The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
The features of the various aspects are set forth with particularity in the appended claims. The various aspects, however, both as to organization and methods of operation, together with advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows:
The Applicant of the present application owns the following U.S. patent applications that were filed on Apr. 18, 2016 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following patent applications that were filed on Apr. 15, 2016 and which are each herein incorporated by reference in their respective entireties:
Patent Application Publication No. 2017/0296179;
Patent Application Publication No. 2017/0296180;
Patent Application Publication No. 2017/0296213; and
Patent Application Publication No. 2017/0296169.
The Applicant of the present application owns the following U.S. patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entireties:
Patent Application Publication No. 2017/0281166;
Patent Application Publication No. 2017/0281162;
The Applicant of the present application also owns the U.S. patent applications identified below which were filed on Dec. 31, 2015 which are each herein incorporated by reference in their respective entirety:
The Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 9, 2016 which are each herein incorporated by reference in their respective entirety:
Patent Application Publication No. 2017/0224330;
Patent Application Publication No. 2017/0224334;
The Applicant of the present application also owns the U.S. patent applications identified below which were filed on Feb. 12, 2016 which are each herein incorporated by reference in their respective entirety:
Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entireties:
Patent Application Publication No. 2014/0246475;
Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:
Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entireties:
Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entireties:
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.
The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
Before explaining various forms of mechanisms for compensating for drivetrain failure in powered surgical instruments in detail, it should be noted that the illustrative forms are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative forms may be implemented or incorporated in other forms, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative forms for the convenience of the reader and are not for the purpose of limitation thereof.
Further, it is understood that any one or more of the following-described forms, expressions of forms, examples, can be combined with any one or more of the other following-described forms, expressions of forms, and examples.
Various forms are directed to mechanisms for compensating for drivetrain failure in powered surgical instruments. In one form, the mechanisms for compensating for drivetrain failure in powered surgical instruments may be configured for use in open surgical procedures, but has applications in other types of surgery, such as laparoscopic, endoscopic, and robotic-assisted procedures.
Referring to
Distal and proximal half-sections 110a, 110b are divided along a plane that traverses a longitudinal axis “X” of upper housing portion 108, as seen in
In this manner, the cavity 102a of handle housing 102 is sealed along the perimeter of distal half-section 110a and proximal half-section 110b yet is configured to enable easier, more efficient assembly of circuit board 150 and a drive mechanism 160 in handle housing 102.
Intermediate housing portion 106 of handle housing 102 provides a housing in which circuit board 150 is situated. Circuit board 150 is configured to control the various operations of surgical instrument 100.
Lower housing portion 104 of surgical instrument 100 defines an aperture (not shown) formed in an upper surface thereof and which is located beneath or within intermediate housing portion 106. The aperture of lower housing portion 104 provides a passage through which wires 152 pass to electrically interconnect electrical components (a battery 156, as illustrated in
Handle housing 102 includes a gasket 103 disposed within the aperture of lower housing portion 104 (not shown) thereby plugging or sealing the aperture of lower housing portion 104 while allowing wires 152 to pass therethrough. Gasket 103 functions to establish an air-tight seal between lower housing portion 106 and intermediate housing portion 108 such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures.
As shown, lower housing portion 104 of handle housing 102 provides a housing in which a rechargeable battery 156, is removably situated. Battery 156 is configured to supply power to any of the electrical components of surgical instrument 100. Lower housing portion 104 defines a cavity (not shown) into which battery 156 is inserted. Lower housing portion 104 includes a door 105 pivotally connected thereto for closing cavity of lower housing portion 104 and retaining battery 156 therein.
With reference to
Upper housing portion 108 of handle housing 102 provides a housing in which drive mechanism 160 is situated. As illustrated in
The drive mechanism 160 includes a selector gearbox assembly 162 that is located immediately proximal relative to adapter 200. Proximal to the selector gearbox assembly 162 is a function selection module 163 having a first motor 164 that functions to selectively move gear elements within the selector gearbox assembly 162 into engagement with an input drive component 165 having a second motor 166.
As illustrated in
As illustrated in
When adapter 200 is mated to surgical instrument 100, each of rotatable drive connectors 118, 120, 122 of surgical instrument 100 couples with a corresponding rotatable connector sleeve 218, 220, 222 of adapter 200 as shown in
The mating of drive connectors 118, 120, 122 of surgical instrument 100 with connector sleeves 218, 220, 222 of adapter 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors 118, 120, 122 of surgical instrument 100 are configured to be independently rotated by drive mechanism 160. In this regard, the function selection module 163 of drive mechanism 160 selects which drive connector or connectors 118, 120, 122 of surgical instrument 100 is to be driven by the input drive component 165 of drive mechanism 160.
Since each of drive connectors 118, 120, 122 of surgical instrument 100 has a keyed and/or substantially non-rotatable interface with respective connector sleeves 218, 220, 222 of adapter 200, when adapter 200 is coupled to surgical instrument 100, rotational force(s) are selectively transferred from drive mechanism 160 of surgical instrument 100 to adapter 200.
The selective rotation of drive connector(s) 118, 120 and/or 122 of surgical instrument 100 allows surgical instrument 100 to selectively actuate different functions of end effector 300. Selective and independent rotation of first drive connector 118 of surgical instrument 100 corresponds to the selective and independent opening and closing of tool assembly 304 of end effector 300, and driving of a stapling/cutting component of tool assembly 304 of end effector 300. Also, the selective and independent rotation of second drive connector 120 of surgical instrument 100 corresponds to the selective and independent articulation of tool assembly 304 of end effector 300 transverse to longitudinal axis “X” (see
As mentioned above and as illustrated in
As illustrated in
Control assembly 107, in cooperation with intermediate housing portion 108, supports a pair of finger-actuated control buttons 124, 126 and a pair rocker devices 128, 130 within a housing 107a. The control buttons 124, 126 are coupled to extension shafts 125, 127 respectively. In particular, control assembly 107 defines an upper aperture 124a for slidably receiving the extension shaft 125, and a lower aperture 126a for slidably receiving the extension shaft 127.
The control assembly 107 and its components (e.g., control buttons 124, 126 and rocker devices 128, 130) my be formed from low friction, self-lubricating, lubricious plastics or materials or coatings covering the moving components to reduce actuation forces, key component wear, elimination of galling, smooth consistent actuation, improved component and assembly reliability and reduced clearances for a tighter fit and feel consistency. This includes the use of plastic materials in the bushings, rocker journals, plunger bushings, spring pockets, retaining rings and slider components. Molding the components in plastic also provides net-shape or mesh-shaped components with all of these performance attributes. Plastic components eliminate corrosion and bi-metal anodic reactions under electrolytic conditions such as autoclaving, steam sterilizations and cleaning Press fits with lubricious plastics and materials also eliminate clearances with minimal strain or functional penalties on the components when compared to similar metal components.
Suitable materials for forming the components of the control assembly 107 include, but are not limited to, polyamines, polyphenylene sulfides, polyphthalamides, polyphenylsulfones, polyether ketones, polytetrafluoroethylenes, and combinations thereof. These components may be used in the presence or absence of lubricants and may also include additives for reduced wear and frictional forces.
Reference may be made to a U.S. patent application Ser. No. 13/331,047, now U.S. Pat. No. 8,968,276, the entire contents of which are incorporated by reference herein, for a detailed discussion of the construction and operation of the surgical instrument 100.
The surgical instrument 100 includes a firing assembly configured to deploy or eject a plurality of staples into tissue captured by the end effector 300. The firing assembly comprises a drive assembly 360, as illustrated in
When drive assembly 360 is advanced distally within tool assembly 304, an upper beam 365a of clamping member 365 moves within a channel defined between anvil plate 312 and anvil cover 310 and a lower beam 365b moves over the exterior surface of carrier 316 to close tool assembly 304 and fire staples therefrom.
Proximal body portion 302 of end effector 300 includes a sheath or outer tube 301 enclosing an upper housing portion 301a and a lower housing portion 301b. The housing portions 301a and 301b enclose an articulation link 366 having a hooked proximal end 366a which extends from a proximal end of end effector 300. Hooked proximal end 366a of articulation link 366 engages a coupling hook (not shown) of adapter 200 when end effector 300 is secured to distal housing 232 of adapter 200. When drive bar 258 of adapter 200 is advanced or retracted as described above, articulation link 366 of end effector 300 is advanced or retracted within end effector 300 to pivot tool assembly 304 in relation to a distal end of proximal body portion 302.
As illustrated in
The hollow drive member 374 includes a lockout mechanism 373 that prevents a firing of previously fired end effectors 300. The lockout mechanism 373 includes a locking member 371 pivotally coupled within a distal porthole 376b via a pin 377, such that locking member 371 is pivotal about pin 377 relative to drive member 374.
With reference to
In operation, the locking member 371 is initially disposed in its pre-fired position at the proximal end of the housing portions 301a and 301b with horizontal ledge 389 and 391 resting on top of projections 303a, 303b formed in the sidewalls of housing portion 301b. In this position, locking member 371 is held up and out of alignment with a projection 303c formed in the bottom surface of housing portion 301b, distal of the projection 303a, 303b, and web 385 is in longitudinal juxtaposition with shoulder 370 defined in drive beam 364. This configuration permits the anvil 306 to be opened and repositioned onto the tissue to be stapled until the surgeon is satisfied with the position without activating locking member 371 to disable the disposable end effector 300.
Upon distal movement of the drive beam 364 by the drive tube 246, locking member 371 rides off of projections 303a, 303b and is biased into engagement with housing portion 301b by the spring 393, distal of projection 303c. Locking member 371 remains in this configuration throughout firing of the apparatus.
Upon retraction of the drive beam 364, after at least a partial firing, locking member 371 passes under projections 303a, 303b and rides over projection 303c of housing portion 301b until the distal-most portion of locking member 371 is proximal to projection 303c. The spring 393 biases locking member 371 into juxtaposed alignment with projection 303c, effectively disabling the disposable end effector. If an attempt is made to reactuate the apparatus, loaded with the existing end effector 300, the locking member 371 will abut projection 303c of housing portion 301b and will inhibit distal movement of the drive beam 364.
Another aspect of the instrument 100 is shown in
The battery 156 and the motor 164 are coupled to a motor driver circuit 404 disposed on the circuit board 154 which controls the operation of the motor 164 including the flow of electrical energy from the battery 156 to the motor 164. The driver circuit 404 includes a plurality of sensors 408a, 408b, . . . 408n configured to measure operational states of the motor 164 and the battery 156. The sensors 408a-n may include voltage sensors, current sensors, temperature sensors, pressure sensors, telemetry sensors, optical sensors, and combinations thereof. The sensors 408a-408n may measure voltage, current, and other electrical properties of the electrical energy supplied by the battery 156. The sensors 408a-408n may also measure rotational speed as revolutions per minute (RPM), torque, temperature, current draw, and other operational properties of the motor 164. RPM may be determined by measuring the rotation of the motor 164. Position of various drive shafts (e.g., rotatable drive connectors 118, 120, 122 of
The driver circuit 404 is also coupled to a controller 406, which may be any suitable logic control circuit adapted to perform the calculations and/or operate according to a set of instructions. The controller 406 may include a central processing unit operably connected to a memory which may include transitory type memory (e.g., RAM) and/or non-transitory type memory (e.g., flash media, disk media, etc.). The controller 406 includes a plurality of inputs and outputs for interfacing with the driver circuit 404. In particular, the controller 406 receives measured sensor signals from the driver circuit 404 regarding operational status of the motor 164 and the battery 156 and, in turn, outputs control signals to the driver circuit 404 to control the operation of the motor 164 based on the sensor readings and specific algorithm instructions. The controller 406 is also configured to accept a plurality of user inputs from a user interface (e.g., switches, buttons, touch screen, etc. of the control assembly 107 coupled to the controller 406). A removable memory card or chip may be provided, or data can be downloaded wirelessly.
Referring to
The shaft assembly 500 has a force transmitting assembly for interconnecting the at least one drive member of the surgical instrument to at least one rotation receiving member of the end effector. The force transmitting assembly has a first end that is connectable to the at least one rotatable drive member and a second end that is connectable to the at least one rotation receiving member of the end effector. When shaft assembly 500 is mated to surgical instrument 100, each of rotatable drive members or connectors 118, 120, 122 of surgical instrument 100 couples with a corresponding rotatable connector sleeve 518, 520, 522 of shaft assembly 500 (see
The selective rotation of drive member(s) or connector(s) 118, 120 and/or 122 of surgical instrument 100 allows surgical instrument 100 to selectively actuate different functions of an end effector 400.
Referring to
Transmission housing 512 is configured to house a pair of gear train systems therein for varying a speed/force of rotation (e.g., increase or decrease) of first, second and/or third rotatable drive members or connectors 118, 120, and/or 122 of surgical instrument 100 before transmission of such rotational speed/force to the end effector 501. As seen in
Shaft drive coupling assembly 514 includes a first, a second and a third biasing member 518a, 520a and 522a disposed distally of respective first, second and third connector sleeves 518, 520, 522. Each of biasing members 518a, 520a and 522a is disposed about respective first proximal drive shaft 524a, second proximal drive shaft 526a, and third drive shaft 228. Biasing members 518a, 520a and 522a act on respective connector sleeves 518, 520 and 522 to help maintain connector sleeves 218, 220 and 222 engaged with the distal end of respective drive rotatable drive members or connectors 118, 120, 122 of surgical instrument 100 when shaft assembly 500 is connected to surgical instrument 100.
Shaft assembly 500 includes a first and a second gear train system 540, 550, respectively, disposed within transmission housing 512 and tubular body 510, and adjacent coupling assembly 514. As mentioned above, each gear train system 540, 550 is configured and adapted to vary a speed/force of rotation (e.g., increase or decrease) of first and second rotatable drive connectors 118 and 120 of surgical instrument 100 before transmission of such rotational speed/force to end effector 501.
As illustrated in
In at least one instance, the first input drive shaft spur gear 542a includes 10 teeth; first input transmission spur gear 544a includes 18 teeth; first output transmission spur gear 544b includes 13 teeth; and first output drive shaft spur gear 546b includes 15 teeth. As so configured, an input rotation of first input drive shaft 524a is converted to an output rotation of first output drive shaft 546a by a ratio of 1:2.08.
In operation, as first input drive shaft spur gear 542a is rotated, due to a rotation of first connector sleeve 558 and first input drive shaft 524a, as a result of the rotation of the first respective drive connector 118 of surgical instrument 100, first input drive shaft spur gear 542a engages first input transmission spur gear 544a causing first input transmission spur gear 544a to rotate. As first input transmission spur gear 544a rotates, first transmission shaft 544 is rotated and thus causes first output drive shaft spur gear 546b, that is keyed to first transmission shaft 544, to rotate. As first output drive shaft spur gear 546b rotates, since first output drive shaft spur gear 546b is engaged therewith, first output drive shaft spur gear 546b is also rotated. As first output drive shaft spur gear 546b rotates, since first output drive shaft spur gear 546b is keyed to first output drive shaft 546a, first output drive shaft 546a is rotated.
The shaft assembly 500, including the first gear system 540, functions to transmit operative forces from surgical instrument 100 to end effector 501 in order to operate, actuate and/or fire end effector 501.
As illustrated in
Second gear train system 550 further includes a second transmission shaft 556 rotatably supported in transmission housing 512, a second input transmission spur gear 556a keyed to second transmission shaft 556 and engaged with first output transmission spur gear 554b that is keyed to first transmission shaft 554, and a second output transmission spur gear 556b keyed to second transmission shaft 556.
Second gear train system 550 additionally includes a second output drive shaft 558a rotatably supported in transmission housing 512 and tubular body 510, and a second output drive shaft spur gear 558b keyed to second output drive shaft 558a and engaged with second output transmission spur gear 556b.
In at least one instance, the second input drive shaft spur gear 552a includes 10 teeth; first input transmission spur gear 554a includes 20 teeth; first output transmission spur gear 554b includes 10 teeth; second input transmission spur gear 556a includes 20 teeth; second output transmission spur gear 556b includes 10 teeth; and second output drive shaft spur gear 558b includes 15 teeth. As so configured, an input rotation of second input drive shaft 526a is converted to an output rotation of second output drive shaft 558a by a ratio of 1:6.
In operation, as second input drive shaft spur gear 552a is rotated, due to a rotation of second connector sleeve 560 and second input drive shaft 526a, as a result of the rotation of the second respective drive connector 120 of surgical instrument 100, second input drive shaft spur gear 552a engages first input transmission spur gear 554a causing first input transmission spur gear 554a to rotate. As first input transmission spur gear 554a rotates, first transmission shaft 554 is rotated and thus causes first output transmission spur gear 554b, that is keyed to first transmission shaft 554, to rotate. As first output transmission spur gear 554b rotates, since second input transmission spur gear 556a is engaged therewith, second input transmission spur gear 556a is also rotated. As second input transmission spur gear 556a rotates, second transmission shaft 256 is rotated and thus causes second output transmission spur gear 256b, that is keyed to second transmission shaft 556, to rotate. As second output transmission spur gear 556b rotates, since second output drive shaft spur gear 558b is engaged therewith, second output drive shaft spur gear 558b is rotated. As second output drive shaft spur gear 558b rotates, since second output drive shaft spur gear 558b is keyed to second output drive shaft 558a, second output drive shaft 558a is rotated.
The shaft assembly 500, including second gear train system 550, functions to transmit operative forces from surgical instrument 100 to end effector 501 in order rotate shaft assembly 500 and/or end effector 501 relative to surgical instrument 100.
As illustrated in
As illustrated in
Turning to
The entire disclosures of:
U.S. Patent Application Publication No. 2014/0110453, filed Oct. 23, 2012, and titled SURGICAL INSTRUMENT WITH RAPID POST EVENT DETECTION, now U.S. Pat. No. 9,265,585;
U.S. Patent Application Publication No. 2013/0282052, filed Jun. 19, 2013, and titled APPARATUS FOR ENDOSCOPIC PROCEDURES, now U.S. Pat. No. 9,480,492; and
U.S. Patent Application Publication No. 2013/0274722, filed May 10, 2013, and titled APPARATUS FOR ENDOSCOPIC PROCEDURES, now U.S. Pat. No. 9,492,146, are hereby incorporated by reference herein.
Referring to
Like the surgical instrument 100, the surgical instrument 1010 includes a drive mechanism 160 which is configured to drive shafts and/or gear components in order to perform the various operations of surgical instrument 1010. In at least one instance, the drive mechanism 160 includes a rotation drivetrain 1012 (See
As described above, referring primarily to
Referring to
The surgical instrument 1010 further includes a microcontroller 1020 (“controller”). In certain instances, the controller 1020 may include a microprocessor 1036 (“processor”) and one or more computer readable mediums or memory units 1038 (“memory”). In certain instances, the memory 1038 may store various program instructions, which when executed may cause the processor 1036 to perform a plurality of functions and/or calculations described herein. The power source 156 can be configured to supply power to the controller 1020, for example.
The processor 1036 can be in communication with the motor control circuit 1018. In addition, the memory 1038 may store program instructions, which when executed by the processor 1036 in response to a user input 1034, may cause the motor control circuit 1018 to motivate the motor 164 to generate at least one rotational motion to selectively move gear elements within the selector gearbox assembly 162 to selectively position one of the drivetrains 1012, 1014, and 1016 into engagement with the input drive component 165 of the second motor 166. Furthermore, the processor 1036 can be in communication with the motor control circuit 1018′. The memory 1038 may also store program instructions, which when executed by the processor 1036 in response to a user input 1034, may cause the motor control circuit 1018′ to motivate the motor 166 to generate at least one rotational motion to drive the drivetrain engaged with the input drive component 165 of the second motor 166, for example.
The controller 1020 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 1020 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 1020 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 1036 and the finite state machine, for example.
Referring again to
Referring to
Referring to
In the event of an acute drivetrain failure, the active drivetrain may still be operated to complete a surgical step or to reset the surgical instrument 1010; however, certain precautionary and/or safety steps can be taken, as described below in greater detail, to avoid or minimize additional damage to the active drivetrain and/or other components of the surgical instrument 1010. Alternatively, in the event of a catastrophic failure, the active drivetrain is rendered inoperable, and certain bailout steps are taken to ensure, among other things, a safe detachment of the surgical instrument 1010 from the tissue being treated.
Referring again to
Referring to
Likewise, if the closure drivetrain 1014 is being actively driven by the motor 166 during a closure motion to capture tissue by the end effector 300, a detection of an acute drivetrain failure by the module 1040 may cause the processor 1036 to communicate to the motor drive circuit 1018′ instructions to cause the mechanical output of motor 166 to be reduced. A reduction in the mechanical output of the motor 166 reduces the speed of the active drivetrain 1014 which ensures safe completion of the closure motion and/or resetting of the active drivetrain 1014 to an original or starting positon. Also, if the rotation drivetrain 1012 is being actively driven by the motor 166, a detection of an acute drivetrain failure by the module 1040 may cause the processor 1036 to communicate to the motor drive circuit 1018′ instructions to cause the mechanical output of motor 166 to be reduced. A reduction in the mechanical output of the motor 166 reduces the speed of the active drivetrain 1012 which ensures safe completion of the rotation and/or resetting of the active drivetrain 1012 to an original or starting positon.
Referring to
The motor input voltage (Vm) pulses may each comprise a time period (t2). In at least one instance, a ratio of a time period (t2) to a time period (t1) can be any value selected from a range of about 1/100 to about 1, for example. In at least one instance, a ratio of a time period (t2) to a time period (t1) can be any value selected from a range of about 1/20 to about 1/80, for example. In at least one instance, a ratio of a time period (t2) to a time period (t1) can be any value selected from a range of about 1/30 to about 1/60, for example. Other values of the ratio of a time period (t2) to a time period (t1) are contemplated by the present disclosure.
Referring to
Referring again to
The memory 1038 may include a sensor bypass database of a subset of sensors that are to be deactivated or ignored in the event of an acute drivetrain failure. In at least one instance, the processor 1036 may utilize the sensor bypass database to implement the sensor bypass step in the event of an acute drivetrain failure.
The safe mode 1022 may also include a step 1029 of alerting a user of the surgical instrument 1010 that an acute drivetrain failure has been detected, and that the surgical instrument 1010 will continue to run in the safe mode 1022 which may limit or reduce the functions available to the user, for example. The processor 1036 may employ a feedback system 1035 to issue such alerts to the user of the surgical instrument 1010. The feedback system 1035 may include one or more feedback elements 1034 and/or one or more user input elements 1037, for example. In certain instances, the feedback system 1035 may comprise one or more visual feedback elements including display screens, backlights, and/or LEDs, for example. In certain instances, the feedback system 1035 may comprise one or more audio feedback systems such as speakers and/or buzzers, for example. In certain instances, the feedback system 1035 may comprise one or more haptic feedback systems, for example. In certain instances, the feedback system 1035 may comprise combinations of visual, audio, and/or haptic feedback systems, for example.
Referring to
After disabling the motor 166, the processor 1036 can solicit an approval from the user to proceed in the safe mode 1022 via one or more of the feedback elements 1037. The operator's decision can be communicated to the processor 1036 via the user input 1034. If the operator chooses to proceed in the safe mode 1022, the processor 1036 can reactivate the damaged drivetrain, by reactivating power transmission to the motor 166, and proceed in the safe mode 1022. Alternatively, if the operator chooses not to proceed in the safe mode 1022, the processor 1036 may activate the bailout mode 1024.
Referring again to
In at least one instance, a wireless mode of communication can be employed to initiate the service request. The wireless mode of communication can include one or more of Dedicated Short Range Communication (DSRC), Bluetooth, WiFi, ZigBee, Radio Frequency Identification (RFID) and Near Field Communication (NFC).
The service request communication may also include any saved data in connection with the detected drivetrain failure such as, for example, the time and date of the failure, the type of the active drivetrain, and/or the surgical step during which the failure occurred. Furthermore, the feedback system 1035 may include one or more visual feedback elements such as, for example, the screen 1046 which can be employed to provide an interactive walkthrough of serviceability options and/or rebuild steps, for example.
Referring again to
In the event a catastrophic drivetrain failure rather than an acute drivetrain failure is detected, a bailout mode 1024 can be activated. The memory 1038 may include program instructions, which when executed by the processor 1036, may cause the processor 1036 to respond to an acute drivetrain failure by activating the bailout mode 1024. In at least one instance, as illustrated in
In the event of a catastrophic failure of an active closure drivetrain 1014, the processor 1036 may suspend the closure drivetrain 1014 by stopping the motor 166. In addition, the processor 1036 may employ one or more of the feedback elements 1037 to provide instructions to the user of the surgical instrument 1010 to mechanically complete the closure motion and/or reset the closure drivetrain 1014.
Referring to
Referring again to
The memory 1038 may include a sensor bypass database of a subset of sensors that are to be deactivated or ignored in the event of a catastrophic drivetrain failure. In at least one instance, the processor 1036 may utilize the sensor bypass database to implement the sensor bypass step in the event of a catastrophic drivetrain failure. The bailout mode 1024 may also include a service request step 1042 for initiating a service request in the event of a catastrophic failure of an active drivetrain.
Referring to
As illustrated in
Referring to
Referring to
In at least one instance, the method 2009 further comprises determining whether the firing sequence can be completed. In the event it is determined that the firing sequence cannot be completed, the method 2009 further comprises alerting the user of the surgical instrument 2010 and/or resetting the firing sequence. The step of resetting the firing sequence may include, among other things, retracting the drive assembly 360 to an original or starting position. In the event it is determined that the firing sequence can be completed, the method 2009 further comprises alerting the user of the surgical instrument 2010 to continue the firing sequence. In addition the method 2009 may further comprise increasing and/or prioritizing a power output of the power pack 2012 to facilitate completion of the firing sequence. Upon completion of the firing sequence, the method 9 may further comprise a step of deactivating the surgical instrument 2010.
The safety and/or operational measures of the method 2009 can be employed in addressing a situation where the firing sequence has been started but is only partially completed due to a failure of the power pack 2012. This situation generally yields a tissue region that is only partially stapled and/or resected. The method 2009 permits completion of the stapling and/or resection of the tissue region in the event the failure of the power pack 2012 is a partial failure.
Referring to
Further to the above, the electronic control circuit 2016 includes a microcontroller 2028 (“controller”) that is operably coupled to sensors 2015, as illustrated in
The controller 2028 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 2028 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 2028 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 2030 and the finite state machine, for example.
Referring to
In at least one instance, as illustrated in
In at least one instance, the processor 2030 is configured to respond to a determination that one or more of the battery cells 2014 are compromised by storing or recording a damaged status of the power pack 2012 in the memory 2032. A damaged status of the power pack 2012 can also be stored in a memory 2054 of a main controller 2029 within the surgical instrument 2040. The processor 2030 of the controller 2028 of the power pack 2012 can be in communication with the processor 2052 of the main controller 2029 to report to the main controller 2029 the damaged status of the power pack 2012. In response to a determination that one or more of the battery cells 2014 are compromised, the processor 2052 of the main controller 2029 can be configured to reset the firing sequence by causing the drive assembly 360 to return to an original or starting position, for example. Alternatively, in certain instances, the processor 2052 can be configured to reroute power from non-essential systems of the surgical instrument 2040 to ensure completion of the firing sequence in the event of a determination that one or more of the battery cells 2014 are compromised during the firing sequence. Examples of non-essential systems may include backlit liquid crystal displays (LCDs) and/or Light-emitting diode (LED) indicators. After completion of the firing sequence, the processor 2052 of the main controller 2029 can be configured to cause the surgical instrument 2040 to be deactivated until the damaged power pack 2012 is replaced with an undamaged power pack, for example.
Referring to
Referring to
Referring to
Referring to
The processor 2030 is configured to receive the external and internal temperature readings of the temperature sensors 2024′ and 2024, respectively. In addition, the processor 30 is configured to apply an algorithm, which can be stored in the memory 2032, to quantitatively compare the received external and internal temperature readings. In the event an internal temperature reading, or an average of a plurality of internal temperature readings, exceeds a simultaneously taken external temperature reading, or an average of a plurality of external temperature readings, by a predetermined temperature threshold (Tt), which can be stored in the memory 2032, the processor 2030 may conclude that one or more of the battery cells 2014 are compromised or damaged. In response, the processor 2030 can be configured to activate one or more of the safety and/or operational measures described above.
In certain instances, the internal temperature sensors 2024 and the external temperature sensors 2024′ of the surgical instrument 2040 can be arranged in a Wheatstone bridge circuit 2048, as illustrated in
In the aspect illustrated in
Referring to
As described in greater delay below, the surgical instrument 3010 is configured to detect a damaged motor cartridge 3012 and, in certain instances, instruct an operator of the surgical instrument 3010 to replace the damaged motor cartridge 3012 with an undamaged motor cartridge 3012. The ability to replace a motor cartridge 3012 is quite useful at least because it allows for an improved repair capability since a damaged motor cartridge 3012 can be readily replaced with an undamaged motor cartridge 3012. In absence of the ability to replace a damaged motor cartridge 3012, the surgical instrument 3010 may be rendered inoperable even though the majority of the components of the surgical instrument 3010 are in good operating condition. The ability to replace a motor cartridge 3012 is also useful in allowing modularity in new product designs, and simplifying installation of hardware upgrades as part of life cycle improvements. For example, a first generation motor cartridge can be readily replaced with an upgraded second generation motor cartridge. Motor cartridges can also be swapped between surgical instruments that employ the same type of motor cartridge, for example.
The motor cartridge 3012 comprises a housing 3014 which includes high current components of the surgical instrument 3010 such as, for example, at least one motor 3016 and at least one motor circuit board 3018. Since high current components of the surgical instrument 3010 are more susceptible to damage than low current components such as a main control circuit board 3019 and various feedback systems, it is desirable to be able to readily replace the high current components by replacing the motor cartridge 3012.
As illustrated in
In the aspect illustrated in
The motor 3016 may be any electrical motor configured to actuate one or more drives (e.g., rotatable drive connector 3024 of
Referring to
The controller 3020 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 3020 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 3020 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 3036 and the finite state machine, for example.
Upon receipt of the activation signal, the processor 3036 may signal 3074 the motor control circuit board 3018 to activate the motor 3016. The health of the motor cartridge 3012 can be continuously monitored 3076 while the actuator 3042 is actuated. Under normal operating conditions, as illustrated in
The predetermined value or range can be stored in the memory 3038, for example. In the event a predetermined range is stored in the memory 3038, the processor 3036 may access the memory 3038 to compare a current reading, or an average of a plurality of current readings, of the current sensor 3040 to the predetermined range. If the current reading is greater than or equal to a maximum value of the predetermined range, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected 3088. Also, if the current reading is less than or equal a minimum value of the predetermined range, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected 3088.
Likewise, in the event a stored value is stored in the memory 3038, the processor 3036 may access the memory 3038 to compare a current reading, or an average of a plurality of current readings, of the current sensor 3040 to the predetermined value. If the current reading is greater than or equal to the predetermined value, for example, or less than or equal to the predetermined value, for example, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected 3088.
In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 4302 is activated, is less than or equal to 10% of the predetermined value. In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 3042 is activated, is less than or equal to 20% of the predetermined value. In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 3042 is actuated, is greater than or equal to 150% of the predetermined value. In at least one instance, the processor 3036 may conclude that a malfunction of the motor cartridge 3012 is detected if the current draw of the motor cartridge 3012, while the actuator 3042 is actuated, is greater than or equal to 200% of the predetermined value.
As indicated above, the processor 3036 can be configured to respond to a detected malfunction of the motor cartridge 3012 by activating (79 and 89) one or more safety and/or operational measures. For example, the processor 3036 may employ one or more feedback elements 3044 to issue an alert to an operator of the surgical instrument 3010. In certain instances, the feedback elements 3044 may comprise one or more visual feedback systems such as display screens, backlights, and/or LEDs, for example. In certain instances, the feedback elements 3044 may comprise one or more audio feedback systems such as speakers and/or buzzers, for example. In certain instances, the feedback elements 3044 may comprise one or more haptic feedback systems, for example. In certain instances, the feedback elements 3044 may comprise combinations of visual, audio, and/or haptic feedback systems, for example.
Further to the above, the processor 3036 may employ a feedback screen 3046 (
In at least one instance, the processor 3036 may disable the surgical instrument 3010 until the damaged motor cartridge 3012 is replaced with an undamaged motor cartridge. Tor example, the memory 3038 may include program instructions, which when executed by the processor 3036 in response to a detected malfunction of the motor cartridge 3012, may cause the processor 3036 to ignore input from the actuator 3042 until the damaged motor cartridge 3012 is replaced. A motor cartridge replacement feedback element 3058 can be employed to alert the processor 3036 when the motor cartridge 3012 is replaced, as described in greater detail below.
Referring primarily to
Referring again to
Referring to
As illustrated in
When the processor 3036 detects an error in the decision-making step 52, the processor 3036 may respond by stopping and/or disabling the motor 3016, for example. In addition, in certain instances, the processor 3036 may also store a damaged status of the motor cartridge 3012 in the memory 3038 after detecting the motor cartridge error, as illustrated in
Further to the above, referring still to
Referring still to
In certain instances, when the processor 3036 does not detect a motor cartridge error in the decision-making step 3052 but detects that the motor access door 3013 is removed in the decision-making step 3054, the processor 3036 may respond by stopping and/or disabling the motor 3016, as described above. In addition, the processor 3036 may also provide the user with instructions to reinstall the motor access door 3013. In certain instances, when the processor 3036 detects that the motor access door 3013 is reinstalled, while no motor cartridge error is detected, the processor 3036 can be configured to reconnect the power to the motor 3016 and allow the user to continue with clinical algorithms, as illustrated in
Further to the above, when the processor 3036 detects a motor cartridge error and further detects removal of the motor access door 3013, the processor 3036 can signal the user to replace the motor cartridge 3012 by providing the user with a visual, audio, and/or tactile feedback, for example. In certain instances, the processor 3036 can signal the user of the surgical instrument 3010 to replace the motor cartridge 3012 by flashing a backlight of the feedback screen 3046. In any event, the processor 3036 may provide the user with instructions to replace the motor cartridge 3012, as illustrated in
Referring again to
Further to the above, referring still to
In at least one instance, the motor cartridge replacement feedback element 3058 includes a pressure sensor positioned at the interface 3021 between the surgical instrument 3010 and the motor cartridge 3012. The processor 3036 can be configured to employ the pressure sensor of the motor cartridge replacement feedback element 3058 to detect when the motor cartridge 3012 has been removed and/or replaced. In at least one instance, the processor 3036 can be configured to employ the pressure sensor of the motor cartridge replacement feedback element 3058 to detect a threshold-setting pressure reading when the motor cartridge 3012 is installed with the surgical instrument 3010. The threshold-setting pressure reading can be used to set a predetermined threshold which can be stored in the memory 3038. Alternatively, the predetermined threshold can be calculated and stored in the memory 3036 independent of any readings obtained by the pressure sensor.
Further to the above, the processor 3036 can be configured to conclude that an installed motor cartridge 3012 has been removed when one or more pressure readings detected by the pressure sensor of the motor cartridge replacement feedback element 3058 are less than or equal to the predetermined threshold. The processor 3036 can also be configured to conclude that a replacement motor cartridge 3012 has been installed when subsequent pressure readings detected by the pressure sensor of the motor cartridge replacement feedback element 3058 become greater than or equal to the predetermined threshold, for example.
Further to the above, still referring to
In various instances, the motor access door 3013 can be replaced with a motor access member or a motor securement member configured to secure the motor cartridge 3012 to the handle housing 102. Alternatively, the motor access door 3013 can be removed completely or integrated into the housing 3014 of the motor cartridge 3012 such that the motor cartridge 3012 can be readily removed or separated from the surgical instrument 3010 by pulling or retracting the motor cartridge 3012 away from the handle housing 102, for example. In at least one instance, in the absence of a motor access door, an outer wall 3059 (
As illustrated in
Like the module 3050, the module 3060 also includes one or more decision-making steps such as, for example, the decision-making step 3052 with regard to the detection of one or more errors requiring replacement of the motor cartridge 3012. When the processor 3036 detects an error in the decision-making step 3052, the processor 3036 may respond by stopping and/or disabling the motor 3016, for example. In addition, in certain instances, the processor 3036 also may store a damaged status of the motor cartridge 3012 in the memory 3038 after detecting the motor cartridge error, as illustrated in
Further to the above, when the processor 3036 detects a motor cartridge error, the processor 3036 can signal the user to replace the motor cartridge 3012 by providing the user with a visual, audio, and/or tactile feedback, for example. In certain instances, the processor 3036 can signal the user of the surgical instrument 3010 to replace the motor cartridge 3012 by flashing a backlight of the feedback screen 3046. In any event, the processor 36 may provide the user with instructions to replace the motor cartridge 3012, as illustrated in
Referring to
Like the surgical instrument 100, the surgical instrument 4010 includes a drive mechanism 160 which is configured to drive shafts and/or gear components in order to perform the various operations of surgical instrument 4010. In at least one instance, the drive mechanism 160 includes a rotation drivetrain 4012 (See
As described above, referring primarily to
Referring to
The surgical instrument 4010 further includes a microcontroller 4020 (“controller”). In certain instances, the controller 4020 may include a microprocessor 4036 (“processor”) and one or more computer readable mediums or memory units 4038 (“memory”). In certain instances, the memory 4038 may store various program instructions, which when executed may cause the processor 4036 to perform a plurality of functions and/or calculations described herein. The power source 156 can be configured to supply power to the controller 4020, for example.
The processor 4036 can be in communication with the motor control circuit 4018. In addition, the memory 4038 may store program instructions, which when executed by the processor 4036 in response to a user input 4034, may cause the motor control circuit 4018 to motivate the motor 164 to generate at least one rotational motion to selectively move gear elements within the selector gearbox assembly 162 to selectively position one of the drivetrains 4012, 4014, and 4016 into engagement with the input drive component 165 of the second motor 166. Furthermore, the processor 4036 can be in communication with the motor control circuit 4018′. The memory 4038 may also store program instructions, which when executed by the processor 4036 in response to a user input 4034, may cause the motor control circuit 4018′ to motivate the motor 166 to generate at least one rotational motion to drive the drivetrain engaged with the input drive component 165 of the second motor 166, for example.
The controller 4020 and/or other controllers of the present disclosure may be implemented using integrated and/or discrete hardware elements, software elements, and/or a combination of both. Examples of integrated hardware elements may include processors, microprocessors, microcontrollers, integrated circuits, ASICs, PLDs, DSPs, FPGAs, logic gates, registers, semiconductor devices, chips, microchips, chip sets, microcontrollers, SoC, and/or SIP. Examples of discrete hardware elements may include circuits and/or circuit elements such as logic gates, field effect transistors, bipolar transistors, resistors, capacitors, inductors, and/or relays. In certain instances, the controller 4020 may include a hybrid circuit comprising discrete and integrated circuit elements or components on one or more substrates, for example.
In certain instances, the controller 4020 and/or other controllers of the present disclosure may be an LM 4F230H5QR, available from Texas Instruments, for example. In certain instances, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, internal ROM loaded with StellarisWare® software, 2 KB EEPROM, one or more PWM modules, one or more QEI analog, one or more 12-bit ADC with 12 analog input channels, among other features that are readily available. Other microcontrollers may be readily substituted for use with the present disclosure. Accordingly, the present disclosure should not be limited in this context.
In various instances, one or more of the various steps described herein can be performed by a finite state machine comprising either a combinational logic circuit or a sequential logic circuit, where either the combinational logic circuit or the sequential logic circuit is coupled to at least one memory circuit. The at least one memory circuit stores a current state of the finite state machine. The combinational or sequential logic circuit is configured to cause the finite state machine to the steps. The sequential logic circuit may be synchronous or asynchronous. In other instances, one or more of the various steps described herein can be performed by a circuit that includes a combination of the processor 4036 and the finite state machine, for example.
In various instances, it can be advantageous to be able to assess the state of the functionality of a surgical instrument to ensure its proper function. It is possible, for example, for the drive mechanism, as explained above, which is configured to include various motors, drivetrains, and/or gear components in order to perform the various operations of the surgical instrument 4010, to wear out over time. This can occur through normal use, and in some instances the drive mechanism can wear out faster due to abuse conditions. In certain instances, a surgical instrument 4010 can be configured to perform self-assessments to determine the state, e.g. health, of the drive mechanism and it various components.
For example, the self-assessment can be used to determine when the surgical instrument 4010 is capable of performing its function before a re-sterilization or when some of the components should be replaced and/or repaired. Assessment of the drive mechanism and its components, including but not limited to the rotation drivetrain 4012, the closure drivetrain 4014, and/or the firing drivetrain 4016, can be accomplished in a variety of ways. The magnitude of deviation from a predicted performance can be used to determine the likelihood of a sensed failure and the severity of such failure. Several metrics can be used including: Periodic analysis of repeatably predictable events, Peaks or drops that exceed an expected threshold, and width of the failure.
In various instances, a signature waveform of a properly functioning drive mechanism or one or more of its components can be employed to assess the state of the drive mechanism or the one or more of its components. One or more vibration sensors can be arranged with respect to a properly functioning drive mechanism or one or more of its components to record various vibrations that occur during operation of the properly functioning drive mechanism or the one or more of its components. The recorded vibrations can be employed to create the signature waveform. Future waveforms can be compared against the signature waveform to assess the state of the drive mechanism and its components.
In at least one aspect, the principles of acoustics can be employed to assess the state of the drive mechanism and its components. As used herein, the term acoustics refers generally to all mechanical waves in gases, liquids, and solids including vibration, sound, ultrasound (sound waves with frequencies higher than the upper audible limit of human hearing), and infrasound (low-frequency sound, lower in frequency than 20 Hz [hertz] or cycles per second, hence lower than the “normal” limit of human hearing). Accordingly, acoustic emissions from the drive mechanism and its components may be detected with acoustic sensors including vibration, sound, ultrasound, and infrasound sensors. In one aspect, the vibratory frequency signature of a drive mechanism 160 can be analyzed to determine the state of one or more of the drivetrains 4012, 4014, and/or 4016. One or more vibration sensors can be coupled to one or more of the drivetrains 4012, 4014, and/or 4016 in order to record the acoustic output of the drivetrains when in use.
Referring again to
The module 4040 may include one or more sensors 4042 can be employed by the module 4040 to detect drivetrain failures of the surgical instrument 4010. In at least one instance, as illustrated in
Various types of filters and transforms can be used on the output of a sensor 4042 to generate a waveform that represents the operational state of a drivetrain, for example, of the surgical instrument 4010. As illustrated in
In one aspect, as illustrated in
While various frequencies can be used, the exemplary frequencies of the filters shown in
In at least one instance, an output of a sensor 4042 can be recorded when a motor is running during a known function having repeatable movement. For example, the output can be recorded when the motor 166 is running to retract or reset a drivetrain such as, for example the firing drivetrain 4016 to an original or starting position. The recorded output of the sensor 4042 can be used to develop a signature waveform of that movement. In one example, the recorded output of the sensor 4402 is run through a fast Fourier transform to develop the signature waveform.
Further to the above, the amplitude of key regions of the resulting signature waveform can be compared to predetermined values stored in the memory 4038, for example. In at least one instance, the memory 4038 may include program instructions which, when executed by the processor 4036, may cause the processor 4036 to compare the amplitudes of the key regions to the predetermined values stored in the memory 4038. When the amplitudes exceed those stored values, the processor 4036 determines that one or more components of the surgical instrument 4010 is no longer functioning properly and/or that the surgical instrument 4010 has reached the end of its usable life.
In at least one instance, stored values of key regions of a frequency response of a properly functioning drivetrain, as shown in
There can be various stages of operation of the surgical instrument 4010 as the components are moved to effect a function at an end effector of the surgical instrument 4010 such as, for example capturing tissue, firing staples into the captured tissue, and/or cutting the captured tissue. The vibrations generated by the drive mechanism 160 of the surgical instrument 4010 can vary depending on the stage of operation of the surgical instrument 4010. Certain vibrations can be uniquely associated with certain stages of operation of the surgical instrument 4010. Accordingly, taking into consideration the stage or zone of operation of the surgical instrument 4010 allows for selectively analyzing the vibrations that are associated with that stage or zone of operation while ignoring other vibrations that are not relevant to that stage or zone of operation. Various sensors such as, for example, position sensors can be employed by the processor 4036 to determine the stage of operation of the surgical instrument 4010.
In one example, various stages of operation of the instrument 4010 are represented in the graph of
In at least one instance, any vibrations captured below the threshold line 4052 can be disregarded or not considered. In at least one instance, the ratio of the minimum threshold 4052 to a maximum FTF during a firing sequence or stroke of the surgical instrument 4010 is any value selected from a range of about 0.001 to about 0.30, for example. In at least one instance, the ratio is any value selected from a range of about 0.01 to about 0.20, for example. In at least one instance, the ratio is any value selected from a range of about 0.01 to about 0.10, for example.
In addition, any vibrations captured within the block 4048 and block 4050 can also be disregarded or not considered as long as the events within those blocks are not a catastrophic event. In the event of a catastrophic failure, a drive mechanism 160 is rendered inoperable, and certain bailout steps are taken to ensure, among other things, a safe detachment of the surgical instrument 4010 from the tissue being treated. Alternatively, In the event of an acute drivetrain failure, the drivetrain may still be operated to complete a surgical step or to reset the surgical instrument 4010; however, certain precautionary and/or safety steps can be taken to avoid or minimize additional damage to the drivetrain and/or other components of the surgical instrument 4010.
Referring again to
A limited increase in noise could indicate increased wear or a non-catastrophic failure of parts of the gears, for example. A significant increase in the magnitude of the noise in chronic fashion could indicate continuing erosion of the transmission but could be used to predict the life of the instrument 4010 and it performance degradation allowing the completion of certain jobs, for example. An acute dramatic increase in magnitude or number of peaks could indicate a substantial or catastrophic failure causing the instrument to initiate more immediate and final reaction options, for example.
