1) Field of the Invention
The invention relates to a support for a limb, and more particularly to a support used to position and hold patient limbs during surgical procedures.
2) Description of Prior Art
Many surgical procedures require that a patient's limb or limbs be positioned in a number of different positions for the performance of the surgical procedure. It is desirable that the operating surgeon or surgical assistant be able to move the limb into other positions and configurations that may be required during the course of the surgical procedure. It is also desirable that any positioning apparatus that may be used to achieve such positions and configurations mitigate unwanted stress on the operative joint.
One conventional method for positioning a body part is to have a sterile surgical assistant hold the body part in a desired position, and change the position when and as requested by the operating surgeon. This task is fatiguing for the surgical assistant, and this technique may not support the patient's body part in a sufficiently precise and rigid manner for the surgical procedure. Other conventional methods for positioning a patient's limb are to rest the limb on a table for that purpose, to hang the limb over part of the operating room table, or to rest the limb on the lap of a seated operating surgeon. All such techniques offer a very limited range of possible limb configurations, serve to restrict the movement of the surgeon, and result in reduced precision and rigidity of support.
Further, conventional devices that are employed for supporting a patient's limb during a surgical procedure are typically unable to support the limb while at the same time allowing the limb to be manipulated in one or more axes. Such devices can typically only be fully locked or fully unlocked, and are not able to support their own weight when unlocked.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
In accordance with an aspect of the present invention, a surgical positioning apparatus includes: a docking member adapted to be placed under one or more feet of an operating room table such that a weight of the operating room table secures the docking member to a floor; and a base for a surgical positioning apparatus secured to the docking plate.
In accordance with another aspect of the present invention, a surgical positioning apparatus includes: a telescoping strut operable to support a limb of a patient; and a base coupled to the telescoping strut via a pivotable coupling, wherein the telescoping strut provides support for the patient's limb in a vertical direction, and wherein the pivotable coupling allows movement of the patient's limb in a horizontal plane.
In accordance with yet another aspect of the present invention, a surgical positioning apparatus includes: a strut; a universal joint coupled to a top portion of the strut; and a limb cradle coupled to the universal joint to support a limb of a patient.
In accordance with yet another aspect of the present invention, a surgical positioning apparatus includes: a strut; and a disposable limb cradle coupled to the strut via a latching mechanism, wherein the latching mechanism includes a fixed prong and two moveable prongs so that the disposable limb cradle can be replaced without breaking a sterile field in an operating room.
The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed and the present invention is intended to include all such aspects and their equivalents. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
The present invention provides an apparatus for positioning a patient's limb during a surgical procedure. The present invention will now be described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. It is to be appreciated that the various drawings are not necessarily drawn to scale from one figure to another nor inside a given figure, and in particular that the size of the components are arbitrarily drawn for facilitating the reading of the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It may be evident, however, that the present invention may be practiced without these specific details.
Referring initially to
As yet another alternative, the base 20 can be secured to the floor or the docking member 25 via one or more suction cups (not shown) positioned at a bottom portion of the base 20. Accordingly, it is to be appreciated that the base 20 can be secured in place with respect to a location of the operating room table 15 via any suitable structure and is contemplated as falling within the scope of the present invention. The base 20 is employed to provide stability to the surgical positioning apparatus 10 such that when the base 20 is not securely coupled to another structure, the surgical positioning apparatus 10 maintains an upright position.
Further, it is to be appreciated that the docking member and base assembly can be employed to support a variety of other surgical support and/or positioning apparatus. Further, the docking member and base assembly can be positioned at a side of the operating room table 15 to support a patient's arm during a surgical procedure or any other procedure that would require support of a limb.
The surgical positioning apparatus 10 also includes a strut 35, which is coupled to the base 20 via a suitable pivotable coupling 40. For instance, the pivotable coupling 40 can include a locking spherical joint, or any other suitable coupling that facilitates pivoting of the strut 35 with respect to the base 20 and includes a locking mechanism to hold the strut 35 and base 20 in a desirable position. For instance, when the pivotable coupling 40 is in an unlocked state, the limb is able to swing freely in a side-to-side manner along a horizontal plane, as indicated by arrow A. Optionally, the pivotable coupling 40 can also be selectively unlocked to move the surgical positioning apparatus 10 in a fore and aft manner, as indicated by arrow B. Further, the strut 35 can be pivotally coupled to any other contemplated structure. For instance, the strut 35 can be pivotally coupled to an arm member (not shown) that is operatively coupled to the operating room table 15 or some other structure. A locking member 45 for the pivotable coupling can be operatively coupled to the pivotable coupling 40 to provide an easily accessible means for locking and unlocking of the pivotable coupling 40. For instance the locking member 45 for the pivotable coupling can be a foot pedal; however, it is to be appreciated that any suitable locking mechanism can be employed with the pivotable coupling 40 to lock the strut 35 in a desired position along a horizontal plane.
