The invention generally relates to devices and methods that improve surgical procedures by, for example, providing a working space for the procedure and improving the surgical conditions for the practitioner of a procedure.
In surgical procedures generally, surgeons try to keep incisions as small as possible to minimize or reduce trauma to the patient and damage to tissue. However, it is usually necessary that the surgeon have a clear view of the operating field. Also, an opening may need to be enlarged to accommodate the passing of medical implants therethrough.
A variety of retractors, such as, for example, weitlaners, are available for use in surgical operations to reposition muscular tissue, vessels, nerves, and other tissue with the aid of retractor blades, thereby providing access to the site of the operation. However, many current retractors have several shortcomings. For example, weitlaners are prone to falling out of the incision during a procedure. In some cases, the retractors would fall on the floor or another non-sterile area, rendering them useless. Also, weitlaners are not radiolucent and, therefore, require removal from the incision before radiographic images (e.g., x-rays) of the area beneath them are taken; otherwise they will appear in the images and impede visualization the area beneath them (e.g., a fracture beneath the weitlaners).
Therefore, a need exists for a retractor system that overcomes or minimizes these and other problems.
Embodiments of surgical retractors are disclosed herein. In some embodiments, a surgical retractor includes a body extending from a proximal end to a distal end and having a first portion coupled to a second portion via a hinged connection, wherein the first and second portions are configured to rotate about a body axis; a first radiolucent tip coupled to a distal portion of the first portion; a second radiolucent tip coupled to a distal portion of the second portion; a holder coupled to one of the first or second portions; and a deformable member extending through the holder, wherein the deformable member is configured to be deformed to facilitate fixation of the surgical retractor at a desired location.
In some embodiments, a handheld surgical retractor includes a body extending from a proximal end to a distal end and having a first portion coupled to a second portion via a hinged connection, wherein the first and second portions are configured to rotate about a body axis, and wherein a distal portion the first portion of the body includes a first hole and a distal portion of the second portion of the body includes a second hole; a first radiolucent tip coupled to the distal portion of the first portion and having a third hole corresponding to the first hole; a second radiolucent tip coupled to the distal portion of the second portion and having a fourth hole corresponding to the second hole; a first pin extending through the first and third holes to couple the first radiolucent tip to the first portion of the body; a second pin extending through the second and fourth holes to couple the second radiolucent tip to the second portion of the body; a holder coupled to one of the first or second portions; and a deformable member extending through the holder, wherein the deformable member is configured to be deformed to facilitate fixation of the surgical retractor at a desired location.
In some embodiments, a surgical retractor includes a body extending from a proximal end to a distal end and having a first portion coupled to a second portion via a hinged connection, wherein the first and second portions are configured to rotate about a body axis; a holder coupled to one of the first or second portions; a first radiolucent tip coupled to a distal portion of the first portion; and a second radiolucent tip coupled to a distal portion of the second portion.
The invention will be more readily understood with reference to the embodiments thereof illustrated in the attached figures, in which:
Embodiments of the invention will now be described. The following detailed description of the invention is not intended to be illustrative of all embodiments. In describing embodiments of the present invention, specific terminology is employed for the sake of clarity. However, the invention is not intended to be limited to the specific terminology so selected. It is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
The terms “first position,” “second position,” and “third position,” as used herein, merely refer to dissimilar positions and are not meant to imply that all embodiments can only be adjusted to one, two, or three positions. In some embodiments, a surgical retractor may be adjustable to a finite number of positions. In other embodiments, the distance between one or more components can be increased or decreased to any desired extent, thereby allowing a surgical retractor to adjust to an almost infinite number of positions.
The following description is made with reference to
First and second tips 122, 124 are coupled to the distal end 106 of the body 102 (i.e., to a distal portion 109 of the first portion 108 and a distal portion 111 of the second portion 110, respectively).