In at least one instance, the memory 4038 includes program instructions which, when executed by the processor 4036, causes the processor 4036 to employ one or more sensors 4042 positioned near one or more components of the drive mechanism 160 of the surgical instrument 4010 to selectively capture or record vibrations generated by the one or more components of the drive mechanism 160 during a predetermined section of the firing sequence. In at least one instance, the sensors 4042 are activated by the processor 4036 at a starting point of the predetermined section and deactivated at an end point of the predetermined section of the firing sequence or stroke so that the sensors 4042 may only capture or record vibrations generated by during the predetermined section.
The predetermined section may have a starting point after the firing sequence is begun and an end point before the firing sequence is completed. Said another way, the processor 4036 is configured to cause the sensors 4042 to only record vibrations at a central section of the firing sequence. As illustrated in
Thus, these limits can be used to assess potential damage to the surgical instrument 4010. Using the captured vibrations from the various drivetrains of the surgical instrument 4010, the vibrations can be processed using the processor 4036 shown in
In another aspect, the magnitude of the noise produced by the surgical instrument 4010 can be compared to predefined system harmonics to assess potential damage to the surgical instrument 4010, and the severity of that damage. As shown in
For example, as shown in
Further to the above, in at least one instance, the processor 4036 is configured to conclude that a catastrophic drivetrain failure had occurred when any one frequency is equal to or exceeds the critical limit 4058. Alternatively, the processor 4036 may be configured to conclude that a catastrophic drivetrain failure had occurred only when a plurality of frequencies is equal to or exceeds the critical limit 4058, for example. Alternatively, the processor 4036 may be configured to conclude that a catastrophic drivetrain failure had occurred only when all frequencies, as captured during the processing of the signal through the filters, are equal to or exceed the critical limit 4058, for example.
Further to the above, in at least one instance, the processor 4036 is configured to conclude that an acute drivetrain failure had occurred when any one frequency is equal to or exceeds the marginal limit 4056 but is below the critical limit 4058, as illustrated in
Referring to
Referring again to
In another aspect, a frequency comparison of a cumulative magnitude of noise with respect to a predetermined minimum and/or maximum threshold is used to assess potential damage to the surgical instrument 4010. In at least one instance, a minimum threshold defines an acceptable limit 4054. A cumulative magnitude of noise that is below the minimum threshold is construed by the processor 4036 as an acceptable limit 4054. In addition, a maximum threshold can be employed to define a critical limit 4058. A cumulative magnitude of noise that is above the minimum threshold is construed by the processor 4036 as a critical limit 4058. A marginal limit 4056 can be defined by the minimum and maximum thresholds. In one example, a cumulative magnitude of noise that is above the minimum threshold but below the maximum threshold is construed by the processor 4036 as a marginal limit 4056.
In the example illustrated in
In at least one instance, the Voltage amplitude values at the center frequencies A, A′, A″, and A′″ are summed to generate the cumulative magnitude of noise, as represented by voltage amplitude, that is then employed to assess whether a failure had occurred, and when so, the severity of that failure. In another instance, the Voltage amplitude values at the center frequencies A, A′, A″, and A′″ and any voltage amplitude within the predetermined bandwidths a1, a2, a3, and a4 are summed to generate the cumulative magnitude of noise, as represented by voltage amplitude, that is then employed to assess whether a failure had occurred, and when so, the severity of that failure. In another instance, the Voltage amplitude values at the center frequencies A, A′, A″, and A′″ and any voltage amplitude values greater than the baseline threshold value 4060 and within the predetermined bandwidths a1, a2, a3, and a4 are summed to generate the cumulative magnitude of noise, as represented by voltage amplitude, that is then employed to assess whether a failure had occurred, and when so, the severity of that failure.
In various instances, a comparison between a present noise signal and a previously recorded noise signal, which may be stored in the memory 4038, can be employed by the processor 4036 to determine a damage/function status of the surgical instrument 4010. A noise signal that is recorded by the sensor 4042 during a normal operation of the surgical instrument 4010 can be filtered and processed by the processor 4036 to generate normal processed signal that is stored in the memory 4038. Any new noise signal recorded by the sensor 4042 can be filtered and processed in the same manner as the normal noise signal to generate a present processed signal which can be compared to normal processed signal stored in the memory 4038.
A deviation between the present processed signature and the normal processed signal beyond a predetermined threshold can be construed as potential damage to the surgical instrument 4010. The normal processed signal can be set the first time the instrument is used, for example. Alternatively, a present processed signal becomes the normal processed signal against the next present processed signal.
The voltage amplitudes of the normal and present processed signals are represented by solid vertical lines. The normal processed signal is in the solid lines while the present processed signal is in the dashed lines represents a present/current processed signal, as described above. There is a baseline threshold value 4060 that is used to allow for a predictable amount of noise to be disregarded, similar to the baseline threshold 4060 of
In at least one instance, one or more voltage amplitudes are compared to corresponding voltage amplitudes in a previously recorded noise pattern to assess any damage of the surgical instrument 4010. The difference between a present voltage amplitude and a previously-stored voltage amplitude can be compared against one or more predetermined thresholds, which can be stored in the memory 4038, to select an output of an acceptable, marginal, or critical status.
In at least one instance, the differences between the present voltage amplitudes and the previously stored voltage amplitudes are summed and compared to one or more predetermined thresholds stored in the memory 4038, for example, to select an output of an acceptable, marginal, or critical status. Magnitude of deviance could be compared range to range to indicate shear change in a local event.
In various instances, one or more algorisms, which may be stored in the memory 4038, can be employed by the processor 4036 to determine a damage/function status of the surgical instrument 4010 based on the processed signal of the output of the sensor 4042. Different noise signals that are recorded by the sensor 4042 can be construed to represent different damage/function statuses of the surgical instrument 4010. During normal operation, a normal or expected noise signal is recorded by the sensor 4042. When an abnormal noise signal is recorded by the sensor 4042, it can be further evaluated by the processor 4036, using one or more of the algorisms stored in the memory 4038, to determine a damage/function status of the surgical instrument 4010. The abnormal signal may comprise unique characteristics that can be used to assess the nature of the damage to the surgical instrument 4010. For example, the unique characteristics of the abnormal signal may be indicative of damage to a particular component of the surgical instrument 4010, which can be readily replaced.
In certain instances, one or more algorisms are configured to assess normal wear in one or more components of the surgical instrument 4010 based on the processed signal of the output of the sensor 4042. Normal wear can be detected by identifying a noise signal indicative of potential debris, for example. When the debris, as measured by its recorded noise signs, reaches or exceeds a predetermined threshold stored in the memory 4038, for example, the processor 4036 can be configured to issue an alert that surgical instrument 4010 is nearing the end of its life or requires maintenance, for example.
Furthermore, one or more algorisms can be configured to determine potential damage to one or more gear mechanisms such as, for example, a planet gear mechanism within the drive mechanism 160 based on the processed signal of the output of a sensor 4042. During normal operation, the planet gear may produce a normal noise signal as recorded by the sensor 4042. When the planet gear is damaged due to a broken tooth, for example, an abnormal noise signal is recorded by the sensor 4042. The abnormal signal may comprise unique characteristics indicative of a damaged planet gear, for example.
Like
In the example illustrated in
Also, in the example illustrated in
Also, in the example illustrated in
Certain surgical stapling and cutting end effectors described herein include an elongate channel configured to removably receive a staple cartridge that has surgical staples stored therein. The staple cartridge includes ejectors, or drivers, movably supported within a cartridge body of the staple cartridge which are each configured to support one or more staples thereon. The staple supporting drivers are arranged in longitudinal rows within the cartridge body located on each side of a longitudinally-extending slot defined in the cartridge body. The slot is configured to movably accommodate a firing member that may have a tissue cutting edge thereon that serves to cut the tissue that has been clamped between the anvil and the staple cartridge. The drivers are urged upwardly in the cartridge body, i.e., toward a deck of the cartridge body, when they are contacted by a sled that is configured to be driven longitudinally through the cartridge body by the firing member. The sled is movably supported in the cartridge and includes a plurality of angled or wedge-shaped cams that correspond to lines of staple drivers within the cartridge body. In an unfired or “fresh” staple cartridge, the sled is positioned in a starting position that is proximal to the first, or proximal-most, staple drivers in each line. The sled is advanced distally by the firing member during a firing stroke to eject the staples from the cartridge body. Once the staple cartridge has been at least partially fired, i.e., ejected from the cartridge body, the firing member is retracted back to a beginning or unfired position and the sled remains at a distal end of the now-spent staple cartridge. Once the firing member has been returned to the beginning or unfired position, the spent staple cartridge may be removed from the channel of the end effector.
Further to the above, a surgical instrument system 19010 is illustrated in
Such cutting and stapling end effectors are mounted to a distal end of an elongate shaft assembly that operably supports various drive shafts and components configured to apply various control motions to the end effector. In various instances, a shaft assembly may include an articulation joint or can be otherwise configured to facilitate the articulation of the end effector relative to a portion of the elongate shaft when articulation motions are applied to the end effector. The shaft assembly is coupled to a housing that supports various drive systems that operably interface with various components in the elongate shaft assembly. In certain arrangements, the housing may comprise a handheld housing or handle. In other arrangements, the housing may comprise a portion of a robotic or automated surgical system. The various drive systems of the housing may be configured to apply axial drive motions, rotary drive motions, and/or combinations of axial and rotary drive motions to the elongate shaft assembly. In handheld arrangements, the axial motions may be generated by one or more manually-actuated handcranks and/or generated by one more electric motors. The robotic system may employ electric motors and/or other automated drive arrangements that are configured to generate and apply the necessary control motions to the elongate shaft assembly and, in some cases, ultimately to the firing member in the end effector.
For surgical end effectors that require rotary control motions, the elongate shaft assembly may include a “proximal” rotary drive shaft portion that is rotated by a corresponding motor or other source of rotary motion that is supported in the housing. The proximal rotary drive shaft is configured to apply the rotary control motion to an end effector drive shaft that is supported in the end effector. In such arrangements, the firing member interfaces with the end effector drive shaft such that the firing member may be longitudinally advanced through the end effector and then returned to the unfired position.
When using surgical instruments that are configured to cut and staple tissue, measures should be taken to ensure that an unspent surgical staple cartridge has been properly installed in the end effector of the surgical instrument prior to actuating the firing drive system of the surgical instrument. If a clinician were to inadvertently actuate a tissue cutting member of the firing drive system without first having installed an unspent staple cartridge in the end effector, for instance, the tissue cutting member may sever the tissue without stapling it. Similar problems could also arise if the clinician were to unwittingly install a partially-spent staple cartridge into the end effector. A partially-spent staple cartridge can be created when a staple cartridge is used in a prior procedure, or a prior step in a procedure, and then removed from the end effector before all of the staples have been ejected therefrom. If such a partially-spent cartridge were to be re-used in the surgical instrument, the tissue cutting member may create an incision in the tissue that is longer than the staple lines that are applied to the tissue. Thus, when using surgical end effectors that are configured to cut and staple tissue, it is desirable for the surgical end effector to be configured to prevent the actuation of the tissue cutting member unless an unspent “fresh” staple cartridge has been properly installed in the end effector.
As can be seen in
The channel of the surgical end effector 20000 is configured to operably and removably support a surgical staple cartridge therein that includes a sled 20050. The sled 20050 is movable from a starting position located in the proximal end of the staple cartridge to an ending position within the cartridge. The sled 20050 includes a central sled body 20052 that has a collection of cam wedges 20054 formed therein. In the illustrated example, the sled 20050 includes four cam wedges 20054 with two cam wedges 20054 being located on each side of the central sled body 20052. Each cam wedge 20054 would correspond to a line of staple supporting drivers located in the cartridge body. As the sled 20050 is driven distally through the cartridge body, the cam wedges 20054 would sequentially drive the staple drivers in the corresponding line upward within the cartridge body to thereby drive the staples into forming contact with the underside of the anvil.
In the illustrated example, the sled 20050 includes retention cavity 20056 that is formed in the central sled body 20052 that is configured to retainingly engage the distally extending retainer tab 20044 on the travel nut 20040 when the travel nut is in the first position and the sled 20050 is in the starting (pre-fired) position. See
Turning next to
As can be seen in
In the illustrated example, a firing assembly engagement notch 20216 is provided in the sled body 20212 that is configured to engage a corresponding engagement notch 20137 in the upper body portion 20136 of the firing assembly 20130. As the firing assembly engagement notch 20216 of the sled 20210 initially engages the engagement notch 20137 in the upper body portion 20136 of the firing assembly 20130, the sled 20120 biases or deflects the firing assembly 20130 and end effector rotary drive shaft 20120 downward into the channel 20110 (represented by arrows “D” in
In the illustrated embodiment, a locking notch 20412 is provided in the ledge 20404. The locking notch 20412 is sized to receive at least a portion of the locking lug 20304 therein when the firing assembly 20300 is in a first or beginning position prior to firing. A lock spring or biasing member 20414 is provided on the ledge 20406 and is configured to engage and bias the actuator lug 20306 in the locking direction “L”. Such rotation of the actuator lug 20306 causes the locking lug 20304 to enter into the locking notch 20412. When in that position, the firing assembly 20300 cannot be advanced distally when the rotary end effector drive shaft is rotated in a firing direction.
Still referring to
To facilitate assembly of the various anvil components, the anvil assembly 20700 includes an anvil cap 20740 that may be attached to the anvil frame 20712 by welding, snap features, etc. In addition, the anvil assembly 20700 includes a pair of anvil plates or staple forming plates 20742 that may contain various patterns of staple forming pockets on the bottom surfaces thereof that correspond to the staple arrangements in the surgical staple cartridge 20600 that is supported in the elongate channel 20510. The staple forming plates 20742 may be made of a metal or similar material and be welded to or otherwise attached to the anvil frame 20712. In other arrangements, a single anvil plate that has a slot therein to accommodate a firing member may also be employed. Such anvil plate or combination of plates may serve to improve the overall stiffness of the anvil assembly. The anvil plate(s) may be flat and have the staple forming pockets “coined” therein, for example.
As can be seen in
Rotation of the anvil drive shaft 20710 in a first rotary direction will result in the axial movement of the firing member 20800 from a first position to a second position. Similarly, rotation of the anvil drive shaft 20710 in a second rotary direction will result in the axial retraction of the firing member 20800 from the second position back to the first position. The anvil drive shaft 20710 ultimately obtains rotary motion from a proximal drive shaft (not shown) that operably interfaces with a distal power shaft 20830. In the illustrated arrangement, the distal power shaft 20830 has a distal drive gear 20832 that is configured for meshing engagement with the driven firing gear 20726 on the anvil drive shaft 20710 when the anvil assembly 20710 is in the closed position. The anvil drive shaft 20710 is said to be “separate and distinct” from the distal power shaft 20830. That is, at least in the illustrated arrangement for example, the anvil drive shaft 20710 is not coaxially aligned with the distal power shaft 20830 and does not form a part of the distal power shaft 20830. In addition, the anvil drive shaft 20710 is movable relative to the distal power shaft 20830, for example, when the anvil assembly 20700 is moved between open and closed positions. The proximal drive shaft may ultimately be rotated by a motor supported in a housing that is attached to a shaft assembly coupled to the surgical end effector 20500. The housing may comprise a handheld assembly or a portion of a robotically controlled system.
In the illustrated arrangement, the anvil assembly 20700 is closed by distally advancing a closure tube 20900. As can be seen in
Turning to
In still other arrangements, the detection of the sled in the correct location within an unspent staple cartridge that has been properly seated in the channel of a surgical cutting and stapling end effector may be determined electrically. For example, this may be accomplished with contacts on the sled that complete a circuit when the sled is in a starting position in a cartridge that has been properly seated in the channel. Upon firing, the circuit is opened and further firing is not permitted until the circuit is closed again.
As mentioned above, stapling assemblies for first grasping, clamping, stapling, and/or cutting tissue are well known in the art. Previous stapling assemblies, such as those disclosed in U.S. Pat. No. 5,865,361, for example, have comprised a loading unit that is operably connected to a handle assembly. The disclosure of U.S. Pat. No. 5,865,361, entitled SURGICAL STAPLING APPARATUS, which issued on Feb. 2, 1999, is incorporated by reference in its entirety. While the handle assemblies of these previous stapling assemblies were configured for multiple uses, the loading units were configured for a single use. After each loading unit was spent, or at least partially spent, the loading unit was removed from the handle assembly and then replaced with a new, or unspent, loading unit if desired. The configuration of these previous loading units did not permit a cartridge portion of the loading unit to be replaced so that a spent loading unit could be used once again.
U.S. Patent Application Publication No. 2012/0286021, now U.S. Pat. No. 9,820,741, discloses an alternative stapling assembly comprising a first jaw including an anvil and a second jaw including a staple cartridge. The entire disclosure of U.S. Patent Application Publication No. 2012/0286021, entitled REPLACEABLE STAPLE CARTRIDGE, which published on Nov. 15, 2012, now U.S. Pat. No. 9,820,741, is incorporated by reference herein. Unlike the previous loading units, the second jaw of these stapling assemblies can be completely removed from the loading unit and then replaced with another second jaw, presumably after the previous second jaw has been spent. Notably, the entire second jaw of these stapling assemblies is replaced—not just a portion of the second jaw as disclosed in U.S. Pat. No. 6,988,649, entitled SURGICAL STAPLING INSTRUMENT HAVING A SPENT CARTRIDGE LOCKOUT, which issued on Jan. 24, 2006, the entire disclosure of which is incorporated by reference herein.
The stapling assembly disclosed in U.S. Patent Application Publication No. 2012/0286021, now U.S. Pat. No. 9,820,741, however, is defective. For instance, the stapling assembly disclosed in U.S. Patent Application Publication No. 2012/0286021, now U.S. Pat. No. 9,820,741, includes a cutting member which can be advanced distally eventhough a second jaw is not attached to the stapling assembly. As a result, the cutting member may be unintentionally exposed to the tissue of a patient. Various improvements to these stapling assemblies, among others, are discussed further below.
Turning now to
The handle 21010 comprises an actuator, or trigger, 21014 which is rotatable toward a pistol grip 21012 of the handle 21010 to drive a firing bar of the loading unit 21030 distally. During a first stroke of the trigger 21014, the firing bar engages the cartridge jaw 21050 and moves the cartridge jaw 21050 into its closed position. During one or more subsequent strokes of the trigger 21014, the firing bar is advanced through the cartridge jaw 21050. The cartridge jaw 21050 comprises a plurality of staples removably stored therein which are ejected from the cartridge jaw 21050 as the firing bar is advanced distally through the cartridge jaw 21050. More particularly, as discussed in greater detail elsewhere herein, the firing bar enters into the cartridge jaw 21050 and pushes a sled stored in the cartridge jaw 21060 distally which, in turn, drives the staples out of the cartridge jaw 21050.
Referring primarily to
An alternative surgical instrument system 21100 is illustrated in
Further to the above, the staple cartridge jaw 21050 is removably attached to the anvil jaw 21040 of the loading unit 21030. Referring primarily to
The staple cartridge jaw 21050 further comprises clips 21056 configured to engage and grasp the attachment projections 21042. Each clip 21056 is positioned within a slot 21055 defined in the cartridge jaw 21050. When the cartridge jaw 21050 is attached to the loading unit 21030, the clips 21056 flex around the attachment projections 21042. When the cartridge jaw 21050 is fully attached to the loading unit 21030, the clips 21056 resiliently snap or return toward their unflexed configuration and hold the attachment projections 21042 in the recesses 21052.
Further to the above, the cartridge jaw 21050 is properly attached to the loading unit 21030 when the clips 21056 are engaged with the attachment projections 21042 and the attachment projections 21042 are fully seated in the recesses 21052. That said, the loading unit 21030 does not include a sensing system configured to detect whether or not the cartridge jaw 21050 is properly attached to the loading unit 21030. Turning now to
The loading unit 21130 comprises an electrical circuit that is completed, or closed, when the staple cartridge jaw 21150 is properly attached to the loading unit 21130. The electrical circuit is in communication with a microprocessor, or controller, of the surgical instrument system. The controller is in the handle of the surgical instrument system; however, the controller can be in any suitable part of the surgical instrument system, such as the loading unit 21130, for example. Alternatively, the controller can be in a housing of a surgical instrument assembly that is attached to a robotic surgical system and/or in the robotic surgical system itself. In any event, the controller is in communication with an electric motor which drives the staple firing system of the surgical instrument system.
When the controller detects that a staple cartridge is not properly attached to the loading unit 21130, further to the above, the controller can prevent the electric motor from driving the staple firing system through a staple firing stroke. In at least one such instance, the controller can open a switch between a power source, such as a battery, for example, and the electric motor to prevent electrical power from being supplied to the electric motor. When the controller detects that a staple cartridge 21150 is properly attached to the loading unit 21130, the controller can permit the electric motor to receive power from the battery and drive the staple firing system through a staple firing stroke when actuated by the user of the surgical instrument system. In at least one such instance, the controller can close the switch between the battery and the electric motor, for example.
The electrical circuit of the loading unit 21130 comprises conductors 21147 (
Further to the above, the controller can determine that a staple cartridge jaw 21150 is improperly attached to the loading unit 21130 if only one of the contacts 21159 is engaged with its respective contact 21146. In such instances, the electrical circuit would be in an open condition and, as a result, the microprocessor would treat an improperly assembled staple cartridge jaw 21150 as a missing cartridge jaw 21150 and prevent the electric motor from being actuated to perform the staple firing stroke. In various instances, the surgical instrument system can include an indicator light and/or feedback system that communicates to the user of the surgical instrument system that the staple cartridge jaw detection circuit has not been closed. In response thereto, the user can investigate the condition and properly seat the staple cartridge jaw 21150 to close the detection circuit.
As illustrated in
In addition to or in lieu of the above, the sled 21170 can comprise a conductive portion which electrically connects the lateral jaw contacts 21159 and/or the electrically conductive clips 21056 when the sled 21170 is in its unfired position. In at least one instance, the sled 21170 comprises a conductor and/or trace extending from one lateral side of the sled 21170 to the other. When the sled 21170 is advanced distally, the conductive portion of the sled 21170 is no longer in electrical communication with the contacts 21159 and/or clips 21056 and the jaw detection circuit is opened. To the extent that the jaw assembly also comprises the conductor 21157, the conductor 21157 can be cut or broken to open the jaw detection circuit as described above. In various instances, the sled 21170 can be displaced from the jaw detection circuit at the same time that the conductor 21157 is cut or broken, for example. In any event, the conductive sled 21170 can provide a spent cartridge lockout.
In various alternative embodiments, the electrical circuit lockout of the loading unit is not transected when the firing member is advanced distally. Turning now to
The compliant contacts 21257 are configured to engage an anvil jaw 21240 of the loading unit 21230 when the staple cartridge jaw 21250 is assembled to the loading unit 21250. More specifically, the compliant contacts 21257 engage a conductive pathway 21247 defined in the anvil jaw 21240 which electrically connects the compliant contacts 21257 and, at such point, the electrical circuit has been closed. The compliant contacts 21257 remain constantly engaged with the conductive pathway 21247, i.e., when the cartridge jaw 21250 is in an open position, when the cartridge jaw 21250 is in a closed position, and when the cartridge jaw 21250 is moved between its open and closed positions. When the firing member is advanced distally, the firing member passes through a gap defined between the contacts 21257 and, as a result, the electrical jaw detection circuit is not transected. Such an arrangement can provide a missing cartridge jaw lockout and/or an improperly attached cartridge jaw lockout.
Further to the above, the compliant contacts 21257 can comprise springs configured to bias the staple cartridge jaw 21250 into an open position. When the staple cartridge jaw 21250 is moved into its closed position, the compliant contacts 21257 are compressed between the staple cartridge jaw 21250 and the anvil 21240. The compliant contacts 21257, along with the other portions of the electrical jaw detection circuit, are electrically insulated from the metal, or conductive, portions of the stapling assembly so as to maintain the integrity of the jaw detection circuit and prevent the jaw detection circuit from shorting out.
In addition to or in lieu of an electrical or electronic lockout such as the lockout described above, for example, a loading unit can include a mechanical lockout that prevents the firing system from performing a staple firing stroke if a staple cartridge jaw is not properly attached to the loading unit. Turning now to
Although the lockout members 21172 can block the distal advancement of the firing member 21160, as discussed above, the firing member 21160 may be able to push through and slide between the lockout members 21172 in certain instances. As an improvement, one or both of the lockout members 21172 can comprise a latch or hook extending inwardly toward the firing member 21160. When the lockout members 21172 are biased inwardly after the sled 21170 has been advanced distally, the latches or hooks can engage apertures defined in the firing member 21160 when the firing member 21160 is retracted back into its unfired position. Once the latches or hooks are positioned in the firing member apertures, they can prevent the firing member 21160 from being advanced distally through the already spent cartridge. At such point, the staple cartridge would have to be replaced to unlock the firing member 21160.
As described above, an attachable staple cartridge jaw can be moved between open and closed positions to clamp tissue therebetween. Other embodiments are envisioned in which the staple cartridge jaw is removably attachable to a stapling instrument but the anvil jaw is movable between open and closed positions. Turning now to
The stapling assembly 21530 further comprises a mechanical lockout 21572. The lockout 21572 is mounted to a frame of the stapling assembly 21530 at a frame pivot 21232. The lockout 21572 extends distally and is supported by a frame pin 21533. The lockout 21572 comprises a metal wire; however, the lockout 21572 can be comprised of any suitable material. The lockout 21572 further comprises an elongated recess track 21576 defined therein which is configured to receive a lockout pin 21166 extending from the firing member 21160. Referring primarily to
When the staple cartridge jaw 21550 is attached to the stapling assembly 21530, as illustrated in
Turning now to
The stapling assembly 21330 further comprises a mechanical lockout 21372. The lockout 21372 is mounted to a frame of the stapling assembly 21330 at a frame pivot 21232. The lockout 21372 extends distally and is constrained by a frame pin 21333. The lockout 21372 comprises a metal wire; however, the lockout 21372 can be comprised of any suitable material. The lockout 21372 further comprises an elongate recess track 21376 defined therein which is configured to receive the lockout pin 21166 extending from the firing member 21160. Referring primarily to
When the staple cartridge jaw 21550 is attached to the stapling assembly 21530, as illustrated in
Referring to
During a surgical procedure, several loading units can be used with a handle of a surgical stapling system. In at least one instance, a first loading unit can be used which is configured to apply a 30 mm staple line, a second loading unit can be used which is configured to apply a 45 mm staple line, and a third loading unit can be used which is configured to apply a 60 mm staple line, for example. In the event that each of these loading units comprises a replaceable cartridge jaw, it is possible that the wrong staple cartridge jaw can be attached to a loading unit. For instance, a clinician may attempt to attach a 60 mm staple cartridge jaw to a loading unit configured to apply a 30 mm staple line. As a result, it is possible that some of the staples ejected from the 60 mm staple cartridge jaw may not be deformed by the anvil and/or that the tissue incision line may be longer than the staple lines. The stapling assemblies and/or loading units disclosed herein can include means for preventing the wrong staple cartridge jaw from being attached thereto, as discussed in greater detail below.
Referring to
In the instances described above, the attachment projections of a loading unit, the recesses of a staple cartridge jaw, and the spring clips holding the staple cartridge jaw to the loading unit have the same configuration on both sides of the stapling assembly. In other instances, the attachment projection, the recess, and/or the spring clip on one side of the stapling assembly is different than the attachment projection, the recess, and/or the spring clip on the other side of the stapling assembly. For example, a large attachment projection, recess, and spring clip are disposed on one side of the stapling assembly while a smaller attachment projection, recess, and spring clip are disposed on the other side. Such arrangements can increase the permutations available to prevent an incorrect staple cartridge jaw from being attached to a loading unit.
In the instances described above, the attachment projections of a loading unit, the recesses of a staple cartridge jaw, and the spring clips are aligned with respect to a common lateral axis. In other instances, the attachment projection, the recess, and/or the spring clip on one side of the stapling assembly are not aligned with the attachment projection, the recess, and/or the spring clip on the other side. Stated another way, one side is offset from the other. Such arrangements can also increase the permutations available to prevent an incorrect staple cartridge jaw from being attached to a loading unit.
Further to the above, it is contemplated that a kit of loading units can be provided wherein each loading unit of the kit can be configured such that only a cartridge jaw intended to be used with the loading unit can be properly attached to the loading unit.
Turning now to
Further to the above, the proximal shoulder of a staple cartridge jaw can comprise a sharp or abrupt corner. In at least one such instance, the proximal shoulder does not comprise a chamfer or lead-in, for example.
In various instances, a proximal shoulder of a staple cartridge jaw can be configured to block the distal advancement of a staple firing member if the tissue clamped between the staple cartridge jaw and an opposing anvil jaw is too thick. In such instances, the staple cartridge jaw would not close completely and the proximal shoulder of the staple cartridge jaw would be positioned in front of the staple firing member. Such an arrangement would comprise a tissue thickness lockout; however, such an arrangement could also serve as a tissue clamping lockout in the event that the staple cartridge jaw had not yet been moved into its clamped position.
In addition to or in lieu of the above, an electronic or software lockout of a surgical instrument system can be utilized to prevent a firing drive from performing a staple firing stroke in the event that an incorrect staple cartridge jaw is attached to the surgical instrument system. In various instances, as discussed above, a portion of a jaw detection circuit can extend through a staple cartridge jaw and, in at least one instance, a controller of the surgical instrument system can be configured to evaluate the portion of the jaw detection circuit extending through the staple cartridge jaw to determine whether the staple cartridge attached to the surgical instrument system jaw is an appropriate staple cartridge jaw for use with the surgical instrument system. In at least one instance, the clips 21056 of a first staple cartridge jaw have detectably different electrical properties, such as resistance or impedance, for example, than the clips 21056 of a second staple cartridge jaw.
Referring again to
It is desirable to employ lockout systems with surgical stapling instruments having replaceable staple cartridge assemblies. For example, in the event that a user forgets to install a staple cartridge into an instrument without such a lockout system, the firing member of the surgical instrument could be used to cut the tissue of a patient without stapling it. Such circumstances are undesirable. In yet another example, in the event that a user installs a spent, or partially-spent, staple cartridge into an instrument and without a lockout system, the firing member of the surgical instrument would, similarly, cut but not staple, or just partially staple, the tissue of a patient. Such circumstances are also undesirable. As a result, surgical instruments which can automatically lock out the firing member to prevent the firing member from being advanced within an end effector are desirable.
Turning now to
The surgical instrument system 25100 further comprises a lockout member 25140. The lockout member 25140 is configured to prevent the firing member 25110 from being advanced through the staple firing stroke when a cartridge is not present in the surgical instrument system 25100 or a spent, or partially spent, cartridge is present in the surgical instrument system 25100. The lockout member 25140 comprises a proximal portion 25141 pivotably mounted to a spine pin 25101 of a frame portion of the system 25100. The lockout member 25140 further comprises a lock face, or shoulder, 25142 configured to catch the firing member 25110, and a deflectable portion 25143. The lockout member 25140 is movable, or deflectable, between a locked position (
When the lockout member 25140 is in its locked position as illustrated in
As can be seen in
As mentioned above, the sled 25121 does not return with the firing member 25110 when the firing member 25110 is retracted after the firing stroke. When the firing member 25110 is retracted, the firing member pin 25113 deflects, or bends, the deflectable portion 25143 to its unlocked position permitting the pin 25113 to pass the lock face 25142 and return to a home position. Once the pin 25113 is retracted past the lock face 25142, the lockout member 25140 springs back, or returns, to its locked position to prevent a repeat firing with a spent staple cartridge installed within the system 25100. The firing member 25110 can be retracted even further such that the jaws of the system 25100 can then be unclamped from the stapled tissue.
Referring now to
The surgical instrument system 25200 further comprises a lockout member 25240. The lockout member 25240 is configured to prevent the firing member 25210 from being advanced through its staple firing stroke when a cartridge is not present within the system 25200 or a spent, or partially spent, cartridge is present within the system 25200. The lockout member 25240 comprises a first, or proximal, portion 25241 rotatably mounted to a first spine pin 25201 of the system 25200. The spine pin 25201 may extend from a shaft frame, or spine, of the system 25200, for example. The lockout member 25240 further comprises a second portion 25242, a third, or catch, portion 25243, and a fourth, or distal, portion 25245. The lockout member 25240 is movable between a locked position (
When the lockout member 25240 is in its locked position as illustrated in
The sled 25221 comprises a magnet 25226 oriented with one of its poles “P1” facing the distal portion 25245 of the lockout member 25240 and another pole “P2” facing away from the distal portion 25245 of the lockout member 25240. The distal portion 25245 of the lockout member 25240 comprises a magnet 25246 disposed thereon. The magnet 25246 is orientated with a pole “P1” facing the like pole “P1” of the sled magnet 25226 and another pole “P2” facing away from the sled magnet 25226. The pole P1 of the magnet 25226 and the pole P1 of the magnet 25246 repel each other. This relationship creates a levitational effect when the sled 25221 is in its proximal unfired position (
When the firing member 25210 is retracted after its firing stroke, the pin 25213 is configured to contact an angled face of the distal portion 25245 to push the distal portion 25245 and, thus, the lockout member 25240 toward its unlocked position permitting the pin 25213 to pass the lock face 25244 when returning to a home position. Once the pin 25213 passes the lock face 25244, the lockout member 25240 springs back, or returns, to its locked position to prevent to prevent the firing stroke from being repeated with a spent, or partially spent, staple cartridge installed within the system 25100.
Similar to the system 25100 illustrated in
Another surgical instrument system 25300 is depicted in
The surgical instrument system 25300 further comprises a lockout member 25340. The lockout member 25340 is configured to prevent the firing member 25310 from being advanced through a staple firing stroke when a cartridge is not present within the system 25300 or a spent, or partially spent, cartridge is present within the system 25300. The lockout member 25340 is similar to the lockout members 25140, 25240 in many respects. Referring to
The staple cartridge assembly 25320 comprises a sled 25330 and plurality of drivers 25328 configured to eject a staple upon being driven by the ramps 25330A, 25330B, 25330C, and 25330D of the sled 25330 during a staple firing stroke. The staple cartridge assembly 25320 further comprises a control member movable between an unspent position and a spent position by the sled 25330 when the sled 25330 is advanced distally during its staple firing stroke. The control member is in its unspent position when a staple cartridge 25320 is loaded into the surgical instrument system 25300 and is configured to move the lockout member 25340 from its locked position to its unlocked position when the unspent staple cartridge assembly 25320 is loaded into the surgical instrument system 25300. A first configuration of a proximal driver 25325 is illustrated in
A similar proximal driver configuration is depicted in
Once the lockout member 25340 has been released to its locked position (
The control members 25325, 25325′ are driven by the sled 25330 and can be referred to as drivers; however, they do not drive staples. In this way, the control members 25325, 25325′ comprise “false” drivers. That said, it is contemplated that the proximal most staple driver of a staple cartridge assembly could be used as a control member.
Another surgical instrument system is depicted in
To move the lockout member 25440 to its unlocked position so that a firing member can be advanced through the staple cartridge assembly 25410 during a staple firing stroke, an electromagnet 25421 is employed. The electromagnet 25421 is disposed on the spine portion 25401 of the system 25400 but may be disposed at any suitable location within the system 25400. Conductors are positioned within the system 25400 along the spine portion 25401, for example, to power the electromagnet 25421. The lockout circuit system 25420 which encompasses the electromagnet 25421 and its power source extends through the staple cartridge assembly 25410. As discussed below, when the circuit 25420 is complete, or closed, the electromagnet 25421 is powered. When the circuit is not complete, or open, the electromagnet 25421 is not powered. As also discussed below, the presence of a spent, or partially-spent, cartridge in the system 25400 is a scenario where the circuit 25420 is open. The absence of a cartridge in the system 25400 is another scenario where the circuit 25420 is open.
The lockout circuit system 25420 comprises conductors 25422 extending from the electromagnet 25421 to a pair of electrical contacts 25423 positioned within the system 25400. The electrical contacts 25423 are positioned within a jaw of the system 25400 such as a channel portion which receives the staple cartridge assembly 25410, for example. The staple cartridge assembly 25410 further comprises conductor legs 25425 configured to engage the contacts 25423 when the staple cartridge assembly 25410 is fully seated in the channel portion of the jaw. The conductor legs 25425 are part of an electrical trace 25424 defined within the staple cartridge assembly 25410. The conductor legs 25425 are disposed on a proximal face 25412 of the cartridge assembly 25410. Also disposed on the proximal face 25412 is a severable portion 25426 of the electrical trace 25424 which extends across a slot 25411 of the staple cartridge assembly 25410. A cutting edge of a firing member is configured to sever, or incise, the severable portion 25426 during a staple firing stroke of the firing member.
When a cartridge assembly is installed and is unspent, further to the above, the severable portion 25426 is not severed and the lockout circuit 25420 is complete, or closed. When the lockout circuit 25420 is complete (
When the spent staple cartridge assembly 25410 is removed from the surgical instrument system 25400, the lockout circuit 25420 remains in an open state and the electromagnet 25421 remains unpowered. When an unspent staple cartridge assembly 25410 is fully seated in the system 25400, the lockout circuit 25420 is once again closed and the electromagnet 25421 is repowered to unlock the lockout member 25430. Notably, if a staple cartridge assembly 25410 is not fully seated in the system 25400, the legs 25425 will not be engaged with the contacts 25423 and the lockout circuit 25420 will remain in an open, unpowered state.
Another surgical instrument system 25500 is depicted in
The lockout circuit 25520 comprises a pair of conductors 25521 in electrical communication with a surgical instrument handle, for example, and a pair of electrical contacts 25522 positioned within a jaw portion of the surgical instrument system 25500 configured to support the staple cartridge 25501. The electrical contacts 25522 are positioned such that corresponding pads, or contacts, 25523 disposed on a proximal face 25512 of the sled 25510 contact the electrical contacts 25522 when the staple cartridge 25501 is fully seated in the system 25500 and the sled 25510 is in its unfired position (
A firing member lockout arrangement of a system 25600 is depicted in
The lockout 25620 comprises a solenoid 25621 and a mechanical linkage comprising a first link 25623 and a second link 25624. The links 25623, 25624 are attached at a pivot 25622. The solenoid 25621 is positioned within the spine 25601 such that the solenoid 25621 can apply a force to the linkage near the pivot 25622. The lockout 25620 is illustrated in its biased, locked position in
In various instances, multiple windows are provided in the firing member 25610. Another window, such as the window 25614, may comprise another proximal surface. The window 25614 may act as an intermediate lockout to lock the firing member 25610 in the midst of an operation. An event such as knife binding, for example, may trigger the solenoid 25621 to release the lockout 25620 into its locked position to prevent further actuation of the firing member 25610. In various instances, distal surfaces of the windows in the firing member 25610 may be configured such that when the firing member 25610 is retracted proximally, the cam plate 25625 may glide over the distal surfaces to prevent the locking of the firing member 25610 as the firing member 25610 is moved proximally. In other instances, locking the firing member 25610 as it moves proximally may be desirable.
In some instances, a lockout can be configured to permit movement in one direction but prevent movement in another direction. For example, slight retraction of the firing member 25610 may be desirable when the distal movement of the firing member 25610 has been locked out. When retracted proximally in such instances, the tissue in the area that caused the firing member 25610 to bind up may naturally decompress and, after a defined time period of waiting for the tissue to decompress, the solenoid 25621 may be activated to move the lockout 25620 into its unlocked position (
Various embodiments are disclosed herein which comprise a lockout configured to prevent a firing member from being advanced distally in certain instances. In many instances, the lockout is more than adequate to block the distal advancement of the firing member. In some instances, it may be desirable to have more than one lockout configured to block the distal advancement of the firing member. In such instances, a primary lockout and a secondary lockout can block the distal advancement of the firing member. As described in greater detail below, the secondary lockout can be actuated as a result of the primary lockout being actuated. For example, the primary lockout can block the distal advancement of the firing member because a staple cartridge jaw is missing from the loading unit, the staple cartridge jaw is improperly attached to the loading unit, and/or the staple cartridge jaw has previously been at least partially fired and, when the distal displacement of the firing member is impeded by the primary lockout, the secondary lockout can be actuated to assist the primary lockout in blocking the distal advancement of the firing member.
Turning now to
The lockout 21780 comprises lock arms 21782 pivotably mounted to the proximal firing member 21760 at a pivot 21784. The lock arms 21782 are configured to abut drive surfaces 21768 defined on the proximal end of the firing member 21762 and push the firing member 21762 distally. In at least one instance, the drive surfaces 21768 form a conical surface, for example. The lockout 21780 further comprises a biasing member, or spring, 21785 configured to bias the lockout arms 21782 inwardly toward an unlocked configuration, as illustrated in
Further to the above, the spring 21785 is resiliently stretched when the lock arms 21782 are displaced outwardly. The stiffness of the spring 21785 is selected such that the spring 21785 can hold the lock arms 21782 in their unlocked configuration against the drive surfaces 21768 when the force transmitted from the proximal firing member 21760 to the distal firing member 21762 is below the threshold force yet permit the lock arms 21782 to displace outwardly when the force transmitted from the proximal firing member 21760 to the distal firing member 21762 exceeds the threshold force. The force transmitted between the proximal firing member 21760 and the distal firing member 21762 is below the threshold force when the firing system is firing the staples from a staple cartridge and above the threshold force when the distal firing member 21760 is blocked by a missing cartridge and/or spent cartridge lockout, for example. In such instances, the lockout 21780 is deployed in response to another lockout blocking the advancement of the staple firing system. Stated another way, the lockout 21780 can comprise a secondary lockout which co-operates with a primary lockout to block the advancement of the staple firing system.
In various instances, further to the above, the lockout 21780 can provide overload protection to the staple firing system. For instance, the staple firing system can become jammed during a firing stroke and the lockout 21780 can deploy to stop the staple firing stroke. In such instances, the lockout 21780 can transfer the firing force, or at least a portion of the firing force, to the shaft 21730 instead of the staple cartridge. As a result, the lockout 21780 can prevent the firing system and/or staple cartridge from being damaged, or at least further damaged. In such instances, the lockout 21780 is deployed in response to a condition of the stapling assembly other than a predefined lockout. Referring again to
When the force being transmitted from the proximal firing member 21760 to the distal firing member 21762 drops below the force threshold, the spring 21785 can resiliently return the lock arms 21782 to their unlocked configuration and into engagement with the drive surfaces 21768 of the distal firing member 21762. At such point, the firing stroke can be completed if the condition that caused the second lockout 21780 to actuate has abated. Otherwise, the proximal firing member 21760 can be retracted.
Turning now to
Referring primarily to
Referring primarily to
Referring again to
The threshold force of the lockouts described above can be actuated if the staple firing system is accelerated too quickly. Stated another way, an acceleration spike in a staple firing system can cause a force spike which exceeds a threshold force of the lockout which causes the lockout to stop the staple firing system. Such instances can arise when a firing trigger mechanically coupled to the staple firing system is squeezed too quickly and or a power supply is suddenly applied to an electric motor of the staple firing system, for example. In at least one instance, an acceleration spike can occur when the power applied to the electrical motor is improperly modulated and/or when a software fault has occurred in the motor controller, for example. Such acceleration spikes and force spikes are typically transient and the firing stroke can be completed once the force being transmitted through the staple firing system drops back below the threshold force.
Turning now to
Turning now to
In addition to or in lieu of the above, a stapling assembly can comprise means for regulating the speed of a staple firing system which can, in various instances, reduce or smooth acceleration spikes generated within the staple firing system. Turning now to
Further to the above, the bumper 22081 is positioned within the shaft 22030 such that the ridge 22082 contacts the bumper 22081 just before the firing member 22060 reaches a missing cartridge and/or spent cartridge lockout. In such instances, the dampening system 22080 can reduce the speed of the firing member 22060 before the firing member 22060 reaches a lockout and, as a result, reduce the possibility that the firing member 22060 crashes through, or unintentionally defeats, the lockout.
Turning now to
Turning now to
Further to the above, the diameter and/or length of the vent 22363 can be selected to limit the speed of the firing member 22360 in a desired manner. Moreover, the seals 22382 are sealingly engaged with the shaft 22330 when the firing member 22360 is advanced distally and retracted proximally and, as a result, the piston arrangement 22380 applies a drag force to the firing member 22360 when the firing member 22360 is advanced distally and retracted proximally. In at least one embodiment, a valve, such as a one-way valve, for example, can be positioned and arranged relative to the vent 22363. The valve can provide an orifice having a smaller diameter when the firing member 22360 is being advanced distally and an orifice having a larger diameter when the firing member 22360 is retracted proximally. In such instances, the vent can apply a larger drag force to the firing member 22360 when the firing member 22360 is being advanced distally as compared to when the firing member 22360 is being retracted proximally for a given speed. As a result, the valve can provide different directional speed limits.
Turning now to
In view of the above, the coil 22280, when energized, can act as a brake and, in certain instances, stop, or at least assist in stopping, the longitudinal movement of the firing member 22360 at the end of the staple firing stroke, for example. In certain instances, the voltage polarity applied to the coil 22280 can be reversed to reverse the flow of current through the coil 22280 during the retraction stroke of the firing member 22360. In such instances, the coil 22280 can apply a braking force to the firing member 22360 as the firing member 22360 is retracted away from the coil 22280. Although only one coil 22280 is illustrated in
In at least one embodiment, referring again to
As discussed above, the firing member of a staple firing system can be driven by an electric motor. A motor controller, that may include a processor, and which can be implemented as a microcontroller, can be utilized to control the voltage supplied to the electric motor and, as a result, control the speed of the staple firing member. In certain instances, the motor controller can utilize pulse width modulation (PWM) and/or frequency modulation (FM), for example, to control the speed of the electric motor. In other instances, the motor controller may not modulate the power supplied to the electric motor. In either event, a stapling assembly can comprise a sensor system in communication with the motor controller which is configured to detect whether or not an unspent staple cartridge, or an unspent staple cartridge jaw, has been attached to the stapling assembly. In the event that the sensor system detects that an unspent staple cartridge is attached to the stapling assembly, the motor controller can recognize a signal from the sensor system indicating the presence of an unspent staple cartridge and operate the electric motor of the staple firing system when the user of the stapling assembly actuates the staple firing system. In the event that the sensor system does not detect an unspent staple cartridge attached to the stapling assembly, the motor controller receives a signal from the sensor system indicating that an unspent cartridge is not attached to the stapling assembly and prevents the electric motor from operating the staple firing system. Such an arrangement can comprise an electronic or software lockout.