The surgical positioning apparatus 10 further includes a height adjustment mechanism 50 to provide vertical adjustability for the surgical positioning apparatus 10 during set up of the apparatus 10. In particular, the height of the surgical positioning apparatus 10 apparatus can be adjusted to correspond with various operating room table heights or patient sizes and positions. The height adjustment mechanism 50 can be a manual device located near the base 20 or any other suitable device.
To provide further adjustability for the surgical positioning apparatus 10, the strut 35 can be a telescoping strut. The telescoping strut 35 includes a slidable member 55 that is moveable between a lowered position, in which the slidable member 55 envelopes a lower member, and a raised position, in which the lower member extends from the slidable member 55. Of course, the telescoping strut 35 can have any number of telescoping components and is contemplated as falling within the scope of the present invention.
The telescoping strut 35 has suitable structure to secure the strut 35 into one of a plurality of telescoped lengths. As such, the telescoping strut 35 is operable to support a limb of a patient while in a secured position and yet permit the limb to flex naturally at its joint when the telescoping strut 35 is allowed to extend or retract. A locking mechanism 60 is operably coupled to the slidable member 55 such that the telescoping strut 35 can be selectively locked in a variety of different telescoped lengths. When locking mechanism 60 is in an unlocked state, compressing the telescoping strut 35 can lower the limb and extending the telescoping strut 35 can raise the limb. In other words, the limb can be lowered and raised by sliding the slidable member 55 in a downward and upward manner, respectively, along the lower member. Locking mechanism 60 can be a locking knob or any other suitable device for locking the slidable member 55. Further, the telescoping strut 35 can be locked and unlocked independently of the pivotable coupling 40, thereby allowing the limb to be held securely in one axis while allowing free motion in the other. The telescoping strut 35 can optionally include one or more springs or other stored energy devices (not shown) located within the strut 35 to provide lifting assistance for the limb. Alternatively, the telescoping strut 35 can be hydraulically actuated.
Due to the adjustability of the surgical positioning apparatus 10 in at least two, and preferably, three axes, the present invention provides support for the weight of a limb without inducing unwanted joint stress. In particular, the present invention provides support for the weight of the limb while at the same time allowing a surgeon to freely manipulate the limb in other axes, thereby providing a range of motion of the limb required by the surgeon to efficiently perform the surgery. For instance, the surgical positioning apparatus can support the limb in a vertical direction, while allowing free motion in a horizontal plane during the surgical procedure.
A universal joint 65 is operatively coupled between the telescoping strut 35 and a limb cradle 70, which is employed to hold the limb in a surgical position. The universal joint 65 provides a large angular variation of support for the limb in the limb cradle 70. For instance, the universal joint 65 allows a limb (e.g., a leg) to be placed and held securely in a surgical position commonly known as a “Figure Four” position. Turning now to
The universal joint 65 further includes a latching mechanism 80. The latching mechanism 80 comprises a body 85 having one fixed prong 90 and two moveable prongs 95 thereon. The prongs 90, 95 are engageable with the limb cradle 70, as will be discussed in further detail below. The fixed prong 90 is positioned near a first edge portion of the body 85; and the two moveable prongs 95 are positioned near second and third edge portions of the body 85. For example, the moveable prongs 95 can be positioned substantially parallel with respect to each other and located at opposed portions of the body 85, while the fixed prong 90 can be positioned on the body 85 substantially perpendicular with respect to the moveable prongs 95.
The universal joint 65 further includes at least one release mechanism 100 to move the two moveable prongs 95 to a disengaged position. When the moveable prongs 95 are moved to the disengaged position, the limb cradle 70 can be released from the universal joint 65. For example, there can be two release mechanisms 100, each corresponding with a respective moveable prong 95. It is noted that only one release mechanism is depicted in
It is to be appreciated that the above-described configuration of prongs is just an example of a latching mechanism that can be employed with the present invention; and the fixed and moveable prongs described herein can be of any number and any configuration and can be positioned at any suitable location on the body 85 to suitably couple the limb cradle 70 to the universal joint 65.
The surgical positioning apparatus 10 of the present invention, as described herein, provides a single point telescoping support of the limb. This single point mount forms a triangle with the operative limb, with the pivotable coupling 40, the universal joint 65 and the patient's limb joint forming the three vertices of the triangle. Supporting the limb in this way allows the limb to flex naturally at the joint when the telescoping strut is released and allowed to extend and retract. Further, the limb may be swung freely side-to-side by the surgeon when the pivotable coupling 40 is unlocked. The limb can also be locked in place by one or more of the controls (e.g., pivotable coupling locking mechanism 45, telescopic strut locking mechanism 60, and universal joint locking mechanism 75) provided by the surgical positioning apparatus 10.
As depicted in
Turning now to
Alternatively, the base can be secured directly to the floor via a suitable fastener, such as one or more suction cups (not shown). Moreover, any suitable base configuration or base and docking member coupling can be employed to position the surgical positioning apparatus 140 in place with respect to the operating table.
