surgical instrument with a tracking device that requires pre-dedicated and specially made surgical tool connections. Kienzle, III et al. U.S. patent application No. 2001/0036245 is directed towards a surgical tool with integrated localizing emitters for superimposing a representation of the tool over an image of a body in surgery.
Dedicated adapters for surgical instruments are expensive and time consuming to develop. Additionally, most of these devices require calibration of the surgical instrument after the tracking device has been attached in order to determine the transformation between the tracking device and an axis of the instrument. Moctezuma de la Barrera et al. U.S. patent application Ser. No. 10/246,599 teaches a surgical instrument fixedly attached to a tracking device, wherein the calibration of the position and orientation of the surgical instrument is accomplished by a separate device. In addition, for orthopedic surgery, it is sometimes necessary to apply force to the surgical tool. This force can damage the precision tracking device, such as damaging the electronics, the LEDs, or disturbing the calibration of the tracking device, if the tracking device is firmly attached to the tool when the force is applied. The present device allows a surgeon to track the orientation of the effector axis or effector plane of a wide range of instruments without the need to either calibrate the tool tracker combination or fixedly attaching a tracking device to a surgical instrument. In addition, the devices of this invention can be used to place items in the body in precise locations. One example of devices that must be properly placed are shunts that are place in the brain to drain fluid.
The present invention is also directed towards a method for orienting a surgical device. This method includes the steps of coupling by a user's hand a navigation tracker to a surgical device that has an effector axis in a movable manner using a geometrical feature associated with the navigation tracker. The navigation tracker is capable of communicating with a navigation system, and there is a known relation between the navigation tracker and the effector axis. Another step is calculating orientation data for the effector axis of the surgical device from the known relation between the navigation tracker to the effector axis. The calculating step is performed while the surgical device is moving longitudinally along the geometrical feature and movably coupled to the navigation tracker by the user's hand. Lastly, the method includes the step of displaying the orientation data for the effector axis of the surgical device on a display unit of the surgical navigation system so that when the surgical device is used with the navigation system, the orientation of the effector axis of the surgical device can be tracked by the surgical navigation system.
The present invention is further directed towards an adapter to attach a navigation tracker to a surgical device. The adapter has a body and a connector having a first end attached to the body and a second end. An interface attached to the second end to enable a navigation tracker to be attached to the adapter. The body has geometrical features to enable a surgical device to be non-fixedly coupled to the body.
Other aspects and advantages of the present invention will become apparent upon consideration of the following detailed description.
With reference to the drawings, the present invention is directed towards a surgical navigation system 100 for orienting a surgical instrument 102.
The camera array 120 is adapted to track a navigation tracker 118. The camera array 120 is further adapted to transmit data between the navigation tracker 118 and computer system 106 representing the orientation of the surgical instrument 102. In a preferred embodiment, the data is transmitted wirelessly between the navigation tracker 118 and the computer system 106. Alternatively, a system that uses wires to transmit data between the navigation tracker 118 and the computer system 106 can be used.
With reference to
The camera array 120 should be mounted in a stationary position with a sufficient line of sight to the operating room. In one embodiment, the camera array 120 is mounted on a rotatable arm 128 attached to the movable cart 108. In another embodiment, the camera array 120 may be mounted onto an operating room wall (not shown) or onto other convenient surfaces or locations.
At least one infrared transceiver is used to communicate data to and from the navigation tracker 118. In the preferred embodiment, the sensor array 120 includes a first transceiver 130 and a second transceiver 132 located apart from each other. It should be noted that while both the navigation tracker 118 and the transceivers, 130 and 132, may communicate via infrared signals, those skilled in the art will realize other wireless technologies such as radio frequency signals may be used as well as hardwired systems, so called electromagnetic communication.