In addition to or in lieu of the above, a stapling system can comprise a sensor system configured to track the displacement of a staple firing member. Referring to
Further to the above, the sensor system comprises a sensor circuit including, among other things, a voltage source 22403, for example, in communication with the sensors 22401′ and 22401 which supplies power to the sensors 22401′ and 22401. The sensor circuit further comprises a first switch 22405′ in communication with the first sensor 22401′ and a second switch 22405 in communication with the second sensor 22401. In at least one instance, the switches 22401′ and 22401 each comprise a transistor, such as a FET, for example. The outputs of the sensors 22401′, 22401 are connected to the central (gate) terminal of the switches 22405′, 22405, respectively. Prior to the firing stroke of the staple firing member 22460, the output voltages from the sensors 22401′, 22401 are high so that the first switch 22405′ and the second switch 22405 are in closed conditions.
When the magnetic element 22461 passes by the first sensor 22401′, the voltage output of the first sensor 22401′ is sufficient to change the first switch between a closed condition and an open condition. Similarly, the voltage output of the second sensor 22401 is sufficient to change the second switch 22405 between a closed condition and an open condition when the magnetic element 22461 passes by the second sensor 22401. When both of the switches 22405′ and 22405 are in an open condition, a ground potential is applied to an operational amplifier circuit 22406. The operational amplifier circuit 22406 is in signal communication with an input channel of a microcontroller 22490 of the motor controller and, when a ground potential is applied to the operational amplifier circuit 22406, the microcontroller 22490 receives a ground signal from the circuit 22406.
When the microcontroller 22490 receives a ground signal from the circuit 22406, the microcontroller 22490 can determine that the staple firing stroke has been completed and that the staple cartridge positioned in the stapling assembly 22400 has been completely spent. Other embodiments are envisioned in which the sensor system is configured to detect a partial firing stroke of the staple firing member 22460 and supply a signal to the microcontroller 22490 that indicates that the staple cartridge has been at least partially spent. In either event, the motor controller can be configured to prevent the firing member 22460 from performing another firing stroke until the staple cartridge has been replaced with an unspent cartridge. In at least one instance, further to the above, the sensor system comprises a sensor configured to detect whether the spent cartridge has been detached from the stapling assembly and/or whether an unspent cartridge has been assembled to the stapling assembly.
Further to the above, the sensor system can be configured to detect whether the firing member 22460 has been retracted along a retraction path 22462. In at least one instance, the magnetic element 22461 can be detected by the sensor 22401 as the magnetic element 22461 is retracted along the path 22462 and change the second switch 22405 back into a closed condition. Similarly, the magnetic element 22461 can be detected by the sensor 22401′ as the magnetic element 22461 is retracted along the path 22463 and change the first switch 22405′ back into a closed condition. By closing the switches 22405 and 22405′, the voltage polarity from the battery 22403 is applied to the circuit 22406 and, as a result, the microprocessor 22490 receives a Vcc signal from the circuit 22406 on its input channel. In various instances, the motor controller can be configured to prevent the electric motor from being operated to perform another staple firing stroke until the firing member 22460 has been fully retracted.
A stapling assembly 25700 comprising a staple cartridge 25730, a firing member 25760, and a lockout 25780 is illustrated in
Further to the above, the lockout 25780 comprises lock arms 25782. Each lock arm 25782 comprises a cantilever beam including a first end mounted to a shaft of the stapling assembly 25700 and a movable second end configured to engage the firing member 25760. The firing member 25760 comprises lock apertures 25762 defined therein which are configured to receive the second ends of the lock arms 25782. When the sled 25770 is in its proximal, unfired position (
As a result of the above, the lockout 25780 comprises a missing cartridge lockout and a spent cartridge lockout. Alternative embodiments are envisioned in which the staple cartridge 25730 is not removable from the stapling assembly 25700. In such embodiments, the lockout 25780 would comprise a spent cartridge lockout.
Referring to
Referring again to
In various instances, referring again to
As described above, the staple firing stroke of the staple cartridge 25830 opens the lockout circuit. In alternative embodiments, the staple firing stroke of a staple cartridge can close a lockout circuit. In such embodiments, the controller of the stapling assembly can interpret that the closing of the lockout circuit means that the staple cartridge has been at least partially fired and that the staple firing system should not be operated a second, or additional, time without the staple cartridge being replaced with an unspent staple cartridge.
In addition to or in lieu of the above, a stapling assembly can include a detection circuit configured to detect when the distal-most staple driver 25880 and staple have been fired. In at least one such instance, the distal-most staple driver 25880 can have the contact arrangement described above, and/or any other suitable arrangement, which changes the condition of the detection circuit. The controller of the stapling assembly can interpret that the change in condition of the detection circuit means that the staple cartridge has been completely fired and that the staple firing system should be retracted, for instance.
Turning now to
The stapling assembly 25900 further comprises a lockout circuit 25980 configured to detect when the staple cartridge jaw is in its closed position. The lockout circuit 25980 comprises conductors 25984 extending through the shaft 25910 and an electrode pad 25982 positioned in the anvil jaw 25920. The conductors 25984 place the electrode pad 25982 in communication with a controller of the stapling assembly 25900 and, in various instances, the controller can apply a voltage potential across the conductors 25984 to create a monitoring current within the lockout circuit 25980. As described in greater detail below, the controller is configured to evaluate the impedance and/or resistivity of the lockout circuit 25980 and monitor for changes in the impedance and/or resistivity of the lockout circuit 25980 via the monitoring current.
Further to the above, referring primarily to
Referring again to
Alternatively, referring again to
Referring to
Further to the above, the shaft 25910 and the articulation joint 25940 include routing channels defined therein configured to receive the conductors 25984 of the lockout circuit 25980. For instance, the shaft 25910 comprises channels 25915 defined in the outer housing 25911 of the shaft 25910. In at least one such instance, a first conductor 25984 extends through a first channel 25915 and a second conductor 25984 extends through a second channel 25915. Moreover, each anti-buckling plate 25984 comprises a channel 25945 defined therein configured to receive a conductor 25984. The channels 25945 are aligned, or at least substantially aligned, with the channels 25915.
Referring to
In various instances, further to the above, the controller of a stapling assembly can be configured to monitor the pushing force being applied to the firing member 25960. In at least one instance, the staple firing system comprises an electric motor configured to drive the firing member 25960 and, in such instances, the current drawn by the electric motor during the staple firing stroke can be monitored as a proxy for the pushing force being applied to the firing member 25960. In fact, a chart comparing the current drawn by the electric motor over the staple firing stroke may look very similar to the force profile 26260 illustrated in
In various instances, further to the above, a stapling assembly can be configured for use with staple cartridges having different lengths and/or different quantities of staples stored therein. For example, the stapling assembly can be usable with a first staple cartridge configured to apply an approximately 45 mm staple line and a second staple cartridge configured to apply an approximately 60 mm staple line. The first staple cartridge comprises a first quantity of staples removably stored therein and the second staple cartridge comprises a second quantity of staples removably stored therein which is more than the first quantity. When the first staple cartridge is being used with the stapling assembly, the controller is configured to stop the staple firing stroke after the controller identifies a first number of force spikes and, similarly, the controller is configured to stop the staple firing stroke after the controller identifies a second number of force spikes when the second staple cartridge is being used with the stapling assembly. Stated another way, the controller can be configured to evaluate the force profile of the first cartridge, such as force profile 26260, for example, and the force profile of the second cartridge, such as force profile 26260′, for example. Moreover, the controller can be configured to monitor the force profiles of any suitable number of staple cartridges.
Further to the above, the staple cartridges that can be used with a stapling assembly can comprise unique identifiers that can assist the controller of the stapling assembly in identifying the type of staple cartridge that is attached to the stapling assembly. In at least one instance, the staple cartridges have unique RFID tags which can communicate with the controller of the stapling assembly, for example. In certain instances, the staple cartridges have bar codes thereon which can be scanned before they are used with the stapling assembly, for example. Once the controller identifies the type of staple cartridge attached to the stapling assembly, the controller can determine the appropriate length of the staple firing stroke. In at least one instance, information regarding the appropriate firing stroke length for a staple cartridge can be stored in a memory device, for example, in communication with a microprocessor of the controller.
In addition to or in lieu of the above, a staple cartridge, such as the staple cartridge 26230, for example, can be configured to create detectable force spikes in the pushing force and/or current spikes being drawn by the electric motor at the end of the staple firing stroke. Referring to
While various details have been set forth in the foregoing description, it will be appreciated that the various aspects of the mechanisms for compensating for drivetrain failure in powered surgical instruments may be practiced without these specific details. For example, for conciseness and clarity selected aspects have been shown in block diagram form rather than in detail. Some portions of the detailed descriptions provided herein may be presented in terms of instructions that operate on data that is stored in a computer memory. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In general, an algorithm refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the foregoing discussion, it is appreciated that, throughout the foregoing description, discussions using terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
It is worthy to note that any reference to “one aspect” or “an aspect,” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect” or “in an aspect” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Although various aspects have been described herein, many modifications, variations, substitutions, changes, and equivalents to those aspects may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed aspects. The following claims are intended to cover all such modification and variations.
Some or all of the aspects described herein may generally comprise technologies for mechanisms for compensating for drivetrain failure in powered surgical instruments, or otherwise according to technologies described herein. In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
The foregoing detailed description has set forth various aspects of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one aspect, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. Those skilled in the art will recognize, however, that some aspects of the aspects disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative aspect of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link (e.g., transmitter, receiver, transmission logic, reception logic, etc.), etc.).
Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail. The entire disclosure of U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535 is incorporated by reference herein.
The entire disclosures of:
European Patent Application No. EP 795298, entitled LINEAR STAPLER WITH IMPROVED FIRING STROKE, which was filed on Mar. 12, 1997;
U.S. Pat. No. 5,605,272, entitled TRIGGER MECHANISM FOR SURGICAL INSTRUMENTS, which issued on Feb. 25, 1997;
U.S. Pat. No. 5,697,543, entitled LINEAR STAPLER WITH IMPROVED FIRING STROKE, which issued on Dec. 16, 1997;
U.S. Patent Application Publication No. 2005/0246881, entitled METHOD FOR MAKING A SURGICAL STAPLER, which published on Nov. 10, 2005;
U.S. Patent Application Publication No. 2007/0208359, entitled METHOD FOR STAPLING TISSUE, which published on Sep. 6, 2007;
U.S. Pat. No. 4,527,724, entitled DISPOSABLE LINEAR SURGICAL STAPLING INSTRUMENT, which issued on Jul. 9, 1985;
U.S. Pat. No. 5,137,198, entitled FAST CLOSURE DEVICE FOR LINEAR SURGICAL STAPLING INSTRUMENT, which issued on Aug. 11, 1992;
U.S. Pat. No. 5,405,073, entitled FLEXIBLE SUPPORT SHAFT ASSEMBLY, which issued on Apr. 11, 1995;
U.S. Pat. No. 8,360,297, entitled SURGICAL CUTTING AND STAPLING INSTRUMENT WITH SELF ADJUSTING ANVIL, which issued on Jan. 29, 2013;
U.S. patent application Ser. No. 14/813,242, entitled SURGICAL INSTRUMENT COMPRISING SYSTEMS FOR ASSURING THE PROPER SEQUENTIAL OPERATION OF THE SURGICAL INSTRUMENT, which was filed on Jul. 30, 2015, now U.S. Pat. No. 10,194,913;
U.S. patent application Ser. No. 14/813,259, entitled SURGICAL INSTRUMENT COMPRISING SEPARATE TISSUE SECURING AND TISSUE CUTTING SYSTEMS, which was filed on Jul. 30, 2015, now U.S. Patent Application Publication No. 2017/0027572;
U.S. patent application Ser. No. 14/813,266, entitled SURGICAL INSTRUMENT COMPRISING SYSTEMS FOR PERMITTING THE OPTIONAL TRANSECTION OF TISSUE, which was filed on Jul. 30, 2015, now U.S. Patent Application Publication No. 2017/0027573;
U.S. patent application Ser. No. 14/813,274, entitled SURGICAL INSTRUMENT COMPRISING A SYSTEM FOR BYPASSING AN OPERATIONAL STEP OF THE SURGICAL INSTRUMENT; which was filed on Jul. 30, 2015, now U.S. Patent Application Publication No. 2017/0027574;
U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, now U.S. Pat. No. 7,845,537;
U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;
U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009, now U.S. Pat. No. 8,220,688;
U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;
U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012, now U.S. Pat. No. 9,101,358;
U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481;
U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;
U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.
The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
All of the above-mentioned U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications, non-patent publications referred to in this specification and/or listed in any Application Data Sheet, or any other disclosure material are incorporated herein by reference, to the extent not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
One skilled in the art will recognize that the herein described components (e.g., operations), devices, objects, and the discussion accompanying them are used as examples for the sake of conceptual clarity and that various configuration modifications are contemplated. Consequently, as used herein, the specific exemplars set forth and the accompanying discussion are intended to be representative of their more general classes. In general, use of any specific exemplar is intended to be representative of its class, and the non-inclusion of specific components (e.g., operations), devices, and objects should not be taken limiting.
With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations are not expressly set forth herein for sake of clarity.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to physically mateable and/or physically interacting components, and/or wirelessly interactable, and/or wirelessly interacting components, and/or logically interacting, and/or logically interactable components.
Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
In some instances, one or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
While particular aspects of the subject matter described herein have been shown and described, it will be apparent to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from the subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of the subject matter described herein. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flows are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
In certain cases, use of a system or method may occur in a territory even if components are located outside the territory. For example, in a distributed computing context, use of a distributed computing system may occur in a territory even though parts of the system may be located outside of the territory (e.g., relay, server, processor, signal-bearing medium, transmitting computer, receiving computer, etc. located outside the territory).
A sale of a system or method may likewise occur in a territory even if components of the system or method are located and/or used outside the territory. Further, implementation of at least part of a system for performing a method in one territory does not preclude use of the system in another territory.
Although various aspects have been described herein, many modifications, variations, substitutions, changes, and equivalents to those aspects may be implemented and will occur to those skilled in the art. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications and variations as falling within the scope of the disclosed aspects. The following claims are intended to cover all such modification and variations.
This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/432,319, entitled METHOD FOR OPERATING A SURGICAL INSTRUMENT, filed Jun. 5, 2019, which issued on Jun. 7, 2022 as U.S. Pat. No. 11,350,928, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/131,963, titled METHOD FOR OPERATING A SURGICAL INSTRUMENT, filed Apr. 18, 2016, now U.S. Patent Application Publication No. 2017/0296173, the entire disclosures of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
66052 | Smith | Jun 1867 | A |
662587 | Blake | Nov 1900 | A |
670748 | Weddeler | Mar 1901 | A |
719487 | Minor | Feb 1903 | A |
804229 | Hutchinson | Nov 1905 | A |
903739 | Lesemann | Nov 1908 | A |
951393 | Hahn | Mar 1910 | A |
1075556 | Fenoughty | Oct 1913 | A |
1082105 | Anderson | Dec 1913 | A |
1188721 | Bittner | Jun 1916 | A |
1306107 | Elliott | Jun 1919 | A |
1314601 | McCaskey | Sep 1919 | A |
1466128 | Hallenbeck | Aug 1923 | A |
1677337 | Grove | Jul 1928 | A |
1794907 | Kelly | Mar 1931 | A |
1849427 | Hook | Mar 1932 | A |
1912783 | Meyer | Jun 1933 | A |
1944116 | Stratman | Jan 1934 | A |
1954048 | Jeffrey et al. | Apr 1934 | A |
2028635 | Wappler | Jan 1936 | A |
2037727 | La Chapelle | Apr 1936 | A |
2120951 | Hodgman | Jun 1938 | A |
2132295 | Hawkins | Oct 1938 | A |
2161632 | Nattenheimer | Jun 1939 | A |
D120434 | Gold | May 1940 | S |
2211117 | Hess | Aug 1940 | A |
2214870 | West | Sep 1940 | A |
2224108 | Ridgway | Dec 1940 | A |
2224882 | Peck | Dec 1940 | A |
2256295 | Schmid | Sep 1941 | A |
2318379 | Davis et al. | May 1943 | A |
2329440 | La Place | Sep 1943 | A |
2377581 | Shaffrey | Jun 1945 | A |
2406389 | Lee | Aug 1946 | A |
2420552 | Morrill | May 1947 | A |
2441096 | Happe | May 1948 | A |
2448741 | Scott et al. | Sep 1948 | A |
2450527 | Smith | Oct 1948 | A |
2491872 | Neuman | Dec 1949 | A |
2507872 | Unsinger | May 1950 | A |
2526902 | Rublee | Oct 1950 | A |
2527256 | Jackson | Oct 1950 | A |
2578686 | Fish | Dec 1951 | A |
2638901 | Sugarbaker | May 1953 | A |
2674149 | Benson | Apr 1954 | A |
2701489 | Osborn | Feb 1955 | A |
2711461 | Happe | Jun 1955 | A |
2724289 | Wight | Nov 1955 | A |
2742955 | Dominguez | Apr 1956 | A |
2804848 | O'Farrell et al. | Sep 1957 | A |
2808482 | Zanichkowsky et al. | Oct 1957 | A |
2825178 | Hawkins | Mar 1958 | A |
2853074 | Olson | Sep 1958 | A |
2856192 | Schuster | Oct 1958 | A |
2887004 | Stewart | May 1959 | A |
2957353 | Lewis | Oct 1960 | A |
2959974 | Emrick | Nov 1960 | A |
3026744 | Rouse | Mar 1962 | A |
3032769 | Palmer | May 1962 | A |
3035256 | Egbert | May 1962 | A |
3060972 | Sheldon | Oct 1962 | A |
3075062 | Iaccarino | Jan 1963 | A |
3078465 | Bobrov | Feb 1963 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3080564 | Strekopitov et al. | Mar 1963 | A |
3166072 | Sullivan, Jr. | Jan 1965 | A |
3180236 | Beckett | Apr 1965 | A |
3196869 | Scholl | Jul 1965 | A |
3204731 | Bent et al. | Sep 1965 | A |
3252643 | Strekopytov et al. | May 1966 | A |
3266494 | Brownrigg et al. | Aug 1966 | A |
3269630 | Fleischer | Aug 1966 | A |
3269631 | Takaro | Aug 1966 | A |
3275211 | Hirsch et al. | Sep 1966 | A |
3315863 | O'Dea | Apr 1967 | A |
3317103 | Cullen et al. | May 1967 | A |
3317105 | Astafjev et al. | May 1967 | A |
3357296 | Lefever | Dec 1967 | A |
3359978 | Smith, Jr. | Dec 1967 | A |
3377893 | Shorb | Apr 1968 | A |
3480193 | Ralston | Nov 1969 | A |
3490675 | Green et al. | Jan 1970 | A |
3494533 | Green et al. | Feb 1970 | A |
3499591 | Green | Mar 1970 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3509629 | Kidokoro | May 1970 | A |
3551987 | Wilkinson | Jan 1971 | A |
3568675 | Harvey | Mar 1971 | A |
3572159 | Tschanz | Mar 1971 | A |
3583393 | Takahashi | Jun 1971 | A |
3589589 | Akopov | Jun 1971 | A |
3598943 | Barrett | Aug 1971 | A |
3604561 | Mallina et al. | Sep 1971 | A |
3608549 | Merrill | Sep 1971 | A |
3616278 | Jansen | Oct 1971 | A |
3618842 | Bryan | Nov 1971 | A |
3635394 | Natelson | Jan 1972 | A |
3638652 | Kelley | Feb 1972 | A |
3640317 | Panfili | Feb 1972 | A |
3643851 | Green et al. | Feb 1972 | A |
3650453 | Smith, Jr. | Mar 1972 | A |
3661339 | Shimizu | May 1972 | A |
3661666 | Foster et al. | May 1972 | A |
3662939 | Bryan | May 1972 | A |
3685250 | Henry et al. | Aug 1972 | A |
3688966 | Perkins et al. | Sep 1972 | A |
3692224 | Astafiev et al. | Sep 1972 | A |
3695646 | Mommsen | Oct 1972 | A |
3709221 | Riely | Jan 1973 | A |
3717294 | Green | Feb 1973 | A |
3724237 | Wood | Apr 1973 | A |
3726755 | Shannon | Apr 1973 | A |
3727904 | Gabbey | Apr 1973 | A |
3734207 | Fishbein | May 1973 | A |
3740994 | De Carlo, Jr. | Jun 1973 | A |
3744495 | Johnson | Jul 1973 | A |
3746002 | Haller | Jul 1973 | A |
3747603 | Adler | Jul 1973 | A |
3747692 | Davidson | Jul 1973 | A |
3751902 | Kingsbury et al. | Aug 1973 | A |
3752161 | Bent | Aug 1973 | A |
3797494 | Zaffaroni | Mar 1974 | A |
3799151 | Fukaumi et al. | Mar 1974 | A |
3808452 | Hutchinson | Apr 1974 | A |
3815476 | Green et al. | Jun 1974 | A |
3819100 | Noiles et al. | Jun 1974 | A |
3821919 | Knohl | Jul 1974 | A |
3822818 | Strekopytov et al. | Jul 1974 | A |
3825007 | Rand | Jul 1974 | A |
3826978 | Kelly | Jul 1974 | A |
3836171 | Hayashi et al. | Sep 1974 | A |
3837555 | Green | Sep 1974 | A |
3841474 | Maier | Oct 1974 | A |
3851196 | Hinds | Nov 1974 | A |
3863639 | Kleaveland | Feb 1975 | A |
3863940 | Cummings | Feb 1975 | A |
3883624 | McKenzie et al. | May 1975 | A |
3885491 | Curtis | May 1975 | A |
3887393 | La Rue, Jr. | Jun 1975 | A |
3892228 | Mitsui | Jul 1975 | A |
3894174 | Cartun | Jul 1975 | A |
3899829 | Storm et al. | Aug 1975 | A |
3902247 | Fleer et al. | Sep 1975 | A |
3940844 | Colby et al. | Mar 1976 | A |
3944163 | Hayashi et al. | Mar 1976 | A |
3950686 | Randall | Apr 1976 | A |
3952747 | Kimmell, Jr. | Apr 1976 | A |
3955581 | Spasiano et al. | May 1976 | A |
3959879 | Sellers | Jun 1976 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
3972734 | King | Aug 1976 | A |
3973179 | Weber et al. | Aug 1976 | A |
3981051 | Brumlik | Sep 1976 | A |
3993072 | Zaffaroni | Nov 1976 | A |
3999110 | Ramstrom et al. | Dec 1976 | A |
4025216 | Hives | May 1977 | A |
4027746 | Kine | Jun 1977 | A |
4034143 | Sweet | Jul 1977 | A |
4038987 | Komiya | Aug 1977 | A |
4047654 | Alvarado | Sep 1977 | A |
4054108 | Gill | Oct 1977 | A |
4060089 | Noiles | Nov 1977 | A |
4066133 | Voss | Jan 1978 | A |
4085337 | Moeller | Apr 1978 | A |
4100820 | Evett | Jul 1978 | A |
4106446 | Yamada et al. | Aug 1978 | A |
4106620 | Brimmer et al. | Aug 1978 | A |
4108211 | Tanaka | Aug 1978 | A |
4111206 | Vishnevsky et al. | Sep 1978 | A |
4127227 | Green | Nov 1978 | A |
4129059 | Van Eck | Dec 1978 | A |
4132146 | Uhlig | Jan 1979 | A |
4135517 | Reale | Jan 1979 | A |
4149461 | Simeth | Apr 1979 | A |
4154122 | Severin | May 1979 | A |
4160857 | Nardella et al. | Jul 1979 | A |
4169476 | Hiltebrandt | Oct 1979 | A |
4169990 | Lerdman | Oct 1979 | A |
4180285 | Reneau | Dec 1979 | A |
4185701 | Boys | Jan 1980 | A |
4190042 | Sinnreich | Feb 1980 | A |
4191377 | Burnside | Mar 1980 | A |
4198734 | Brumlik | Apr 1980 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4207898 | Becht | Jun 1980 | A |
4213562 | Garrett et al. | Jul 1980 | A |
4226242 | Jarvik | Oct 1980 | A |
4239431 | Davini | Dec 1980 | A |
4241861 | Fleischer | Dec 1980 | A |
4244372 | Kapitanov et al. | Jan 1981 | A |
4250436 | Weissman | Feb 1981 | A |
4250817 | Michel | Feb 1981 | A |
4261244 | Becht et al. | Apr 1981 | A |
4272002 | Moshofsky | Jun 1981 | A |
4272662 | Simpson | Jun 1981 | A |
4274304 | Curtiss | Jun 1981 | A |
4274398 | Scott, Jr. | Jun 1981 | A |
4275813 | Noiles | Jun 1981 | A |
4278091 | Borzone | Jul 1981 | A |
4282573 | Imai et al. | Aug 1981 | A |
4289131 | Mueller | Sep 1981 | A |
4289133 | Rothfuss | Sep 1981 | A |
4290542 | Fedotov et al. | Sep 1981 | A |
D261356 | Robinson | Oct 1981 | S |
4293604 | Campbell | Oct 1981 | A |
4296654 | Mercer | Oct 1981 | A |
4296881 | Lee | Oct 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4305539 | Korolkov et al. | Dec 1981 | A |
4312363 | Rothfuss et al. | Jan 1982 | A |
4312685 | Riedl | Jan 1982 | A |
4317451 | Cerwin et al. | Mar 1982 | A |
4319576 | Rothfuss | Mar 1982 | A |
4321002 | Froehlich | Mar 1982 | A |
4321746 | Grinage | Mar 1982 | A |
4328839 | Lyons et al. | May 1982 | A |
4331277 | Green | May 1982 | A |
4340331 | Savino | Jul 1982 | A |
4347450 | Colligan | Aug 1982 | A |
4348603 | Huber | Sep 1982 | A |
4349028 | Green | Sep 1982 | A |
4350151 | Scott | Sep 1982 | A |
4353371 | Cosman | Oct 1982 | A |
4357940 | Muller | Nov 1982 | A |
4361057 | Kochera | Nov 1982 | A |
4366544 | Shima et al. | Dec 1982 | A |
4369013 | Abildgaard et al. | Jan 1983 | A |
4373147 | Carlson, Jr. | Feb 1983 | A |
4376380 | Burgess | Mar 1983 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4380312 | Landrus | Apr 1983 | A |
4382326 | Rabuse | May 1983 | A |
4383634 | Green | May 1983 | A |
4389963 | Pearson | Jun 1983 | A |
4393728 | Larson et al. | Jul 1983 | A |
4394613 | Cole | Jul 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4397311 | Kanshin et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4406621 | Bailey | Sep 1983 | A |
4408692 | Sigel et al. | Oct 1983 | A |
4409057 | Molenda et al. | Oct 1983 | A |
4415112 | Green | Nov 1983 | A |
4416276 | Newton et al. | Nov 1983 | A |
4417890 | Dennehey et al. | Nov 1983 | A |
4421264 | Arter et al. | Dec 1983 | A |
4423456 | Zaidenweber | Dec 1983 | A |
4425915 | Ivanov | Jan 1984 | A |
4428376 | Mericle | Jan 1984 | A |
4429695 | Green | Feb 1984 | A |
4430997 | DiGiovanni et al. | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4438659 | Desplats | Mar 1984 | A |
4442964 | Becht | Apr 1984 | A |
4448194 | DiGiovanni et al. | May 1984 | A |
4451743 | Suzuki et al. | May 1984 | A |
4452376 | Klieman et al. | Jun 1984 | A |
4454887 | Kruger | Jun 1984 | A |
4459519 | Erdman | Jul 1984 | A |
4461305 | Cibley | Jul 1984 | A |
4467805 | Fukuda | Aug 1984 | A |
4468597 | Baumard et al. | Aug 1984 | A |
4469481 | Kobayashi | Sep 1984 | A |
4470414 | Imagawa et al. | Sep 1984 | A |
4471780 | Menges et al. | Sep 1984 | A |
4471781 | Di Giovanni et al. | Sep 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4476864 | Tezel | Oct 1984 | A |
4478220 | Di Giovanni et al. | Oct 1984 | A |
4480641 | Failla et al. | Nov 1984 | A |
4481458 | Lane | Nov 1984 | A |
4483562 | Schoolman | Nov 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4486928 | Tucker et al. | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4493983 | Taggert | Jan 1985 | A |
4494057 | Hotta | Jan 1985 | A |
4499895 | Takayama | Feb 1985 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
D278081 | Green | Mar 1985 | S |
4503842 | Takayama | Mar 1985 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4512038 | Alexander et al. | Apr 1985 | A |
4514477 | Kobayashi | Apr 1985 | A |
4520817 | Green | Jun 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4523707 | Blake, III et al. | Jun 1985 | A |
4526174 | Froehlich | Jul 1985 | A |
4527724 | Chow et al. | Jul 1985 | A |
4530357 | Pawloski et al. | Jul 1985 | A |
4530453 | Green | Jul 1985 | A |
4531522 | Bedi et al. | Jul 1985 | A |
4532927 | Miksza, Jr. | Aug 1985 | A |
4540202 | Amphoux et al. | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4556058 | Green | Dec 1985 | A |
4560915 | Soultanian | Dec 1985 | A |
4565109 | Tsay | Jan 1986 | A |
4565189 | Mabuchi | Jan 1986 | A |
4566620 | Green et al. | Jan 1986 | A |
4569346 | Poirier | Feb 1986 | A |
4569469 | Mongeon et al. | Feb 1986 | A |
4571213 | Ishimoto | Feb 1986 | A |
4573468 | Conta et al. | Mar 1986 | A |
4573469 | Golden et al. | Mar 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4576165 | Green et al. | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4585153 | Failla et al. | Apr 1986 | A |
4586501 | Claracq | May 1986 | A |
4586502 | Bedi et al. | May 1986 | A |
4589416 | Green | May 1986 | A |
4589582 | Bilotti | May 1986 | A |
4589870 | Citrin et al. | May 1986 | A |
4591085 | Di Giovanni | May 1986 | A |
RE32214 | Schramm | Jul 1986 | E |
4597753 | Turley | Jul 1986 | A |
4600037 | Hatten | Jul 1986 | A |
4604786 | Howie, Jr. | Aug 1986 | A |
4605001 | Rothfuss et al. | Aug 1986 | A |
4605004 | Di Giovanni et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4607636 | Kula et al. | Aug 1986 | A |
4607638 | Crainich | Aug 1986 | A |
4608980 | Aihara | Sep 1986 | A |
4608981 | Rothfuss et al. | Sep 1986 | A |
4610250 | Green | Sep 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4612933 | Brinkerhoff et al. | Sep 1986 | A |
D286180 | Korthoff | Oct 1986 | S |
D286442 | Korthoff et al. | Oct 1986 | S |
4617893 | Donner et al. | Oct 1986 | A |
4617914 | Ueda | Oct 1986 | A |
4617935 | Cartmell et al. | Oct 1986 | A |
4619262 | Taylor | Oct 1986 | A |
4619391 | Sharkany et al. | Oct 1986 | A |
4624401 | Gassner et al. | Nov 1986 | A |
D287278 | Spreckelmeier | Dec 1986 | S |
4628459 | Shinohara et al. | Dec 1986 | A |
4628636 | Folger | Dec 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4633861 | Chow et al. | Jan 1987 | A |
4633874 | Chow et al. | Jan 1987 | A |
4634419 | Kreizman et al. | Jan 1987 | A |
4635638 | Weintraub et al. | Jan 1987 | A |
4641076 | Linden | Feb 1987 | A |
4642618 | Johnson et al. | Feb 1987 | A |
4642738 | Meller | Feb 1987 | A |
4643173 | Bell et al. | Feb 1987 | A |
4643731 | Eckenhoff | Feb 1987 | A |
4646722 | Silverstein et al. | Mar 1987 | A |
4646745 | Noiles | Mar 1987 | A |
4651734 | Doss et al. | Mar 1987 | A |
4652820 | Maresca | Mar 1987 | A |
4654028 | Suma | Mar 1987 | A |
4655222 | Florez et al. | Apr 1987 | A |
4662555 | Thornton | May 1987 | A |
4663874 | Sano et al. | May 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4665916 | Green | May 1987 | A |
4667674 | Korthoff et al. | May 1987 | A |
4669647 | Storace | Jun 1987 | A |
4671278 | Chin | Jun 1987 | A |
4671280 | Dorband et al. | Jun 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4672964 | Dee et al. | Jun 1987 | A |
4675944 | Wells | Jun 1987 | A |
4676245 | Fukuda | Jun 1987 | A |
4679460 | Yoshigai | Jul 1987 | A |
4679719 | Kramer | Jul 1987 | A |
4684051 | Akopov et al. | Aug 1987 | A |
4688555 | Wardle | Aug 1987 | A |
4691703 | Auth et al. | Sep 1987 | A |
4693248 | Failla | Sep 1987 | A |
4698579 | Richter et al. | Oct 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4709120 | Pearson | Nov 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4719917 | Barrows et al. | Jan 1988 | A |
4721099 | Chikama | Jan 1988 | A |
4722340 | Takayama et al. | Feb 1988 | A |
4724840 | McVay et al. | Feb 1988 | A |
4726247 | Hermann | Feb 1988 | A |
4727308 | Huljak et al. | Feb 1988 | A |
4728020 | Green et al. | Mar 1988 | A |
4728876 | Mongeon et al. | Mar 1988 | A |
4729260 | Dudden | Mar 1988 | A |
4730726 | Holzwarth | Mar 1988 | A |
4741336 | Failla et al. | May 1988 | A |
4743214 | Tai-Cheng | May 1988 | A |
4744363 | Hasson | May 1988 | A |
4747820 | Hornlein et al. | May 1988 | A |
4750902 | Wuchinich et al. | Jun 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4755070 | Cerutti | Jul 1988 | A |
4761326 | Barnes et al. | Aug 1988 | A |
4763669 | Jaeger | Aug 1988 | A |
4767044 | Green | Aug 1988 | A |
D297764 | Hunt et al. | Sep 1988 | S |
4773420 | Green | Sep 1988 | A |
4777780 | Holzwarth | Oct 1988 | A |
4781186 | Simpson et al. | Nov 1988 | A |
4784137 | Kulik et al. | Nov 1988 | A |
4787387 | Burbank, III et al. | Nov 1988 | A |
4788485 | Kawagishi et al. | Nov 1988 | A |
D298967 | Hunt | Dec 1988 | S |
4788978 | Strekopytov et al. | Dec 1988 | A |
4790225 | Moody et al. | Dec 1988 | A |
4790314 | Weaver | Dec 1988 | A |
4805617 | Bedi et al. | Feb 1989 | A |
4805823 | Rothfuss | Feb 1989 | A |
4807628 | Peters et al. | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4815460 | Porat et al. | Mar 1989 | A |
4817643 | Olson | Apr 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819495 | Hermann | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4827552 | Bojar et al. | May 1989 | A |
4827911 | Broadwin et al. | May 1989 | A |
4828542 | Hermann | May 1989 | A |
4828944 | Yabe et al. | May 1989 | A |
4830855 | Stewart | May 1989 | A |
4832158 | Farrar et al. | May 1989 | A |
4833937 | Nagano | May 1989 | A |
4834096 | Oh et al. | May 1989 | A |
4834720 | Blinkhorn | May 1989 | A |
4838859 | Strassmann | Jun 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4848637 | Pruitt | Jul 1989 | A |
4856078 | Konopka | Aug 1989 | A |
4860644 | Kohl et al. | Aug 1989 | A |
4862891 | Smith | Sep 1989 | A |
4863423 | Wallace | Sep 1989 | A |
4865030 | Polyak | Sep 1989 | A |
4868530 | Ahs | Sep 1989 | A |
4868958 | Suzuki et al. | Sep 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4875486 | Rapoport et al. | Oct 1989 | A |
4880015 | Nierman | Nov 1989 | A |
4890613 | Golden et al. | Jan 1990 | A |
4892244 | Fox et al. | Jan 1990 | A |
4893622 | Green et al. | Jan 1990 | A |
4894051 | Shiber | Jan 1990 | A |
4896584 | Stoll et al. | Jan 1990 | A |
4896678 | Ogawa | Jan 1990 | A |
4900303 | Lemelson | Feb 1990 | A |
4903697 | Resnick et al. | Feb 1990 | A |
4909789 | Taguchi et al. | Mar 1990 | A |
4915100 | Green | Apr 1990 | A |
4919039 | Nutter | Apr 1990 | A |
4919679 | Averill et al. | Apr 1990 | A |
4921479 | Grayzel | May 1990 | A |
4925082 | Kim | May 1990 | A |
4928699 | Sasai | May 1990 | A |
4930503 | Pruitt | Jun 1990 | A |
4930674 | Barak | Jun 1990 | A |
4931047 | Broadwin et al. | Jun 1990 | A |
4931737 | Hishiki | Jun 1990 | A |
4932960 | Green et al. | Jun 1990 | A |
4933800 | Yang | Jun 1990 | A |
4933843 | Scheller et al. | Jun 1990 | A |
D309350 | Sutherland et al. | Jul 1990 | S |
4938408 | Bedi et al. | Jul 1990 | A |
4941623 | Pruitt | Jul 1990 | A |
4943182 | Hoblingre | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
4946067 | Kelsall | Aug 1990 | A |
4948327 | Crupi, Jr. | Aug 1990 | A |
4949707 | LeVahn et al. | Aug 1990 | A |
4949927 | Madocks et al. | Aug 1990 | A |
4950268 | Rink | Aug 1990 | A |
4951860 | Peters et al. | Aug 1990 | A |
4951861 | Schulze et al. | Aug 1990 | A |
4954960 | Lo et al. | Sep 1990 | A |
4955959 | Tompkins et al. | Sep 1990 | A |
4957212 | Duck et al. | Sep 1990 | A |
4962681 | Yang | Oct 1990 | A |
4962877 | Hervas | Oct 1990 | A |
4964559 | Deniega et al. | Oct 1990 | A |
4964863 | Kanshin et al. | Oct 1990 | A |
4965709 | Ngo | Oct 1990 | A |
4970656 | Lo et al. | Nov 1990 | A |
4973274 | Hirukawa | Nov 1990 | A |
4973302 | Armour et al. | Nov 1990 | A |
4976173 | Yang | Dec 1990 | A |
4978049 | Green | Dec 1990 | A |
4978333 | Broadwin et al. | Dec 1990 | A |
4979952 | Kubota et al. | Dec 1990 | A |
4984564 | Yuen | Jan 1991 | A |
4986808 | Broadwin et al. | Jan 1991 | A |
4987049 | Komamura et al. | Jan 1991 | A |
4988334 | Hornlein et al. | Jan 1991 | A |
4995877 | Ams et al. | Feb 1991 | A |
4995959 | Metzner | Feb 1991 | A |
4996975 | Nakamura | Mar 1991 | A |
5001649 | Lo et al. | Mar 1991 | A |
5002543 | Bradshaw et al. | Mar 1991 | A |
5002553 | Shiber | Mar 1991 | A |
5005754 | Van Overloop | Apr 1991 | A |
5009222 | Her | Apr 1991 | A |
5009661 | Michelson | Apr 1991 | A |
5012411 | Policastro et al. | Apr 1991 | A |
5014898 | Heidrich | May 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5015227 | Broadwin et al. | May 1991 | A |
5018515 | Gilman | May 1991 | A |
5018657 | Pedlick et al. | May 1991 | A |
5019077 | De Bastiani et al. | May 1991 | A |
5024652 | Dumenek et al. | Jun 1991 | A |
5024671 | Tu et al. | Jun 1991 | A |
5025559 | McCullough | Jun 1991 | A |
5027834 | Pruitt | Jul 1991 | A |
5030226 | Green et al. | Jul 1991 | A |
5031814 | Tompkins et al. | Jul 1991 | A |
5033552 | Hu | Jul 1991 | A |
5035040 | Kerrigan et al. | Jul 1991 | A |
5037018 | Matsuda et al. | Aug 1991 | A |
5038109 | Goble et al. | Aug 1991 | A |
5038247 | Kelley et al. | Aug 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5056953 | Marot et al. | Oct 1991 | A |
5060658 | Dejter, Jr. et al. | Oct 1991 | A |
5061269 | Muller | Oct 1991 | A |
5062491 | Takeshima et al. | Nov 1991 | A |
5062563 | Green et al. | Nov 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071052 | Rodak et al. | Dec 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5074454 | Peters | Dec 1991 | A |
5077506 | Krause | Dec 1991 | A |
5079006 | Urquhart | Jan 1992 | A |
5080556 | Carreno | Jan 1992 | A |
5083695 | Foslien et al. | Jan 1992 | A |
5084057 | Green et al. | Jan 1992 | A |
5088979 | Filipi et al. | Feb 1992 | A |