Turning back to
A first end of the telescoping strut 180 is coupled to the base 145 via a second joint 190, such as a locking spherical joint. The second joint 190 can be mechanically, pneumatically, or electrically operated and can be locked and unlocked via a second locking member 195, such as a foot pedal or any other suitable device. The second joint 190 is adapted to allow the strut 180 to move freely in a side-to-side and fore and aft manner, as indicated by arrows C and D, respectively, while still providing support of the limb in a vertical direction. Further, the second joint 190 can be selectively locked and unlocked to only allow movement in a side-to-side manner or only in a fore and aft manner or both. Further, because the first joint 185 and the second joint 190 are operated (e.g., locked and unlocked) independently of each other, the apparatus 140 can securely support the limb in one axis while allowing free movement of the limb in another axis.
As illustrated in
Turning back to
Turning now to
The limb can be held in position within the limb cradle by a hook and loop fastener that wraps over the limb. Alternatively, the limb can be held in position with a snap and/or buckle fastener. However, it is to be appreciated that the limb can be held in position in the limb cradle in any suitable manner contemplated to one skilled in the art.
Turning back to
As described herein, the surgical positioning apparatus includes a plurality of joints, each coupled to a respective locking member that can be operated independently of each other. Accordingly, the degrees of freedom of the plurality of joints, which are based upon the anatomy of the operative limb, are allowed to selectively lock and unlock to allow natural motion of the limb while still supporting the weight of the limb. Further, as stated above, all of the controls for the joints are accessible from the sterile field. Accordingly, a surgeon can operate the controls with the same hand supporting the limb as opposed to conventional positioning devices, which require the surgeon to operate a control with one hand while supporting the limb with the other hand.
The surgical positioning apparatus of the present invention can be manufactured from commercially available components, machined parts, extrusions and drawn shapes. Examples of suitable material include steel and aluminum, although it is obvious that any of a number of different materials could be substituted. According to one aspect, the sterile disposable cradle is made of molded plastic, such as thermoformed, rotomolded, and/or injection molded plastic. However, it is obvious that any of a number of different materials could be employed in its place. The drape can be constructed of a sterilizable impermeable material.
It is to be appreciated that although aspects of the present invention have been shown and described herein as providing support for the lower extremities, the invention can also be employed to provide support to the upper extremities. Further, the present invention has been described herein with mechanical controls for moving various components of the surgical positioning apparatus. However, it is to be appreciated that one or more of the components can be electrically controlled via a remote control device, or the like.
The invention has been described hereinabove using specific examples; however, it will be understood by those skilled in the art that various alternatives may be used and equivalents may be substituted for elements or steps described herein, without deviating from the scope of the invention. Modifications may be necessary to adapt the invention to a particular situation or to particular needs without departing from the scope of the invention. It is intended that the invention not be limited to the particular implementation described herein, but that the claims be given their broadest interpretation to cover all embodiments, literal or equivalent, covered thereby.
This application claims the benefit of U.S. Provisional Patent Application No. 60/538,671, filed on Jan. 23, 2004, and entitled LIMB POSITIONER.
Number | Name | Date | Kind |
---|---|---|---|
2267924 | Johnston | Dec 1941 | A |
2609261 | Parker | Sep 1952 | A |
2630288 | Eubanks, Sr. | Mar 1953 | A |
2732269 | Astroff | Jan 1956 | A |
2801142 | Adams | Jul 1957 | A |
3540719 | Romney et al. | Nov 1970 | A |
4054282 | Hamer | Oct 1977 | A |
4163536 | Heller et al. | Aug 1979 | A |
4564180 | Agee et al. | Jan 1986 | A |
4579324 | McConnell | Apr 1986 | A |
4702465 | McConnell | Oct 1987 | A |
4730609 | McConnell | Mar 1988 | A |
4782827 | Paratte | Nov 1988 | A |
4809687 | Allen | Mar 1989 | A |
4840363 | McConnell | Jun 1989 | A |
4886258 | Scott | Dec 1989 | A |
4909264 | Wadsworth, III et al. | Mar 1990 | A |
5001739 | Fischer | Mar 1991 | A |
5010900 | Auchinleck et al. | Apr 1991 | A |
5291903 | Reeves | Mar 1994 | A |
5410769 | Waterman | May 1995 | A |
5462551 | Bailey et al. | Oct 1995 | A |
5515562 | Miller et al. | May 1996 | A |
5582379 | Keselman et al. | Dec 1996 | A |
5645079 | Zahiri et al. | Jul 1997 | A |
5758374 | Ronci | Jun 1998 | A |
5802641 | Van Steenburg | Sep 1998 | A |
5918330 | Navarro et al. | Jul 1999 | A |
6058534 | Navarro et al. | May 2000 | A |
6195820 | Heimbrock et al. | Mar 2001 | B1 |
6263531 | Navarro et al. | Jul 2001 | B1 |
6336412 | Heimbrock et al. | Jan 2002 | B2 |
6467487 | Rios | Oct 2002 | B1 |
6629944 | Smart | Oct 2003 | B2 |
6663055 | Boucher et al. | Dec 2003 | B2 |
6811541 | Lambert | Nov 2004 | B2 |
6874184 | Chandler | Apr 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050160533 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60538671 | Jan 2004 | US |