The camera array 120 is connected via a cable 134 to a localizer 136 or in some instances directly to the computer. The localizer 136 cooperates with the camera array 120 to identify the location of a plurality of LED's 138 on the navigation tracker 118 within the line of sight of the sensor array 120. The first, second, and third cameras, 122, 124, and 126, contain their own orientation data and transmit that data and the orientation data from the plurality of LED's 138 to the localizer 136. In one embodiment, the localizer 136 converts the raw orientation data into the orientation of individual LED's of the plurality of LED's 138 and transmits this information to the computer system 106. In another embodiment, the localizer 136 converts the raw data into the orientation of the surgical instrument 102 and transmits this information to the computer system 106. In a further embodiment, a software program in the computer system 106 can convert the raw data into the orientation of the surgical instrument 102. In all embodiments, the conversion of the raw data is well known to one skilled in the art and need not be further discussed. The computer system 106 may be controlled remotely by control buttons (not visible) located on the navigation tracker 118. The computer system 106 also includes a keyboard 140 and a pointing device 142, such as a mouse or any alternative input means for operating the computer system 106. The surgical navigation system 100 is used by a surgeon 144 during a procedure on a patient 146. Preferably, the patient 146 is located on a surgical bed or a table 148.
The preferred embodiment of the present invention includes a surgical instrument 102 non-fixedly coupled to an adapter 116. The adapter 116 is, however, coupled to a navigation tracker 118 that is in communication with the sensor array 120 and transceivers 130 and 132. The use of navigation trackers in combination with sensor arrays and transceivers are well known in the art. A more detailed description of such surgical navigation systems are contained in U.S. patent application Ser. No. 10/246,599 filed Sep. 18, 2002, the disclosure of which is hereby incorporated by reference.
While the present invention is described using an active optical surgical navigation system, the system, method and adapters of the present invention can also be used with other surgical navigation technologies and systems, such as passive optical systems, magnetic based systems, inertial navigation based systems, combination systems, and the like.
The surgical instrument 102 has a handle 250, a shaft 252, an adapter tip 254 to hold various devices in position, an instrument axis 256 and a striking surface 258. The particular instrument 102 shown in
It is envisioned that there will be a number of different configurations of the adapter 116. As such, the distance between the navigation tracker 118 and the effector axis of a particular surgical instrument may vary depending on the type of adapter 116 used, and the type of instrument used. Each type of adapter 116 can be encoded with a specific identifier that can be entered into the surgical navigation system 100 and similarly the surgical navigation system 100 can prompt the entry of coding information for particular tools that are used. Alternatively, these tools or instruments may also be able to directly communicate with the surgical navigation system 100 and self identify the tool and/or the adapter. A block 428 is a database of stored dimensions for a number of adapters. The same may be done for each possible surgical instrument that can be used with the surgical navigation system 100. A block 430 is a database of stored dimensions for various surgical instruments and their corresponding effector axes. The surgical navigation system 100 also will allow a user to manually input data for an adapter or a tool that is not found within the respective database. It is desirable, but not necessary, that the navigation tracker 116 be a smart instrument that can relate its own configuration data to the surgical navigation system when the navigation tracker 118 is activated by the surgical navigation system 100. Once the surgical navigation system 100 knows the identity of the particular adapter 116 and the surgical instrument 102, the corresponding databases 428 and 430 are queried for the dimensions of the interface and channel configuration, the dimensions of the surgical instrument and its effector axis. This data may be manually entered or stored before or after the navigation tracker 118 is activated. The surgical navigation system 100 identifies the dimensions of the navigation tracker 118 in a conventional manner.