5088997 | Delahuerga et al. | Feb 1992 | A |
5089606 | Cole et al. | Feb 1992 | A |
5094247 | Hernandez et al. | Mar 1992 | A |
5098004 | Kerrigan | Mar 1992 | A |
5098360 | Hirota | Mar 1992 | A |
5100042 | Gravener et al. | Mar 1992 | A |
5100420 | Green et al. | Mar 1992 | A |
5100422 | Berguer et al. | Mar 1992 | A |
5104025 | Main et al. | Apr 1992 | A |
5104397 | Vasconcelos et al. | Apr 1992 | A |
5104400 | Berguer et al. | Apr 1992 | A |
5106008 | Tompkins et al. | Apr 1992 | A |
5108368 | Hammerslag et al. | Apr 1992 | A |
5109722 | Hufnagle et al. | May 1992 | A |
5111987 | Moeinzadeh et al. | May 1992 | A |
5116349 | Aranyi | May 1992 | A |
D327323 | Hunt | Jun 1992 | S |
5119009 | McCaleb et al. | Jun 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5124990 | Williamson | Jun 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5135483 | Wagner et al. | Aug 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5142932 | Moya et al. | Sep 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5155941 | Takahashi et al. | Oct 1992 | A |
5156151 | Imran | Oct 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5156609 | Nakao et al. | Oct 1992 | A |
5156614 | Green et al. | Oct 1992 | A |
5158222 | Green et al. | Oct 1992 | A |
5158567 | Green | Oct 1992 | A |
D330699 | Gill | Nov 1992 | S |
5163598 | Peters et al. | Nov 1992 | A |
5163842 | Nonomura | Nov 1992 | A |
5164652 | Johnson et al. | Nov 1992 | A |
5168605 | Bartlett | Dec 1992 | A |
5170925 | Madden et al. | Dec 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5171249 | Stefanchik et al. | Dec 1992 | A |
5171253 | Klieman | Dec 1992 | A |
5173053 | Swanson et al. | Dec 1992 | A |
5173133 | Morin et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5176688 | Narayan et al. | Jan 1993 | A |
5181514 | Solomon et al. | Jan 1993 | A |
5187422 | Izenbaard et al. | Feb 1993 | A |
5188102 | Idemoto et al. | Feb 1993 | A |
5188111 | Yates et al. | Feb 1993 | A |
5188126 | Fabian et al. | Feb 1993 | A |
5190517 | Zieve et al. | Mar 1993 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5190560 | Woods et al. | Mar 1993 | A |
5190657 | Heagle et al. | Mar 1993 | A |
5192288 | Thompson et al. | Mar 1993 | A |
5193731 | Aranyi | Mar 1993 | A |
5195505 | Josefsen | Mar 1993 | A |
5195968 | Lundquist et al. | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5197970 | Green et al. | Mar 1993 | A |
5200280 | Karasa | Apr 1993 | A |
5201750 | Hocherl et al. | Apr 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5207672 | Roth et al. | May 1993 | A |
5207697 | Carusillo et al. | May 1993 | A |
5209747 | Knoepfler | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5211649 | Kohler et al. | May 1993 | A |
5211655 | Hasson | May 1993 | A |
5217457 | Delahuerga et al. | Jun 1993 | A |
5217478 | Rexroth | Jun 1993 | A |
5219111 | Bilotti et al. | Jun 1993 | A |
5220269 | Chen et al. | Jun 1993 | A |
5221036 | Takase | Jun 1993 | A |
5221281 | Klicek | Jun 1993 | A |
5222945 | Basnight | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5223675 | Taft | Jun 1993 | A |
D338729 | Sprecklemeier et al. | Aug 1993 | S |
5234447 | Kaster et al. | Aug 1993 | A |
5236269 | Handy | Aug 1993 | A |
5236424 | Imran | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5236629 | Mahabadi et al. | Aug 1993 | A |
5239981 | Anapliotis | Aug 1993 | A |
5240163 | Stein et al. | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5242457 | Akopov et al. | Sep 1993 | A |
5244462 | Delahuerga et al. | Sep 1993 | A |
5246156 | Rothfuss et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5251801 | Ruckdeschel et al. | Oct 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5258007 | Spetzler et al. | Nov 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5258009 | Conners | Nov 1993 | A |
5258010 | Green et al. | Nov 1993 | A |
5258012 | Luscombe et al. | Nov 1993 | A |
5259366 | Reydel et al. | Nov 1993 | A |
5259835 | Clark et al. | Nov 1993 | A |
5260637 | Pizzi | Nov 1993 | A |
5261135 | Mitchell | Nov 1993 | A |
5261877 | Fine et al. | Nov 1993 | A |
5261922 | Hood | Nov 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5263937 | Shipp | Nov 1993 | A |
5263973 | Cook | Nov 1993 | A |
5264218 | Rogozinski | Nov 1993 | A |
5268622 | Philipp | Dec 1993 | A |
5269794 | Rexroth | Dec 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5275323 | Schulze et al. | Jan 1994 | A |
5275608 | Forman et al. | Jan 1994 | A |
5279416 | Malec et al. | Jan 1994 | A |
5281216 | Klicek | Jan 1994 | A |
5281400 | Berry, Jr. | Jan 1994 | A |
5282806 | Haber et al. | Feb 1994 | A |
5282826 | Quadri | Feb 1994 | A |
5282829 | Hermes | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5285381 | Iskarous et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5286253 | Fucci | Feb 1994 | A |
5289963 | McGarry et al. | Mar 1994 | A |
5290271 | Jernberg | Mar 1994 | A |
5290310 | Makower et al. | Mar 1994 | A |
5291133 | Gokhale et al. | Mar 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5293024 | Sugahara et al. | Mar 1994 | A |
5297714 | Kramer | Mar 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5302148 | Heinz | Apr 1994 | A |
5303606 | Kokinda | Apr 1994 | A |
5304204 | Bregen | Apr 1994 | A |
D347474 | Olson | May 1994 | S |
5307976 | Olson et al. | May 1994 | A |
5308353 | Beurrier | May 1994 | A |
5308358 | Bond et al. | May 1994 | A |
5308576 | Green et al. | May 1994 | A |
5309387 | Mori et al. | May 1994 | A |
5309927 | Welch | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5312329 | Beaty et al. | May 1994 | A |
5313935 | Kortenbach et al. | May 1994 | A |
5313967 | Lieber et al. | May 1994 | A |
5314424 | Nicholas | May 1994 | A |
5314445 | Heidmueller et al. | May 1994 | A |
5314466 | Stern et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5320627 | Sorensen et al. | Jun 1994 | A |
D348930 | Olson | Jul 1994 | S |
5326013 | Green et al. | Jul 1994 | A |
5329923 | Lundquist | Jul 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5330487 | Thornton et al. | Jul 1994 | A |
5330502 | Hassler et al. | Jul 1994 | A |
5331971 | Bales et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5333422 | Warren et al. | Aug 1994 | A |
5333772 | Rothfuss et al. | Aug 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5334183 | Wuchinich | Aug 1994 | A |
5336130 | Ray | Aug 1994 | A |
5336229 | Noda | Aug 1994 | A |
5336232 | Green et al. | Aug 1994 | A |
5338317 | Hasson et al. | Aug 1994 | A |
5339799 | Kami et al. | Aug 1994 | A |
5341724 | Vatel | Aug 1994 | A |
5341807 | Nardella | Aug 1994 | A |
5341810 | Dardel | Aug 1994 | A |
5342380 | Hood | Aug 1994 | A |
5342381 | Tidemand | Aug 1994 | A |
5342385 | Norelli et al. | Aug 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5343382 | Hale et al. | Aug 1994 | A |
5343391 | Mushabac | Aug 1994 | A |
5344059 | Green et al. | Sep 1994 | A |
5344060 | Gravener et al. | Sep 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5346504 | Ortiz et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5350388 | Epstein | Sep 1994 | A |
5350391 | Iacovelli | Sep 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5352229 | Goble et al. | Oct 1994 | A |
5352235 | Koros et al. | Oct 1994 | A |
5352238 | Green et al. | Oct 1994 | A |
5353798 | Sieben | Oct 1994 | A |
5354215 | Viracola | Oct 1994 | A |
5354250 | Christensen | Oct 1994 | A |
5354303 | Spaeth et al. | Oct 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5356006 | Alpern et al. | Oct 1994 | A |
5356064 | Green et al. | Oct 1994 | A |
5358506 | Green et al. | Oct 1994 | A |
5358510 | Luscombe et al. | Oct 1994 | A |
5359231 | Flowers et al. | Oct 1994 | A |
D352780 | Glaeser et al. | Nov 1994 | S |
5359993 | Slater et al. | Nov 1994 | A |
5360305 | Kerrigan | Nov 1994 | A |
5360428 | Hutchinson, Jr. | Nov 1994 | A |
5361902 | Abidin et al. | Nov 1994 | A |
5364001 | Bryan | Nov 1994 | A |
5364002 | Green et al. | Nov 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5366133 | Geiste | Nov 1994 | A |
5366134 | Green et al. | Nov 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5368015 | Wilk | Nov 1994 | A |
5368592 | Stern et al. | Nov 1994 | A |
5368599 | Hirsch et al. | Nov 1994 | A |
5369565 | Chen et al. | Nov 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5372596 | Klicek et al. | Dec 1994 | A |
5372602 | Burke | Dec 1994 | A |
5374277 | Hassler | Dec 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5376095 | Ortiz | Dec 1994 | A |
5379933 | Green et al. | Jan 1995 | A |
5381649 | Webb | Jan 1995 | A |
5381782 | DeLaRama et al. | Jan 1995 | A |
5381943 | Allen et al. | Jan 1995 | A |
5382247 | Cimino et al. | Jan 1995 | A |
5383460 | Jang et al. | Jan 1995 | A |
5383738 | Herbermann | Jan 1995 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5383881 | Green et al. | Jan 1995 | A |
5383882 | Buess et al. | Jan 1995 | A |
5383888 | Zvenyatsky et al. | Jan 1995 | A |
5383895 | Holmes et al. | Jan 1995 | A |
5388568 | van der Heide | Feb 1995 | A |
5388748 | Davignon et al. | Feb 1995 | A |
5389072 | Imran | Feb 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5389102 | Green et al. | Feb 1995 | A |
5389104 | Hahnen et al. | Feb 1995 | A |
5391180 | Tovey et al. | Feb 1995 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5395034 | Allen et al. | Mar 1995 | A |
5395312 | Desai | Mar 1995 | A |
5395384 | Duthoit et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5403276 | Schechter et al. | Apr 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5404106 | Matsuda | Apr 1995 | A |
5404870 | Brinkerhoff et al. | Apr 1995 | A |
5404960 | Wada et al. | Apr 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5405073 | Porter | Apr 1995 | A |
5405344 | Williamson et al. | Apr 1995 | A |
5405360 | Tovey | Apr 1995 | A |
5407293 | Crainich | Apr 1995 | A |
5408409 | Glassman et al. | Apr 1995 | A |
5409498 | Braddock et al. | Apr 1995 | A |
5409703 | McAnalley et al. | Apr 1995 | A |
D357981 | Green et al. | May 1995 | S |
5411481 | Allen et al. | May 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413107 | Oakley et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5413268 | Green et al. | May 1995 | A |
5413272 | Green et al. | May 1995 | A |
5413573 | Koivukangas | May 1995 | A |
5415334 | Williamson et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417203 | Tovey et al. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5419766 | Chang et al. | May 1995 | A |
5421829 | Olichney et al. | Jun 1995 | A |
5422567 | Matsunaga | Jun 1995 | A |
5423471 | Mastri et al. | Jun 1995 | A |
5423809 | Klicek | Jun 1995 | A |
5423835 | Green et al. | Jun 1995 | A |
5425355 | Kulick | Jun 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5427298 | Tegtmeier | Jun 1995 | A |
5431322 | Green et al. | Jul 1995 | A |
5431323 | Smith et al. | Jul 1995 | A |
5431645 | Smith et al. | Jul 1995 | A |
5431654 | Nic | Jul 1995 | A |
5431666 | Sauer et al. | Jul 1995 | A |
5431668 | Burbank, III et al. | Jul 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437681 | Meade et al. | Aug 1995 | A |
5438302 | Goble | Aug 1995 | A |
5438997 | Sieben et al. | Aug 1995 | A |
5439155 | Viola | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5441191 | Linden | Aug 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441483 | Avitall | Aug 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443197 | Malis et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5444113 | Sinclair et al. | Aug 1995 | A |
5445155 | Sieben | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5445644 | Pietrafitta et al. | Aug 1995 | A |
5446646 | Miyazaki | Aug 1995 | A |
5447265 | Vidal et al. | Sep 1995 | A |
5447417 | Kuhl et al. | Sep 1995 | A |
5447513 | Davison et al. | Sep 1995 | A |
5449355 | Rhum et al. | Sep 1995 | A |
5449365 | Green et al. | Sep 1995 | A |
5449370 | Vaitekunas | Sep 1995 | A |
5452836 | Huitema et al. | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5454378 | Palmer et al. | Oct 1995 | A |
5454822 | Schob et al. | Oct 1995 | A |
5454824 | Fontayne et al. | Oct 1995 | A |
5454827 | Aust et al. | Oct 1995 | A |
5456401 | Green et al. | Oct 1995 | A |
5456917 | Wise et al. | Oct 1995 | A |
5458279 | Plyley | Oct 1995 | A |
5458579 | Chodorow et al. | Oct 1995 | A |
5462215 | Viola et al. | Oct 1995 | A |
5464013 | Lemelson | Nov 1995 | A |
5464144 | Guy et al. | Nov 1995 | A |
5464300 | Crainich | Nov 1995 | A |
5465819 | Weilant et al. | Nov 1995 | A |
5465894 | Clark et al. | Nov 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5465896 | Allen et al. | Nov 1995 | A |
5466020 | Page et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5470007 | Plyley et al. | Nov 1995 | A |
5470008 | Rodak | Nov 1995 | A |
5470009 | Rodak | Nov 1995 | A |
5470010 | Rothfuss et al. | Nov 1995 | A |
5471129 | Mann | Nov 1995 | A |
5472132 | Savage et al. | Dec 1995 | A |
5472442 | Klicek | Dec 1995 | A |
5473204 | Temple | Dec 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5474570 | Kockerling et al. | Dec 1995 | A |
5474738 | Nichols et al. | Dec 1995 | A |
5476206 | Green et al. | Dec 1995 | A |
5476479 | Green et al. | Dec 1995 | A |
5476481 | Schondorf | Dec 1995 | A |
5478003 | Green et al. | Dec 1995 | A |
5478308 | Cartmell et al. | Dec 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5480409 | Riza | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5483952 | Aranyi | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5484398 | Stoddard | Jan 1996 | A |
5484451 | Akopov et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487377 | Smith et al. | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5489256 | Adair | Feb 1996 | A |
5489290 | Furnish | Feb 1996 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5492671 | Krafft | Feb 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5498164 | Ward et al. | Mar 1996 | A |
5498838 | Furman | Mar 1996 | A |
5501654 | Failla et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507425 | Ziglioli | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5507773 | Huitema et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5509916 | Taylor | Apr 1996 | A |
5509918 | Romano | Apr 1996 | A |
5510138 | Sanftleben et al. | Apr 1996 | A |
5511564 | Wilk | Apr 1996 | A |
5514129 | Smith | May 1996 | A |
5514149 | Green et al. | May 1996 | A |
5514157 | Nicholas et al. | May 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5520609 | Moll et al. | May 1996 | A |
5520634 | Fox et al. | May 1996 | A |
5520678 | Heckele et al. | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522817 | Sander et al. | Jun 1996 | A |
5522831 | Sleister et al. | Jun 1996 | A |
5527264 | Moll et al. | Jun 1996 | A |
5527320 | Carruthers et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
D372086 | Grasso et al. | Jul 1996 | S |
5531305 | Roberts et al. | Jul 1996 | A |
5531744 | Nardella et al. | Jul 1996 | A |
5531856 | Moll et al. | Jul 1996 | A |
5533521 | Granger | Jul 1996 | A |
5533581 | Barth et al. | Jul 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535935 | Vidal et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5540705 | Meade et al. | Jul 1996 | A |
5541376 | Ladtkow et al. | Jul 1996 | A |
5541489 | Dunstan | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5542945 | Fritzsch | Aug 1996 | A |
5542949 | Yoon | Aug 1996 | A |
5543119 | Sutter et al. | Aug 1996 | A |
5543695 | Culp et al. | Aug 1996 | A |
5544802 | Crainich | Aug 1996 | A |
5547117 | Hamblin et al. | Aug 1996 | A |
5549583 | Sanford et al. | Aug 1996 | A |
5549621 | Bessler et al. | Aug 1996 | A |
5549627 | Kieturakis | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5551622 | Yoon | Sep 1996 | A |
5553624 | Francese et al. | Sep 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554148 | Aebischer et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5556020 | Hou | Sep 1996 | A |
5556416 | Clark et al. | Sep 1996 | A |
5558533 | Hashizawa et al. | Sep 1996 | A |
5558665 | Kieturakis | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5561881 | Klinger et al. | Oct 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5562682 | Oberlin et al. | Oct 1996 | A |
5562690 | Green et al. | Oct 1996 | A |
5562694 | Sauer et al. | Oct 1996 | A |
5562701 | Huitema et al. | Oct 1996 | A |
5562702 | Huitema et al. | Oct 1996 | A |
5563481 | Krause | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5569161 | Ebling et al. | Oct 1996 | A |
5569270 | Weng | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5571090 | Sherts | Nov 1996 | A |
5571100 | Goble et al. | Nov 1996 | A |
5571116 | Bolanos et al. | Nov 1996 | A |
5571285 | Chow et al. | Nov 1996 | A |
5571488 | Beerstecher et al. | Nov 1996 | A |
5573169 | Green et al. | Nov 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5574431 | McKeown et al. | Nov 1996 | A |
5575054 | Klinzing et al. | Nov 1996 | A |
5575789 | Bell et al. | Nov 1996 | A |
5575799 | Bolanos et al. | Nov 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5575805 | Li | Nov 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5578052 | Koros et al. | Nov 1996 | A |
5579978 | Green et al. | Dec 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5582611 | Tsuruta et al. | Dec 1996 | A |
5582617 | Klieman et al. | Dec 1996 | A |
5582907 | Pall | Dec 1996 | A |
5583114 | Barrows et al. | Dec 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5591170 | Spievack et al. | Jan 1997 | A |
5591187 | Dekel | Jan 1997 | A |
5597107 | Knodel et al. | Jan 1997 | A |
5599151 | Daum et al. | Feb 1997 | A |
5599279 | Slotman et al. | Feb 1997 | A |
5599344 | Paterson | Feb 1997 | A |
5599350 | Schulze et al. | Feb 1997 | A |
5599852 | Scopelianos et al. | Feb 1997 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601573 | Fogelberg et al. | Feb 1997 | A |
5601604 | Vincent | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605272 | Witt et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5607303 | Nakamura | Mar 1997 | A |
5607433 | Polla et al. | Mar 1997 | A |
5607436 | Pratt et al. | Mar 1997 | A |
5607450 | Zvenyatsky et al. | Mar 1997 | A |
5607474 | Athanasiou et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5609601 | Kolesa et al. | Mar 1997 | A |
5611709 | McAnulty | Mar 1997 | A |
5611813 | Lichtman | Mar 1997 | A |
5613499 | Palmer et al. | Mar 1997 | A |
5613937 | Garrison et al. | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5614887 | Buchbinder | Mar 1997 | A |
5615820 | Viola | Apr 1997 | A |
5618294 | Aust et al. | Apr 1997 | A |
5618303 | Marlow et al. | Apr 1997 | A |
5618307 | Donlon et al. | Apr 1997 | A |
5619992 | Guthrie et al. | Apr 1997 | A |
5620289 | Curry | Apr 1997 | A |
5620326 | Younker | Apr 1997 | A |
5620415 | Lucey et al. | Apr 1997 | A |
5620452 | Yoon | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5626595 | Sklar et al. | May 1997 | A |
5626979 | Mitsui et al. | May 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5628743 | Cimino | May 1997 | A |
5628745 | Bek | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5630541 | Williamson, IV et al. | May 1997 | A |
5630782 | Adair | May 1997 | A |
5631973 | Green | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5633374 | Humphrey et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636779 | Palmer | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5637110 | Pennybacker et al. | Jun 1997 | A |
5638582 | Klatt et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
D381077 | Hunt | Jul 1997 | S |
5643291 | Pier et al. | Jul 1997 | A |
5643293 | Kogasaka et al. | Jul 1997 | A |
5643294 | Tovey et al. | Jul 1997 | A |
5643319 | Green et al. | Jul 1997 | A |
5645209 | Green et al. | Jul 1997 | A |
5647526 | Green et al. | Jul 1997 | A |
5647869 | Goble et al. | Jul 1997 | A |
5649937 | Bito et al. | Jul 1997 | A |
5649956 | Jensen et al. | Jul 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5651762 | Bridges | Jul 1997 | A |
5651821 | Uchida | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5653677 | Okada et al. | Aug 1997 | A |
5653721 | Knodel et al. | Aug 1997 | A |
5653748 | Strecker | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5656917 | Theobald | Aug 1997 | A |
5657417 | Di Troia | Aug 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5658238 | Suzuki et al. | Aug 1997 | A |
5658281 | Heard | Aug 1997 | A |
5658298 | Vincent et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5658307 | Exconde | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5662662 | Bishop et al. | Sep 1997 | A |
5662667 | Knodel | Sep 1997 | A |
5664404 | Ivanov et al. | Sep 1997 | A |
5665085 | Nardella | Sep 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5667526 | Levin | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5667864 | Landoll | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5669904 | Platt, Jr. et al. | Sep 1997 | A |
5669907 | Platt, Jr. et al. | Sep 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5672945 | Krause | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5674184 | Hassler, Jr. | Oct 1997 | A |
5674286 | D'Alessio et al. | Oct 1997 | A |
5678748 | Plyley et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5680983 | Plyley et al. | Oct 1997 | A |
5681341 | Lunsford et al. | Oct 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5683432 | Goedeke et al. | Nov 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5686090 | Schilder et al. | Nov 1997 | A |
5688270 | Yates et al. | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5693020 | Rauh | Dec 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693051 | Schulze et al. | Dec 1997 | A |
5695494 | Becker | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5697542 | Knodel et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700265 | Romano | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5700276 | Benecke | Dec 1997 | A |
5702387 | Arts et al. | Dec 1997 | A |
5702408 | Wales et al. | Dec 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5704087 | Strub | Jan 1998 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5704792 | Sobhani | Jan 1998 | A |
5706997 | Green et al. | Jan 1998 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5707392 | Kortenbach | Jan 1998 | A |
5709334 | Sorrentino et al. | Jan 1998 | A |
5709335 | Heck | Jan 1998 | A |
5709680 | Yates et al. | Jan 1998 | A |
5709706 | Kienzle et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5711960 | Shikinami | Jan 1998 | A |
5712460 | Carr et al. | Jan 1998 | A |
5713128 | Schrenk et al. | Feb 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5713895 | Lontine et al. | Feb 1998 | A |
5713896 | Nardella | Feb 1998 | A |
5713920 | Bezwada et al. | Feb 1998 | A |
5715604 | Lanzoni | Feb 1998 | A |
5715836 | Kliegis et al. | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5715988 | Palmer | Feb 1998 | A |
5716352 | Viola et al. | Feb 1998 | A |
5716366 | Yates | Feb 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5718548 | Cotellessa | Feb 1998 | A |
5718714 | Livneh | Feb 1998 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
D393067 | Geary et al. | Mar 1998 | S |
5724025 | Tavori | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5728110 | Vidal et al. | Mar 1998 | A |
5728113 | Sherts | Mar 1998 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732712 | Adair | Mar 1998 | A |
5732821 | Stone et al. | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5733308 | Daugherty et al. | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5735874 | Measamer et al. | Apr 1998 | A |
5736271 | Cisar et al. | Apr 1998 | A |
5738474 | Blewett | Apr 1998 | A |
5738629 | Moll et al. | Apr 1998 | A |
5738648 | Lands et al. | Apr 1998 | A |
5741271 | Nakao et al. | Apr 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5746770 | Zeitels et al. | May 1998 | A |
5747953 | Philipp | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5749896 | Cook | May 1998 | A |
5749968 | Melanson et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5752970 | Yoon | May 1998 | A |
5752973 | Kieturakis | May 1998 | A |
5755717 | Yates et al. | May 1998 | A |
5755726 | Pratt et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5765565 | Adair | Jun 1998 | A |
5766186 | Faraz et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5766205 | Zvenyatsky et al. | Jun 1998 | A |
5769303 | Knodel et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5769748 | Eyerly et al. | Jun 1998 | A |
5769791 | Benaron et al. | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5772099 | Gravener | Jun 1998 | A |
5772379 | Evensen | Jun 1998 | A |
5772578 | Heimberger et al. | Jun 1998 | A |
5772659 | Becker et al. | Jun 1998 | A |
5773991 | Chen | Jun 1998 | A |
5776130 | Buysse et al. | Jul 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5782748 | Palmer et al. | Jul 1998 | A |
5782749 | Riza | Jul 1998 | A |
5782859 | Nicholas et al. | Jul 1998 | A |
5784934 | Izumisawa | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5785647 | Tompkins et al. | Jul 1998 | A |
5787897 | Kieturakis | Aug 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5792162 | Jolly et al. | Aug 1998 | A |
5792165 | Klieman et al. | Aug 1998 | A |
5792573 | Pitzen et al. | Aug 1998 | A |
5794834 | Hamblin et al. | Aug 1998 | A |
5796188 | Bays | Aug 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5797637 | Ervin | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5797906 | Rhum et al. | Aug 1998 | A |
5797927 | Yoon | Aug 1998 | A |
5797941 | Schulze et al. | Aug 1998 | A |
5797959 | Castro et al. | Aug 1998 | A |
5798752 | Buxton et al. | Aug 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5800379 | Edwards | Sep 1998 | A |
5800423 | Jensen | Sep 1998 | A |
5804726 | Geib et al. | Sep 1998 | A |
5804936 | Brodsky et al. | Sep 1998 | A |
5806676 | Wasgien | Sep 1998 | A |
5807241 | Heimberger | Sep 1998 | A |
5807376 | Viola et al. | Sep 1998 | A |
5807378 | Jensen et al. | Sep 1998 | A |
5807393 | Williamson, IV et al. | Sep 1998 | A |
5809441 | McKee | Sep 1998 | A |
5810240 | Robertson | Sep 1998 | A |
5810721 | Mueller et al. | Sep 1998 | A |
5810811 | Yates et al. | Sep 1998 | A |
5810846 | Virnich et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5812188 | Adair | Sep 1998 | A |
5813813 | Daum et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5816471 | Plyley et al. | Oct 1998 | A |
5817084 | Jensen | Oct 1998 | A |
5817091 | Nardella et al. | Oct 1998 | A |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5817109 | McGarry et al. | Oct 1998 | A |
5817119 | Klieman et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5823066 | Huitema et al. | Oct 1998 | A |
5824333 | Scopelianos et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5827271 | Buysse et al. | Oct 1998 | A |
5827298 | Hart et al. | Oct 1998 | A |
5827323 | Klieman et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5830598 | Patterson | Nov 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5836960 | Kolesa et al. | Nov 1998 | A |
5839369 | Chatterjee et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5841284 | Takahashi | Nov 1998 | A |
5843021 | Edwards et al. | Dec 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5843097 | Mayenberger et al. | Dec 1998 | A |
5843122 | Riza | Dec 1998 | A |
5843132 | Ilvento | Dec 1998 | A |
5843169 | Taheri | Dec 1998 | A |
5846254 | Schulze et al. | Dec 1998 | A |
5847566 | Marritt et al. | Dec 1998 | A |
5849011 | Jones et al. | Dec 1998 | A |
5849020 | Long et al. | Dec 1998 | A |
5849023 | Mericle | Dec 1998 | A |
5851179 | Ritson et al. | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5853366 | Dowlatshahi | Dec 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5855583 | Wang et al. | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5860975 | Goble et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5865638 | Trafton | Feb 1999 | A |
5868361 | Rinderer | Feb 1999 | A |
5868664 | Speier et al. | Feb 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5868790 | Vincent et al. | Feb 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5873885 | Weidenbenner | Feb 1999 | A |
5876401 | Schulze et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878607 | Nunes et al. | Mar 1999 | A |
5878937 | Green et al. | Mar 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5881777 | Bassi et al. | Mar 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5891094 | Masterson et al. | Apr 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5891558 | Bell et al. | Apr 1999 | A |
5893506 | Powell | Apr 1999 | A |
5893835 | Witt et al. | Apr 1999 | A |
5893855 | Jacobs | Apr 1999 | A |
5893863 | Yoon | Apr 1999 | A |
5893878 | Pierce | Apr 1999 | A |
5894979 | Powell | Apr 1999 | A |
5897552 | Edwards et al. | Apr 1999 | A |
5897562 | Bolanos et al. | Apr 1999 | A |
5899824 | Kurtz et al. | May 1999 | A |
5899914 | Zirps et al. | May 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5903117 | Gregory | May 1999 | A |
5904647 | Ouchi | May 1999 | A |
5904693 | Dicesare et al. | May 1999 | A |
5904702 | Ek et al. | May 1999 | A |
5906577 | Beane et al. | May 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5907211 | Hall et al. | May 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5908149 | Welch et al. | Jun 1999 | A |
5908402 | Blythe | Jun 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5909062 | Krietzman | Jun 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5916225 | Kugel | Jun 1999 | A |
5918791 | Sorrentino et al. | Jul 1999 | A |
5919198 | Graves, Jr. et al. | Jul 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5922001 | Yoon | Jul 1999 | A |
5922003 | Anctil et al. | Jul 1999 | A |
5924864 | Loge et al. | Jul 1999 | A |
5928137 | Green | Jul 1999 | A |
5928256 | Riza | Jul 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5931853 | McEwen et al. | Aug 1999 | A |
5937951 | Izuchukwu et al. | Aug 1999 | A |
5938667 | Peyser et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5941890 | Voegele et al. | Aug 1999 | A |
5944172 | Hannula | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5946978 | Yamashita | Sep 1999 | A |
5947984 | Whipple | Sep 1999 | A |
5947996 | Logeman | Sep 1999 | A |
5948030 | Miller et al. | Sep 1999 | A |
5948429 | Bell et al. | Sep 1999 | A |
5951301 | Younker | Sep 1999 | A |
5951516 | Bunyan | Sep 1999 | A |
5951552 | Long et al. | Sep 1999 | A |
5951574 | Stefanchik et al. | Sep 1999 | A |
5951575 | Bolduc et al. | Sep 1999 | A |
5951581 | Saadat et al. | Sep 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5957831 | Adair | Sep 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5966126 | Szabo | Oct 1999 | A |
5971916 | Koren | Oct 1999 | A |
5973221 | Collyer et al. | Oct 1999 | A |
D416089 | Barton et al. | Nov 1999 | S |
5976122 | Madhani et al. | Nov 1999 | A |
5977746 | Hershberger et al. | Nov 1999 | A |
5980248 | Kusakabe et al. | Nov 1999 | A |
5980569 | Scirica | Nov 1999 | A |
5984949 | Levin | Nov 1999 | A |
5988479 | Palmer | Nov 1999 | A |
5990379 | Gregory | Nov 1999 | A |
5993466 | Yoon | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
5997552 | Person et al. | Dec 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6003517 | Sheffield et al. | Dec 1999 | A |
6004319 | Goble et al. | Dec 1999 | A |
6004335 | Vaitekunas et al. | Dec 1999 | A |
6007521 | Bidwell et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6010513 | Tormala et al. | Jan 2000 | A |
6010520 | Pattison | Jan 2000 | A |
6012494 | Balazs | Jan 2000 | A |
6013076 | Goble et al. | Jan 2000 | A |
6013991 | Philipp | Jan 2000 | A |
6015406 | Goble et al. | Jan 2000 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6017322 | Snoke et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6017356 | Frederick et al. | Jan 2000 | A |
6018227 | Kumar et al. | Jan 2000 | A |
6019745 | Gray | Feb 2000 | A |
6019780 | Lombardo et al. | Feb 2000 | A |
6022352 | Vandewalle | Feb 2000 | A |
6023275 | Horvitz et al. | Feb 2000 | A |
6023641 | Thompson | Feb 2000 | A |
6024708 | Bales et al. | Feb 2000 | A |
6024741 | Williamson, IV et al. | Feb 2000 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6024750 | Mastri et al. | Feb 2000 | A |
6024764 | Schroeppel | Feb 2000 | A |
6027501 | Goble et al. | Feb 2000 | A |
6030384 | Nezhat | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6033105 | Barker et al. | Mar 2000 | A |
6033378 | Lundquist et al. | Mar 2000 | A |
6033399 | Gines | Mar 2000 | A |
6033427 | Lee | Mar 2000 | A |
6036641 | Taylor et al. | Mar 2000 | A |
6036667 | Manna et al. | Mar 2000 | A |
6037724 | Buss et al. | Mar 2000 | A |
6037927 | Rosenberg | Mar 2000 | A |
6039126 | Hsieh | Mar 2000 | A |
6039733 | Buysse et al. | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6042601 | Smith | Mar 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6043626 | Snyder et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6047861 | Vidal et al. | Apr 2000 | A |
6049145 | Austin et al. | Apr 2000 | A |
6050172 | Corves et al. | Apr 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6050989 | Fox et al. | Apr 2000 | A |
6050990 | Tankovich et al. | Apr 2000 | A |
6050996 | Schmaltz et al. | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6053899 | Slanda et al. | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
6054142 | Li et al. | Apr 2000 | A |
6055062 | Dina et al. | Apr 2000 | A |
RE36720 | Green et al. | May 2000 | E |
6056735 | Okada et al. | May 2000 | A |
6056746 | Goble et al. | May 2000 | A |
6059806 | Hoegerle | May 2000 | A |
6062360 | Shields | May 2000 | A |
6063020 | Jones et al. | May 2000 | A |
6063025 | Bridges et al. | May 2000 | A |
6063050 | Manna et al. | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6063098 | Houser et al. | May 2000 | A |
6065679 | Levie et al. | May 2000 | A |
6065919 | Peck | May 2000 | A |
6066132 | Chen et al. | May 2000 | A |
6066151 | Miyawaki et al. | May 2000 | A |
6068627 | Orszulak et al. | May 2000 | A |
6071233 | Ishikawa et al. | Jun 2000 | A |
6072299 | Kurle et al. | Jun 2000 | A |
6074386 | Goble et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6075441 | Maloney | Jun 2000 | A |
6077280 | Fossum | Jun 2000 | A |
6077286 | Cuschieri et al. | Jun 2000 | A |
6077290 | Marini | Jun 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6080181 | Jensen et al. | Jun 2000 | A |
6082577 | Coates et al. | Jul 2000 | A |
6083191 | Rose | Jul 2000 | A |
6083223 | Baker | Jul 2000 | A |
6083234 | Nicholas et al. | Jul 2000 | A |
6083242 | Cook | Jul 2000 | A |
6086544 | Hibner et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6090106 | Goble et al. | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6093186 | Goble | Jul 2000 | A |
6094021 | Noro et al. | Jul 2000 | A |
D429252 | Haitani et al. | Aug 2000 | S |
6099537 | Sugai et al. | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6102926 | Tartaglia et al. | Aug 2000 | A |
6104162 | Sainsbury et al. | Aug 2000 | A |
6104304 | Clark et al. | Aug 2000 | A |
6106511 | Jensen | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6110187 | Donlon | Aug 2000 | A |
6113618 | Nic | Sep 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6117158 | Measamer et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6120433 | Mizuno et al. | Sep 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6123241 | Walter et al. | Sep 2000 | A |
6123701 | Nezhat | Sep 2000 | A |
H1904 | Yates et al. | Oct 2000 | H |
RE36923 | Hiroi et al. | Oct 2000 | E |
6126058 | Adams et al. | Oct 2000 | A |
6126359 | Dittrich et al. | Oct 2000 | A |
6126670 | Walker et al. | Oct 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6131790 | Piraka | Oct 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6134962 | Sugitani | Oct 2000 | A |
6139546 | Koenig et al. | Oct 2000 | A |
6142149 | Steen | Nov 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6147135 | Yuan et al. | Nov 2000 | A |
6148979 | Roach et al. | Nov 2000 | A |
6149660 | Laufer et al. | Nov 2000 | A |
6151323 | O'Connell et al. | Nov 2000 | A |
6152935 | Kammerer et al. | Nov 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6156056 | Kearns et al. | Dec 2000 | A |
6157169 | Lee | Dec 2000 | A |
6157303 | Bodie et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6159200 | Verdura et al. | Dec 2000 | A |
6159224 | Yoon | Dec 2000 | A |
6162208 | Hipps | Dec 2000 | A |
6162220 | Nezhat | Dec 2000 | A |
6162537 | Martin et al. | Dec 2000 | A |
6165175 | Wampler et al. | Dec 2000 | A |
6165184 | Verdura et al. | Dec 2000 | A |
6165188 | Saadat et al. | Dec 2000 | A |
6167185 | Smiley et al. | Dec 2000 | A |
6168605 | Measamer et al. | Jan 2001 | B1 |
6171305 | Sherman | Jan 2001 | B1 |
6171316 | Kovac et al. | Jan 2001 | B1 |
6171330 | Benchetrit | Jan 2001 | B1 |
6173074 | Russo | Jan 2001 | B1 |
6174308 | Goble et al. | Jan 2001 | B1 |
6174309 | Wrublewski et al. | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6175290 | Forsythe et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6179776 | Adams et al. | Jan 2001 | B1 |
6181105 | Cutolo et al. | Jan 2001 | B1 |
6182673 | Kindermann et al. | Feb 2001 | B1 |
6185356 | Parker et al. | Feb 2001 | B1 |
6186142 | Schmidt et al. | Feb 2001 | B1 |
6186957 | Milam | Feb 2001 | B1 |
6187003 | Buysse et al. | Feb 2001 | B1 |
6190386 | Rydell | Feb 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6197042 | Ginn et al. | Mar 2001 | B1 |
6200311 | Danek et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6206894 | Thompson et al. | Mar 2001 | B1 |
6206897 | Jamiolkowski et al. | Mar 2001 | B1 |
6206903 | Ramans | Mar 2001 | B1 |
6206904 | Ouchi | Mar 2001 | B1 |
6209414 | Uneme | Apr 2001 | B1 |
6210403 | Klicek | Apr 2001 | B1 |
6211626 | Lys et al. | Apr 2001 | B1 |
6213999 | Platt, Jr. et al. | Apr 2001 | B1 |
6214028 | Yoon et al. | Apr 2001 | B1 |
6220368 | Ark et al. | Apr 2001 | B1 |
6221007 | Green | Apr 2001 | B1 |
6221023 | Matsuba et al. | Apr 2001 | B1 |
6223100 | Green | Apr 2001 | B1 |
6223835 | Habedank et al. | May 2001 | B1 |
6224617 | Saadat et al. | May 2001 | B1 |
6228080 | Gines | May 2001 | B1 |
6228081 | Goble | May 2001 | B1 |
6228083 | Lands et al. | May 2001 | B1 |
6228084 | Kirwan, Jr. | May 2001 | B1 |
6228089 | Wahrburg | May 2001 | B1 |
6228098 | Kayan et al. | May 2001 | B1 |
6231565 | Tovey et al. | May 2001 | B1 |
6234178 | Goble et al. | May 2001 | B1 |
6235036 | Gardner et al. | May 2001 | B1 |
6237604 | Burnside et al. | May 2001 | B1 |
6238384 | Peer | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6241723 | Heim et al. | Jun 2001 | B1 |
6245084 | Mark et al. | Jun 2001 | B1 |
6248116 | Chevillon et al. | Jun 2001 | B1 |
6248117 | Blatter | Jun 2001 | B1 |
6249076 | Madden et al. | Jun 2001 | B1 |
6249105 | Andrews et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6251485 | Harris et al. | Jun 2001 | B1 |
D445745 | Norman | Jul 2001 | S |
6254534 | Butler et al. | Jul 2001 | B1 |
6254619 | Garabet et al. | Jul 2001 | B1 |
6254642 | Taylor | Jul 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6261246 | Pantages et al. | Jul 2001 | B1 |
6261286 | Goble et al. | Jul 2001 | B1 |
6261679 | Chen et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6264617 | Bales et al. | Jul 2001 | B1 |
6269997 | Balazs et al. | Aug 2001 | B1 |
6270508 | Klieman et al. | Aug 2001 | B1 |
6270916 | Sink et al. | Aug 2001 | B1 |
6273252 | Mitchell | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6277114 | Bullivant et al. | Aug 2001 | B1 |