As noted above, the inventors have discovered that conventional retractor tips obscure a surgical site (e.g., an incision in which the retractor is used) to be viewed in radiographic images such as, for example, X-rays. As such, the first and second tips 122, 124 may be formed of a radiolucent material (herein after first radiolucent tip 122 and second radiolucent tip 124) such as, for example, aluminum, to advantageously allow for radiographic images of the surgical site to be taken without removing the surgical retractor 100 from the surgical site. The first radiolucent tip 122 includes a first plurality of tines 123 extending from a distal portion of the first radiolucent tip 122. Similarly, the second radiolucent tip 124 includes a second plurality of tines 125 extending from a distal portion of the second radiolucent tip 124. When the surgical retractor 100 is in a first position (shown in
In some embodiments, the distal portion 109 the first portion 108 may include a first hole 126 and the distal portion 111 of the second portion 110 may include a second hole 128. Similarly, the first radiolucent tip 122 may include a third hole 130 corresponding to the first hole 126 and the second radiolucent tip 124 may include a fourth hole 132 corresponding to the second hole 128. In such an embodiment, the surgical retractor 100 further includes a first pin 134 configured to be pressed into the first and third holes 126, 130 to couple the first radiolucent tip 122 to the first portion 108 of the body 102 and a second pin 136 configured to be pressed into the second and fourth holes 128, 132 to couple the second radiolucent tip 124 to the second portion 110 of the body 102. Such a configuration advantageously allows for easy removal and cleaning of the first and second radiolucent tips 122, 124. However, it should be noted that the first and second radiolucent tips 122, 124 may be coupled to the first and second portions 108, 110 in any alternative suitable manner. For example, the distal ends of the first and second portions 108, 110 may alternatively include a feature that is press fit into the first and second radiolucent tips 122, 124 to removably couple the tips to the body 102. Alternatively, the radiolucent tips may alternatively be permanently coupled to the body via, for example, welding or adhesives.
As previously noted, conventional retractors can fall out of surgical sites onto non-sterile surfaces such as the floor, rendering the retractors useless until properly cleaned. To address this drawback, the inventive surgical retractor 100 includes a holder 138 coupled to one of the first or second portions 108, 110 and a deformable member 140 (e.g., a deformable rod) extending through the holder 138. The deformable member 140 is configured to be deformed to facilitate fixation of the surgical retractor 100 at a desired location. For example, if the user is performing a procedure on a patient's wrist, the deformable member 140 may be deformed such that the rod curls around the patient's wrist, as illustrated in
As shown more clearly in
In some embodiments, a portion of the body 102 of the surgical retractor 100 includes a ratchet pawl assembly 127 disposed proximate of the holder 138 and configured to prevent movement of the surgical retractor 100 towards the first position once the surgical retractor 100 has been forced into the second position (i.e., by forcing the two finger rings 120 towards each other).
While the invention herein disclosed has been described with reference to specific embodiments and applications thereof, numerous modifications and variations can be made thereto by those skilled in the art without departing from the scope of the invention as set forth in the claims.
The present application claims the benefit of U.S. Provisional Patent Application No. 62/518,022, filed Jun. 12, 2017, which is hereby incorporated by reference in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1506032 | Stevens | Aug 1924 | A |
5728047 | Edoga | Mar 1998 | A |
6887198 | Phillips et al. | May 2005 | B2 |
7389710 | Phillips | Jun 2008 | B2 |
8876904 | Pimenta | Nov 2014 | B2 |
20040158286 | Roux et al. | Aug 2004 | A1 |
20070299315 | Geller | Dec 2007 | A1 |
20120245431 | Baudouin et al. | Sep 2012 | A1 |
20120296172 | Raven, III | Nov 2012 | A1 |
20140243606 | Santilli | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
8607483 | Jul 1986 | DE |
2007514501 | Jun 2007 | JP |
2010069321 | Apr 2010 | JP |
2015037564 | Feb 2015 | JP |
2013148678 | Oct 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20180353164 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62518022 | Jun 2017 | US |