The program then proceeds to calculate the orientation of the effector axis of the surgical instrument 102 from the stored data of the navigation tracker 118 in block 426 and the stored data obtained from the blocks 428 and 430. A block 432 calculates the orientation in a conventional fashion using algorithms that are well known and recognized by those skilled in the art. A block 434 stores the orientation data in the memory unit 110, and displays the orientation information on the display 104 for use by the operator 144. Combinations of the uses of databases for various components and the kinematic approach shown in
Referring to
In a similar manner, a surgical instrument 312a as shown in
The adapter of the present invention may be made from any suitable material that is dimensionally stable and capable of being sterilized at least one time. Though it may be desirable that the interface be capable of being repeatedly sterilized, it is also possible that the adapters 116 of the present invention are designed as disposable single use items, which are sterilized upon manufacture, maintained in a sterile condition until use and then discarded. Suitable plastics, which are dimensionally stable and surgically acceptable, such as polyetheretherketone (PEEK), carbon or glass fiber reinforced PEEK, polysulfone, polycarbonate, nylon and mixtures thereof, can be used. In addition, suitable metals that are acceptable for use in surgery such as surgical stainless steel, titanium, tungsten carbide and other similar surgically suitable metals can be used. In one embodiment, the adapter 116 and the channel 218 will be constructed from materials having a hard surface to prevent wearing when the surgical instrument is moved along the surface of the channel 218.
Referring to
Numerous modifications to the present invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and use the invention and to teach the best mode of carrying out same. The exclusive rights to all modifications that come within the scope of the appended claims are reserved.
This application is a continuation-in-part of application Ser. No. 10/732,553, filed Dec. 10, 2003.
Number | Name | Date | Kind |
---|---|---|---|
4383373 | Couturier | May 1983 | A |
4567896 | Barnea et al. | Feb 1986 | A |
4722056 | Roberts et al. | Jan 1988 | A |
5050608 | Watanabe et al. | Sep 1991 | A |
5056523 | Hotchkiss, Jr. et al. | Oct 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5186174 | Schlondorff et al. | Feb 1993 | A |
5197476 | Nowacki et al. | Mar 1993 | A |
5198877 | Schulz | Mar 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5251127 | Raab | Oct 1993 | A |
5299288 | Glassman et al. | Mar 1994 | A |
5305203 | Raab | Apr 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5383454 | Bucholz | Jan 1995 | A |
5383454 | Bucholz | Jan 1995 | A |
5389101 | Heilbrun et al. | Feb 1995 | A |
5392384 | Tounai et al. | Feb 1995 | A |
5394875 | Lewis et al. | Mar 1995 | A |
5471312 | Watanabe et al. | Nov 1995 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5494034 | Schlondorff et al. | Feb 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5552822 | Nallakrishnan | Sep 1996 | A |
5564437 | Bainville et al. | Oct 1996 | A |
5617857 | Chader et al. | Apr 1997 | A |
5622170 | Schulz | Apr 1997 | A |
5662111 | Cosman | Sep 1997 | A |
5663795 | Rueb | Sep 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5732703 | Kalfas et al. | Mar 1998 | A |
5740222 | Fujita et al. | Apr 1998 | A |
5748696 | Fujita et al. | May 1998 | A |
5772594 | Barrick | Jun 1998 | A |
5787886 | Kelly et al. | Aug 1998 | A |
5848126 | Fujita et al. | Dec 1998 | A |