6280407 | Manna et al. | Aug 2001 | B1 |
6283981 | Beaupre | Sep 2001 | B1 |
6293927 | McGuckin, Jr. | Sep 2001 | B1 |
6293942 | Goble et al. | Sep 2001 | B1 |
6296640 | Wampler et al. | Oct 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6302743 | Chiu et al. | Oct 2001 | B1 |
6305891 | Burlingame | Oct 2001 | B1 |
6306134 | Goble et al. | Oct 2001 | B1 |
6306149 | Meade | Oct 2001 | B1 |
6306424 | Vyakarnam et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6309400 | Beaupre | Oct 2001 | B2 |
6309403 | Minor et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6317616 | Glossop | Nov 2001 | B1 |
6319510 | Yates | Nov 2001 | B1 |
6320123 | Reimers | Nov 2001 | B1 |
6322494 | Bullivant et al. | Nov 2001 | B1 |
6324339 | Hudson et al. | Nov 2001 | B1 |
6325799 | Goble | Dec 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6328498 | Mersch | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6331761 | Kumar et al. | Dec 2001 | B1 |
6333029 | Vyakarnam et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6334861 | Chandler et al. | Jan 2002 | B1 |
6336926 | Goble | Jan 2002 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6338738 | Bellotti et al. | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6349868 | Mattingly et al. | Feb 2002 | B1 |
D454951 | Bon | Mar 2002 | S |
6352503 | Matsui et al. | Mar 2002 | B1 |
6352532 | Kramer et al. | Mar 2002 | B1 |
6355699 | Vyakarnam et al. | Mar 2002 | B1 |
6356072 | Chass | Mar 2002 | B1 |
6358224 | Tims et al. | Mar 2002 | B1 |
6358263 | Mark et al. | Mar 2002 | B2 |
6358459 | Ziegler et al. | Mar 2002 | B1 |
6361542 | Dimitriu et al. | Mar 2002 | B1 |
6364828 | Yeung et al. | Apr 2002 | B1 |
6364877 | Goble et al. | Apr 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6366441 | Ozawa et al. | Apr 2002 | B1 |
6370981 | Watarai | Apr 2002 | B2 |
6371114 | Schmidt et al. | Apr 2002 | B1 |
6373152 | Wang et al. | Apr 2002 | B1 |
6377011 | Ben-Ur | Apr 2002 | B1 |
6383201 | Dong | May 2002 | B1 |
6387092 | Burnside et al. | May 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
6387114 | Adams | May 2002 | B2 |
6391038 | Vargas et al. | May 2002 | B2 |
6392854 | O'Gorman | May 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398779 | Buysse et al. | Jun 2002 | B1 |
6398781 | Goble et al. | Jun 2002 | B1 |
6398797 | Bombard et al. | Jun 2002 | B2 |
6402766 | Bowman et al. | Jun 2002 | B2 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6406440 | Stefanchik | Jun 2002 | B1 |
6406472 | Jensen | Jun 2002 | B1 |
6409724 | Penny et al. | Jun 2002 | B1 |
H2037 | Yates et al. | Jul 2002 | H |
6412639 | Hickey | Jul 2002 | B1 |
6413274 | Pedros | Jul 2002 | B1 |
6415542 | Bates et al. | Jul 2002 | B1 |
6416486 | Wampler | Jul 2002 | B1 |
6416509 | Goble et al. | Jul 2002 | B1 |
6419695 | Gabbay | Jul 2002 | B1 |
6423079 | Blake, III | Jul 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
RE37814 | Allgeyer | Aug 2002 | E |
6428070 | Takanashi et al. | Aug 2002 | B1 |
6428487 | Burdorff et al. | Aug 2002 | B1 |
6429611 | Li | Aug 2002 | B1 |
6430298 | Kettl et al. | Aug 2002 | B1 |
6432065 | Burdorff et al. | Aug 2002 | B1 |
6436097 | Nardella | Aug 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6436110 | Bowman et al. | Aug 2002 | B2 |
6436115 | Beaupre | Aug 2002 | B1 |
6436122 | Frank et al. | Aug 2002 | B1 |
6439439 | Rickard et al. | Aug 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6440146 | Nicholas et al. | Aug 2002 | B2 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
D462758 | Epstein et al. | Sep 2002 | S |
6443973 | Whitman | Sep 2002 | B1 |
6445530 | Baker | Sep 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6447523 | Middleman et al. | Sep 2002 | B1 |
6447799 | Ullman | Sep 2002 | B1 |
6447864 | Johnson et al. | Sep 2002 | B2 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6450989 | Dubrul et al. | Sep 2002 | B2 |
6454656 | Brissette et al. | Sep 2002 | B2 |
6454781 | Witt et al. | Sep 2002 | B1 |
6457338 | Frenken | Oct 2002 | B1 |
6457625 | Tormala et al. | Oct 2002 | B1 |
6458077 | Boebel et al. | Oct 2002 | B1 |
6458142 | Faller et al. | Oct 2002 | B1 |
6458147 | Cruise et al. | Oct 2002 | B1 |
6460627 | Below et al. | Oct 2002 | B1 |
6463824 | Prell et al. | Oct 2002 | B1 |
6468275 | Wampler et al. | Oct 2002 | B1 |
6468286 | Mastri et al. | Oct 2002 | B2 |
6471106 | Reining | Oct 2002 | B1 |
6471659 | Eggers et al. | Oct 2002 | B2 |
6478210 | Adams et al. | Nov 2002 | B2 |
6482063 | Frigard | Nov 2002 | B1 |
6482200 | Shippert | Nov 2002 | B2 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6485490 | Wampler et al. | Nov 2002 | B2 |
6485503 | Jacobs et al. | Nov 2002 | B2 |
6485667 | Tan | Nov 2002 | B1 |
6486286 | McGall et al. | Nov 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6488659 | Rosenman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6491690 | Goble et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6491702 | Heilbrun et al. | Dec 2002 | B2 |
6492785 | Kasten et al. | Dec 2002 | B1 |
6494882 | Lebouitz et al. | Dec 2002 | B1 |
6494885 | Dhindsa | Dec 2002 | B1 |
6494888 | Laufer et al. | Dec 2002 | B1 |
6494896 | D'Alessio et al. | Dec 2002 | B1 |
6498480 | Manara | Dec 2002 | B1 |
6500176 | Truckai et al. | Dec 2002 | B1 |
6500189 | Lang et al. | Dec 2002 | B1 |
6500194 | Benderev et al. | Dec 2002 | B2 |
D468749 | Friedman | Jan 2003 | S |
6503139 | Coral | Jan 2003 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6505768 | Whitman | Jan 2003 | B2 |
6506197 | Rollero et al. | Jan 2003 | B1 |
6506399 | Donovan | Jan 2003 | B2 |
6510854 | Goble | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6512360 | Goto et al. | Jan 2003 | B1 |
6514252 | Nezhat et al. | Feb 2003 | B2 |
6516073 | Schulz et al. | Feb 2003 | B1 |
6517528 | Pantages et al. | Feb 2003 | B1 |
6517535 | Edwards | Feb 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6520971 | Perry et al. | Feb 2003 | B1 |
6520972 | Peters | Feb 2003 | B2 |
6522101 | Malackowski | Feb 2003 | B2 |
6524180 | Simms et al. | Feb 2003 | B1 |
6525499 | Naganuma | Feb 2003 | B2 |
D471206 | Buzzard et al. | Mar 2003 | S |
6527782 | Hogg et al. | Mar 2003 | B2 |
6527785 | Sancoff et al. | Mar 2003 | B2 |
6530942 | Fogarty et al. | Mar 2003 | B2 |
6532958 | Buan et al. | Mar 2003 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6533723 | Lockery et al. | Mar 2003 | B1 |
6533784 | Truckai et al. | Mar 2003 | B2 |
6535764 | Imran et al. | Mar 2003 | B2 |
6539297 | Weiberle et al. | Mar 2003 | B2 |
D473239 | Cockerill | Apr 2003 | S |
6539816 | Kogiso et al. | Apr 2003 | B2 |
6540737 | Bacher et al. | Apr 2003 | B2 |
6543456 | Freeman | Apr 2003 | B1 |
6545384 | Pelrine et al. | Apr 2003 | B1 |
6547786 | Goble | Apr 2003 | B1 |
6550546 | Thurler et al. | Apr 2003 | B2 |
6551333 | Kuhns et al. | Apr 2003 | B2 |
6554844 | Lee et al. | Apr 2003 | B2 |
6554861 | Knox et al. | Apr 2003 | B2 |
6555770 | Kawase | Apr 2003 | B2 |
6558378 | Sherman et al. | May 2003 | B2 |
6558379 | Batchelor et al. | May 2003 | B1 |
6558429 | Taylor | May 2003 | B2 |
6561187 | Schmidt et al. | May 2003 | B2 |
6565560 | Goble et al. | May 2003 | B1 |
6566619 | Gillman et al. | May 2003 | B2 |
6569085 | Kortenbach et al. | May 2003 | B2 |
6569171 | DeGuillebon et al. | May 2003 | B2 |
6569173 | Blatter et al. | May 2003 | B1 |
6572629 | Kalloo et al. | Jun 2003 | B2 |
6575969 | Rittman, III et al. | Jun 2003 | B1 |
6578751 | Hartwick | Jun 2003 | B2 |
6582364 | Butler et al. | Jun 2003 | B2 |
6582427 | Goble et al. | Jun 2003 | B1 |
6582441 | He et al. | Jun 2003 | B1 |
6583533 | Pelrine et al. | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6585664 | Burdorff et al. | Jul 2003 | B2 |
6586898 | King et al. | Jul 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6588277 | Giordano et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6588931 | Betzner et al. | Jul 2003 | B2 |
6589118 | Soma et al. | Jul 2003 | B1 |
6589164 | Flaherty | Jul 2003 | B1 |
6592538 | Hotchkiss et al. | Jul 2003 | B1 |
6592572 | Suzuta | Jul 2003 | B1 |
6592597 | Grant et al. | Jul 2003 | B2 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6595914 | Kato | Jul 2003 | B2 |
6596296 | Nelson et al. | Jul 2003 | B1 |
6596304 | Bayon et al. | Jul 2003 | B1 |
6596432 | Kawakami et al. | Jul 2003 | B2 |
6599295 | Tornier et al. | Jul 2003 | B1 |
6599323 | Melican et al. | Jul 2003 | B2 |
D478665 | Isaacs et al. | Aug 2003 | S |
D478986 | Johnston et al. | Aug 2003 | S |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6602252 | Mollenauer | Aug 2003 | B2 |
6602262 | Griego et al. | Aug 2003 | B2 |
6603050 | Heaton | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605669 | Awokola et al. | Aug 2003 | B2 |
6605911 | Klesing | Aug 2003 | B1 |
6607475 | Doyle et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6613069 | Boyd et al. | Sep 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6620111 | Stephens et al. | Sep 2003 | B2 |
6620161 | Schulze et al. | Sep 2003 | B2 |
6620166 | Wenstrom, Jr. et al. | Sep 2003 | B1 |
6623482 | Pendekanti et al. | Sep 2003 | B2 |
6625517 | Bogdanov et al. | Sep 2003 | B1 |
6626834 | Dunne et al. | Sep 2003 | B2 |
6626901 | Treat et al. | Sep 2003 | B1 |
6626938 | Butaric et al. | Sep 2003 | B1 |
H2086 | Amsler | Oct 2003 | H |
6629630 | Adams | Oct 2003 | B2 |
6629974 | Penny et al. | Oct 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6635838 | Kornelson | Oct 2003 | B1 |
6636412 | Smith | Oct 2003 | B2 |
6638108 | Tachi | Oct 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6638297 | Huitema | Oct 2003 | B1 |
RE38335 | Aust et al. | Nov 2003 | E |
6641528 | Torii | Nov 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6645201 | Utley et al. | Nov 2003 | B1 |
6646307 | Yu et al. | Nov 2003 | B1 |
6648816 | Irion et al. | Nov 2003 | B2 |
6648901 | Fleischman et al. | Nov 2003 | B2 |
6652595 | Nicolo | Nov 2003 | B1 |
D484243 | Ryan et al. | Dec 2003 | S |
D484595 | Ryan et al. | Dec 2003 | S |
D484596 | Ryan et al. | Dec 2003 | S |
6656177 | Truckai et al. | Dec 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6659940 | Adler | Dec 2003 | B2 |
6660008 | Foerster et al. | Dec 2003 | B1 |
6663623 | Oyama et al. | Dec 2003 | B1 |
6663641 | Kovac et al. | Dec 2003 | B1 |
6666854 | Lange | Dec 2003 | B1 |
6666860 | Takahashi | Dec 2003 | B1 |
6666875 | Sakurai et al. | Dec 2003 | B1 |
6667825 | Lu et al. | Dec 2003 | B2 |
6669073 | Milliman et al. | Dec 2003 | B2 |
6670806 | Wendt et al. | Dec 2003 | B2 |
6671185 | Duval | Dec 2003 | B2 |
D484977 | Ryan et al. | Jan 2004 | S |
6676660 | Wampler et al. | Jan 2004 | B2 |
6677687 | Ho et al. | Jan 2004 | B2 |
6679269 | Swanson | Jan 2004 | B2 |
6679410 | Wursch et al. | Jan 2004 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6682527 | Strul | Jan 2004 | B2 |
6682528 | Frazier et al. | Jan 2004 | B2 |
6682544 | Mastri et al. | Jan 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6685727 | Fisher et al. | Feb 2004 | B2 |
6689153 | Skiba | Feb 2004 | B1 |
6692507 | Pugsley et al. | Feb 2004 | B2 |
6692692 | Stetzel | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6695774 | Hale et al. | Feb 2004 | B2 |
6695849 | Michelson | Feb 2004 | B2 |
6696814 | Henderson et al. | Feb 2004 | B2 |
6697048 | Rosenberg et al. | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6699214 | Gellman | Mar 2004 | B2 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6705503 | Pedicini et al. | Mar 2004 | B1 |
6709445 | Boebel et al. | Mar 2004 | B2 |
6712773 | Viola | Mar 2004 | B1 |
6716215 | David et al. | Apr 2004 | B1 |
6716223 | Leopold et al. | Apr 2004 | B2 |
6716232 | Vidal et al. | Apr 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6720734 | Norris | Apr 2004 | B2 |
6722550 | Ricordi et al. | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6723087 | O'Neill et al. | Apr 2004 | B2 |
6723091 | Goble et al. | Apr 2004 | B2 |
6723106 | Charles et al. | Apr 2004 | B1 |
6723109 | Solingen | Apr 2004 | B2 |
6726651 | Robinson et al. | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6726705 | Peterson et al. | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6729119 | Schnipke et al. | May 2004 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6736810 | Hoey et al. | May 2004 | B2 |
6736825 | Blatter et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6740030 | Martone et al. | May 2004 | B2 |
6743230 | Lutze et al. | Jun 2004 | B2 |
6744385 | Kazuya et al. | Jun 2004 | B2 |
6747121 | Gogolewski | Jun 2004 | B2 |
6747300 | Nadd et al. | Jun 2004 | B2 |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6749600 | Levy | Jun 2004 | B1 |
6752768 | Burdorff et al. | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6754959 | Guiette, III et al. | Jun 2004 | B1 |
6755195 | Lemke et al. | Jun 2004 | B1 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6755825 | Shoenman et al. | Jun 2004 | B2 |
6755843 | Chung et al. | Jun 2004 | B2 |
6756705 | Pulford, Jr. | Jun 2004 | B2 |
6758846 | Goble et al. | Jul 2004 | B2 |
6761685 | Adams et al. | Jul 2004 | B2 |
6762339 | Klun et al. | Jul 2004 | B1 |
6763307 | Berg et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6766957 | Matsuura et al. | Jul 2004 | B2 |
6767352 | Field et al. | Jul 2004 | B2 |
6767356 | Kanner et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6770027 | Banik et al. | Aug 2004 | B2 |
6770070 | Balbierz | Aug 2004 | B1 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6770078 | Bonutti | Aug 2004 | B2 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6773438 | Knodel et al. | Aug 2004 | B1 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6777838 | Miekka et al. | Aug 2004 | B2 |
6778846 | Martinez et al. | Aug 2004 | B1 |
6780151 | Grabover et al. | Aug 2004 | B2 |
6780180 | Goble et al. | Aug 2004 | B1 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6784775 | Mandell et al. | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6786864 | Matsuura et al. | Sep 2004 | B2 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6790173 | Saadat et al. | Sep 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793661 | Hamilton et al. | Sep 2004 | B2 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6793669 | Nakamura et al. | Sep 2004 | B2 |
6796921 | Buck et al. | Sep 2004 | B1 |
6799669 | Fukumura et al. | Oct 2004 | B2 |
6801009 | Makaran et al. | Oct 2004 | B2 |
6802822 | Dodge | Oct 2004 | B1 |
6802843 | Truckai et al. | Oct 2004 | B2 |
6802844 | Ferree | Oct 2004 | B2 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6806808 | Watters et al. | Oct 2004 | B1 |
6806867 | Arruda et al. | Oct 2004 | B1 |
6808525 | Latterell et al. | Oct 2004 | B2 |
6810359 | Sakaguchi | Oct 2004 | B2 |
6814154 | Chou | Nov 2004 | B2 |
6814741 | Bowman et al. | Nov 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6818018 | Sawhney | Nov 2004 | B1 |
6820791 | Adams | Nov 2004 | B2 |
6821273 | Mollenauer | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6821284 | Sturtz et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6827712 | Tovey et al. | Dec 2004 | B2 |
6827725 | Batchelor et al. | Dec 2004 | B2 |
6828902 | Casden | Dec 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6831629 | Nishino et al. | Dec 2004 | B2 |
6832998 | Goble | Dec 2004 | B2 |
6834001 | Myono | Dec 2004 | B2 |
6835173 | Couvillon, Jr. | Dec 2004 | B2 |
6835199 | McGuckin, Jr. et al. | Dec 2004 | B2 |
6835336 | Watt | Dec 2004 | B2 |
6836611 | Popovic et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6838493 | Williams et al. | Jan 2005 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6841967 | Kim et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6843789 | Goble | Jan 2005 | B2 |
6843793 | Brock et al. | Jan 2005 | B2 |
6846307 | Whitman et al. | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6847190 | Schaefer et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6850817 | Green | Feb 2005 | B1 |
6852122 | Rush | Feb 2005 | B2 |
6852330 | Bowman et al. | Feb 2005 | B2 |
6853879 | Sunaoshi | Feb 2005 | B2 |
6858005 | Ohline et al. | Feb 2005 | B2 |
6859882 | Fung | Feb 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
D502994 | Blake, III | Mar 2005 | S |
6860169 | Shinozaki | Mar 2005 | B2 |
6861142 | Wilkie et al. | Mar 2005 | B1 |
6861954 | Levin | Mar 2005 | B2 |
6863668 | Gillespie et al. | Mar 2005 | B2 |
6863694 | Boyce et al. | Mar 2005 | B1 |
6863924 | Ranganathan et al. | Mar 2005 | B2 |
6866178 | Adams et al. | Mar 2005 | B2 |
6866668 | Giannetti et al. | Mar 2005 | B2 |
6866671 | Tierney et al. | Mar 2005 | B2 |
6867248 | Martin et al. | Mar 2005 | B1 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869435 | Blake, III | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6876850 | Maeshima et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6878106 | Herrmann | Apr 2005 | B1 |
6882127 | Konigbauer | Apr 2005 | B2 |
6883199 | Lundell et al. | Apr 2005 | B1 |
6884392 | Malkin et al. | Apr 2005 | B2 |
6884428 | Binette et al. | Apr 2005 | B2 |
6886730 | Fujisawa et al. | May 2005 | B2 |
6887244 | Walker et al. | May 2005 | B1 |
6887710 | Call et al. | May 2005 | B2 |
6889116 | Jinno | May 2005 | B2 |
6893435 | Goble | May 2005 | B2 |
6894140 | Roby | May 2005 | B2 |
6895176 | Archer et al. | May 2005 | B2 |
6899538 | Matoba | May 2005 | B2 |
6899593 | Moeller et al. | May 2005 | B1 |
6899705 | Niemeyer | May 2005 | B2 |
6899915 | Yelick et al. | May 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6905497 | Truckai et al. | Jun 2005 | B2 |
6905498 | Hooven | Jun 2005 | B2 |
6908472 | Wiener et al. | Jun 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6911916 | Wang et al. | Jun 2005 | B1 |
6913579 | Truckai et al. | Jul 2005 | B2 |
6913608 | Liddicoat et al. | Jul 2005 | B2 |
6913613 | Schwarz et al. | Jul 2005 | B2 |
6921397 | Corcoran et al. | Jul 2005 | B2 |
6921412 | Black et al. | Jul 2005 | B1 |
6923093 | Ullah | Aug 2005 | B2 |
6923803 | Goble | Aug 2005 | B2 |
6923819 | Meade et al. | Aug 2005 | B2 |
6925849 | Jairam | Aug 2005 | B2 |
6926716 | Baker et al. | Aug 2005 | B2 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6928902 | Eyssallenne | Aug 2005 | B1 |
6929641 | Goble et al. | Aug 2005 | B2 |
6929644 | Truckai et al. | Aug 2005 | B2 |
6931830 | Liao | Aug 2005 | B2 |
6932218 | Kosann et al. | Aug 2005 | B2 |
6932810 | Ryan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6936948 | Bell et al. | Aug 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
D509589 | Wells | Sep 2005 | S |
6938706 | Ng | Sep 2005 | B2 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6942662 | Goble et al. | Sep 2005 | B2 |
6942674 | Belef et al. | Sep 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6949196 | Schmitz et al. | Sep 2005 | B2 |
6951562 | Zwirnmann | Oct 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6953461 | McClurken et al. | Oct 2005 | B2 |
6957758 | Aranyi | Oct 2005 | B2 |
6958035 | Friedman et al. | Oct 2005 | B2 |
6958070 | Witt et al. | Oct 2005 | B2 |
D511525 | Hernandez et al. | Nov 2005 | S |
6959851 | Heinrich | Nov 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6960107 | Schaub et al. | Nov 2005 | B1 |
6960163 | Ewers et al. | Nov 2005 | B2 |
6960220 | Marino et al. | Nov 2005 | B2 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6963792 | Green | Nov 2005 | B1 |
6964363 | Wales et al. | Nov 2005 | B2 |
6966907 | Goble | Nov 2005 | B2 |
6966909 | Marshall et al. | Nov 2005 | B2 |
6968908 | Tokunaga et al. | Nov 2005 | B2 |
6969385 | Moreyra | Nov 2005 | B2 |
6969395 | Eskuri | Nov 2005 | B2 |
6971988 | Orban, III | Dec 2005 | B2 |
6972199 | Lebouitz et al. | Dec 2005 | B2 |
6974435 | Daw et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
6978921 | Shelton, IV | Dec 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981978 | Gannoe | Jan 2006 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984231 | Goble et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
6989034 | Hammer et al. | Jan 2006 | B2 |
6990731 | Haytayan | Jan 2006 | B2 |
6990796 | Schnipke et al. | Jan 2006 | B2 |
6991146 | Sinisi et al. | Jan 2006 | B2 |
6993200 | Tastl et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6995729 | Govari et al. | Feb 2006 | B2 |
6996433 | Burbank et al. | Feb 2006 | B2 |
6997931 | Sauer et al. | Feb 2006 | B2 |
6997935 | Anderson et al. | Feb 2006 | B2 |
6998736 | Lee et al. | Feb 2006 | B2 |
6998816 | Wieck et al. | Feb 2006 | B2 |
6999821 | Jenney et al. | Feb 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7000911 | McCormick et al. | Feb 2006 | B2 |
7001380 | Goble | Feb 2006 | B2 |
7001408 | Knodel et al. | Feb 2006 | B2 |
7004174 | Eggers et al. | Feb 2006 | B2 |
7005828 | Karikomi | Feb 2006 | B2 |
7007176 | Goodfellow et al. | Feb 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7008435 | Cummins | Mar 2006 | B2 |
7009039 | Yayon et al. | Mar 2006 | B2 |
7011213 | Clark et al. | Mar 2006 | B2 |
7011657 | Truckai et al. | Mar 2006 | B2 |
7014640 | Kemppainen et al. | Mar 2006 | B2 |
7018357 | Emmons | Mar 2006 | B2 |
7018390 | Turovskiy et al. | Mar 2006 | B2 |
7021399 | Driessen | Apr 2006 | B2 |
7021669 | Lindermeir et al. | Apr 2006 | B1 |
7022131 | Derowe et al. | Apr 2006 | B1 |
7023159 | Gorti et al. | Apr 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
7025775 | Gadberry et al. | Apr 2006 | B2 |
7028570 | Ohta et al. | Apr 2006 | B2 |
7029435 | Nakao | Apr 2006 | B2 |
7029439 | Roberts et al. | Apr 2006 | B2 |
7030904 | Adair et al. | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7033356 | Latterell et al. | Apr 2006 | B2 |
7033378 | Smith et al. | Apr 2006 | B2 |
7035716 | Harris et al. | Apr 2006 | B2 |
7035762 | Menard et al. | Apr 2006 | B2 |
7036680 | Flannery | May 2006 | B1 |
7037314 | Armstrong | May 2006 | B2 |
7037344 | Kagan et al. | May 2006 | B2 |
7038421 | Trifilo | May 2006 | B2 |
7041088 | Nawrocki et al. | May 2006 | B2 |
7041102 | Truckai et al. | May 2006 | B2 |
7041868 | Greene et al. | May 2006 | B2 |
7043852 | Hayashida et al. | May 2006 | B2 |
7044350 | Kameyama et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7046082 | Komiya et al. | May 2006 | B2 |
7048165 | Haramiishi | May 2006 | B2 |
7048687 | Reuss et al. | May 2006 | B1 |
7048716 | Kucharczyk et al. | May 2006 | B1 |
7048745 | Tierney et al. | May 2006 | B2 |
7052454 | Taylor | May 2006 | B2 |
7052494 | Goble et al. | May 2006 | B2 |
7052499 | Steger et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056123 | Gregorio et al. | Jun 2006 | B2 |
7056284 | Martone et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7063671 | Couvillon, Jr. | Jun 2006 | B2 |
7063712 | Vargas et al. | Jun 2006 | B2 |
7064509 | Fu et al. | Jun 2006 | B1 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066944 | Laufer et al. | Jun 2006 | B2 |
7067038 | Trokhan et al. | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7070559 | Adams et al. | Jul 2006 | B2 |
7070597 | Truckai et al. | Jul 2006 | B2 |
7071287 | Rhine et al. | Jul 2006 | B2 |
7075412 | Reynolds et al. | Jul 2006 | B1 |
7075770 | Smith | Jul 2006 | B1 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7081114 | Rashidi | Jul 2006 | B2 |
7081318 | Lee et al. | Jul 2006 | B2 |
7083073 | Yoshie et al. | Aug 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7083619 | Truckai et al. | Aug 2006 | B2 |
7083620 | Jahns et al. | Aug 2006 | B2 |
7083626 | Hart et al. | Aug 2006 | B2 |
7086267 | Dworak et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7087054 | Truckai et al. | Aug 2006 | B2 |
7087071 | Nicholas et al. | Aug 2006 | B2 |
7090637 | Danitz et al. | Aug 2006 | B2 |
7090673 | Dycus et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7090684 | McGuckin, Jr. et al. | Aug 2006 | B2 |
7091191 | Laredo et al. | Aug 2006 | B2 |
7091412 | Wang et al. | Aug 2006 | B2 |
7093492 | Treiber et al. | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094247 | Monassevitch et al. | Aug 2006 | B2 |
7094916 | Deluca et al. | Aug 2006 | B2 |
7096972 | Orozco, Jr. | Aug 2006 | B2 |
7097089 | Marczyk | Aug 2006 | B2 |
7097644 | Long | Aug 2006 | B2 |
7097650 | Weller et al. | Aug 2006 | B2 |
7098794 | Lindsay et al. | Aug 2006 | B2 |
7100949 | Williams et al. | Sep 2006 | B2 |
7101187 | Deconinck et al. | Sep 2006 | B1 |
7101363 | Nishizawa et al. | Sep 2006 | B2 |
7101371 | Dycus et al. | Sep 2006 | B2 |
7101394 | Hamm et al. | Sep 2006 | B2 |
7104741 | Krohn | Sep 2006 | B2 |
7108695 | Witt et al. | Sep 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111768 | Cummins et al. | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7112201 | Truckai et al. | Sep 2006 | B2 |
7112214 | Peterson et al. | Sep 2006 | B2 |
RE39358 | Goble | Oct 2006 | E |
D530339 | Hernandez et al. | Oct 2006 | S |
7114642 | Whitman | Oct 2006 | B2 |
7116100 | Mock et al. | Oct 2006 | B1 |
7118020 | Lee et al. | Oct 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7118563 | Weckwerth et al. | Oct 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7119534 | Butzmann | Oct 2006 | B2 |
7121446 | Arad et al. | Oct 2006 | B2 |
7121773 | Mikiya et al. | Oct 2006 | B2 |
7122028 | Looper et al. | Oct 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7125409 | Truckai et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7126879 | Snyder | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7131445 | Amoah | Nov 2006 | B2 |
7133601 | Phillips et al. | Nov 2006 | B2 |
7134364 | Kageler et al. | Nov 2006 | B2 |
7134587 | Schwemberger et al. | Nov 2006 | B2 |
7135027 | Delmotte | Nov 2006 | B2 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7137981 | Long | Nov 2006 | B2 |
7139016 | Squilla et al. | Nov 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143924 | Scirica et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7146191 | Kerner et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7147140 | Wukusick et al. | Dec 2006 | B2 |
7147637 | Goble | Dec 2006 | B2 |
7147648 | Lin | Dec 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7150748 | Ebbutt et al. | Dec 2006 | B2 |
7153300 | Goble | Dec 2006 | B2 |
7153314 | Laufer et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7156846 | Dycus et al. | Jan 2007 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7160296 | Pearson et al. | Jan 2007 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7160311 | Blatter et al. | Jan 2007 | B2 |
7161036 | Oikawa et al. | Jan 2007 | B2 |
7161580 | Bailey et al. | Jan 2007 | B2 |
7162758 | Skinner | Jan 2007 | B2 |
7163563 | Schwartz et al. | Jan 2007 | B2 |
7166117 | Hellenkamp | Jan 2007 | B2 |
7166133 | Evans et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7169146 | Truckai et al. | Jan 2007 | B2 |
7170910 | Chen et al. | Jan 2007 | B2 |
7171279 | Buckingham et al. | Jan 2007 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7172593 | Trieu et al. | Feb 2007 | B2 |
7172615 | Morriss et al. | Feb 2007 | B2 |
7174202 | Bladen et al. | Feb 2007 | B2 |
7174636 | Lowe | Feb 2007 | B2 |
7177533 | McFarlin et al. | Feb 2007 | B2 |
7179223 | Motoki et al. | Feb 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7182763 | Nardella | Feb 2007 | B2 |
7183737 | Kitagawa | Feb 2007 | B2 |
7187960 | Abreu | Mar 2007 | B2 |
7188758 | Viola et al. | Mar 2007 | B2 |
7189207 | Viola | Mar 2007 | B2 |
7190147 | Gileff et al. | Mar 2007 | B2 |
7193199 | Jang | Mar 2007 | B2 |
7195627 | Amoah et al. | Mar 2007 | B2 |
7196911 | Takano et al. | Mar 2007 | B2 |
D541418 | Schechter et al. | Apr 2007 | S |
7197965 | Anderson | Apr 2007 | B1 |
7199537 | Okamura et al. | Apr 2007 | B2 |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7202576 | Dechene et al. | Apr 2007 | B1 |
7202653 | Pai | Apr 2007 | B2 |
7204404 | Nguyen et al. | Apr 2007 | B2 |
7204835 | Latterell et al. | Apr 2007 | B2 |
7205959 | Henriksson | Apr 2007 | B2 |
7206626 | Quaid | Apr 2007 | B2 |
7207233 | Wadge | Apr 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7207556 | Saitoh et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7211081 | Goble | May 2007 | B2 |
7211084 | Goble et al. | May 2007 | B2 |
7211092 | Hughett | May 2007 | B2 |
7211979 | Khatib et al. | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7214224 | Goble | May 2007 | B2 |
7215517 | Takamatsu | May 2007 | B2 |
7217285 | Vargas et al. | May 2007 | B2 |
7220260 | Fleming et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225959 | Patton et al. | Jun 2007 | B2 |
7225963 | Scirica | Jun 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7226450 | Athanasiou et al. | Jun 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7228505 | Shimazu et al. | Jun 2007 | B2 |
7229408 | Douglas et al. | Jun 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235072 | Sartor et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
7235302 | Jing et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7238901 | Kim et al. | Jul 2007 | B2 |
7239657 | Gunnarsson | Jul 2007 | B1 |
7241288 | Braun | Jul 2007 | B2 |
7241289 | Braun | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7247161 | Johnston et al. | Jul 2007 | B2 |
7249267 | Chapuis | Jul 2007 | B2 |
7252641 | Thompson et al. | Aug 2007 | B2 |
7252660 | Kunz | Aug 2007 | B2 |
7255012 | Hedtke | Aug 2007 | B2 |
7255696 | Goble et al. | Aug 2007 | B2 |
7256695 | Hamel et al. | Aug 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7258546 | Beier et al. | Aug 2007 | B2 |
7260431 | Libbus et al. | Aug 2007 | B2 |
7265374 | Lee et al. | Sep 2007 | B2 |
7267677 | Johnson et al. | Sep 2007 | B2 |
7267679 | McGuckin, Jr. et al. | Sep 2007 | B2 |
7272002 | Drapeau | Sep 2007 | B2 |
7273483 | Wiener et al. | Sep 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
D552623 | Vong et al. | Oct 2007 | S |
7275674 | Racenet et al. | Oct 2007 | B2 |
7276044 | Ferry et al. | Oct 2007 | B2 |
7276068 | Johnson et al. | Oct 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7278949 | Bader | Oct 2007 | B2 |
7278994 | Goble | Oct 2007 | B2 |
7282048 | Goble et al. | Oct 2007 | B2 |
7283096 | Geisheimer et al. | Oct 2007 | B2 |
7286850 | Frielink et al. | Oct 2007 | B2 |
7287682 | Ezzat et al. | Oct 2007 | B1 |
7289139 | Amling et al. | Oct 2007 | B2 |
7293685 | Ehrenfels et al. | Nov 2007 | B2 |
7295893 | Sunaoshi | Nov 2007 | B2 |
7295907 | Lu et al. | Nov 2007 | B2 |
7296722 | Ivanko | Nov 2007 | B2 |
7296724 | Green et al. | Nov 2007 | B2 |
7297149 | Vitali et al. | Nov 2007 | B2 |
7300373 | Jinno et al. | Nov 2007 | B2 |
7300431 | Dubrovsky | Nov 2007 | B2 |
7300450 | Vleugels et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7303502 | Thompson | Dec 2007 | B2 |
7303556 | Metzger | Dec 2007 | B2 |
7306597 | Manzo | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7311238 | Liu | Dec 2007 | B2 |
7311709 | Truckai et al. | Dec 2007 | B2 |
7313430 | Urquhart et al. | Dec 2007 | B2 |
7314473 | Jinno et al. | Jan 2008 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7320704 | Lashinski et al. | Jan 2008 | B2 |
7322859 | Evans | Jan 2008 | B2 |
7322975 | Goble et al. | Jan 2008 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7324572 | Chang | Jan 2008 | B2 |
7326203 | Papineau et al. | Feb 2008 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7330004 | Dejonge et al. | Feb 2008 | B2 |
7331340 | Barney | Feb 2008 | B2 |
7331343 | Schmidt et al. | Feb 2008 | B2 |
7331403 | Berry et al. | Feb 2008 | B2 |
7331406 | Wottreng, Jr. et al. | Feb 2008 | B2 |
7331969 | Inganas et al. | Feb 2008 | B1 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335199 | Goble et al. | Feb 2008 | B2 |
7335401 | Finke et al. | Feb 2008 | B2 |
7336045 | Clermonts | Feb 2008 | B2 |
7336048 | Lohr | Feb 2008 | B2 |
7336183 | Reddy et al. | Feb 2008 | B2 |
7336184 | Smith et al. | Feb 2008 | B2 |
7337774 | Webb | Mar 2008 | B2 |
7338505 | Belson | Mar 2008 | B2 |
7338513 | Lee et al. | Mar 2008 | B2 |
7341554 | Sekine et al. | Mar 2008 | B2 |
7341555 | Ootawara et al. | Mar 2008 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7343920 | Toby et al. | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7344533 | Pearson et al. | Mar 2008 | B2 |
7346344 | Fontaine | Mar 2008 | B2 |
7346406 | Brotto et al. | Mar 2008 | B2 |
7348763 | Reinhart et al. | Mar 2008 | B1 |
7348875 | Hughes et al. | Mar 2008 | B2 |
RE40237 | Bilotti et al. | Apr 2008 | E |
7351258 | Ricotta et al. | Apr 2008 | B2 |
7354398 | Kanazawa | Apr 2008 | B2 |
7354440 | Truckai et al. | Apr 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7354502 | Polat et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7357806 | Rivera et al. | Apr 2008 | B2 |
7361168 | Makower et al. | Apr 2008 | B2 |
7361195 | Schwartz et al. | Apr 2008 | B2 |
7362062 | Schneider et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7367485 | Shelton, IV et al. | May 2008 | B2 |
7367973 | Manzo et al. | May 2008 | B2 |
7368124 | Chun et al. | May 2008 | B2 |
7371210 | Brock et al. | May 2008 | B2 |
7371403 | McCarthy et al. | May 2008 | B2 |
7375493 | Calhoon et al. | May 2008 | B2 |
7377918 | Amoah | May 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7378817 | Calhoon et al. | May 2008 | B2 |
RE40388 | Gines | Jun 2008 | E |
D570868 | Hosokawa et al. | Jun 2008 | S |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7384403 | Sherman | Jun 2008 | B2 |
7384417 | Cucin | Jun 2008 | B2 |
7386365 | Nixon | Jun 2008 | B2 |
7386730 | Uchikubo | Jun 2008 | B2 |
7388217 | Buschbeck et al. | Jun 2008 | B2 |
7388484 | Hsu | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7394190 | Huang | Jul 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
7397364 | Govari | Jul 2008 | B2 |
7398707 | Morley et al. | Jul 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7400107 | Schneider et al. | Jul 2008 | B2 |
7400752 | Zacharias | Jul 2008 | B2 |
7401000 | Nakamura | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404449 | Bermingham et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7404822 | Viart et al. | Jul 2008 | B2 |
D575793 | Ording | Aug 2008 | S |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407076 | Racenet et al. | Aug 2008 | B2 |
7407077 | Ortiz et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7408310 | Hong et al. | Aug 2008 | B2 |
7410085 | Wolf et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7410483 | Danitz et al. | Aug 2008 | B2 |
7413563 | Corcoran et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7418078 | Blanz et al. | Aug 2008 | B2 |
RE40514 | Mastri et al. | Sep 2008 | E |
7419080 | Smith et al. | Sep 2008 | B2 |
7419081 | Ehrenfels et al. | Sep 2008 | B2 |
7419321 | Tereschouk | Sep 2008 | B2 |
7419495 | Menn et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7422582 | Malackowski et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7427607 | Suzuki | Sep 2008 | B2 |
D578644 | Shumer et al. | Oct 2008 | S |
7430772 | Van Es | Oct 2008 | B2 |
7430849 | Coutts et al. | Oct 2008 | B1 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431230 | McPherson et al. | Oct 2008 | B2 |
7431694 | Stefanchik et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434715 | Shelton, IV et al. | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7435249 | Buysse et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7439354 | Lenges et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7442201 | Pugsley et al. | Oct 2008 | B2 |
7443547 | Moreno et al. | Oct 2008 | B2 |
D580942 | Oshiro et al. | Nov 2008 | S |
7446131 | Liu et al. | Nov 2008 | B1 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7450010 | Gravelle et al. | Nov 2008 | B1 |
7450991 | Smith et al. | Nov 2008 | B2 |
7451904 | Shelton, IV | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7455687 | Saunders et al. | Nov 2008 | B2 |
D582934 | Byeon | Dec 2008 | S |
7461767 | Viola et al. | Dec 2008 | B2 |
7462187 | Johnston et al. | Dec 2008 | B2 |
7464845 | Chou | Dec 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464848 | Green et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7467849 | Silverbrook et al. | Dec 2008 | B2 |
7472814 | Mastri et al. | Jan 2009 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7472816 | Holsten et al. | Jan 2009 | B2 |
7473221 | Ewers et al. | Jan 2009 | B2 |
7473253 | Dycus et al. | Jan 2009 | B2 |
7473263 | Johnston et al. | Jan 2009 | B2 |
7476237 | Taniguchi et al. | Jan 2009 | B2 |
7479147 | Honeycutt et al. | Jan 2009 | B2 |
7479608 | Smith | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481348 | Marczyk | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7485124 | Kuhns et al. | Feb 2009 | B2 |
7485133 | Cannon et al. | Feb 2009 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7489055 | Jeong et al. | Feb 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7491232 | Bolduc et al. | Feb 2009 | B2 |
7492261 | Cambre et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7494460 | Haarstad et al. | Feb 2009 | B2 |
7494499 | Nagase et al. | Feb 2009 | B2 |
7494501 | Ahlberg et al. | Feb 2009 | B2 |
7497137 | Tellenbach et al. | Mar 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7501198 | Barley et al. | Mar 2009 | B2 |
7503474 | Hillstead et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7507202 | Schoellhorn | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7510534 | Burdorff et al. | Mar 2009 | B2 |
7510566 | Jacobs et al. | Mar 2009 | B2 |
7513407 | Chang | Apr 2009 | B1 |
7513408 | Shelton, IV et al. | Apr 2009 | B2 |
7517356 | Heinrich | Apr 2009 | B2 |
7524320 | Tierney et al. | Apr 2009 | B2 |
7527632 | Houghton et al. | May 2009 | B2 |
7530984 | Sonnenschein et al. | May 2009 | B2 |
7530985 | Takemoto et al. | May 2009 | B2 |
7533790 | Knodel et al. | May 2009 | B1 |
7533906 | Luettgen et al. | May 2009 | B2 |
7534259 | Lashinski et al. | May 2009 | B2 |
7540867 | Jinno et al. | Jun 2009 | B2 |
7540872 | Schechter et al. | Jun 2009 | B2 |
7542807 | Bertolero et al. | Jun 2009 | B2 |
7543730 | Marczyk | Jun 2009 | B1 |
7544197 | Kelsch et al. | Jun 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547287 | Boecker et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7549998 | Braun | Jun 2009 | B2 |
7552854 | Wixey et al. | Jun 2009 | B2 |
7553173 | Kowalick | Jun 2009 | B2 |
7553275 | Padget et al. | Jun 2009 | B2 |
7554343 | Bromfield | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7556647 | Drews et al. | Jul 2009 | B2 |
7559449 | Viola | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7561637 | Jonsson et al. | Jul 2009 | B2 |
7562910 | Kertesz et al. | Jul 2009 | B2 |
7563269 | Hashiguchi | Jul 2009 | B2 |
7563862 | Sieg et al. | Jul 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7567045 | Fristedt | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7568619 | Todd et al. | Aug 2009 | B2 |
7572285 | Frey et al. | Aug 2009 | B2 |
7572298 | Roller et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7578825 | Huebner | Aug 2009 | B2 |
D600712 | Lamanna et al. | Sep 2009 | S |
7582086 | Privitera et al. | Sep 2009 | B2 |
7583063 | Dooley | Sep 2009 | B2 |
7584880 | Racenet et al. | Sep 2009 | B2 |
7586289 | Andruk et al. | Sep 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7588177 | Racenet | Sep 2009 | B2 |
7591783 | Boulais et al. | Sep 2009 | B2 |
7591818 | Bertolero et al. | Sep 2009 | B2 |
7593766 | Faber et al. | Sep 2009 | B2 |
7595642 | Doyle | Sep 2009 | B2 |
7597229 | Boudreaux et al. | Oct 2009 | B2 |
7597230 | Racenet et al. | Oct 2009 | B2 |
7597693 | Garrison | Oct 2009 | B2 |
7597699 | Rogers | Oct 2009 | B2 |
7598972 | Tomita | Oct 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7604118 | Lio et al. | Oct 2009 | B2 |
7604150 | Boudreaux | Oct 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7604668 | Farnsworth et al. | Oct 2009 | B2 |
7605826 | Sauer | Oct 2009 | B2 |
7607557 | Shelton, IV et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
D604325 | Ebeling et al. | Nov 2009 | S |
7611038 | Racenet et al. | Nov 2009 | B2 |
7611474 | Hibner et al. | Nov 2009 | B2 |
7615003 | Stefanchik et al. | Nov 2009 | B2 |
7615006 | Abe | Nov 2009 | B2 |
7615067 | Lee et al. | Nov 2009 | B2 |
7617961 | Viola | Nov 2009 | B2 |
7618427 | Ortiz et al. | Nov 2009 | B2 |
D605201 | Lorenz et al. | Dec 2009 | S |
D606992 | Liu et al. | Dec 2009 | S |
D607010 | Kocmick | Dec 2009 | S |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7624903 | Green et al. | Dec 2009 | B2 |
7625370 | Hart et al. | Dec 2009 | B2 |
7625388 | Boukhny et al. | Dec 2009 | B2 |
7625662 | Vaisnys et al. | Dec 2009 | B2 |
7630841 | Comisky et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7631794 | Rethy et al. | Dec 2009 | B2 |
7635074 | Olson et al. | Dec 2009 | B2 |
7635922 | Becker | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7638958 | Philipp et al. | Dec 2009 | B2 |
7641091 | Olson et al. | Jan 2010 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7641095 | Viola | Jan 2010 | B2 |
7641671 | Crainich | Jan 2010 | B2 |
7644016 | Nycz et al. | Jan 2010 | B2 |
7644484 | Vereschagin | Jan 2010 | B2 |
7644783 | Roberts et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7648055 | Marczyk | Jan 2010 | B2 |
7648457 | Stefanchik et al. | Jan 2010 | B2 |
7648519 | Lee et al. | Jan 2010 | B2 |
7650185 | Maile et al. | Jan 2010 | B2 |
7651017 | Ortiz et al. | Jan 2010 | B2 |
7651498 | Shifrin et al. | Jan 2010 | B2 |
7654431 | Hueil et al. | Feb 2010 | B2 |
7655003 | Lorang et al. | Feb 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7655288 | Bauman et al. | Feb 2010 | B2 |
7655584 | Biran et al. | Feb 2010 | B2 |
7656131 | Embrey et al. | Feb 2010 | B2 |
7658311 | Boudreaux | Feb 2010 | B2 |
7658312 | Vidal et al. | Feb 2010 | B2 |
7658705 | Melvin et al. | Feb 2010 | B2 |
7659219 | Biran et al. | Feb 2010 | B2 |
7661448 | Kim et al. | Feb 2010 | B2 |
7662161 | Briganti et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7665647 | Shelton, IV et al. | Feb 2010 | B2 |
7666195 | Kelleher et al. | Feb 2010 | B2 |
7669746 | Shelton, IV | Mar 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7670337 | Young | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7673781 | Swayze et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7673783 | Morgan et al. | Mar 2010 | B2 |
7674253 | Fisher et al. | Mar 2010 | B2 |
7674255 | Braun | Mar 2010 | B2 |
7674263 | Ryan | Mar 2010 | B2 |
7674270 | Layer | Mar 2010 | B2 |
7678121 | Knodel | Mar 2010 | B1 |
7682307 | Danitz et al. | Mar 2010 | B2 |
7682367 | Shah et al. | Mar 2010 | B2 |
7682686 | Curro et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7686804 | Johnson et al. | Mar 2010 | B2 |
7686826 | Lee et al. | Mar 2010 | B2 |
7688028 | Phillips et al. | Mar 2010 | B2 |
7690547 | Racenet et al. | Apr 2010 | B2 |
7691098 | Wallace et al. | Apr 2010 | B2 |
7691103 | Fernandez et al. | Apr 2010 | B2 |
7691106 | Schenberger et al. | Apr 2010 | B2 |
7694864 | Okada et al. | Apr 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7695485 | Whitman et al. | Apr 2010 | B2 |
7695493 | Saadat et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7699844 | Utley et al. | Apr 2010 | B2 |
7699846 | Ryan | Apr 2010 | B2 |
7699856 | Van Wyk et al. | Apr 2010 | B2 |
7699859 | Bombard et al. | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7699868 | Frank et al. | Apr 2010 | B2 |
7703653 | Shah et al. | Apr 2010 | B2 |
7705559 | Powell et al. | Apr 2010 | B2 |
7706853 | Hacker et al. | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7708182 | Viola | May 2010 | B2 |
7708758 | Lee et al. | May 2010 | B2 |
7708768 | Danek et al. | May 2010 | B2 |
7709136 | Touchton et al. | May 2010 | B2 |
7712182 | Zeiler et al. | May 2010 | B2 |
7713190 | Brock et al. | May 2010 | B2 |
7713542 | Xu et al. | May 2010 | B2 |
7714239 | Smith | May 2010 | B2 |
7714334 | Lin | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7717846 | Zirps et al. | May 2010 | B2 |
7717873 | Swick | May 2010 | B2 |
7717915 | Miyazawa | May 2010 | B2 |
7717926 | Whitfield et al. | May 2010 | B2 |
7718180 | Karp | May 2010 | B2 |
7718556 | Matsuda et al. | May 2010 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7721932 | Cole et al. | May 2010 | B2 |
7721933 | Ehrenfels et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722607 | Dumbauld et al. | May 2010 | B2 |
7722610 | Viola et al. | May 2010 | B2 |
7725214 | Diolaiti | May 2010 | B2 |
7726171 | Langlotz et al. | Jun 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7727954 | McKay | Jun 2010 | B2 |
7728553 | Carrier et al. | Jun 2010 | B2 |
7729742 | Govari | Jun 2010 | B2 |
7731072 | Timm et al. | Jun 2010 | B2 |
7731073 | Wixey et al. | Jun 2010 | B2 |
7731724 | Huitema et al. | Jun 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7735704 | Bilotti | Jun 2010 | B2 |
7736254 | Schena | Jun 2010 | B2 |
7736306 | Brustad et al. | Jun 2010 | B2 |
7736356 | Cooper et al. | Jun 2010 | B2 |
7736374 | Vaughan et al. | Jun 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7742036 | Grant et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7744624 | Bettuchi | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7744628 | Viola | Jun 2010 | B2 |
7747146 | Milano et al. | Jun 2010 | B2 |
7748587 | Haramiishi et al. | Jul 2010 | B2 |
7748632 | Coleman et al. | Jul 2010 | B2 |
7749204 | Dhanaraj et al. | Jul 2010 | B2 |
7749240 | Takahashi et al. | Jul 2010 | B2 |
7751870 | Whitman | Jul 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7753246 | Scirica | Jul 2010 | B2 |
7753904 | Shelton, IV et al. | Jul 2010 | B2 |
7757924 | Gerbi et al. | Jul 2010 | B2 |
7758594 | Lamson et al. | Jul 2010 | B2 |
7758612 | Shipp | Jul 2010 | B2 |
7758613 | Whitman | Jul 2010 | B2 |
7762462 | Gelbman | Jul 2010 | B2 |
7762998 | Birk et al. | Jul 2010 | B2 |
D622286 | Umezawa | Aug 2010 | S |
7766207 | Mather et al. | Aug 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7766821 | Brunnen et al. | Aug 2010 | B2 |
7766894 | Weitzner et al. | Aug 2010 | B2 |
7770658 | Ito et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770774 | Mastri et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771396 | Stefanchik et al. | Aug 2010 | B2 |
7772720 | McGee et al. | Aug 2010 | B2 |
7772725 | Siman-Tov | Aug 2010 | B2 |
7775972 | Brock et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7776065 | Griffiths et al. | Aug 2010 | B2 |
7778004 | Nerheim et al. | Aug 2010 | B2 |
7779614 | McGonagle et al. | Aug 2010 | B1 |
7779737 | Newman, Jr. et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7780055 | Scirica et al. | Aug 2010 | B2 |
7780309 | McMillan et al. | Aug 2010 | B2 |
7780651 | Madhani et al. | Aug 2010 | B2 |
7780663 | Yates et al. | Aug 2010 | B2 |
7780685 | Hunt et al. | Aug 2010 | B2 |
7782382 | Fujimura | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7787256 | Chan et al. | Aug 2010 | B2 |
7789283 | Shah | Sep 2010 | B2 |
7789875 | Brock et al. | Sep 2010 | B2 |
7789883 | Takashino et al. | Sep 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7794475 | Hess et al. | Sep 2010 | B2 |
7798386 | Schall et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7799044 | Johnston et al. | Sep 2010 | B2 |
7799965 | Patel et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7806871 | Li et al. | Oct 2010 | B2 |
7806891 | Nowlin et al. | Oct 2010 | B2 |
7810690 | Bilotti et al. | Oct 2010 | B2 |
7810691 | Boyden et al. | Oct 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7810693 | Broehl et al. | Oct 2010 | B2 |
7811275 | Birk et al. | Oct 2010 | B2 |
7814816 | Alberti et al. | Oct 2010 | B2 |
7815092 | Whitman et al. | Oct 2010 | B2 |
7815565 | Stefanchik et al. | Oct 2010 | B2 |
7815662 | Spivey et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7819299 | Shelton, IV et al. | Oct 2010 | B2 |
7819799 | Merril et al. | Oct 2010 | B2 |
7819884 | Lee et al. | Oct 2010 | B2 |
7819885 | Cooper | Oct 2010 | B2 |
7819886 | Whitfield et al. | Oct 2010 | B2 |
7819894 | Mitsuishi et al. | Oct 2010 | B2 |
7823076 | Borovsky et al. | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7823760 | Zemlok et al. | Nov 2010 | B2 |
7824401 | Manzo et al. | Nov 2010 | B2 |
7824422 | Benchetrit | Nov 2010 | B2 |
7824426 | Racenet et al. | Nov 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7828794 | Sartor | Nov 2010 | B2 |
7828808 | Hinman et al. | Nov 2010 | B2 |
7829416 | Kudou et al. | Nov 2010 | B2 |
7831292 | Quaid et al. | Nov 2010 | B2 |
7832408 | Shelton, IV et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833234 | Bailly et al. | Nov 2010 | B2 |
7835823 | Sillman et al. | Nov 2010 | B2 |
7836400 | May et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7837425 | Saeki et al. | Nov 2010 | B2 |
7837685 | Weinberg et al. | Nov 2010 | B2 |
7837687 | Harp | Nov 2010 | B2 |
7837694 | Tethrake et al. | Nov 2010 | B2 |
7838789 | Stoffers et al. | Nov 2010 | B2 |
7839109 | Carmen, Jr. et al. | Nov 2010 | B2 |
7840253 | Tremblay et al. | Nov 2010 | B2 |
7841503 | Sonnenschein et al. | Nov 2010 | B2 |
7842025 | Coleman et al. | Nov 2010 | B2 |
7842028 | Lee | Nov 2010 | B2 |
7843158 | Prisco | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845535 | Scircia | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7845538 | Whitman | Dec 2010 | B2 |
7845912 | Sung et al. | Dec 2010 | B2 |
7846085 | Silverman et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7846161 | Dumbauld et al. | Dec 2010 | B2 |
7848066 | Yanagishima | Dec 2010 | B2 |
7850623 | Griffin et al. | Dec 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7850982 | Stopek et al. | Dec 2010 | B2 |
7853813 | Lee | Dec 2010 | B2 |
7854735 | Houser et al. | Dec 2010 | B2 |
7854736 | Ryan | Dec 2010 | B2 |
7857183 | Shelton, IV | Dec 2010 | B2 |
7857184 | Viola | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7857186 | Baxter, III et al. | Dec 2010 | B2 |
7857813 | Schmitz et al. | Dec 2010 | B2 |
7861906 | Doll et al. | Jan 2011 | B2 |
7862502 | Pool et al. | Jan 2011 | B2 |
7862546 | Conlon et al. | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7866525 | Scirica | Jan 2011 | B2 |
7866527 | Hall et al. | Jan 2011 | B2 |
7866528 | Olson et al. | Jan 2011 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7871418 | Thompson et al. | Jan 2011 | B2 |
7871440 | Schwartz et al. | Jan 2011 | B2 |
7875055 | Cichocki, Jr. | Jan 2011 | B2 |
7877869 | Mehdizadeh et al. | Feb 2011 | B2 |
7879063 | Khosravi | Feb 2011 | B2 |
7879070 | Ortiz et al. | Feb 2011 | B2 |
7879367 | Heublein et al. | Feb 2011 | B2 |
7883461 | Albrecht et al. | Feb 2011 | B2 |
7883465 | Donofrio et al. | Feb 2011 | B2 |
7883540 | Niwa et al. | Feb 2011 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7886952 | Scirica et al. | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7887535 | Lands et al. | Feb 2011 | B2 |
7887536 | Johnson et al. | Feb 2011 | B2 |
7887563 | Cummins | Feb 2011 | B2 |
7887755 | Mingerink et al. | Feb 2011 | B2 |
7891531 | Ward | Feb 2011 | B1 |
7891532 | Mastri et al. | Feb 2011 | B2 |
7892200 | Birk et al. | Feb 2011 | B2 |
7892245 | Liddicoat et al. | Feb 2011 | B2 |
7893586 | West et al. | Feb 2011 | B2 |
7896214 | Farascioni | Mar 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7896671 | Kim et al. | Mar 2011 | B2 |
7896869 | DiSilvestro et al. | Mar 2011 | B2 |
7896877 | Hall et al. | Mar 2011 | B2 |
7896895 | Boudreaux et al. | Mar 2011 | B2 |
7896897 | Gresham et al. | Mar 2011 | B2 |
7896900 | Frank et al. | Mar 2011 | B2 |
7898198 | Murphree | Mar 2011 | B2 |
7900805 | Shelton, IV et al. | Mar 2011 | B2 |
7900806 | Chen et al. | Mar 2011 | B2 |
7901381 | Birk et al. | Mar 2011 | B2 |
7905380 | Shelton, IV et al. | Mar 2011 | B2 |
7905381 | Baxter, III et al. | Mar 2011 | B2 |
7905881 | Masuda et al. | Mar 2011 | B2 |
7905889 | Catanese, III et al. | Mar 2011 | B2 |
7905890 | Whitfield et al. | Mar 2011 | B2 |
7905902 | Huitema et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909191 | Baker et al. | Mar 2011 | B2 |
7909220 | Viola | Mar 2011 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7913893 | Mastri et al. | Mar 2011 | B2 |
7914521 | Wang et al. | Mar 2011 | B2 |
7914543 | Roth et al. | Mar 2011 | B2 |
7914551 | Ortiz et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918376 | Knodel et al. | Apr 2011 | B1 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7918845 | Saadat et al. | Apr 2011 | B2 |
7918848 | Lau et al. | Apr 2011 | B2 |
7918861 | Brock et al. | Apr 2011 | B2 |
7918867 | Dana et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7923144 | Kohn et al. | Apr 2011 | B2 |
7926691 | Viola et al. | Apr 2011 | B2 |
7926692 | Racenet et al. | Apr 2011 | B2 |
7927328 | Orszulak et al. | Apr 2011 | B2 |
7928281 | Augustine | Apr 2011 | B2 |
7930040 | Kelsch et al. | Apr 2011 | B1 |
7930065 | Larkin et al. | Apr 2011 | B2 |
7931660 | Aranyi et al. | Apr 2011 | B2 |
7931695 | Ringeisen | Apr 2011 | B2 |
7931877 | Steffens et al. | Apr 2011 | B2 |
7934630 | Shelton, IV et al. | May 2011 | B2 |
7934631 | Balbierz et al. | May 2011 | B2 |
7934896 | Schnier | May 2011 | B2 |
7935130 | Williams | May 2011 | B2 |
7935773 | Hadba et al. | May 2011 | B2 |
7936142 | Otsuka et al. | May 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7939152 | Haskin et al. | May 2011 | B2 |
7941865 | Seman, Jr. et al. | May 2011 | B2 |
7942300 | Rethy et al. | May 2011 | B2 |
7942303 | Shah | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7944175 | Mori et al. | May 2011 | B2 |
7945792 | Cherpantier | May 2011 | B2 |
7945798 | Carlson et al. | May 2011 | B2 |
7946453 | Voegele et al. | May 2011 | B2 |
7947011 | Birk et al. | May 2011 | B2 |
7948381 | Lindsay et al. | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7950562 | Beardsley et al. | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7952464 | Nikitin et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7954684 | Boudreaux | Jun 2011 | B2 |
7954685 | Viola | Jun 2011 | B2 |
7954686 | Baxter, III et al. | Jun 2011 | B2 |
7954687 | Zemlok et al. | Jun 2011 | B2 |
7954688 | Argentine et al. | Jun 2011 | B2 |
7955253 | Ewers et al. | Jun 2011 | B2 |
7955257 | Frasier et al. | Jun 2011 | B2 |
7955322 | Devengenzo et al. | Jun 2011 | B2 |
7955327 | Sartor et al. | Jun 2011 | B2 |
7955380 | Chu et al. | Jun 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7959052 | Sonnenschein et al. | Jun 2011 | B2 |
7963432 | Knodel et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7963913 | Devengenzo et al. | Jun 2011 | B2 |
7963963 | Francischelli et al. | Jun 2011 | B2 |
7963964 | Santilli et al. | Jun 2011 | B2 |
7964206 | Suokas et al. | Jun 2011 | B2 |
7966236 | Noriega et al. | Jun 2011 | B2 |
7966269 | Bauer et al. | Jun 2011 | B2 |
7966799 | Morgan et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7967791 | Franer et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
7972298 | Wallace et al. | Jul 2011 | B2 |
7972315 | Birk et al. | Jul 2011 | B2 |
7976213 | Bertolotti et al. | Jul 2011 | B2 |
7976508 | Hoag | Jul 2011 | B2 |
7976563 | Summerer | Jul 2011 | B2 |
7979137 | Tracey et al. | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7981025 | Pool et al. | Jul 2011 | B2 |
7981102 | Patel et al. | Jul 2011 | B2 |
7981132 | Dubrul et al. | Jul 2011 | B2 |
7987405 | Turner et al. | Jul 2011 | B2 |
7988015 | Mason, II et al. | Aug 2011 | B2 |
7988026 | Knodel et al. | Aug 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7988779 | Disalvo et al. | Aug 2011 | B2 |
7992757 | Wheeler et al. | Aug 2011 | B2 |
7993360 | Hacker et al. | Aug 2011 | B2 |
7994670 | Ji | Aug 2011 | B2 |
7997054 | Bertsch et al. | Aug 2011 | B2 |
7997468 | Farascioni | Aug 2011 | B2 |
7997469 | Olson et al. | Aug 2011 | B2 |
8002696 | Suzuki | Aug 2011 | B2 |
8002784 | Jinno et al. | Aug 2011 | B2 |
8002785 | Weiss et al. | Aug 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006365 | Levin et al. | Aug 2011 | B2 |
8006885 | Marczyk | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8007370 | Hirsch et al. | Aug 2011 | B2 |
8007465 | Birk et al. | Aug 2011 | B2 |
8007479 | Birk et al. | Aug 2011 | B2 |
8007511 | Brock et al. | Aug 2011 | B2 |
8007513 | Nalagatla et al. | Aug 2011 | B2 |
8008598 | Whitman et al. | Aug 2011 | B2 |
8010180 | Quaid et al. | Aug 2011 | B2 |
8011550 | Aranyi et al. | Sep 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011553 | Mastri et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8016176 | Kasvikis et al. | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016849 | Wenchell | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8016881 | Furst | Sep 2011 | B2 |
8020741 | Cole et al. | Sep 2011 | B2 |
8020742 | Marczyk | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8021375 | Aldrich et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8025896 | Malaviya et al. | Sep 2011 | B2 |
8028835 | Yasuda et al. | Oct 2011 | B2 |
8028882 | Viola | Oct 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8028884 | Sniffin et al. | Oct 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8029510 | Hoegerle | Oct 2011 | B2 |
8031069 | Cohn et al. | Oct 2011 | B2 |
8033438 | Scirica | Oct 2011 | B2 |
8033439 | Racenet et al. | Oct 2011 | B2 |
8033440 | Wenchell et al. | Oct 2011 | B2 |
8033442 | Racenet et al. | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8034337 | Simard | Oct 2011 | B2 |
8034363 | Li et al. | Oct 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8037591 | Spivey et al. | Oct 2011 | B2 |
8038044 | Viola | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8043328 | Hahnen et al. | Oct 2011 | B2 |
8044536 | Nguyen et al. | Oct 2011 | B2 |
8044604 | Hagino et al. | Oct 2011 | B2 |
8047236 | Perry | Nov 2011 | B2 |
8048503 | Farnsworth et al. | Nov 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8052697 | Phillips | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8056788 | Mastri et al. | Nov 2011 | B2 |
8056789 | White et al. | Nov 2011 | B1 |
8057508 | Shelton, IV | Nov 2011 | B2 |
8058771 | Giordano et al. | Nov 2011 | B2 |
8060250 | Reiland et al. | Nov 2011 | B2 |
8061014 | Smith et al. | Nov 2011 | B2 |
8061576 | Cappola | Nov 2011 | B2 |
8062236 | Soltz | Nov 2011 | B2 |
8062306 | Nobis et al. | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8063619 | Zhu et al. | Nov 2011 | B2 |
8066158 | Vogel et al. | Nov 2011 | B2 |
8066166 | Demmy et al. | Nov 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066168 | Vidal et al. | Nov 2011 | B2 |
8066720 | Knodel et al. | Nov 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
D650789 | Arnold | Dec 2011 | S |
8070033 | Milliman et al. | Dec 2011 | B2 |
8070034 | Knodel | Dec 2011 | B1 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070743 | Kagan et al. | Dec 2011 | B2 |
8074858 | Marczyk | Dec 2011 | B2 |
8074859 | Kostrzewski | Dec 2011 | B2 |
8074861 | Ehrenfels et al. | Dec 2011 | B2 |
8075476 | Vargas | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8079950 | Stern et al. | Dec 2011 | B2 |
8079989 | Birk et al. | Dec 2011 | B2 |
8080004 | Downey et al. | Dec 2011 | B2 |
8083118 | Milliman et al. | Dec 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8083120 | Shelton, IV et al. | Dec 2011 | B2 |
8084001 | Burns et al. | Dec 2011 | B2 |
8084969 | David et al. | Dec 2011 | B2 |
8085013 | Wei et al. | Dec 2011 | B2 |
8087562 | Manoux et al. | Jan 2012 | B1 |
8087563 | Milliman et al. | Jan 2012 | B2 |
8089509 | Chatenever et al. | Jan 2012 | B2 |
8091753 | Viola | Jan 2012 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8092443 | Bischoff | Jan 2012 | B2 |
8092932 | Phillips et al. | Jan 2012 | B2 |
8093572 | Kuduvalli | Jan 2012 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8100310 | Zemlok | Jan 2012 | B2 |
8100824 | Hegeman et al. | Jan 2012 | B2 |
8100872 | Patel | Jan 2012 | B2 |
8102138 | Sekine et al. | Jan 2012 | B2 |
8102278 | Deck et al. | Jan 2012 | B2 |
8105320 | Manzo | Jan 2012 | B2 |
8105350 | Lee et al. | Jan 2012 | B2 |
8107925 | Natsuno et al. | Jan 2012 | B2 |
8108033 | Drew et al. | Jan 2012 | B2 |
8108072 | Zhao et al. | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8110208 | Hen | Feb 2012 | B1 |
8113405 | Milliman | Feb 2012 | B2 |
8113407 | Holsten et al. | Feb 2012 | B2 |
8113408 | Wenchell et al. | Feb 2012 | B2 |
8113410 | Hall et al. | Feb 2012 | B2 |
8114017 | Bacher | Feb 2012 | B2 |
8114100 | Smith et al. | Feb 2012 | B2 |
8114345 | Dlugos, Jr. et al. | Feb 2012 | B2 |
8118206 | Zand et al. | Feb 2012 | B2 |
8118207 | Racenet et al. | Feb 2012 | B2 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8122128 | Burke, II et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8123523 | Carron et al. | Feb 2012 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8125168 | Johnson et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8127976 | Scirica et al. | Mar 2012 | B2 |
8128624 | Couture et al. | Mar 2012 | B2 |
8128643 | Aranyi et al. | Mar 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8128662 | Altarac et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8132706 | Marczyk et al. | Mar 2012 | B2 |
8133500 | Ringeisen et al. | Mar 2012 | B2 |
8134306 | Drader et al. | Mar 2012 | B2 |
8136711 | Beardsley et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8136713 | Hathaway et al. | Mar 2012 | B2 |
8137339 | Jinno et al. | Mar 2012 | B2 |
8140417 | Shibata | Mar 2012 | B2 |
8141762 | Bedi et al. | Mar 2012 | B2 |
8141763 | Milliman | Mar 2012 | B2 |
8142200 | Crunkilton et al. | Mar 2012 | B2 |
8142425 | Eggers | Mar 2012 | B2 |
8142461 | Houser et al. | Mar 2012 | B2 |
8142515 | Therin et al. | Mar 2012 | B2 |
8143520 | Cutler | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8147421 | Farquhar et al. | Apr 2012 | B2 |
8147456 | Fisher et al. | Apr 2012 | B2 |
8147485 | Wham et al. | Apr 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8152756 | Webster et al. | Apr 2012 | B2 |
8154239 | Katsuki et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157148 | Scirica | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8157153 | Shelton, IV et al. | Apr 2012 | B2 |
8157793 | Omori et al. | Apr 2012 | B2 |
8157834 | Conlon | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8162138 | Bettenhausen et al. | Apr 2012 | B2 |
8162197 | Mastri et al. | Apr 2012 | B2 |
8162668 | Toly | Apr 2012 | B2 |
8162933 | Francischelli et al. | Apr 2012 | B2 |
8162965 | Reschke et al. | Apr 2012 | B2 |
8167185 | Shelton, IV et al. | May 2012 | B2 |
8167622 | Zhou | May 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8167898 | Schaller et al. | May 2012 | B1 |
8170241 | Roe et al. | May 2012 | B2 |
8172004 | Ho | May 2012 | B2 |
8172120 | Boyden et al. | May 2012 | B2 |
8172122 | Kasvikis et al. | May 2012 | B2 |
8172124 | Shelton, IV et al. | May 2012 | B2 |
8177776 | Humayun et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8179705 | Chapuis | May 2012 | B2 |
8180458 | Kane et al. | May 2012 | B2 |
8181839 | Beetel | May 2012 | B2 |
8181840 | Milliman | May 2012 | B2 |
8182422 | Bayer et al. | May 2012 | B2 |
8182444 | Uber, III et al. | May 2012 | B2 |
8183807 | Tsai et al. | May 2012 | B2 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186556 | Viola | May 2012 | B2 |
8186558 | Sapienza | May 2012 | B2 |
8186560 | Hess et al. | May 2012 | B2 |
8190238 | Moll et al. | May 2012 | B2 |
8191752 | Scirica | Jun 2012 | B2 |
8192350 | Ortiz et al. | Jun 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8192651 | Young et al. | Jun 2012 | B2 |
8193129 | Tagawa et al. | Jun 2012 | B2 |
8196795 | Moore et al. | Jun 2012 | B2 |
8196796 | Shelton, IV et al. | Jun 2012 | B2 |
8197501 | Shadeck et al. | Jun 2012 | B2 |
8197502 | Smith et al. | Jun 2012 | B2 |
8197837 | Jamiolkowski et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8201721 | Zemlok et al. | Jun 2012 | B2 |
8202549 | Stucky et al. | Jun 2012 | B2 |
8205779 | Ma et al. | Jun 2012 | B2 |
8205780 | Sorrentino et al. | Jun 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8207863 | Neubauer et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8210415 | Ward | Jul 2012 | B2 |
8210416 | Milliman et al. | Jul 2012 | B2 |
8210721 | Chen et al. | Jul 2012 | B2 |
8211125 | Spivey | Jul 2012 | B2 |
8214019 | Govari et al. | Jul 2012 | B2 |
8215531 | Shelton, IV et al. | Jul 2012 | B2 |
8215532 | Marczyk | Jul 2012 | B2 |
8215533 | Viola et al. | Jul 2012 | B2 |
8220468 | Cooper et al. | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8220690 | Hess et al. | Jul 2012 | B2 |
8221402 | Francischelli et al. | Jul 2012 | B2 |
8221424 | Cha | Jul 2012 | B2 |
8221433 | Lozier et al. | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225979 | Farascioni et al. | Jul 2012 | B2 |
8226553 | Shelton, IV et al. | Jul 2012 | B2 |
8226635 | Petrie et al. | Jul 2012 | B2 |
8226675 | Houser et al. | Jul 2012 | B2 |
8226715 | Hwang et al. | Jul 2012 | B2 |
8227946 | Kim | Jul 2012 | B2 |
8228020 | Shin et al. | Jul 2012 | B2 |
8228048 | Spencer | Jul 2012 | B2 |
8229549 | Whitman et al. | Jul 2012 | B2 |
8230235 | Goodman et al. | Jul 2012 | B2 |
8231040 | Zemlok et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8235272 | Nicholas et al. | Aug 2012 | B2 |
8235274 | Cappola | Aug 2012 | B2 |
8236010 | Ortiz et al. | Aug 2012 | B2 |
8236011 | Harris et al. | Aug 2012 | B2 |
8236020 | Smith et al. | Aug 2012 | B2 |
8237388 | Jinno et al. | Aug 2012 | B2 |
8240537 | Marczyk | Aug 2012 | B2 |
8241271 | Millman et al. | Aug 2012 | B2 |
8241284 | Dycus et al. | Aug 2012 | B2 |
8241308 | Kortenbach et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8245594 | Rogers et al. | Aug 2012 | B2 |
8245898 | Smith et al. | Aug 2012 | B2 |
8245899 | Swensgard et al. | Aug 2012 | B2 |
8245900 | Scirica | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8246608 | Omori et al. | Aug 2012 | B2 |
8246637 | Viola et al. | Aug 2012 | B2 |
8252009 | Weller et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8256655 | Sniffin et al. | Sep 2012 | B2 |
8256656 | Milliman et al. | Sep 2012 | B2 |
8257251 | Shelton, IV et al. | Sep 2012 | B2 |
8257356 | Bleich et al. | Sep 2012 | B2 |
8257386 | Lee et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8257634 | Scirica | Sep 2012 | B2 |
8258745 | Smith et al. | Sep 2012 | B2 |
8261958 | Knodel | Sep 2012 | B1 |
8262560 | Whitman | Sep 2012 | B2 |
8262655 | Ghabrial et al. | Sep 2012 | B2 |
8266232 | Piper et al. | Sep 2012 | B2 |
8267300 | Boudreaux | Sep 2012 | B2 |
8267849 | Wazer et al. | Sep 2012 | B2 |
8267924 | Zemlok et al. | Sep 2012 | B2 |
8267946 | Whitfield et al. | Sep 2012 | B2 |
8267951 | Whayne et al. | Sep 2012 | B2 |
8268344 | Ma et al. | Sep 2012 | B2 |
8269121 | Smith | Sep 2012 | B2 |
8272553 | Mastri et al. | Sep 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8272918 | Lam | Sep 2012 | B2 |
8273404 | Dave et al. | Sep 2012 | B2 |
8276594 | Shah | Oct 2012 | B2 |
8276801 | Zemlok et al. | Oct 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8277473 | Sunaoshi et al. | Oct 2012 | B2 |
8281446 | Moskovich | Oct 2012 | B2 |
8281973 | Wenchell et al. | Oct 2012 | B2 |
8281974 | Hessler et al. | Oct 2012 | B2 |
8282654 | Ferrari et al. | Oct 2012 | B2 |
8285367 | Hyde et al. | Oct 2012 | B2 |
8286723 | Puzio et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8286846 | Smith et al. | Oct 2012 | B2 |
8286847 | Taylor | Oct 2012 | B2 |
8287487 | Estes | Oct 2012 | B2 |
8287522 | Moses et al. | Oct 2012 | B2 |
8287561 | Nunez et al. | Oct 2012 | B2 |
8288984 | Yang | Oct 2012 | B2 |
8289403 | Dobashi et al. | Oct 2012 | B2 |
8290883 | Takeuchi et al. | Oct 2012 | B2 |
8292147 | Viola | Oct 2012 | B2 |
8292148 | Viola | Oct 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292151 | Viola | Oct 2012 | B2 |
8292152 | Milliman et al. | Oct 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8292157 | Smith et al. | Oct 2012 | B2 |
8292158 | Sapienza | Oct 2012 | B2 |
8292801 | Dejima et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8292906 | Taylor et al. | Oct 2012 | B2 |
8294399 | Suzuki et al. | Oct 2012 | B2 |
8298161 | Vargas | Oct 2012 | B2 |
8298189 | Fisher et al. | Oct 2012 | B2 |
8298233 | Mueller | Oct 2012 | B2 |
8298677 | Wiesner et al. | Oct 2012 | B2 |
8302323 | Fortier et al. | Nov 2012 | B2 |
8303621 | Miyamoto et al. | Nov 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8308041 | Kostrzewski | Nov 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308043 | Bindra et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8308659 | Scheibe et al. | Nov 2012 | B2 |
8308725 | Bell et al. | Nov 2012 | B2 |
8310188 | Nakai | Nov 2012 | B2 |
8313496 | Sauer et al. | Nov 2012 | B2 |
8313499 | Magnusson et al. | Nov 2012 | B2 |
8313509 | Kostrzewski | Nov 2012 | B2 |
8317070 | Hueil et al. | Nov 2012 | B2 |
8317071 | Knodel | Nov 2012 | B1 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8317437 | Merkley et al. | Nov 2012 | B2 |
8317744 | Kirschenman | Nov 2012 | B2 |
8317790 | Bell et al. | Nov 2012 | B2 |
8319002 | Daniels et al. | Nov 2012 | B2 |
D672784 | Clanton et al. | Dec 2012 | S |
8322455 | Shelton, IV et al. | Dec 2012 | B2 |
8322589 | Boudreaux | Dec 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8322901 | Michelotti | Dec 2012 | B2 |
8323271 | Humayun et al. | Dec 2012 | B2 |
8323789 | Rozhin et al. | Dec 2012 | B2 |
8324585 | McBroom et al. | Dec 2012 | B2 |
8327514 | Kim | Dec 2012 | B2 |
8328061 | Kasvikis | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8328064 | Racenet et al. | Dec 2012 | B2 |
8328065 | Shah | Dec 2012 | B2 |
8328802 | Deville et al. | Dec 2012 | B2 |
8328823 | Aranyi et al. | Dec 2012 | B2 |
8333313 | Boudreaux et al. | Dec 2012 | B2 |
8333691 | Schaaf | Dec 2012 | B2 |
8333764 | Francischelli et al. | Dec 2012 | B2 |
8333779 | Smith et al. | Dec 2012 | B2 |
8334468 | Palmer et al. | Dec 2012 | B2 |
8336753 | Olson et al. | Dec 2012 | B2 |
8336754 | Cappola et al. | Dec 2012 | B2 |
8342377 | Milliman et al. | Jan 2013 | B2 |
8342378 | Marczyk et al. | Jan 2013 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8342380 | Viola | Jan 2013 | B2 |
8343150 | Artale | Jan 2013 | B2 |
8347978 | Forster et al. | Jan 2013 | B2 |
8348118 | Segura | Jan 2013 | B2 |
8348123 | Scirica et al. | Jan 2013 | B2 |
8348124 | Scirica | Jan 2013 | B2 |
8348125 | Viola et al. | Jan 2013 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348127 | Marczyk | Jan 2013 | B2 |
8348129 | Bedi et al. | Jan 2013 | B2 |
8348130 | Shah et al. | Jan 2013 | B2 |
8348131 | Omaits et al. | Jan 2013 | B2 |
8348837 | Wenchell | Jan 2013 | B2 |
8348948 | Bahney | Jan 2013 | B2 |
8348959 | Wolford et al. | Jan 2013 | B2 |
8348972 | Soltz et al. | Jan 2013 | B2 |
8349987 | Kapiamba et al. | Jan 2013 | B2 |
8352004 | Mannheimer et al. | Jan 2013 | B2 |
8353437 | Boudreaux | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8356740 | Knodel | Jan 2013 | B1 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8357158 | McKenna et al. | Jan 2013 | B2 |
8357161 | Mueller | Jan 2013 | B2 |
8359174 | Nakashima et al. | Jan 2013 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
8360297 | Shelton, IV et al. | Jan 2013 | B2 |
8360298 | Farascioni et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8361501 | DiTizio et al. | Jan 2013 | B2 |
D676866 | Chaudhri | Feb 2013 | S |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8365973 | White et al. | Feb 2013 | B1 |
8365975 | Manoux et al. | Feb 2013 | B1 |
8365976 | Hess et al. | Feb 2013 | B2 |
8366559 | Papenfuss et al. | Feb 2013 | B2 |
8366719 | Markey et al. | Feb 2013 | B2 |
8366787 | Brown et al. | Feb 2013 | B2 |
8368327 | Benning et al. | Feb 2013 | B2 |
8369056 | Senriuchi et al. | Feb 2013 | B2 |
8371393 | Higuchi et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8371494 | Racenet et al. | Feb 2013 | B2 |
8372094 | Bettuchi et al. | Feb 2013 | B2 |
8374723 | Zhao et al. | Feb 2013 | B2 |
8376865 | Forster et al. | Feb 2013 | B2 |
8377029 | Nagao et al. | Feb 2013 | B2 |
8377044 | Coe et al. | Feb 2013 | B2 |
8377059 | Deville et al. | Feb 2013 | B2 |
8381828 | Whitman et al. | Feb 2013 | B2 |
8381834 | Barhitte et al. | Feb 2013 | B2 |
8382773 | Whitfield et al. | Feb 2013 | B2 |
8382790 | Uenohara et al. | Feb 2013 | B2 |
D677273 | Randall et al. | Mar 2013 | S |
8387848 | Johnson et al. | Mar 2013 | B2 |
8388633 | Rousseau et al. | Mar 2013 | B2 |
8389588 | Ringeisen et al. | Mar 2013 | B2 |
8393513 | Jankowski | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8393516 | Kostrzewski | Mar 2013 | B2 |
8397832 | Blickle et al. | Mar 2013 | B2 |
8397971 | Yates et al. | Mar 2013 | B2 |
8397972 | Kostrzewski | Mar 2013 | B2 |
8397973 | Hausen | Mar 2013 | B1 |
8398633 | Mueller | Mar 2013 | B2 |
8398669 | Kim | Mar 2013 | B2 |
8398673 | Hinchliffe et al. | Mar 2013 | B2 |
8398674 | Prestel | Mar 2013 | B2 |
8400108 | Powell et al. | Mar 2013 | B2 |
8400851 | Byun | Mar 2013 | B2 |
8403138 | Weisshaupt et al. | Mar 2013 | B2 |
8403195 | Beardsley et al. | Mar 2013 | B2 |
8403196 | Beardsley et al. | Mar 2013 | B2 |
8403198 | Sorrentino et al. | Mar 2013 | B2 |
8403832 | Cunningham et al. | Mar 2013 | B2 |
8403926 | Nobis et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403946 | Whitfield et al. | Mar 2013 | B2 |
8403950 | Palmer et al. | Mar 2013 | B2 |
D680646 | Hunt et al. | Apr 2013 | S |
8408439 | Huang et al. | Apr 2013 | B2 |
8408442 | Racenet et al. | Apr 2013 | B2 |
8409079 | Okamoto et al. | Apr 2013 | B2 |
8409174 | Omori | Apr 2013 | B2 |
8409175 | Lee et al. | Apr 2013 | B2 |
8409211 | Baroud | Apr 2013 | B2 |
8409222 | Whitfield et al. | Apr 2013 | B2 |
8409223 | Sorrentino et al. | Apr 2013 | B2 |
8409234 | Stabler et al. | Apr 2013 | B2 |
8411500 | Gapihan et al. | Apr 2013 | B2 |
8413661 | Rousseau et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8414469 | Diolaiti | Apr 2013 | B2 |
8414577 | Boudreaux et al. | Apr 2013 | B2 |
8414598 | Brock et al. | Apr 2013 | B2 |
8418073 | Mohr et al. | Apr 2013 | B2 |
8418906 | Farascioni et al. | Apr 2013 | B2 |
8418907 | Johnson et al. | Apr 2013 | B2 |
8418908 | Beardsley | Apr 2013 | B1 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8419635 | Shelton, IV et al. | Apr 2013 | B2 |
8419717 | Diolaiti et al. | Apr 2013 | B2 |
8419747 | Hinman et al. | Apr 2013 | B2 |
8419754 | Laby et al. | Apr 2013 | B2 |
8419755 | Deem et al. | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8424737 | Scirica | Apr 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8424740 | Shelton, IV et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8425600 | Maxwell | Apr 2013 | B2 |
8427430 | Lee et al. | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8430892 | Bindra et al. | Apr 2013 | B2 |
8430898 | Wiener et al. | Apr 2013 | B2 |
8435257 | Smith et al. | May 2013 | B2 |
8439246 | Knodel | May 2013 | B1 |
8439830 | McKinley et al. | May 2013 | B2 |
8444036 | Shelton, IV | May 2013 | B2 |
8444037 | Nicholas et al. | May 2013 | B2 |
8444549 | Viola et al. | May 2013 | B2 |
8449536 | Selig | May 2013 | B2 |
8449560 | Roth et al. | May 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453906 | Huang et al. | Jun 2013 | B2 |
8453907 | Laurent et al. | Jun 2013 | B2 |
8453908 | Bedi et al. | Jun 2013 | B2 |
8453912 | Mastri et al. | Jun 2013 | B2 |
8453914 | Laurent et al. | Jun 2013 | B2 |
8454495 | Kawano et al. | Jun 2013 | B2 |
8454551 | Allen et al. | Jun 2013 | B2 |
8454628 | Smith et al. | Jun 2013 | B2 |
8454640 | Johnston et al. | Jun 2013 | B2 |
8457757 | Cauller et al. | Jun 2013 | B2 |
8459520 | Giordano et al. | Jun 2013 | B2 |
8459521 | Zemlok et al. | Jun 2013 | B2 |
8459524 | Pribanic et al. | Jun 2013 | B2 |
8459525 | Yates et al. | Jun 2013 | B2 |
8464922 | Marczyk | Jun 2013 | B2 |
8464923 | Shelton, IV | Jun 2013 | B2 |
8464924 | Gresham et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8465475 | Isbell, Jr. | Jun 2013 | B2 |
8465502 | Zergiebel | Jun 2013 | B2 |
8465515 | Drew et al. | Jun 2013 | B2 |
8469254 | Czernik et al. | Jun 2013 | B2 |
8469946 | Sugita | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8470355 | Skalla et al. | Jun 2013 | B2 |
D686240 | Lin | Jul 2013 | S |
D686244 | Moriya et al. | Jul 2013 | S |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8475453 | Marczyk et al. | Jul 2013 | B2 |
8475454 | Alshemari | Jul 2013 | B1 |
8475474 | Bombard et al. | Jul 2013 | B2 |
8479968 | Hodgkinson et al. | Jul 2013 | B2 |
8479969 | Shelton, IV | Jul 2013 | B2 |
8480703 | Nicholas et al. | Jul 2013 | B2 |
8483509 | Matsuzaka | Jul 2013 | B2 |
8485412 | Shelton, IV et al. | Jul 2013 | B2 |
8485413 | Scheib et al. | Jul 2013 | B2 |
8485970 | Widenhouse et al. | Jul 2013 | B2 |
8486047 | Stopek | Jul 2013 | B2 |
8487199 | Palmer et al. | Jul 2013 | B2 |
8487487 | Dietz et al. | Jul 2013 | B2 |
8490851 | Blier et al. | Jul 2013 | B2 |
8490852 | Viola | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8491581 | Deville et al. | Jul 2013 | B2 |
8491603 | Yeung et al. | Jul 2013 | B2 |
8491624 | Kerr et al. | Jul 2013 | B2 |
8496153 | Demmy et al. | Jul 2013 | B2 |
8496154 | Marczyk et al. | Jul 2013 | B2 |
8496156 | Sniffin et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8498691 | Moll et al. | Jul 2013 | B2 |
8499673 | Keller | Aug 2013 | B2 |
8499966 | Palmer et al. | Aug 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8499993 | Shelton, IV et al. | Aug 2013 | B2 |
8499994 | D'Arcangelo | Aug 2013 | B2 |
8500721 | Jinno | Aug 2013 | B2 |
8500762 | Sholev et al. | Aug 2013 | B2 |
8502091 | Palmer et al. | Aug 2013 | B2 |
8505799 | Viola et al. | Aug 2013 | B2 |
8505801 | Ehrenfels et al. | Aug 2013 | B2 |
8506555 | Ruiz Morales | Aug 2013 | B2 |
8506557 | Zemlok et al. | Aug 2013 | B2 |
8506580 | Zergiebel et al. | Aug 2013 | B2 |
8506581 | Wingardner, III et al. | Aug 2013 | B2 |
8511308 | Hecox et al. | Aug 2013 | B2 |
8512359 | Whitman et al. | Aug 2013 | B2 |
8512402 | Marczyk et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8517243 | Giordano et al. | Aug 2013 | B2 |
8517244 | Shelton, IV et al. | Aug 2013 | B2 |
8517938 | Eisenhardt et al. | Aug 2013 | B2 |
8518024 | Williams et al. | Aug 2013 | B2 |
8521273 | Kliman | Aug 2013 | B2 |
8523042 | Masiakos et al. | Sep 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8523787 | Ludwin et al. | Sep 2013 | B2 |
8523881 | Cabiri et al. | Sep 2013 | B2 |
8523882 | Huitema et al. | Sep 2013 | B2 |
8523900 | Jinno et al. | Sep 2013 | B2 |
8529588 | Ahlberg et al. | Sep 2013 | B2 |
8529599 | Holsten | Sep 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8529819 | Ostapoff et al. | Sep 2013 | B2 |
8531153 | Baarman et al. | Sep 2013 | B2 |
8532747 | Nock et al. | Sep 2013 | B2 |
8534527 | Brendel et al. | Sep 2013 | B2 |
8534528 | Shelton, IV | Sep 2013 | B2 |
8535304 | Sklar et al. | Sep 2013 | B2 |
8535340 | Allen | Sep 2013 | B2 |
8539866 | Nayak et al. | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540129 | Baxter, III et al. | Sep 2013 | B2 |
8540130 | Moore et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8540133 | Bedi et al. | Sep 2013 | B2 |