5848967 | Cosman | Dec 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5921992 | Costales et al. | Jul 1999 | A |
5954648 | Van Der Brug | Sep 1999 | A |
5967982 | Barnett | Oct 1999 | A |
5987960 | Messner et al. | Nov 1999 | A |
5999837 | Messner et al. | Dec 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6021343 | Foley et al. | Feb 2000 | A |
6081336 | Messner et al. | Jun 2000 | A |
6112113 | Van Der Brug et al. | Aug 2000 | A |
6167295 | Cosman | Dec 2000 | A |
6205411 | DiGioia, III et al. | Mar 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6266551 | Osadchy et al. | Jul 2001 | B1 |
6273896 | Franck et al. | Aug 2001 | B1 |
6275725 | Cosman | Aug 2001 | B1 |
6282437 | Franck et al. | Aug 2001 | B1 |
6285902 | Kienzle, III et al. | Sep 2001 | B1 |
6298262 | Franck et al. | Oct 2001 | B1 |
6306126 | Moctezuma | Oct 2001 | B1 |
6335617 | Osadchy et al. | Jan 2002 | B1 |
6370411 | Osadchy et al. | Apr 2002 | B1 |
6377839 | Kalfas et al. | Apr 2002 | B1 |
6428547 | Vilsmeier et al. | Aug 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6442416 | Schultz | Aug 2002 | B1 |
6478802 | Kienzle et al. | Nov 2002 | B2 |
6497134 | Faul et al. | Dec 2002 | B1 |
6511418 | Shahidi et al. | Jan 2003 | B2 |
6514259 | Picard et al. | Feb 2003 | B2 |
6517478 | Khadem | Feb 2003 | B2 |
6542770 | Zylka et al. | Apr 2003 | B2 |
6584339 | Galloway, Jr. et al. | Jun 2003 | B2 |
6675040 | Cosman | Jan 2004 | B1 |
6697664 | Kienzle, III et al. | Feb 2004 | B2 |
6725080 | Melkent et al. | Apr 2004 | B2 |
6973202 | Mostafavi | Dec 2005 | B2 |
7008430 | Dong et al. | Mar 2006 | B2 |
7029477 | Grimm | Apr 2006 | B2 |
7043961 | Pandey et al. | May 2006 | B2 |
7166114 | Moctezuma De La Barrera et al. | Jan 2007 | B2 |
7213598 | Zeiss et al. | May 2007 | B2 |
20010027271 | Franck et al. | Oct 2001 | A1 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20010036245 | Kienzle, III et al. | Nov 2001 | A1 |
20020016599 | Kienzle et al. | Feb 2002 | A1 |
20020077540 | Kienzle, III | Jun 2002 | A1 |
20020077543 | Grzeszczuk et al. | Jun 2002 | A1 |
20020077544 | Shahidi | Jun 2002 | A1 |
20020133160 | Axelson, Jr. et al. | Sep 2002 | A1 |
20020133161 | Axelson, Jr. et al. | Sep 2002 | A1 |
20020133162 | Axelson, Jr. et al. | Sep 2002 | A1 |
20020133163 | Axelson, Jr. et al. | Sep 2002 | A1 |
20030209096 | Pandey et al. | Nov 2003 | A1 |
20050228270 | Lloyd et al. | Oct 2005 | A1 |
20060058644 | Hoppe et al. | Mar 2006 | A1 |
20060122630 | Daum et al. | Jun 2006 | A1 |
20060200025 | Elliott et al. | Sep 2006 | A1 |
20070175489 | Moctezuma De La Barrera et al. | Aug 2007 | A1 |
20070208352 | Henderson et al. | Sep 2007 | A1 |
20080039868 | Tuemmler et al. | Feb 2008 | A1 |
20080071140 | Gattani et al. | Mar 2008 | A1 |
20080249394 | Giori et al. | Oct 2008 | A1 |
20080269602 | Csavoy et al. | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1336451 | Jul 1995 | CA |
326 768 | Dec 1988 | EP |
469 966 | Jul 1991 | EP |
57-21250 | Feb 1982 | JP |
61-25531 | Feb 1986 | JP |
61-31129 | Feb 1986 | JP |
1-245108 | Sep 1989 | JP |
03-057466 | Mar 1991 | JP |
05-049644 | Mar 1993 | JP |
51-11886 | May 1993 | JP |
07-194616 | Aug 1995 | JP |
07-236633 | Sep 1995 | JP |
07-323035 | Dec 1995 | JP |
07-328016 | Dec 1995 | JP |
08-010266 | Jan 1996 | JP |
08-38507 | Feb 1996 | JP |
WO 9104711 | Apr 1991 | WO |
WO 9107726 | May 1991 | WO |
WO 9206645 | Apr 1992 | WO |
WO 9423647 | Oct 1994 | WO |
WO 9424933 | Nov 1994 | WO |
WO 9611624 | Apr 1996 | WO |
WO 9632059 | Oct 1996 | WO |
WO 9715234 | May 1997 | WO |
WO 9729678 | Aug 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20050288575 A1 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10732553 | Dec 2003 | US |
Child | 11148520 | US |