8540646 | Mendez-Coll | Sep 2013 | B2 |
8540733 | Whitman et al. | Sep 2013 | B2 |
8540735 | Mitelberg et al. | Sep 2013 | B2 |
8550984 | Takemoto | Oct 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8555660 | Takenaka et al. | Oct 2013 | B2 |
8556151 | Viola | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8556935 | Knodel et al. | Oct 2013 | B1 |
8560147 | Taylor et al. | Oct 2013 | B2 |
8561617 | Lindh et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8562592 | Conlon et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8567656 | Shelton, IV et al. | Oct 2013 | B2 |
8568416 | Schmitz et al. | Oct 2013 | B2 |
8568425 | Ross et al. | Oct 2013 | B2 |
D692916 | Granchi et al. | Nov 2013 | S |
8573459 | Smith et al. | Nov 2013 | B2 |
8573461 | Shelton, IV et al. | Nov 2013 | B2 |
8573462 | Smith et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574199 | von Bulow et al. | Nov 2013 | B2 |
8574263 | Mueller | Nov 2013 | B2 |
8575880 | Grantz | Nov 2013 | B2 |
8575895 | Garrastacho et al. | Nov 2013 | B2 |
8579176 | Smith et al. | Nov 2013 | B2 |
8579178 | Holsten et al. | Nov 2013 | B2 |
8579897 | Vakharia et al. | Nov 2013 | B2 |
8579937 | Gresham | Nov 2013 | B2 |
8584919 | Hueil et al. | Nov 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8584921 | Scirica | Nov 2013 | B2 |
8585583 | Sakaguchi et al. | Nov 2013 | B2 |
8585598 | Razzaque et al. | Nov 2013 | B2 |
8585721 | Kirsch | Nov 2013 | B2 |
8590760 | Cummins et al. | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8590764 | Hartwick et al. | Nov 2013 | B2 |
8591400 | Sugiyama | Nov 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8597745 | Farnsworth et al. | Dec 2013 | B2 |
8599450 | Kubo et al. | Dec 2013 | B2 |
8602125 | King | Dec 2013 | B2 |
8602287 | Yates et al. | Dec 2013 | B2 |
8602288 | Shelton, IV et al. | Dec 2013 | B2 |
8603077 | Cooper et al. | Dec 2013 | B2 |
8603089 | Viola | Dec 2013 | B2 |
8603110 | Maruyama et al. | Dec 2013 | B2 |
8603135 | Mueller | Dec 2013 | B2 |
8608043 | Scirica | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8608046 | Laurent et al. | Dec 2013 | B2 |
8608745 | Guzman et al. | Dec 2013 | B2 |
8613383 | Beckman et al. | Dec 2013 | B2 |
8613384 | Pastorelli et al. | Dec 2013 | B2 |
8616427 | Viola | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8617155 | Johnson et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8622274 | Yates et al. | Jan 2014 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8627994 | Zemlok et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8628467 | Whitman et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8628544 | Farascioni | Jan 2014 | B2 |
8628545 | Cabrera et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8631992 | Hausen et al. | Jan 2014 | B1 |
8631993 | Kostrzewski | Jan 2014 | B2 |
8632462 | Yoo et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8632535 | Shelton, IV et al. | Jan 2014 | B2 |
8632539 | Twomey et al. | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8636190 | Zemlok et al. | Jan 2014 | B2 |
8636191 | Meagher | Jan 2014 | B2 |
8636193 | Whitman et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8636766 | Milliman et al. | Jan 2014 | B2 |
8639936 | Hu et al. | Jan 2014 | B2 |
8640788 | Dachs, II et al. | Feb 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8652120 | Giordano et al. | Feb 2014 | B2 |
8652151 | Lehman et al. | Feb 2014 | B2 |
8652155 | Houser et al. | Feb 2014 | B2 |
8656929 | Miller et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657175 | Sonnenschein et al. | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8657178 | Hueil et al. | Feb 2014 | B2 |
8657482 | Malackowski et al. | Feb 2014 | B2 |
8657808 | McPherson et al. | Feb 2014 | B2 |
8657814 | Werneth et al. | Feb 2014 | B2 |
8657821 | Palermo | Feb 2014 | B2 |
D701238 | Lai et al. | Mar 2014 | S |
8662370 | Takei | Mar 2014 | B2 |
8663106 | Stivoric et al. | Mar 2014 | B2 |
8663192 | Hester et al. | Mar 2014 | B2 |
8663245 | Francischelli et al. | Mar 2014 | B2 |
8663262 | Smith et al. | Mar 2014 | B2 |
8663270 | Donnigan et al. | Mar 2014 | B2 |
8664792 | Rebsdorf | Mar 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8668130 | Hess et al. | Mar 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8672207 | Shelton, IV et al. | Mar 2014 | B2 |
8672208 | Hess et al. | Mar 2014 | B2 |
8672209 | Crainich | Mar 2014 | B2 |
8672922 | Loh et al. | Mar 2014 | B2 |
8672935 | Okada et al. | Mar 2014 | B2 |
8672951 | Smith et al. | Mar 2014 | B2 |
8673210 | Deshays | Mar 2014 | B2 |
8675820 | Baic et al. | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8678994 | Sonnenschein et al. | Mar 2014 | B2 |
8679093 | Farra | Mar 2014 | B2 |
8679098 | Hart | Mar 2014 | B2 |
8679114 | Chapman et al. | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8679154 | Smith et al. | Mar 2014 | B2 |
8679156 | Smith et al. | Mar 2014 | B2 |
8679454 | Guire et al. | Mar 2014 | B2 |
8684248 | Milliman | Apr 2014 | B2 |
8684249 | Racenet et al. | Apr 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684253 | Giordano et al. | Apr 2014 | B2 |
8684962 | Kirschenman et al. | Apr 2014 | B2 |
8685004 | Zemlock et al. | Apr 2014 | B2 |
8685020 | Weizman et al. | Apr 2014 | B2 |
8690893 | Deitch et al. | Apr 2014 | B2 |
8695866 | Leimbach et al. | Apr 2014 | B2 |
8696665 | Hunt et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8701959 | Shah | Apr 2014 | B2 |
8706316 | Hoevenaar | Apr 2014 | B1 |
8708210 | Zemlok et al. | Apr 2014 | B2 |
8708211 | Zemlok et al. | Apr 2014 | B2 |
8708212 | Williams | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8709012 | Muller | Apr 2014 | B2 |
8712549 | Zdeblick et al. | Apr 2014 | B2 |
8714352 | Farascioni et al. | May 2014 | B2 |
8714429 | Demmy | May 2014 | B2 |
8714430 | Natarajan et al. | May 2014 | B2 |
8715256 | Greener | May 2014 | B2 |
8715302 | Ibrahim et al. | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8721630 | Ortiz et al. | May 2014 | B2 |
8721666 | Schroeder et al. | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8727199 | Wenchell | May 2014 | B2 |
8727200 | Roy | May 2014 | B2 |
8727961 | Ziv | May 2014 | B2 |
8728099 | Cohn et al. | May 2014 | B2 |
8728119 | Cummins | May 2014 | B2 |
8733470 | Matthias et al. | May 2014 | B2 |
8733611 | Milliman | May 2014 | B2 |
8733612 | Ma | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8733614 | Ross et al. | May 2014 | B2 |
8734336 | Bonadio et al. | May 2014 | B2 |
8734359 | Ibanez et al. | May 2014 | B2 |
8734478 | Widenhouse et al. | May 2014 | B2 |
8734831 | Kim et al. | May 2014 | B2 |
8739033 | Rosenberg | May 2014 | B2 |
8739417 | Tokunaga et al. | Jun 2014 | B2 |
8740034 | Morgan et al. | Jun 2014 | B2 |
8740037 | Shelton, IV et al. | Jun 2014 | B2 |
8740038 | Shelton, IV et al. | Jun 2014 | B2 |
8740987 | Geremakis et al. | Jun 2014 | B2 |
8746529 | Shelton, IV et al. | Jun 2014 | B2 |
8746530 | Giordano et al. | Jun 2014 | B2 |
8746533 | Whitman et al. | Jun 2014 | B2 |
8746535 | Shelton, IV et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8747441 | Konieczynski et al. | Jun 2014 | B2 |
8752264 | Ackley et al. | Jun 2014 | B2 |
8752699 | Morgan et al. | Jun 2014 | B2 |
8752747 | Shelton, IV et al. | Jun 2014 | B2 |
8752748 | Whitman et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8753664 | Dao et al. | Jun 2014 | B2 |
8757287 | Mak et al. | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8758235 | Jaworek | Jun 2014 | B2 |
8758366 | McLean et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8758438 | Boyce et al. | Jun 2014 | B2 |
8763875 | Morgan et al. | Jul 2014 | B2 |
8763876 | Kostrzewski | Jul 2014 | B2 |
8763877 | Schall et al. | Jul 2014 | B2 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8764732 | Hartwell | Jul 2014 | B2 |
8765942 | Feraud et al. | Jul 2014 | B2 |
8770458 | Scirica | Jul 2014 | B2 |
8770459 | Racenet et al. | Jul 2014 | B2 |
8770460 | Belzer | Jul 2014 | B2 |
8771169 | Whitman et al. | Jul 2014 | B2 |
8771260 | Conlon et al. | Jul 2014 | B2 |
8777004 | Shelton, IV et al. | Jul 2014 | B2 |
8777082 | Scirica | Jul 2014 | B2 |
8777083 | Racenet et al. | Jul 2014 | B2 |
8777898 | Suon et al. | Jul 2014 | B2 |
8783541 | Shelton, IV et al. | Jul 2014 | B2 |
8783542 | Riestenberg et al. | Jul 2014 | B2 |
8783543 | Shelton, IV et al. | Jul 2014 | B2 |
8784304 | Mikkaichi et al. | Jul 2014 | B2 |
8784404 | Doyle et al. | Jul 2014 | B2 |
8784415 | Malackowski et al. | Jul 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8789739 | Swensgard | Jul 2014 | B2 |
8789740 | Baxter, III et al. | Jul 2014 | B2 |
8789741 | Baxter, III et al. | Jul 2014 | B2 |
8790658 | Cigarini et al. | Jul 2014 | B2 |
8790684 | Dave et al. | Jul 2014 | B2 |
D711905 | Morrison et al. | Aug 2014 | S |
8794098 | Long | Aug 2014 | B2 |
8794496 | Scirica | Aug 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8795159 | Moriyama | Aug 2014 | B2 |
8795276 | Dietz et al. | Aug 2014 | B2 |
8795308 | Valin | Aug 2014 | B2 |
8795324 | Kawai et al. | Aug 2014 | B2 |
8796995 | Cunanan et al. | Aug 2014 | B2 |
8800681 | Rousson et al. | Aug 2014 | B2 |
8800837 | Zemlok | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8800839 | Beetel | Aug 2014 | B2 |
8800840 | Jankowski | Aug 2014 | B2 |
8800841 | Ellerhorst et al. | Aug 2014 | B2 |
8801710 | Ullrich et al. | Aug 2014 | B2 |
8801734 | Shelton, IV et al. | Aug 2014 | B2 |
8801735 | Shelton, IV et al. | Aug 2014 | B2 |
8801752 | Fortier et al. | Aug 2014 | B2 |
8801801 | Datta et al. | Aug 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8807414 | Ross et al. | Aug 2014 | B2 |
8808161 | Gregg et al. | Aug 2014 | B2 |
8808164 | Hoffman et al. | Aug 2014 | B2 |
8808274 | Hartwell | Aug 2014 | B2 |
8808294 | Fox et al. | Aug 2014 | B2 |
8808308 | Boukhny et al. | Aug 2014 | B2 |
8808311 | Heinrich et al. | Aug 2014 | B2 |
8808325 | Hess et al. | Aug 2014 | B2 |
8810197 | Juergens | Aug 2014 | B2 |
8811017 | Fujii et al. | Aug 2014 | B2 |
8813866 | Suzuki | Aug 2014 | B2 |
8814024 | Woodard, Jr. et al. | Aug 2014 | B2 |
8814025 | Miller et al. | Aug 2014 | B2 |
8814836 | Ignon et al. | Aug 2014 | B2 |
8815594 | Harris et al. | Aug 2014 | B2 |
8818523 | Olson et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820605 | Shelton, IV | Sep 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8820607 | Marczyk | Sep 2014 | B2 |
8820608 | Miyamoto | Sep 2014 | B2 |
8821514 | Aranyi | Sep 2014 | B2 |
8822934 | Sayeh et al. | Sep 2014 | B2 |
8825164 | Tweden et al. | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8827134 | Viola et al. | Sep 2014 | B2 |
8827903 | Shelton, IV et al. | Sep 2014 | B2 |
8828046 | Stefanchik et al. | Sep 2014 | B2 |
8831779 | Ortmaier et al. | Sep 2014 | B2 |
8833219 | Pierce | Sep 2014 | B2 |
8833630 | Milliman | Sep 2014 | B2 |
8833632 | Swensgard | Sep 2014 | B2 |
8834353 | Dejima et al. | Sep 2014 | B2 |
8834465 | Ramstein et al. | Sep 2014 | B2 |
8834498 | Byrum et al. | Sep 2014 | B2 |
8834518 | Faller et al. | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8840004 | Holsten et al. | Sep 2014 | B2 |
8840603 | Shelton, IV et al. | Sep 2014 | B2 |
8840609 | Stuebe | Sep 2014 | B2 |
8840876 | Eemeta et al. | Sep 2014 | B2 |
8844789 | Shelton, IV et al. | Sep 2014 | B2 |
8844790 | Demmy et al. | Sep 2014 | B2 |
8845622 | Paik et al. | Sep 2014 | B2 |
8851215 | Goto | Oct 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8851355 | Aranyi et al. | Oct 2014 | B2 |
8852174 | Burbank | Oct 2014 | B2 |
8852185 | Twomey | Oct 2014 | B2 |
8852199 | Deslauriers et al. | Oct 2014 | B2 |
8852218 | Hughett, Sr. et al. | Oct 2014 | B2 |
8855822 | Bartol et al. | Oct 2014 | B2 |
8857692 | Shima et al. | Oct 2014 | B2 |
8857693 | Schuckmann et al. | Oct 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8858538 | Belson et al. | Oct 2014 | B2 |
8858547 | Brogna | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8858590 | Shelton, IV et al. | Oct 2014 | B2 |
8864007 | Widenhouse et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8864010 | Williams | Oct 2014 | B2 |
8864750 | Ross et al. | Oct 2014 | B2 |
8869912 | Roβkamp et al. | Oct 2014 | B2 |
8869913 | Matthias et al. | Oct 2014 | B2 |
8870049 | Amid et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8870867 | Walberg et al. | Oct 2014 | B2 |
8870912 | Brisson et al. | Oct 2014 | B2 |
8871829 | Gerold et al. | Oct 2014 | B2 |
8875971 | Hall et al. | Nov 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8876698 | Sakamoto et al. | Nov 2014 | B2 |
8876857 | Burbank | Nov 2014 | B2 |
8876858 | Braun | Nov 2014 | B2 |
8882660 | Phee et al. | Nov 2014 | B2 |
8882792 | Dietz et al. | Nov 2014 | B2 |
8884560 | Ito | Nov 2014 | B2 |
8887979 | Mastri et al. | Nov 2014 | B2 |
8888688 | Julian et al. | Nov 2014 | B2 |
8888695 | Piskun et al. | Nov 2014 | B2 |
8888792 | Harris et al. | Nov 2014 | B2 |
8888809 | Davison et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8894647 | Beardsley et al. | Nov 2014 | B2 |
8894654 | Anderson | Nov 2014 | B2 |
8899460 | Wojcicki | Dec 2014 | B2 |
8899461 | Farascioni | Dec 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8899463 | Schall et al. | Dec 2014 | B2 |
8899464 | Hueil et al. | Dec 2014 | B2 |
8899465 | Shelton, IV et al. | Dec 2014 | B2 |
8899466 | Baxter, III et al. | Dec 2014 | B2 |
8900267 | Woolfson et al. | Dec 2014 | B2 |
8905287 | Racenet et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8910846 | Viola | Dec 2014 | B2 |
8910847 | Nalagatla et al. | Dec 2014 | B2 |
8911426 | Coppeta et al. | Dec 2014 | B2 |
8911448 | Stein | Dec 2014 | B2 |
8911460 | Neurohr et al. | Dec 2014 | B2 |
8911471 | Spivey et al. | Dec 2014 | B2 |
8912746 | Reid et al. | Dec 2014 | B2 |
8915842 | Weisenburgh, II et al. | Dec 2014 | B2 |
8920368 | Sandhu et al. | Dec 2014 | B2 |
8920433 | Barrier et al. | Dec 2014 | B2 |
8920435 | Smith et al. | Dec 2014 | B2 |
8920438 | Aranyi et al. | Dec 2014 | B2 |
8920443 | Hiles et al. | Dec 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8922163 | MacDonald | Dec 2014 | B2 |
8925782 | Shelton, IV | Jan 2015 | B2 |
8925783 | Zemlok et al. | Jan 2015 | B2 |
8925788 | Hess et al. | Jan 2015 | B2 |
8926506 | Widenhouse et al. | Jan 2015 | B2 |
8926598 | Mollere et al. | Jan 2015 | B2 |
8931576 | Iwata | Jan 2015 | B2 |
8931679 | Kostrzewski | Jan 2015 | B2 |
8931680 | Milliman | Jan 2015 | B2 |
8931682 | Timm et al. | Jan 2015 | B2 |
8931692 | Sancak | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8937408 | Ganem et al. | Jan 2015 | B2 |
8939343 | Milliman et al. | Jan 2015 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8939898 | Omoto | Jan 2015 | B2 |
8944069 | Miller et al. | Feb 2015 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
8945098 | Seibold et al. | Feb 2015 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8956342 | Russo et al. | Feb 2015 | B1 |
8956390 | Shah et al. | Feb 2015 | B2 |
8958860 | Banerjee et al. | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8960521 | Kostrzewski | Feb 2015 | B2 |
8961191 | Hanshew | Feb 2015 | B2 |
8961504 | Hoarau et al. | Feb 2015 | B2 |
8961542 | Whitfield et al. | Feb 2015 | B2 |
8963714 | Medhal et al. | Feb 2015 | B2 |
D725674 | Jung et al. | Mar 2015 | S |
8967443 | McCuen | Mar 2015 | B2 |
8967444 | Beetel | Mar 2015 | B2 |
8967446 | Beardsley et al. | Mar 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968308 | Horner et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968340 | Chowaniec et al. | Mar 2015 | B2 |
8968355 | Malkowski et al. | Mar 2015 | B2 |
8968358 | Reschke | Mar 2015 | B2 |
8970507 | Holbein et al. | Mar 2015 | B2 |
8973803 | Hall et al. | Mar 2015 | B2 |
8973804 | Hess et al. | Mar 2015 | B2 |
8973805 | Scirica et al. | Mar 2015 | B2 |
8974440 | Farritor et al. | Mar 2015 | B2 |
8974542 | Fujimoto et al. | Mar 2015 | B2 |
8974932 | McGahan et al. | Mar 2015 | B2 |
8978954 | Shelton, IV et al. | Mar 2015 | B2 |
8978955 | Aronhalt et al. | Mar 2015 | B2 |
8978956 | Schall et al. | Mar 2015 | B2 |
8979843 | Timm et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8982195 | Claus et al. | Mar 2015 | B2 |
8984711 | Ota et al. | Mar 2015 | B2 |
8985240 | Winnard | Mar 2015 | B2 |
8985429 | Balek et al. | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991676 | Hess et al. | Mar 2015 | B2 |
8991677 | Moore et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992042 | Eichenholz | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
8992565 | Brisson et al. | Mar 2015 | B2 |
8996165 | Wang et al. | Mar 2015 | B2 |
8998058 | Moore et al. | Apr 2015 | B2 |
8998059 | Smith et al. | Apr 2015 | B2 |
8998060 | Bruewer et al. | Apr 2015 | B2 |
8998061 | Williams et al. | Apr 2015 | B2 |
8998939 | Price et al. | Apr 2015 | B2 |
9000720 | Stulen et al. | Apr 2015 | B2 |
9002518 | Manzo et al. | Apr 2015 | B2 |
9004339 | Park | Apr 2015 | B1 |
9004799 | Tibbits | Apr 2015 | B1 |
9005230 | Yates et al. | Apr 2015 | B2 |
9005238 | Desantis et al. | Apr 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010611 | Ross et al. | Apr 2015 | B2 |
9011437 | Woodruff et al. | Apr 2015 | B2 |
9011439 | Shalaby et al. | Apr 2015 | B2 |
9011471 | Timm et al. | Apr 2015 | B2 |
9014856 | Manzo et al. | Apr 2015 | B2 |
9016539 | Kostrzewski et al. | Apr 2015 | B2 |
9016540 | Whitman et al. | Apr 2015 | B2 |
9016541 | Viola et al. | Apr 2015 | B2 |
9016542 | Shelton, IV et al. | Apr 2015 | B2 |
9016545 | Aranyi et al. | Apr 2015 | B2 |
9017331 | Fox | Apr 2015 | B2 |
9017355 | Smith et al. | Apr 2015 | B2 |
9017369 | Renger et al. | Apr 2015 | B2 |
9017371 | Whitman et al. | Apr 2015 | B2 |
9017849 | Stulen et al. | Apr 2015 | B2 |
9017851 | Felder et al. | Apr 2015 | B2 |
D729274 | Clement et al. | May 2015 | S |
9021684 | Lenker et al. | May 2015 | B2 |
9023014 | Chowaniec et al. | May 2015 | B2 |
9023069 | Kasvikis et al. | May 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9026347 | Gadh et al. | May 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9028468 | Scarfogliero et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9028495 | Mueller et al. | May 2015 | B2 |
9028510 | Miyamoto et al. | May 2015 | B2 |
9028511 | Weller et al. | May 2015 | B2 |
9028519 | Yates et al. | May 2015 | B2 |
9028529 | Fox et al. | May 2015 | B2 |
9030166 | Kano | May 2015 | B2 |
9030169 | Christensen et al. | May 2015 | B2 |
9033203 | Woodard, Jr. et al. | May 2015 | B2 |
9033204 | Shelton, IV et al. | May 2015 | B2 |
9034505 | Detry et al. | May 2015 | B2 |
9038881 | Schaller et al. | May 2015 | B1 |
9039690 | Kersten et al. | May 2015 | B2 |
9039694 | Ross et al. | May 2015 | B2 |
9039720 | Madan | May 2015 | B2 |
9039736 | Scirica et al. | May 2015 | B2 |
9040062 | Maeda et al. | May 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044228 | Woodard, Jr. et al. | Jun 2015 | B2 |
9044229 | Scheib et al. | Jun 2015 | B2 |
9044230 | Morgan et al. | Jun 2015 | B2 |
9044238 | Orszulak | Jun 2015 | B2 |
9044241 | Barner et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9044281 | Pool et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050084 | Schmid et al. | Jun 2015 | B2 |
9050089 | Orszulak | Jun 2015 | B2 |
9050100 | Yates et al. | Jun 2015 | B2 |
9050120 | Swarup et al. | Jun 2015 | B2 |
9050123 | Krause et al. | Jun 2015 | B2 |
9050176 | Datta et al. | Jun 2015 | B2 |
9050192 | Mansmann | Jun 2015 | B2 |
9055941 | Schmid et al. | Jun 2015 | B2 |
9055942 | Balbierz et al. | Jun 2015 | B2 |
9055943 | Zemlok et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9055961 | Manzo et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060776 | Yates et al. | Jun 2015 | B2 |
9060794 | Kang et al. | Jun 2015 | B2 |
9060894 | Wubbeling | Jun 2015 | B2 |
9061392 | Forgues et al. | Jun 2015 | B2 |
9070068 | Coveley et al. | Jun 2015 | B2 |
9072515 | Hall et al. | Jul 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9078654 | Whitman et al. | Jul 2015 | B2 |
9084586 | Hafner et al. | Jul 2015 | B2 |
9084601 | Moore et al. | Jul 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9086875 | Harrat et al. | Jul 2015 | B2 |
9089326 | Krumanaker et al. | Jul 2015 | B2 |
9089330 | Widenhouse et al. | Jul 2015 | B2 |
9089338 | Smith et al. | Jul 2015 | B2 |
9089352 | Jeong | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9091588 | Lefler | Jul 2015 | B2 |
D736792 | Brinda et al. | Aug 2015 | S |
9095339 | Moore et al. | Aug 2015 | B2 |
9095346 | Houser et al. | Aug 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9095642 | Harder et al. | Aug 2015 | B2 |
9096033 | Holop et al. | Aug 2015 | B2 |
9098153 | Shen et al. | Aug 2015 | B2 |
9099863 | Smith et al. | Aug 2015 | B2 |
9099877 | Banos et al. | Aug 2015 | B2 |
9099922 | Toosky et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101359 | Smith et al. | Aug 2015 | B2 |
9101385 | Shelton, IV et al. | Aug 2015 | B2 |
9101475 | Wei et al. | Aug 2015 | B2 |
9101621 | Zeldis | Aug 2015 | B2 |
9107663 | Swensgard | Aug 2015 | B2 |
9107667 | Hodgkinson | Aug 2015 | B2 |
9107690 | Bales, Jr. et al. | Aug 2015 | B2 |
9110587 | Kim et al. | Aug 2015 | B2 |
9113862 | Morgan et al. | Aug 2015 | B2 |
9113864 | Morgan et al. | Aug 2015 | B2 |
9113865 | Shelton, IV et al. | Aug 2015 | B2 |
9113866 | Felder et al. | Aug 2015 | B2 |
9113868 | Felder et al. | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113874 | Shelton, IV et al. | Aug 2015 | B2 |
9113875 | Viola et al. | Aug 2015 | B2 |
9113876 | Zemlok et al. | Aug 2015 | B2 |
9113879 | Felder et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9113881 | Scirica | Aug 2015 | B2 |
9113883 | Aronhalt et al. | Aug 2015 | B2 |
9113884 | Shelton, IV et al. | Aug 2015 | B2 |
9113887 | Behnke, II et al. | Aug 2015 | B2 |
9119615 | Felder et al. | Sep 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9119898 | Bayon et al. | Sep 2015 | B2 |
9119957 | Gantz et al. | Sep 2015 | B2 |
9123286 | Park | Sep 2015 | B2 |
9124097 | Cruz | Sep 2015 | B2 |
9125651 | Mandakolathur Vasudevan et al. | Sep 2015 | B2 |
9125654 | Aronhalt et al. | Sep 2015 | B2 |
9125662 | Shelton, IV | Sep 2015 | B2 |
9126317 | Lawton et al. | Sep 2015 | B2 |
9131835 | Widenhouse et al. | Sep 2015 | B2 |
9131940 | Huitema et al. | Sep 2015 | B2 |
9131950 | Matthew | Sep 2015 | B2 |
9131957 | Skarbnik et al. | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9138226 | Racenet et al. | Sep 2015 | B2 |
9144455 | Kennedy et al. | Sep 2015 | B2 |
D740414 | Katsura | Oct 2015 | S |
D741882 | Shmilov et al. | Oct 2015 | S |
9149274 | Spivey et al. | Oct 2015 | B2 |
9149324 | Huang et al. | Oct 2015 | B2 |
9149325 | Worrell et al. | Oct 2015 | B2 |
9153994 | Wood et al. | Oct 2015 | B2 |
9154189 | Von Novak et al. | Oct 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161769 | Stoddard et al. | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9161807 | Garrison | Oct 2015 | B2 |
9161855 | Rousseau et al. | Oct 2015 | B2 |
9164271 | Ebata et al. | Oct 2015 | B2 |
9167960 | Yamaguchi et al. | Oct 2015 | B2 |
9168038 | Shelton, IV et al. | Oct 2015 | B2 |
9168039 | Knodel | Oct 2015 | B1 |
9168042 | Milliman | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168144 | Rivin et al. | Oct 2015 | B2 |
9171244 | Endou et al. | Oct 2015 | B2 |
9179832 | Diolaiti | Nov 2015 | B2 |
9179911 | Morgan et al. | Nov 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9180223 | Yu et al. | Nov 2015 | B2 |
9182244 | Luke et al. | Nov 2015 | B2 |
9186046 | Ramamurthy et al. | Nov 2015 | B2 |
9186137 | Farascioni et al. | Nov 2015 | B2 |
9186140 | Hiles et al. | Nov 2015 | B2 |
9186142 | Fanelli et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9186148 | Felder et al. | Nov 2015 | B2 |
9186221 | Burbank | Nov 2015 | B2 |
9192376 | Almodovar | Nov 2015 | B2 |
9192380 | Racenet et al. | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9192430 | Rachlin et al. | Nov 2015 | B2 |
9192434 | Twomey et al. | Nov 2015 | B2 |
9193045 | Saur et al. | Nov 2015 | B2 |
9197079 | Yip et al. | Nov 2015 | B2 |
D744528 | Agrawal | Dec 2015 | S |
D746459 | Kaercher et al. | Dec 2015 | S |
9198642 | Storz | Dec 2015 | B2 |
9198644 | Balek et al. | Dec 2015 | B2 |
9198661 | Swensgard | Dec 2015 | B2 |
9198662 | Barton et al. | Dec 2015 | B2 |
9198683 | Friedman et al. | Dec 2015 | B2 |
9204830 | Zand et al. | Dec 2015 | B2 |
9204877 | Whitman et al. | Dec 2015 | B2 |
9204878 | Hall et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204880 | Baxter, III et al. | Dec 2015 | B2 |
9204881 | Penna | Dec 2015 | B2 |
9204923 | Manzo et al. | Dec 2015 | B2 |
9204924 | Marczyk et al. | Dec 2015 | B2 |
9211120 | Scheib et al. | Dec 2015 | B2 |
9211121 | Hall et al. | Dec 2015 | B2 |
9211122 | Hagerty et al. | Dec 2015 | B2 |
9216013 | Scirica et al. | Dec 2015 | B2 |
9216019 | Schmid et al. | Dec 2015 | B2 |
9216020 | Zhang et al. | Dec 2015 | B2 |
9216030 | Fan et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9220500 | Swayze et al. | Dec 2015 | B2 |
9220501 | Baxter, III et al. | Dec 2015 | B2 |
9220502 | Zemlok et al. | Dec 2015 | B2 |
9220504 | Viola et al. | Dec 2015 | B2 |
9220508 | Dannaher | Dec 2015 | B2 |
9220559 | Worrell et al. | Dec 2015 | B2 |
9220570 | Kim et al. | Dec 2015 | B2 |
D746854 | Shardlow et al. | Jan 2016 | S |
9226686 | Blair | Jan 2016 | B2 |
9226750 | Weir et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226754 | D'Agostino et al. | Jan 2016 | B2 |
9226760 | Shelton, IV | Jan 2016 | B2 |
9226761 | Burbank | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9226799 | Lightcap et al. | Jan 2016 | B2 |
9232941 | Mandakolathur Vasudevan et al. | Jan 2016 | B2 |
9232945 | Zingman | Jan 2016 | B2 |
9232979 | Parihar et al. | Jan 2016 | B2 |
9233610 | Kim et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237892 | Hodgkinson | Jan 2016 | B2 |
9237895 | McCarthy et al. | Jan 2016 | B2 |
9237900 | Boudreaux et al. | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9239064 | Helbig et al. | Jan 2016 | B2 |
9240740 | Zeng et al. | Jan 2016 | B2 |
9241711 | Ivanko | Jan 2016 | B2 |
9241712 | Zemlok et al. | Jan 2016 | B2 |
9241714 | Timm et al. | Jan 2016 | B2 |
9241716 | Whitman | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9241758 | Franer et al. | Jan 2016 | B2 |
9244524 | Inoue et al. | Jan 2016 | B2 |
D748668 | Kim et al. | Feb 2016 | S |
D749128 | Perez et al. | Feb 2016 | S |
D749623 | Gray et al. | Feb 2016 | S |
D750122 | Shardlow et al. | Feb 2016 | S |
D750129 | Kwon | Feb 2016 | S |
9254131 | Soltz et al. | Feb 2016 | B2 |
9254170 | Parihar et al. | Feb 2016 | B2 |
9259265 | Harris et al. | Feb 2016 | B2 |
9259268 | Behnke, II et al. | Feb 2016 | B2 |
9259274 | Prisco | Feb 2016 | B2 |
9259275 | Burbank | Feb 2016 | B2 |
9261172 | Solomon et al. | Feb 2016 | B2 |
9265500 | Sorrentino et al. | Feb 2016 | B2 |
9265510 | Dietzel et al. | Feb 2016 | B2 |
9265516 | Casey et al. | Feb 2016 | B2 |
9265585 | Wingardner et al. | Feb 2016 | B2 |
9271718 | Milad et al. | Mar 2016 | B2 |
9271727 | McGuckin, Jr. et al. | Mar 2016 | B2 |
9271753 | Butler et al. | Mar 2016 | B2 |
9271799 | Shelton, IV et al. | Mar 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9274095 | Humayun et al. | Mar 2016 | B2 |
9277919 | Timmer et al. | Mar 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9277969 | Brannan et al. | Mar 2016 | B2 |
9282962 | Schmid et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9282966 | Shelton, IV et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283028 | Johnson | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9283334 | Mantell et al. | Mar 2016 | B2 |
9289206 | Hess et al. | Mar 2016 | B2 |
9289207 | Shelton, IV | Mar 2016 | B2 |
9289210 | Baxter, III et al. | Mar 2016 | B2 |
9289211 | Williams et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9289225 | Shelton, IV et al. | Mar 2016 | B2 |
9289256 | Shelton, IV et al. | Mar 2016 | B2 |
9293757 | Toussaint et al. | Mar 2016 | B2 |
9295464 | Shelton, IV et al. | Mar 2016 | B2 |
9295465 | Farascioni | Mar 2016 | B2 |
9295466 | Hodgkinson et al. | Mar 2016 | B2 |
9295467 | Scirica | Mar 2016 | B2 |
9295468 | Heinrich et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9295522 | Kostrzewski | Mar 2016 | B2 |
9295565 | McLean | Mar 2016 | B2 |
9295784 | Eggert et al. | Mar 2016 | B2 |
D753167 | Yu et al. | Apr 2016 | S |
9301691 | Hufnagel et al. | Apr 2016 | B2 |
9301752 | Mandakolathur Vasudevan et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301755 | Shelton, IV et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9301811 | Goldberg et al. | Apr 2016 | B2 |
9307965 | Ming et al. | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9307987 | Swensgard et al. | Apr 2016 | B2 |
9307988 | Shelton, IV | Apr 2016 | B2 |
9307989 | Shelton, IV et al. | Apr 2016 | B2 |
9307994 | Gresham et al. | Apr 2016 | B2 |
9308009 | Madan et al. | Apr 2016 | B2 |
9308011 | Chao et al. | Apr 2016 | B2 |
9308646 | Lim et al. | Apr 2016 | B2 |
9313915 | Niu et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9314247 | Shelton, IV et al. | Apr 2016 | B2 |
9314261 | Bales, Jr. et al. | Apr 2016 | B2 |
9314291 | Schall et al. | Apr 2016 | B2 |
9314339 | Mansmann | Apr 2016 | B2 |
9314908 | Tanimoto et al. | Apr 2016 | B2 |
9320518 | Henderson et al. | Apr 2016 | B2 |
9320520 | Shelton, IV et al. | Apr 2016 | B2 |
9320521 | Shelton, IV et al. | Apr 2016 | B2 |
9320523 | Shelton, IV et al. | Apr 2016 | B2 |
9325516 | Pera et al. | Apr 2016 | B2 |
D755196 | Meyers et al. | May 2016 | S |
D756373 | Raskin et al. | May 2016 | S |
D756377 | Connolly et al. | May 2016 | S |
D757028 | Goldenberg et al. | May 2016 | S |
9326767 | Koch et al. | May 2016 | B2 |
9326768 | Shelton, IV | May 2016 | B2 |
9326769 | Shelton, IV et al. | May 2016 | B2 |
9326770 | Shelton, IV et al. | May 2016 | B2 |
9326771 | Baxter, III et al. | May 2016 | B2 |
9326788 | Batross et al. | May 2016 | B2 |
9326812 | Waaler et al. | May 2016 | B2 |
9326824 | Inoue et al. | May 2016 | B2 |
9327061 | Govil et al. | May 2016 | B2 |
9331721 | Martinez Nuevo et al. | May 2016 | B2 |
9332890 | Ozawa | May 2016 | B2 |
9332974 | Henderson et al. | May 2016 | B2 |
9332984 | Weaner et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9333040 | Shellenberger et al. | May 2016 | B2 |
9333082 | Wei et al. | May 2016 | B2 |
9337668 | Yip | May 2016 | B2 |
9339226 | van der Walt et al. | May 2016 | B2 |
9339342 | Prisco et al. | May 2016 | B2 |
9345477 | Anim et al. | May 2016 | B2 |
9345479 | Racenet et al. | May 2016 | B2 |
9345480 | Hessler et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345503 | Ishida et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9351728 | Sniffin et al. | May 2016 | B2 |
9351730 | Schmid et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9351732 | Hodgkinson | May 2016 | B2 |
9352071 | Landgrebe et al. | May 2016 | B2 |
D758433 | Lee et al. | Jun 2016 | S |
D759063 | Chen | Jun 2016 | S |
9358003 | Hail et al. | Jun 2016 | B2 |
9358004 | Sniffin et al. | Jun 2016 | B2 |
9358005 | Shelton, IV et al. | Jun 2016 | B2 |
9358015 | Sorrentino et al. | Jun 2016 | B2 |
9358031 | Manzo | Jun 2016 | B2 |
9358065 | Ladtkow et al. | Jun 2016 | B2 |
9364217 | Kostrzewski et al. | Jun 2016 | B2 |
9364219 | Olson et al. | Jun 2016 | B2 |
9364220 | Williams | Jun 2016 | B2 |
9364223 | Scirica | Jun 2016 | B2 |
9364226 | Zemlok et al. | Jun 2016 | B2 |
9364228 | Straehnz et al. | Jun 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9364230 | Shelton, IV et al. | Jun 2016 | B2 |
9364231 | Wenchell | Jun 2016 | B2 |
9364233 | Alexander, III et al. | Jun 2016 | B2 |
9364279 | Houser et al. | Jun 2016 | B2 |
9368991 | Qahouq | Jun 2016 | B2 |
9370341 | Ceniccola et al. | Jun 2016 | B2 |
9370358 | Shelton, IV et al. | Jun 2016 | B2 |
9370361 | Viola et al. | Jun 2016 | B2 |
9370362 | Petty et al. | Jun 2016 | B2 |
9370364 | Smith et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9375206 | Vidal et al. | Jun 2016 | B2 |
9375218 | Wheeler et al. | Jun 2016 | B2 |
9375230 | Ross et al. | Jun 2016 | B2 |
9375232 | Hunt et al. | Jun 2016 | B2 |
9375255 | Houser et al. | Jun 2016 | B2 |
D761309 | Lee et al. | Jul 2016 | S |
9381058 | Houser et al. | Jul 2016 | B2 |
9383881 | Day et al. | Jul 2016 | B2 |
9385640 | Sun et al. | Jul 2016 | B2 |
9386983 | Swensgard et al. | Jul 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9386985 | Koch, Jr. et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9387003 | Kaercher et al. | Jul 2016 | B2 |
9392885 | Vogler et al. | Jul 2016 | B2 |
9393015 | Laurent et al. | Jul 2016 | B2 |
9393017 | Flanagan et al. | Jul 2016 | B2 |
9393018 | Wang et al. | Jul 2016 | B2 |
9393354 | Freedman et al. | Jul 2016 | B2 |
9396369 | Whitehurst et al. | Jul 2016 | B1 |
9396669 | Karkanias et al. | Jul 2016 | B2 |
9398905 | Martin | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
D763277 | Ahmed et al. | Aug 2016 | S |
D764498 | Capela et al. | Aug 2016 | S |
9402604 | Williams et al. | Aug 2016 | B2 |
9402625 | Coleman et al. | Aug 2016 | B2 |
9402626 | Ortiz et al. | Aug 2016 | B2 |
9402627 | Stevenson et al. | Aug 2016 | B2 |
9402629 | Ehrenfels et al. | Aug 2016 | B2 |
9402679 | Ginnebaugh et al. | Aug 2016 | B2 |
9402682 | Worrell et al. | Aug 2016 | B2 |
9402688 | Min et al. | Aug 2016 | B2 |
9408604 | Shelton, IV et al. | Aug 2016 | B2 |
9408605 | Knodel et al. | Aug 2016 | B1 |
9408606 | Shelton, IV | Aug 2016 | B2 |
9408622 | Stulen et al. | Aug 2016 | B2 |
9411370 | Benni et al. | Aug 2016 | B2 |
9413128 | Tien et al. | Aug 2016 | B2 |
9414838 | Shelton, IV et al. | Aug 2016 | B2 |
9414849 | Nagashimada | Aug 2016 | B2 |
9414880 | Monson et al. | Aug 2016 | B2 |
9420967 | Zand et al. | Aug 2016 | B2 |
9421003 | Williams et al. | Aug 2016 | B2 |
9421014 | Ingmanson et al. | Aug 2016 | B2 |
9421030 | Cole et al. | Aug 2016 | B2 |
9421060 | Monson et al. | Aug 2016 | B2 |
9421062 | Houser et al. | Aug 2016 | B2 |
9421682 | McClaskey et al. | Aug 2016 | B2 |
9427223 | Park et al. | Aug 2016 | B2 |
9427231 | Racenet et al. | Aug 2016 | B2 |
9429204 | Stefan et al. | Aug 2016 | B2 |
D767624 | Lee et al. | Sep 2016 | S |
9433411 | Racenet et al. | Sep 2016 | B2 |
9433414 | Chen et al. | Sep 2016 | B2 |
9433419 | Gonzalez et al. | Sep 2016 | B2 |
9433420 | Hodgkinson | Sep 2016 | B2 |
9439649 | Shelton, IV et al. | Sep 2016 | B2 |
9439650 | McGuckin, Jr. et al. | Sep 2016 | B2 |
9439651 | Smith et al. | Sep 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9445808 | Woodard, Jr. et al. | Sep 2016 | B2 |
9445813 | Shelton, IV et al. | Sep 2016 | B2 |
9445816 | Swayze et al. | Sep 2016 | B2 |
9445817 | Bettuchi | Sep 2016 | B2 |
9446226 | Zilberman | Sep 2016 | B2 |
9451938 | Overes et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
9452020 | Griffiths et al. | Sep 2016 | B2 |
D768152 | Gutierrez et al. | Oct 2016 | S |
D768156 | Frincke | Oct 2016 | S |
D768167 | Jones et al. | Oct 2016 | S |
D769315 | Scotti | Oct 2016 | S |
D769930 | Agrawal | Oct 2016 | S |
9461340 | Li et al. | Oct 2016 | B2 |
9463012 | Bonutti et al. | Oct 2016 | B2 |
9463040 | Jeong et al. | Oct 2016 | B2 |
9463260 | Stopek | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9468447 | Aman et al. | Oct 2016 | B2 |
9470297 | Aranyi et al. | Oct 2016 | B2 |
9471969 | Zeng et al. | Oct 2016 | B2 |
9474506 | Magnin et al. | Oct 2016 | B2 |
9474513 | Ishida et al. | Oct 2016 | B2 |
9474523 | Meade et al. | Oct 2016 | B2 |
9474528 | Marczyk | Oct 2016 | B2 |
9474540 | Stokes et al. | Oct 2016 | B2 |
9475180 | Eshleman et al. | Oct 2016 | B2 |
9477649 | Davidson et al. | Oct 2016 | B1 |
D770476 | Jitkoff et al. | Nov 2016 | S |
D770515 | Cho et al. | Nov 2016 | S |
D771116 | Dellinger et al. | Nov 2016 | S |
D772905 | Ingenlath | Nov 2016 | S |
9480476 | Aldridge et al. | Nov 2016 | B2 |
9480492 | Aranyi et al. | Nov 2016 | B2 |
9483095 | Tran et al. | Nov 2016 | B2 |
9486186 | Fiebig et al. | Nov 2016 | B2 |
9486213 | Altman et al. | Nov 2016 | B2 |
9486214 | Shelton, IV | Nov 2016 | B2 |
9486215 | Olson et al. | Nov 2016 | B2 |
9486302 | Boey et al. | Nov 2016 | B2 |
9488197 | Wi | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492167 | Shelton, IV et al. | Nov 2016 | B2 |
9492170 | Bear et al. | Nov 2016 | B2 |
9492172 | Weisshaupt et al. | Nov 2016 | B2 |
9492189 | Williams et al. | Nov 2016 | B2 |
9492192 | To et al. | Nov 2016 | B2 |
9492237 | Kang et al. | Nov 2016 | B2 |
9498213 | Marczyk et al. | Nov 2016 | B2 |
9498219 | Moore et al. | Nov 2016 | B2 |
9498231 | Haider et al. | Nov 2016 | B2 |
9504455 | Whitman et al. | Nov 2016 | B2 |
9504483 | Houser et al. | Nov 2016 | B2 |
9504520 | Worrell et al. | Nov 2016 | B2 |
9504521 | Deutmeyer et al. | Nov 2016 | B2 |
9504528 | Ivinson et al. | Nov 2016 | B2 |
9507399 | Chien | Nov 2016 | B2 |
D774547 | Capela et al. | Dec 2016 | S |
D775336 | Shelton, IV et al. | Dec 2016 | S |
9510827 | Kostrzewski | Dec 2016 | B2 |
9510828 | Yates et al. | Dec 2016 | B2 |
9510830 | Shelton, IV et al. | Dec 2016 | B2 |
9510846 | Sholev et al. | Dec 2016 | B2 |
9510895 | Houser et al. | Dec 2016 | B2 |
9510925 | Hotter et al. | Dec 2016 | B2 |
9515366 | Herbsommer et al. | Dec 2016 | B2 |
9517063 | Swayze et al. | Dec 2016 | B2 |
9517065 | Simms et al. | Dec 2016 | B2 |
9517068 | Shelton, IV et al. | Dec 2016 | B2 |
9517326 | Hinman et al. | Dec 2016 | B2 |
9521996 | Armstrong | Dec 2016 | B2 |
9522003 | Weir et al. | Dec 2016 | B2 |
9522005 | Williams et al. | Dec 2016 | B2 |
9522014 | Nishizawa et al. | Dec 2016 | B2 |
9522029 | Yates et al. | Dec 2016 | B2 |
9526481 | Storz et al. | Dec 2016 | B2 |
9526499 | Kostrzewski et al. | Dec 2016 | B2 |
9526563 | Twomey | Dec 2016 | B2 |
9526564 | Rusin | Dec 2016 | B2 |
9526921 | Kimball et al. | Dec 2016 | B2 |
D776683 | Gobinski et al. | Jan 2017 | S |
D777773 | Shi | Jan 2017 | S |
9532783 | Swayze et al. | Jan 2017 | B2 |
9539060 | Lightcap et al. | Jan 2017 | B2 |
9539726 | Simaan et al. | Jan 2017 | B2 |
9545253 | Worrell et al. | Jan 2017 | B2 |
9545258 | Smith et al. | Jan 2017 | B2 |
9549732 | Yates et al. | Jan 2017 | B2 |
9549733 | Knodel | Jan 2017 | B2 |
9549735 | Shelton, IV et al. | Jan 2017 | B2 |
9549750 | Shelton, IV et al. | Jan 2017 | B2 |
9554794 | Baber et al. | Jan 2017 | B2 |
9554796 | Kostrzewski | Jan 2017 | B2 |
9554803 | Smith et al. | Jan 2017 | B2 |
9554812 | Inkpen et al. | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9559624 | Philipp | Jan 2017 | B2 |
9561013 | Tsuchiya | Feb 2017 | B2 |
9561029 | Scheib et al. | Feb 2017 | B2 |
9561030 | Zhang et al. | Feb 2017 | B2 |
9561031 | Heinrich et al. | Feb 2017 | B2 |
9561032 | Shelton, IV et al. | Feb 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9561045 | Hinman et al. | Feb 2017 | B2 |
9561072 | Ko | Feb 2017 | B2 |
9561082 | Yen et al. | Feb 2017 | B2 |
9566061 | Aronhalt et al. | Feb 2017 | B2 |
9566062 | Boudreaux | Feb 2017 | B2 |
9566064 | Williams et al. | Feb 2017 | B2 |
9566065 | Knodel | Feb 2017 | B2 |
9566067 | Milliman et al. | Feb 2017 | B2 |
9572552 | Bodor et al. | Feb 2017 | B1 |
9572574 | Shelton, IV et al. | Feb 2017 | B2 |
9572576 | Hodgkinson et al. | Feb 2017 | B2 |
9572577 | Lloyd et al. | Feb 2017 | B2 |
9572592 | Price et al. | Feb 2017 | B2 |
9574644 | Parihar | Feb 2017 | B2 |
9579088 | Farritor et al. | Feb 2017 | B2 |
9579143 | Ullrich et al. | Feb 2017 | B2 |
9579158 | Brianza et al. | Feb 2017 | B2 |
D780803 | Gill et al. | Mar 2017 | S |
D781879 | Butcher et al. | Mar 2017 | S |
D782530 | Paek et al. | Mar 2017 | S |
9585550 | Abel et al. | Mar 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9585658 | Shelton, IV | Mar 2017 | B2 |
9585659 | Viola et al. | Mar 2017 | B2 |
9585660 | Laurent et al. | Mar 2017 | B2 |
9585662 | Shelton, IV et al. | Mar 2017 | B2 |
9585663 | Shelton, IV et al. | Mar 2017 | B2 |
9585672 | Bastia | Mar 2017 | B2 |
9590433 | Li | Mar 2017 | B2 |
9592050 | Schmid et al. | Mar 2017 | B2 |
9592052 | Shelton, IV | Mar 2017 | B2 |
9592053 | Shelton, IV et al. | Mar 2017 | B2 |
9592054 | Schmid et al. | Mar 2017 | B2 |
9597073 | Sorrentino et al. | Mar 2017 | B2 |
9597075 | Shelton, IV et al. | Mar 2017 | B2 |
9597078 | Scirica et al. | Mar 2017 | B2 |
9597080 | Milliman et al. | Mar 2017 | B2 |
9597104 | Nicholas et al. | Mar 2017 | B2 |
9597143 | Madan et al. | Mar 2017 | B2 |
9603595 | Shelton, IV et al. | Mar 2017 | B2 |
9603598 | Shelton, IV et al. | Mar 2017 | B2 |
9603599 | Miller et al. | Mar 2017 | B2 |
9603991 | Shelton, IV et al. | Mar 2017 | B2 |
D783658 | Hurst et al. | Apr 2017 | S |
9610068 | Kappel et al. | Apr 2017 | B2 |
9610079 | Kamei et al. | Apr 2017 | B2 |
9610080 | Whitfield et al. | Apr 2017 | B2 |
9610412 | Zemlok et al. | Apr 2017 | B2 |
9614258 | Takahashi et al. | Apr 2017 | B2 |
9615826 | Shelton, IV et al. | Apr 2017 | B2 |
9622745 | Ingmanson et al. | Apr 2017 | B2 |
9622746 | Simms et al. | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629626 | Soltz et al. | Apr 2017 | B2 |
9629627 | Kostrzewski et al. | Apr 2017 | B2 |
9629628 | Aranyi | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9629631 | Nicholas et al. | Apr 2017 | B2 |
9629632 | Linder et al. | Apr 2017 | B2 |
9629652 | Mumaw et al. | Apr 2017 | B2 |
9629814 | Widenhouse et al. | Apr 2017 | B2 |
D785794 | Magno, Jr. | May 2017 | S |
D786280 | Ma | May 2017 | S |
D786896 | Kim et al. | May 2017 | S |
D787547 | Basargin et al. | May 2017 | S |
D788123 | Shan et al. | May 2017 | S |
D788140 | Hemsley et al. | May 2017 | S |
9636091 | Beardsley et al. | May 2017 | B2 |
9636111 | Wenchell | May 2017 | B2 |
9636112 | Penna et al. | May 2017 | B2 |
9636113 | Wenchell | May 2017 | B2 |
9636850 | Stopek et al. | May 2017 | B2 |
9641122 | Romanowich et al. | May 2017 | B2 |
9642620 | Baxter, III et al. | May 2017 | B2 |
9642642 | Lim | May 2017 | B2 |
9649096 | Sholev | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649190 | Mathies | May 2017 | B2 |
9651032 | Weaver et al. | May 2017 | B2 |
9655613 | Schaller | May 2017 | B2 |
9655614 | Swensgard et al. | May 2017 | B2 |
9655615 | Knodel et al. | May 2017 | B2 |
9655616 | Aranyi | May 2017 | B2 |
9655624 | Shelton, IV et al. | May 2017 | B2 |
9661991 | Glossop | May 2017 | B2 |
9662108 | Williams | May 2017 | B2 |
9662110 | Huang et al. | May 2017 | B2 |
9662111 | Holsten et al. | May 2017 | B2 |
9662116 | Smith et al. | May 2017 | B2 |
9662130 | Bartels et al. | May 2017 | B2 |
9662131 | Omori et al. | May 2017 | B2 |
D788792 | Alessandri et al. | Jun 2017 | S |
D789384 | Lin et al. | Jun 2017 | S |
D790570 | Butcher et al. | Jun 2017 | S |
9668728 | Williams et al. | Jun 2017 | B2 |
9668729 | Williams et al. | Jun 2017 | B2 |
9668732 | Patel et al. | Jun 2017 | B2 |
9668733 | Williams | Jun 2017 | B2 |
9668734 | Kostrzewski et al. | Jun 2017 | B2 |
9668735 | Beetel | Jun 2017 | B2 |
9675344 | Combrowski et al. | Jun 2017 | B2 |
9675348 | Smith et al. | Jun 2017 | B2 |
9675351 | Hodgkinson et al. | Jun 2017 | B2 |
9675354 | Weir et al. | Jun 2017 | B2 |
9675355 | Shelton, IV et al. | Jun 2017 | B2 |
9675368 | Guo et al. | Jun 2017 | B2 |
9675372 | Laurent et al. | Jun 2017 | B2 |
9675375 | Houser et al. | Jun 2017 | B2 |
9675405 | Trees et al. | Jun 2017 | B2 |
9675819 | Dunbar et al. | Jun 2017 | B2 |
9681870 | Baxter, III et al. | Jun 2017 | B2 |
9681873 | Smith et al. | Jun 2017 | B2 |
9681884 | Clem et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9687231 | Baxter, III et al. | Jun 2017 | B2 |
9687232 | Shelton, IV et al. | Jun 2017 | B2 |
9687233 | Fernandez et al. | Jun 2017 | B2 |
9687236 | Leimbach et al. | Jun 2017 | B2 |
9687237 | Schmid et al. | Jun 2017 | B2 |
9687253 | Detry et al. | Jun 2017 | B2 |
9689466 | Kanai et al. | Jun 2017 | B2 |
9690362 | Leimbach et al. | Jun 2017 | B2 |
9693772 | Ingmanson et al. | Jul 2017 | B2 |
9693774 | Gettinger et al. | Jul 2017 | B2 |
9693775 | Agarwal et al. | Jul 2017 | B2 |
9693777 | Schellin et al. | Jul 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700310 | Morgan et al. | Jul 2017 | B2 |
9700312 | Kostrzewski et al. | Jul 2017 | B2 |
9700314 | Marczyk | Jul 2017 | B2 |
9700315 | Chen et al. | Jul 2017 | B2 |
9700317 | Aronhalt et al. | Jul 2017 | B2 |
9700318 | Scirica et al. | Jul 2017 | B2 |
9700319 | Motooka et al. | Jul 2017 | B2 |
9700320 | Dinardo et al. | Jul 2017 | B2 |
9700321 | Shelton, IV et al. | Jul 2017 | B2 |
9700334 | Hinman et al. | Jul 2017 | B2 |
9700381 | Amat Girbau | Jul 2017 | B2 |
9702823 | Maher et al. | Jul 2017 | B2 |
9706674 | Collins et al. | Jul 2017 | B2 |
9706981 | Nicholas et al. | Jul 2017 | B2 |
9706991 | Hess et al. | Jul 2017 | B2 |
9706993 | Hessler et al. | Jul 2017 | B2 |
9707003 | Hoell, Jr. et al. | Jul 2017 | B2 |
9707005 | Strobl et al. | Jul 2017 | B2 |
9707026 | Malackowski et al. | Jul 2017 | B2 |
9707033 | Parihar et al. | Jul 2017 | B2 |
9707043 | Bozung | Jul 2017 | B2 |
9707684 | Ruiz Morales et al. | Jul 2017 | B2 |
9713466 | Kostrzewski | Jul 2017 | B2 |
9713468 | Harris et al. | Jul 2017 | B2 |
9713470 | Scirica et al. | Jul 2017 | B2 |
9713474 | Lorenz | Jul 2017 | B2 |
D795919 | Bischoff et al. | Aug 2017 | S |
9717497 | Zerkle et al. | Aug 2017 | B2 |
9717498 | Aranyi et al. | Aug 2017 | B2 |
9718190 | Larkin et al. | Aug 2017 | B2 |
9722236 | Sathrum | Aug 2017 | B2 |
9724091 | Shelton, IV et al. | Aug 2017 | B2 |
9724092 | Baxter, III et al. | Aug 2017 | B2 |
9724094 | Baber et al. | Aug 2017 | B2 |
9724095 | Gupta et al. | Aug 2017 | B2 |
9724096 | Thompson et al. | Aug 2017 | B2 |
9724098 | Baxter, III et al. | Aug 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9724163 | Orban | Aug 2017 | B2 |
9730692 | Shelton, IV et al. | Aug 2017 | B2 |
9730695 | Leimbach et al. | Aug 2017 | B2 |
9730697 | Morgan et al. | Aug 2017 | B2 |
9730717 | Katsuki et al. | Aug 2017 | B2 |
9730757 | Brudniok | Aug 2017 | B2 |
9731410 | Hirabayashi et al. | Aug 2017 | B2 |
9733663 | Leimbach et al. | Aug 2017 | B2 |
9737297 | Racenet et al. | Aug 2017 | B2 |
9737298 | Isbell, Jr. | Aug 2017 | B2 |
9737299 | Yan | Aug 2017 | B2 |
9737301 | Baber et al. | Aug 2017 | B2 |
9737302 | Shelton, IV et al. | Aug 2017 | B2 |
9737303 | Shelton, IV et al. | Aug 2017 | B2 |
9737323 | Thapliyal et al. | Aug 2017 | B2 |
9737365 | Hegeman et al. | Aug 2017 | B2 |
9743927 | Whitman | Aug 2017 | B2 |
9743928 | Shelton, IV et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
D798319 | Bergstrand et al. | Sep 2017 | S |
9750498 | Timm et al. | Sep 2017 | B2 |
9750499 | Leimbach et al. | Sep 2017 | B2 |
9750501 | Shelton, IV et al. | Sep 2017 | B2 |
9750502 | Scirica et al. | Sep 2017 | B2 |
9750503 | Milliman | Sep 2017 | B2 |
9750639 | Barnes et al. | Sep 2017 | B2 |
9751176 | McRoberts et al. | Sep 2017 | B2 |
9757123 | Giordano et al. | Sep 2017 | B2 |
9757124 | Schellin et al. | Sep 2017 | B2 |
9757126 | Cappola | Sep 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757129 | Williams | Sep 2017 | B2 |
9757130 | Shelton, IV | Sep 2017 | B2 |
9763662 | Shelton, IV et al. | Sep 2017 | B2 |
9763668 | Whitfield et al. | Sep 2017 | B2 |
9770245 | Swayze et al. | Sep 2017 | B2 |
9770274 | Pool et al. | Sep 2017 | B2 |
D798886 | Prophete et al. | Oct 2017 | S |
D800742 | Rhodes | Oct 2017 | S |
D800744 | Jitkoff et al. | Oct 2017 | S |
D800766 | Park et al. | Oct 2017 | S |
D800904 | Leimbach et al. | Oct 2017 | S |
9775608 | Aronhalt et al. | Oct 2017 | B2 |
9775609 | Shelton, IV et al. | Oct 2017 | B2 |
9775610 | Nicholas et al. | Oct 2017 | B2 |
9775611 | Kostrzewski | Oct 2017 | B2 |
9775613 | Shelton, IV et al. | Oct 2017 | B2 |
9775614 | Shelton, IV et al. | Oct 2017 | B2 |
9775618 | Bettuchi et al. | Oct 2017 | B2 |
9775635 | Takei | Oct 2017 | B2 |
9775678 | Lohmeier | Oct 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9782170 | Zemlok et al. | Oct 2017 | B2 |
9782180 | Smith et al. | Oct 2017 | B2 |
9782187 | Zergiebel et al. | Oct 2017 | B2 |
9782193 | Thistle | Oct 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788834 | Schmid et al. | Oct 2017 | B2 |
9788835 | Morgan et al. | Oct 2017 | B2 |
9788836 | Overmyer et al. | Oct 2017 | B2 |
9788847 | Jinno | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9788902 | Inoue et al. | Oct 2017 | B2 |
9795379 | Leimbach et al. | Oct 2017 | B2 |
9795380 | Shelton, IV et al. | Oct 2017 | B2 |
9795381 | Shelton, IV | Oct 2017 | B2 |
9795382 | Shelton, IV | Oct 2017 | B2 |
9795383 | Aldridge et al. | Oct 2017 | B2 |
9795384 | Weaner et al. | Oct 2017 | B2 |
9797486 | Zergiebel et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9801627 | Harris et al. | Oct 2017 | B2 |
9801628 | Harris et al. | Oct 2017 | B2 |
9801634 | Shelton, IV et al. | Oct 2017 | B2 |
9801679 | Trees et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9804618 | Leimbach et al. | Oct 2017 | B2 |
D803234 | Day et al. | Nov 2017 | S |
D803235 | Markson et al. | Nov 2017 | S |
D803850 | Chang et al. | Nov 2017 | S |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808246 | Shelton, IV et al. | Nov 2017 | B2 |
9808247 | Shelton, IV et al. | Nov 2017 | B2 |
9808248 | Hoffman | Nov 2017 | B2 |
9808249 | Shelton, IV | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814462 | Woodard, Jr. et al. | Nov 2017 | B2 |
9814463 | Williams et al. | Nov 2017 | B2 |
9814530 | Weir et al. | Nov 2017 | B2 |
9814561 | Forsell | Nov 2017 | B2 |
9815118 | Schmitt et al. | Nov 2017 | B1 |
9820445 | Simpson et al. | Nov 2017 | B2 |
9820737 | Beardsley et al. | Nov 2017 | B2 |
9820738 | Lytle, IV et al. | Nov 2017 | B2 |
9820741 | Kostrzewski | Nov 2017 | B2 |
9820768 | Gee et al. | Nov 2017 | B2 |
9825455 | Sandhu et al. | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9826977 | Leimbach et al. | Nov 2017 | B2 |
9826978 | Shelton, IV et al. | Nov 2017 | B2 |
9829698 | Haraguchi et al. | Nov 2017 | B2 |
D806108 | Day | Dec 2017 | S |
9833235 | Penna et al. | Dec 2017 | B2 |
9833236 | Shelton, IV et al. | Dec 2017 | B2 |
9833238 | Baxter, III et al. | Dec 2017 | B2 |
9833239 | Yates et al. | Dec 2017 | B2 |
9833241 | Huitema et al. | Dec 2017 | B2 |
9833242 | Baxter, III et al. | Dec 2017 | B2 |
9839420 | Shelton, IV et al. | Dec 2017 | B2 |
9839421 | Zerkle et al. | Dec 2017 | B2 |
9839422 | Schellin et al. | Dec 2017 | B2 |
9839423 | Vendely et al. | Dec 2017 | B2 |
9839427 | Swayze et al. | Dec 2017 | B2 |
9839428 | Baxter, III et al. | Dec 2017 | B2 |
9839429 | Weisenburgh, II et al. | Dec 2017 | B2 |
9839480 | Pribanic et al. | Dec 2017 | B2 |
9839481 | Blumenkranz et al. | Dec 2017 | B2 |
9844313 | DiCarlo et al. | Dec 2017 | B2 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844369 | Huitema et al. | Dec 2017 | B2 |
9844372 | Shelton, IV et al. | Dec 2017 | B2 |
9844373 | Swayze et al. | Dec 2017 | B2 |
9844374 | Lytle, IV et al. | Dec 2017 | B2 |
9844375 | Overmyer et al. | Dec 2017 | B2 |
9844376 | Baxter, III et al. | Dec 2017 | B2 |
9844379 | Shelton, IV et al. | Dec 2017 | B2 |
9848871 | Harris et al. | Dec 2017 | B2 |
9848873 | Shelton, IV | Dec 2017 | B2 |
9848875 | Aronhalt et al. | Dec 2017 | B2 |
9848877 | Shelton, IV et al. | Dec 2017 | B2 |
9850499 | Baylink et al. | Dec 2017 | B2 |
9850994 | Schena | Dec 2017 | B2 |
D808989 | Ayvazian et al. | Jan 2018 | S |
9855039 | Racenet et al. | Jan 2018 | B2 |
9855040 | Kostrzewski | Jan 2018 | B2 |
9855662 | Ruiz Morales et al. | Jan 2018 | B2 |
9861261 | Shahinian | Jan 2018 | B2 |
9861359 | Shelton, IV et al. | Jan 2018 | B2 |
9861361 | Aronhalt et al. | Jan 2018 | B2 |
9861362 | Whitman et al. | Jan 2018 | B2 |
9861366 | Aranyi | Jan 2018 | B2 |
9861382 | Smith et al. | Jan 2018 | B2 |
9861446 | Lang | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9867613 | Marczyk et al. | Jan 2018 | B2 |
9867615 | Fanelli et al. | Jan 2018 | B2 |
9867617 | Ma | Jan 2018 | B2 |
9867618 | Hall et al. | Jan 2018 | B2 |
9867620 | Fischvogt et al. | Jan 2018 | B2 |
9868198 | Nicholas et al. | Jan 2018 | B2 |
9872682 | Hess et al. | Jan 2018 | B2 |
9872683 | Hopkins et al. | Jan 2018 | B2 |
9872684 | Hall et al. | Jan 2018 | B2 |
9872722 | Lech | Jan 2018 | B2 |
9877721 | Schellin et al. | Jan 2018 | B2 |
9877722 | Schellin et al. | Jan 2018 | B2 |
9877723 | Hall et al. | Jan 2018 | B2 |
9877776 | Boudreaux | Jan 2018 | B2 |
D810099 | Riedel | Feb 2018 | S |
9883843 | Garlow | Feb 2018 | B2 |
9883860 | Leimbach | Feb 2018 | B2 |
9883861 | Shelton, IV et al. | Feb 2018 | B2 |
9884456 | Schellin et al. | Feb 2018 | B2 |
9888914 | Martin et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888921 | Williams et al. | Feb 2018 | B2 |
9888924 | Ebersole et al. | Feb 2018 | B2 |
9889230 | Bennett et al. | Feb 2018 | B2 |
9895147 | Shelton, IV | Feb 2018 | B2 |
9895148 | Shelton, IV et al. | Feb 2018 | B2 |
9895813 | Blumenkranz et al. | Feb 2018 | B2 |
9901339 | Farascioni | Feb 2018 | B2 |
9901341 | Kostrzewski | Feb 2018 | B2 |
9901342 | Shelton, IV et al. | Feb 2018 | B2 |
9901344 | Moore et al. | Feb 2018 | B2 |
9901345 | Moore et al. | Feb 2018 | B2 |
9901346 | Moore et al. | Feb 2018 | B2 |
9901358 | Faller et al. | Feb 2018 | B2 |
9901406 | State et al. | Feb 2018 | B2 |
9901412 | Lathrop et al. | Feb 2018 | B2 |
D813899 | Erant et al. | Mar 2018 | S |
9907456 | Miyoshi | Mar 2018 | B2 |
9907552 | Measamer et al. | Mar 2018 | B2 |
9907553 | Cole et al. | Mar 2018 | B2 |
9907600 | Stulen et al. | Mar 2018 | B2 |
9907620 | Shelton, IV et al. | Mar 2018 | B2 |
9913641 | Takemoto et al. | Mar 2018 | B2 |
9913642 | Leimbach et al. | Mar 2018 | B2 |
9913644 | McCuen | Mar 2018 | B2 |
9913646 | Shelton, IV | Mar 2018 | B2 |
9913647 | Weisenburgh, II et al. | Mar 2018 | B2 |
9913648 | Shelton, IV et al. | Mar 2018 | B2 |
9913694 | Brisson | Mar 2018 | B2 |
9913733 | Piron et al. | Mar 2018 | B2 |
9918704 | Shelton, IV et al. | Mar 2018 | B2 |
9918714 | Gibbons, Jr. | Mar 2018 | B2 |
9918715 | Menn | Mar 2018 | B2 |
9918716 | Baxter, III et al. | Mar 2018 | B2 |
9918717 | Czernik | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9924941 | Burbank | Mar 2018 | B2 |
9924942 | Swayze et al. | Mar 2018 | B2 |
9924943 | Mohan Pinjala et al. | Mar 2018 | B2 |
9924944 | Shelton, IV et al. | Mar 2018 | B2 |
9924945 | Zheng et al. | Mar 2018 | B2 |
9924946 | Vendely et al. | Mar 2018 | B2 |
9924947 | Shelton, IV et al. | Mar 2018 | B2 |
9924961 | Shelton, IV et al. | Mar 2018 | B2 |
9931106 | Au et al. | Apr 2018 | B2 |
9931116 | Racenet et al. | Apr 2018 | B2 |
9931117 | Hathaway et al. | Apr 2018 | B2 |
9931118 | Shelton, IV et al. | Apr 2018 | B2 |
9931120 | Chen et al. | Apr 2018 | B2 |
9936949 | Measamer et al. | Apr 2018 | B2 |
9936950 | Shelton, IV et al. | Apr 2018 | B2 |
9936951 | Hufnagel et al. | Apr 2018 | B2 |
9936952 | Demmy | Apr 2018 | B2 |
9936954 | Shelton, IV et al. | Apr 2018 | B2 |
9937626 | Rockrohr | Apr 2018 | B2 |
9943309 | Shelton, IV et al. | Apr 2018 | B2 |
9943310 | Harris et al. | Apr 2018 | B2 |
9943312 | Posada et al. | Apr 2018 | B2 |
9949754 | Newhauser et al. | Apr 2018 | B2 |
9953193 | Butler et al. | Apr 2018 | B2 |
D819072 | Clediere | May 2018 | S |
9955954 | Destoumieux et al. | May 2018 | B2 |
9955965 | Chen et al. | May 2018 | B2 |
9955966 | Zergiebel | May 2018 | B2 |
9956677 | Baskar et al. | May 2018 | B2 |
9962129 | Jerebko et al. | May 2018 | B2 |
9962157 | Sapre | May 2018 | B2 |
9962158 | Hall et al. | May 2018 | B2 |
9962159 | Heinrich et al. | May 2018 | B2 |
9962161 | Scheib et al. | May 2018 | B2 |
9968354 | Shelton, IV et al. | May 2018 | B2 |
9968355 | Shelton, IV et al. | May 2018 | B2 |
9968356 | Shelton, IV et al. | May 2018 | B2 |
9968397 | Taylor et al. | May 2018 | B2 |
9974529 | Shelton, IV et al. | May 2018 | B2 |
9974538 | Baxter, III et al. | May 2018 | B2 |
9974539 | Yates et al. | May 2018 | B2 |
9974541 | Calderoni | May 2018 | B2 |
9974542 | Hodgkinson | May 2018 | B2 |
9980713 | Aronhalt et al. | May 2018 | B2 |
9980724 | Farascioni et al. | May 2018 | B2 |
9980729 | Moore et al. | May 2018 | B2 |
9980740 | Krause et al. | May 2018 | B2 |
9980769 | Trees et al. | May 2018 | B2 |
D819680 | Nguyen | Jun 2018 | S |
D819682 | Howard et al. | Jun 2018 | S |
D819684 | Dart | Jun 2018 | S |
D820307 | Jian et al. | Jun 2018 | S |
D820867 | Dickens et al. | Jun 2018 | S |
9987000 | Shelton, IV et al. | Jun 2018 | B2 |
9987003 | Timm et al. | Jun 2018 | B2 |
9987006 | Morgan et al. | Jun 2018 | B2 |
9987008 | Scirica et al. | Jun 2018 | B2 |
9987095 | Chowaniec et al. | Jun 2018 | B2 |
9987097 | van der Weide et al. | Jun 2018 | B2 |
9987099 | Chen et al. | Jun 2018 | B2 |
9993248 | Shelton, IV et al. | Jun 2018 | B2 |
9993258 | Shelton, IV et al. | Jun 2018 | B2 |
9993284 | Boudreaux | Jun 2018 | B2 |
9999408 | Boudreaux et al. | Jun 2018 | B2 |
9999423 | Schuckmann et al. | Jun 2018 | B2 |
9999426 | Moore et al. | Jun 2018 | B2 |
9999431 | Shelton, IV et al. | Jun 2018 | B2 |
9999472 | Weir et al. | Jun 2018 | B2 |
10004497 | Overmyer et al. | Jun 2018 | B2 |
10004498 | Morgan et al. | Jun 2018 | B2 |
10004500 | Shelton, IV et al. | Jun 2018 | B2 |
10004501 | Shelton, IV et al. | Jun 2018 | B2 |
10004505 | Moore et al. | Jun 2018 | B2 |
10004506 | Shelton, IV et al. | Jun 2018 | B2 |
10004552 | Kleyman et al. | Jun 2018 | B1 |
D822206 | Shelton, IV et al. | Jul 2018 | S |
10010322 | Shelton, IV et al. | Jul 2018 | B2 |
10010324 | Huitema et al. | Jul 2018 | B2 |
10010395 | Puckett et al. | Jul 2018 | B2 |
10013049 | Leimbach et al. | Jul 2018 | B2 |
10016199 | Baber et al. | Jul 2018 | B2 |
10016656 | Devor et al. | Jul 2018 | B2 |
10022120 | Martin et al. | Jul 2018 | B2 |
10022123 | Williams et al. | Jul 2018 | B2 |
10022125 | Stopek et al. | Jul 2018 | B2 |
10024407 | Aranyi et al. | Jul 2018 | B2 |
10028742 | Shelton, IV et al. | Jul 2018 | B2 |
10028743 | Shelton, IV et al. | Jul 2018 | B2 |
10028744 | Shelton, IV et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
10029108 | Powers et al. | Jul 2018 | B2 |
10029125 | Shapiro et al. | Jul 2018 | B2 |
10034344 | Yoshida | Jul 2018 | B2 |
10034668 | Ebner | Jul 2018 | B2 |
D826405 | Shelton, IV et al. | Aug 2018 | S |
10039440 | Fenech et al. | Aug 2018 | B2 |
10039529 | Kerr et al. | Aug 2018 | B2 |
10039532 | Srinivas et al. | Aug 2018 | B2 |
10039545 | Sadowski et al. | Aug 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10045769 | Aronhalt et al. | Aug 2018 | B2 |
10045776 | Shelton, IV et al. | Aug 2018 | B2 |
10045778 | Yates et al. | Aug 2018 | B2 |
10045779 | Savage et al. | Aug 2018 | B2 |
10045781 | Cropper et al. | Aug 2018 | B2 |
10045782 | Murthy Aravalli | Aug 2018 | B2 |
10045869 | Forsell | Aug 2018 | B2 |
10046904 | Evans et al. | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10052099 | Morgan et al. | Aug 2018 | B2 |
10052100 | Morgan et al. | Aug 2018 | B2 |
10052102 | Baxter, III et al. | Aug 2018 | B2 |
10052104 | Shelton, IV et al. | Aug 2018 | B2 |
10052164 | Overmyer | Aug 2018 | B2 |
10058317 | Fan et al. | Aug 2018 | B2 |
10058327 | Weisenburgh, II et al. | Aug 2018 | B2 |
10058373 | Takashino et al. | Aug 2018 | B2 |
10058395 | Devengenzo et al. | Aug 2018 | B2 |
10058963 | Shelton, IV et al. | Aug 2018 | B2 |
10064620 | Gettinger et al. | Sep 2018 | B2 |
10064621 | Kerr et al. | Sep 2018 | B2 |
10064622 | Murthy Aravalli | Sep 2018 | B2 |
10064624 | Shelton, IV et al. | Sep 2018 | B2 |
10064639 | Ishida et al. | Sep 2018 | B2 |
10064642 | Marczyk et al. | Sep 2018 | B2 |
10064649 | Golebieski et al. | Sep 2018 | B2 |
10064688 | Shelton, IV et al. | Sep 2018 | B2 |
10070861 | Spivey et al. | Sep 2018 | B2 |
10070863 | Swayze et al. | Sep 2018 | B2 |
10071452 | Shelton, IV et al. | Sep 2018 | B2 |
10076325 | Huang et al. | Sep 2018 | B2 |
10076326 | Yates et al. | Sep 2018 | B2 |
10076340 | Belagali et al. | Sep 2018 | B2 |
10080552 | Nicholas et al. | Sep 2018 | B2 |
D830550 | Miller et al. | Oct 2018 | S |
D831209 | Huitema et al. | Oct 2018 | S |
D831676 | Park et al. | Oct 2018 | S |
D832301 | Smith | Oct 2018 | S |
10085624 | Isoda et al. | Oct 2018 | B2 |
10085643 | Bandic et al. | Oct 2018 | B2 |
10085728 | Jogasaki et al. | Oct 2018 | B2 |
10085746 | Fischvogt | Oct 2018 | B2 |
10085748 | Morgan et al. | Oct 2018 | B2 |
10085749 | Cappola et al. | Oct 2018 | B2 |
10085750 | Zergiebel et al. | Oct 2018 | B2 |
10085751 | Overmyer et al. | Oct 2018 | B2 |
10085754 | Sniffin et al. | Oct 2018 | B2 |
10085806 | Hagn et al. | Oct 2018 | B2 |
10092290 | Yigit et al. | Oct 2018 | B2 |
10092292 | Boudreaux et al. | Oct 2018 | B2 |
10098635 | Burbank | Oct 2018 | B2 |
10098636 | Shelton, IV et al. | Oct 2018 | B2 |
10098640 | Bertolero et al. | Oct 2018 | B2 |
10098642 | Baxter, III et al. | Oct 2018 | B2 |
10099303 | Yoshida et al. | Oct 2018 | B2 |
10101861 | Kiyoto | Oct 2018 | B2 |
10105126 | Sauer | Oct 2018 | B2 |
10105128 | Cooper et al. | Oct 2018 | B2 |
10105136 | Yates et al. | Oct 2018 | B2 |
10105139 | Yates et al. | Oct 2018 | B2 |
10105140 | Malinouskas et al. | Oct 2018 | B2 |
10105142 | Baxter, III et al. | Oct 2018 | B2 |
10105149 | Haider et al. | Oct 2018 | B2 |
10106932 | Anderson et al. | Oct 2018 | B2 |
10111657 | McCuen | Oct 2018 | B2 |
10111658 | Chowaniec et al. | Oct 2018 | B2 |
10111660 | Hemmann | Oct 2018 | B2 |
10111665 | Aranyi et al. | Oct 2018 | B2 |
10111679 | Baber et al. | Oct 2018 | B2 |
10111698 | Scheib et al. | Oct 2018 | B2 |
10111702 | Kostrzewski | Oct 2018 | B2 |
D833608 | Miller et al. | Nov 2018 | S |
10117649 | Baxter et al. | Nov 2018 | B2 |
10117650 | Nicholas et al. | Nov 2018 | B2 |
10117652 | Schmid et al. | Nov 2018 | B2 |
10117653 | Leimbach et al. | Nov 2018 | B2 |
10117654 | Ingmanson et al. | Nov 2018 | B2 |
10123798 | Baxter, III et al. | Nov 2018 | B2 |
10123845 | Yeung | Nov 2018 | B2 |
10124493 | Rothfuss et al. | Nov 2018 | B2 |
10130352 | Widenhouse et al. | Nov 2018 | B2 |
10130359 | Hess et al. | Nov 2018 | B2 |
10130360 | Olson et al. | Nov 2018 | B2 |
10130361 | Yates et al. | Nov 2018 | B2 |
10130363 | Huitema et al. | Nov 2018 | B2 |
10130366 | Shelton, IV et al. | Nov 2018 | B2 |
10130367 | Cappola et al. | Nov 2018 | B2 |
10130382 | Gladstone | Nov 2018 | B2 |
10130738 | Shelton, IV et al. | Nov 2018 | B2 |
10130830 | Miret Carceller et al. | Nov 2018 | B2 |
10133248 | Fitzsimmons et al. | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10136879 | Ross et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10136889 | Shelton, IV et al. | Nov 2018 | B2 |
10136890 | Shelton, IV et al. | Nov 2018 | B2 |
10136891 | Shelton, IV et al. | Nov 2018 | B2 |
10136949 | Felder et al. | Nov 2018 | B2 |
D835659 | Anzures et al. | Dec 2018 | S |
D836124 | Fan | Dec 2018 | S |
10143474 | Bucciaglia et al. | Dec 2018 | B2 |
10146423 | Reed et al. | Dec 2018 | B1 |
10149679 | Shelton, IV et al. | Dec 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10149682 | Shelton, IV et al. | Dec 2018 | B2 |
10149683 | Smith et al. | Dec 2018 | B2 |
10149712 | Manwaring et al. | Dec 2018 | B2 |
10152789 | Carnes et al. | Dec 2018 | B2 |
10154841 | Weaner et al. | Dec 2018 | B2 |
10159481 | Whitman et al. | Dec 2018 | B2 |
10159482 | Swayze et al. | Dec 2018 | B2 |
10159483 | Beckman et al. | Dec 2018 | B2 |
10159506 | Boudreaux et al. | Dec 2018 | B2 |
10161816 | Jackson et al. | Dec 2018 | B2 |
10163065 | Koski et al. | Dec 2018 | B1 |
10163589 | Zergiebel et al. | Dec 2018 | B2 |
10164466 | Calderoni | Dec 2018 | B2 |
D837244 | Kuo et al. | Jan 2019 | S |
D837245 | Kuo et al. | Jan 2019 | S |
10166023 | Vendely et al. | Jan 2019 | B2 |
10166025 | Leimbach et al. | Jan 2019 | B2 |
10166026 | Shelton, IV et al. | Jan 2019 | B2 |
10172611 | Shelton, IV et al. | Jan 2019 | B2 |
10172615 | Marczyk et al. | Jan 2019 | B2 |
10172616 | Murray et al. | Jan 2019 | B2 |
10172617 | Shelton, IV et al. | Jan 2019 | B2 |
10172618 | Shelton, IV et al. | Jan 2019 | B2 |
10172619 | Harris et al. | Jan 2019 | B2 |
10172620 | Harris et al. | Jan 2019 | B2 |
10172636 | Stulen et al. | Jan 2019 | B2 |
10172669 | Felder et al. | Jan 2019 | B2 |
10175127 | Collins et al. | Jan 2019 | B2 |
10178992 | Wise et al. | Jan 2019 | B2 |
10180463 | Beckman et al. | Jan 2019 | B2 |
10182813 | Leimbach et al. | Jan 2019 | B2 |
10182815 | Williams et al. | Jan 2019 | B2 |
10182816 | Shelton, IV et al. | Jan 2019 | B2 |
10182818 | Hensel et al. | Jan 2019 | B2 |
10182819 | Shelton, IV | Jan 2019 | B2 |
10182868 | Meier et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10188389 | Vendely et al. | Jan 2019 | B2 |
10188393 | Smith et al. | Jan 2019 | B2 |
10188394 | Shelton, IV et al. | Jan 2019 | B2 |
10190888 | Hryb et al. | Jan 2019 | B2 |
D839900 | Gan | Feb 2019 | S |
D841667 | Coren | Feb 2019 | S |
10194801 | Elhawary et al. | Feb 2019 | B2 |
10194904 | Viola et al. | Feb 2019 | B2 |
10194907 | Marczyk et al. | Feb 2019 | B2 |
10194908 | Duque et al. | Feb 2019 | B2 |
10194910 | Shelton, IV et al. | Feb 2019 | B2 |
10194911 | Miller et al. | Feb 2019 | B2 |
10194912 | Scheib et al. | Feb 2019 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
10194976 | Boudreaux | Feb 2019 | B2 |
10194992 | Robinson | Feb 2019 | B2 |
10201348 | Scheib et al. | Feb 2019 | B2 |
10201349 | Leimbach et al. | Feb 2019 | B2 |
10201363 | Shelton, IV | Feb 2019 | B2 |
10201364 | Leimbach et al. | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10201381 | Zergiebel et al. | Feb 2019 | B2 |
10206605 | Shelton, IV et al. | Feb 2019 | B2 |
10206676 | Shelton, IV | Feb 2019 | B2 |
10206677 | Harris et al. | Feb 2019 | B2 |
10206678 | Shelton, IV et al. | Feb 2019 | B2 |
10206748 | Burbank | Feb 2019 | B2 |
10210244 | Branavan et al. | Feb 2019 | B1 |
10211586 | Adams et al. | Feb 2019 | B2 |
10213198 | Aronhalt et al. | Feb 2019 | B2 |
10213201 | Shelton, IV et al. | Feb 2019 | B2 |
10213202 | Flanagan et al. | Feb 2019 | B2 |
10213203 | Swayze et al. | Feb 2019 | B2 |
10213204 | Aranyi et al. | Feb 2019 | B2 |
10213262 | Shelton, IV et al. | Feb 2019 | B2 |
D842328 | Jian et al. | Mar 2019 | S |
10219811 | Haider et al. | Mar 2019 | B2 |
10219832 | Bagwell et al. | Mar 2019 | B2 |
10220522 | Rockrohr | Mar 2019 | B2 |
10226239 | Nicholas et al. | Mar 2019 | B2 |
10226249 | Jaworek et al. | Mar 2019 | B2 |
10226250 | Beckman et al. | Mar 2019 | B2 |
10226251 | Scheib et al. | Mar 2019 | B2 |
10226274 | Worrell et al. | Mar 2019 | B2 |
10231634 | Zand et al. | Mar 2019 | B2 |
10231653 | Bohm et al. | Mar 2019 | B2 |
10231734 | Thompson et al. | Mar 2019 | B2 |
10231794 | Shelton, IV et al. | Mar 2019 | B2 |
10238385 | Yates et al. | Mar 2019 | B2 |
10238386 | Overmyer et al. | Mar 2019 | B2 |
10238387 | Yates et al. | Mar 2019 | B2 |
10238389 | Yates et al. | Mar 2019 | B2 |
10238390 | Harris et al. | Mar 2019 | B2 |
10238391 | Leimbach et al. | Mar 2019 | B2 |
D844666 | Espeleta et al. | Apr 2019 | S |
D844667 | Espeleta et al. | Apr 2019 | S |
D845342 | Espeleta et al. | Apr 2019 | S |
D847199 | Whitmore | Apr 2019 | S |
10244991 | Shademan et al. | Apr 2019 | B2 |
10245027 | Shelton, IV et al. | Apr 2019 | B2 |
10245028 | Shelton, IV et al. | Apr 2019 | B2 |
10245029 | Hunter et al. | Apr 2019 | B2 |
10245030 | Hunter et al. | Apr 2019 | B2 |
10245032 | Shelton, IV | Apr 2019 | B2 |
10245033 | Overmyer et al. | Apr 2019 | B2 |
10245034 | Shelton, IV et al. | Apr 2019 | B2 |
10245035 | Swayze et al. | Apr 2019 | B2 |
10245038 | Hopkins et al. | Apr 2019 | B2 |
10245058 | Omori et al. | Apr 2019 | B2 |
10251645 | Kostrzewski | Apr 2019 | B2 |
10251648 | Harris et al. | Apr 2019 | B2 |
10251649 | Schellin et al. | Apr 2019 | B2 |
10251725 | Valentine et al. | Apr 2019 | B2 |
10258322 | Fanton et al. | Apr 2019 | B2 |
10258330 | Shelton, IV et al. | Apr 2019 | B2 |
10258331 | Shelton, IV et al. | Apr 2019 | B2 |
10258332 | Schmid et al. | Apr 2019 | B2 |
10258333 | Shelton, IV et al. | Apr 2019 | B2 |
10258336 | Baxter, III et al. | Apr 2019 | B2 |
10258363 | Worrell et al. | Apr 2019 | B2 |
10258418 | Shelton, IV et al. | Apr 2019 | B2 |
10264797 | Zhang et al. | Apr 2019 | B2 |
10265065 | Shelton, IV et al. | Apr 2019 | B2 |
10265067 | Yates et al. | Apr 2019 | B2 |
10265068 | Harris et al. | Apr 2019 | B2 |
10265072 | Shelton, IV et al. | Apr 2019 | B2 |
10265073 | Scheib et al. | Apr 2019 | B2 |
10265074 | Shelton, IV et al. | Apr 2019 | B2 |
10265090 | Ingmanson et al. | Apr 2019 | B2 |
10271840 | Sapre | Apr 2019 | B2 |
10271844 | Valentine et al. | Apr 2019 | B2 |
10271845 | Shelton, IV | Apr 2019 | B2 |
10271846 | Shelton, IV et al. | Apr 2019 | B2 |
10271847 | Racenet et al. | Apr 2019 | B2 |
10271849 | Vendely et al. | Apr 2019 | B2 |
10271851 | Shelton, IV et al. | Apr 2019 | B2 |
D847989 | Shelton, IV et al. | May 2019 | S |
D848473 | Zhu et al. | May 2019 | S |
D849046 | Kuo et al. | May 2019 | S |
10278696 | Gurumurthy et al. | May 2019 | B2 |
10278697 | Shelton, IV et al. | May 2019 | B2 |
10278702 | Shelton, IV et al. | May 2019 | B2 |
10278703 | Nativ et al. | May 2019 | B2 |
10278707 | Thompson et al. | May 2019 | B2 |
10278722 | Shelton, IV et al. | May 2019 | B2 |
10278780 | Shelton, IV | May 2019 | B2 |
10285694 | Viola et al. | May 2019 | B2 |
10285695 | Jaworek et al. | May 2019 | B2 |
10285699 | Vendely et al. | May 2019 | B2 |
10285700 | Scheib | May 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10285724 | Faller et al. | May 2019 | B2 |
10285750 | Coulson et al. | May 2019 | B2 |
10292701 | Scheib et al. | May 2019 | B2 |
10292704 | Harris et al. | May 2019 | B2 |
10292707 | Shelton, IV et al. | May 2019 | B2 |
10293100 | Shelton, IV et al. | May 2019 | B2 |
10293553 | Racenet et al. | May 2019 | B2 |
10299787 | Shelton, IV | May 2019 | B2 |
10299788 | Heinrich et al. | May 2019 | B2 |
10299789 | Marczyk et al. | May 2019 | B2 |
10299790 | Beardsley | May 2019 | B2 |
10299792 | Huitema et al. | May 2019 | B2 |
10299817 | Shelton, IV et al. | May 2019 | B2 |
10299818 | Riva | May 2019 | B2 |
10299878 | Shelton, IV et al. | May 2019 | B2 |
10303851 | Nguyen et al. | May 2019 | B2 |
D850617 | Shelton, IV et al. | Jun 2019 | S |
D851676 | Foss et al. | Jun 2019 | S |
D851762 | Shelton, IV et al. | Jun 2019 | S |
10307159 | Harris et al. | Jun 2019 | B2 |
10307160 | Vendely et al. | Jun 2019 | B2 |
10307161 | Jankowski | Jun 2019 | B2 |
10307163 | Moore et al. | Jun 2019 | B2 |
10307170 | Parfett et al. | Jun 2019 | B2 |
10307202 | Smith et al. | Jun 2019 | B2 |
10314559 | Razzaque et al. | Jun 2019 | B2 |
10314577 | Laurent et al. | Jun 2019 | B2 |
10314578 | Leimbach et al. | Jun 2019 | B2 |
10314579 | Chowaniec et al. | Jun 2019 | B2 |
10314580 | Scheib et al. | Jun 2019 | B2 |
10314582 | Shelton, IV et al. | Jun 2019 | B2 |
10314584 | Scirica et al. | Jun 2019 | B2 |
10314587 | Harris et al. | Jun 2019 | B2 |
10314588 | Turner et al. | Jun 2019 | B2 |
10314589 | Shelton, IV et al. | Jun 2019 | B2 |
10314590 | Shelton, IV et al. | Jun 2019 | B2 |
10315566 | Choi et al. | Jun 2019 | B2 |
10321907 | Shelton, IV et al. | Jun 2019 | B2 |
10321909 | Shelton, IV et al. | Jun 2019 | B2 |
10321927 | Hinman | Jun 2019 | B2 |
10327743 | St. Goar et al. | Jun 2019 | B2 |
10327764 | Harris et al. | Jun 2019 | B2 |
10327765 | Timm et al. | Jun 2019 | B2 |
10327767 | Shelton, IV et al. | Jun 2019 | B2 |
10327769 | Overmyer et al. | Jun 2019 | B2 |
10327776 | Harris et al. | Jun 2019 | B2 |
10327777 | Harris et al. | Jun 2019 | B2 |
D854032 | Jones et al. | Jul 2019 | S |
D854151 | Shelton, IV et al. | Jul 2019 | S |
10335144 | Shelton, IV et al. | Jul 2019 | B2 |
10335145 | Harris et al. | Jul 2019 | B2 |
10335147 | Rector et al. | Jul 2019 | B2 |
10335148 | Shelton, IV et al. | Jul 2019 | B2 |
10335149 | Baxter, III et al. | Jul 2019 | B2 |
10335150 | Shelton, IV | Jul 2019 | B2 |
10335151 | Shelton, IV et al. | Jul 2019 | B2 |
10337148 | Rouse et al. | Jul 2019 | B2 |
10342533 | Shelton, IV et al. | Jul 2019 | B2 |
10342535 | Scheib et al. | Jul 2019 | B2 |
10342541 | Shelton, IV et al. | Jul 2019 | B2 |
10342543 | Shelton, IV et al. | Jul 2019 | B2 |
10342623 | Huelman et al. | Jul 2019 | B2 |
10349937 | Williams | Jul 2019 | B2 |
10349939 | Shelton, IV et al. | Jul 2019 | B2 |
10349941 | Marczyk et al. | Jul 2019 | B2 |
10349963 | Fiksen et al. | Jul 2019 | B2 |
10350016 | Burbank et al. | Jul 2019 | B2 |
10357246 | Shelton, IV et al. | Jul 2019 | B2 |
10357247 | Shelton, IV et al. | Jul 2019 | B2 |
10357248 | Dalessandro et al. | Jul 2019 | B2 |
10357252 | Harris et al. | Jul 2019 | B2 |
10363031 | Alexander, III et al. | Jul 2019 | B2 |
10363033 | Timm et al. | Jul 2019 | B2 |
10363036 | Yates et al. | Jul 2019 | B2 |
10363037 | Aronhalt et al. | Jul 2019 | B2 |
D855634 | Kim | Aug 2019 | S |
D856359 | Huang et al. | Aug 2019 | S |
10368838 | Williams et al. | Aug 2019 | B2 |
10368861 | Baxter, III et al. | Aug 2019 | B2 |
10368863 | Timm et al. | Aug 2019 | B2 |
10368864 | Harris et al. | Aug 2019 | B2 |
10368865 | Harris | Aug 2019 | B2 |
10368866 | Wang et al. | Aug 2019 | B2 |
10368867 | Harris et al. | Aug 2019 | B2 |
10368892 | Stulen et al. | Aug 2019 | B2 |
10374544 | Yokoyama et al. | Aug 2019 | B2 |
10376263 | Morgan et al. | Aug 2019 | B2 |
10383626 | Soltz | Aug 2019 | B2 |
10383628 | Kang et al. | Aug 2019 | B2 |
10383629 | Ross et al. | Aug 2019 | B2 |
10383630 | Shelton, IV et al. | Aug 2019 | B2 |
10383631 | Collings et al. | Aug 2019 | B2 |
10383633 | Shelton, IV et al. | Aug 2019 | B2 |
10383634 | Shelton, IV et al. | Aug 2019 | B2 |
10390823 | Shelton, IV et al. | Aug 2019 | B2 |
10390825 | Shelton, IV et al. | Aug 2019 | B2 |
10390828 | Vendely et al. | Aug 2019 | B2 |
10390829 | Eckert et al. | Aug 2019 | B2 |
10390830 | Schulz | Aug 2019 | B2 |
10390841 | Shelton, IV et al. | Aug 2019 | B2 |
10390897 | Kostrzewski | Aug 2019 | B2 |
D859466 | Okada et al. | Sep 2019 | S |
D860219 | Rasmussen et al. | Sep 2019 | S |
D861035 | Park et al. | Sep 2019 | S |
10398433 | Boudreaux et al. | Sep 2019 | B2 |
10398434 | Shelton, IV et al. | Sep 2019 | B2 |
10398436 | Shelton, IV et al. | Sep 2019 | B2 |
10398460 | Overmyer | Sep 2019 | B2 |
10404136 | Oktavec et al. | Sep 2019 | B2 |
10405854 | Schmid et al. | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10405859 | Harris et al. | Sep 2019 | B2 |
10405863 | Wise et al. | Sep 2019 | B2 |
10405914 | Manwaring et al. | Sep 2019 | B2 |
10405932 | Overmyer | Sep 2019 | B2 |
10405937 | Black et al. | Sep 2019 | B2 |
10413155 | Inoue | Sep 2019 | B2 |
10413291 | Worthington et al. | Sep 2019 | B2 |
10413293 | Shelton, IV et al. | Sep 2019 | B2 |
10413294 | Shelton, IV et al. | Sep 2019 | B2 |
10413297 | Harris et al. | Sep 2019 | B2 |
10413370 | Yates et al. | Sep 2019 | B2 |
10413373 | Yates et al. | Sep 2019 | B2 |
10420548 | Whitman et al. | Sep 2019 | B2 |
10420549 | Yates et al. | Sep 2019 | B2 |
10420550 | Shelton, IV | Sep 2019 | B2 |
10420551 | Calderoni | Sep 2019 | B2 |
10420552 | Shelton, IV et al. | Sep 2019 | B2 |
10420553 | Shelton, IV et al. | Sep 2019 | B2 |
10420554 | Collings et al. | Sep 2019 | B2 |
10420555 | Shelton, IV et al. | Sep 2019 | B2 |
10420558 | Nalagatla et al. | Sep 2019 | B2 |
10420559 | Marczyk et al. | Sep 2019 | B2 |
10420560 | Shelton, IV et al. | Sep 2019 | B2 |
10420561 | Shelton, IV et al. | Sep 2019 | B2 |
10420577 | Chowaniec et al. | Sep 2019 | B2 |
D861707 | Yang | Oct 2019 | S |
D862518 | Niven et al. | Oct 2019 | S |
D863343 | Mazlish et al. | Oct 2019 | S |
D864388 | Barber | Oct 2019 | S |
D865174 | Auld et al. | Oct 2019 | S |
D865175 | Widenhouse et al. | Oct 2019 | S |
10426463 | Shelton, IV et al. | Oct 2019 | B2 |
10426466 | Contini et al. | Oct 2019 | B2 |
10426467 | Miller et al. | Oct 2019 | B2 |
10426468 | Contini et al. | Oct 2019 | B2 |
10426469 | Shelton, IV et al. | Oct 2019 | B2 |
10426471 | Shelton, IV et al. | Oct 2019 | B2 |
10426476 | Harris et al. | Oct 2019 | B2 |
10426477 | Harris et al. | Oct 2019 | B2 |
10426478 | Shelton, IV et al. | Oct 2019 | B2 |
10426481 | Aronhalt et al. | Oct 2019 | B2 |
10426555 | Crowley et al. | Oct 2019 | B2 |
10433837 | Worthington et al. | Oct 2019 | B2 |
10433839 | Scheib et al. | Oct 2019 | B2 |
10433840 | Shelton, IV et al. | Oct 2019 | B2 |
10433842 | Amariglio et al. | Oct 2019 | B2 |
10433844 | Shelton, IV et al. | Oct 2019 | B2 |
10433845 | Baxter, III et al. | Oct 2019 | B2 |
10433846 | Vendely et al. | Oct 2019 | B2 |
10433849 | Shelton, IV et al. | Oct 2019 | B2 |
10433918 | Shelton, IV et al. | Oct 2019 | B2 |
10441279 | Shelton, IV et al. | Oct 2019 | B2 |
10441280 | Timm et al. | Oct 2019 | B2 |
10441281 | Shelton, IV et al. | Oct 2019 | B2 |
10441285 | Shelton, IV et al. | Oct 2019 | B2 |
10441286 | Shelton, IV et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10441369 | Shelton, IV et al. | Oct 2019 | B2 |
10448948 | Shelton, IV et al. | Oct 2019 | B2 |
10448950 | Shelton, IV et al. | Oct 2019 | B2 |
10448952 | Shelton, IV et al. | Oct 2019 | B2 |
10456122 | Koltz et al. | Oct 2019 | B2 |
10456132 | Gettinger et al. | Oct 2019 | B2 |
10456133 | Yates et al. | Oct 2019 | B2 |
10456137 | Vendely et al. | Oct 2019 | B2 |
10456140 | Shelton, IV et al. | Oct 2019 | B2 |
D865796 | Xu et al. | Nov 2019 | S |
10463367 | Kostrzewski et al. | Nov 2019 | B2 |
10463369 | Shelton, IV et al. | Nov 2019 | B2 |
10463370 | Yates et al. | Nov 2019 | B2 |
10463371 | Kostrzewski | Nov 2019 | B2 |
10463372 | Shelton, IV et al. | Nov 2019 | B2 |
10463373 | Mozdzierz et al. | Nov 2019 | B2 |
10463382 | Ingmanson et al. | Nov 2019 | B2 |
10463383 | Shelton, IV et al. | Nov 2019 | B2 |
10463384 | Shelton, IV et al. | Nov 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10470763 | Yates et al. | Nov 2019 | B2 |
10470764 | Baxter, III et al. | Nov 2019 | B2 |
10470767 | Gleiman et al. | Nov 2019 | B2 |
10470768 | Harris et al. | Nov 2019 | B2 |
10470769 | Shelton, IV et al. | Nov 2019 | B2 |
10471282 | Kirk et al. | Nov 2019 | B2 |
10471576 | Totsu | Nov 2019 | B2 |
10471607 | Butt et al. | Nov 2019 | B2 |
10478181 | Shelton, IV et al. | Nov 2019 | B2 |
10478182 | Taylor | Nov 2019 | B2 |
10478185 | Nicholas | Nov 2019 | B2 |
10478187 | Shelton, IV et al. | Nov 2019 | B2 |
10478188 | Harris et al. | Nov 2019 | B2 |
10478189 | Bear et al. | Nov 2019 | B2 |
10478190 | Miller et al. | Nov 2019 | B2 |
10478207 | Lathrop | Nov 2019 | B2 |
10482292 | Clouser et al. | Nov 2019 | B2 |
10485536 | Ming et al. | Nov 2019 | B2 |
10485537 | Yates et al. | Nov 2019 | B2 |
10485539 | Shelton, IV et al. | Nov 2019 | B2 |
10485541 | Shelton, IV et al. | Nov 2019 | B2 |
10485542 | Shelton, IV et al. | Nov 2019 | B2 |
10485543 | Shelton, IV et al. | Nov 2019 | B2 |
10485546 | Shelton, IV et al. | Nov 2019 | B2 |
10485547 | Shelton, IV et al. | Nov 2019 | B2 |
D869655 | Shelton, IV et al. | Dec 2019 | S |
D870742 | Cornell | Dec 2019 | S |
10492783 | Shelton, IV et al. | Dec 2019 | B2 |
10492785 | Overmyer et al. | Dec 2019 | B2 |
10492787 | Smith et al. | Dec 2019 | B2 |
10492814 | Snow et al. | Dec 2019 | B2 |
10492847 | Godara et al. | Dec 2019 | B2 |
10492851 | Hughett, Sr. et al. | Dec 2019 | B2 |
10498269 | Zemlok et al. | Dec 2019 | B2 |
10499890 | Shelton, IV et al. | Dec 2019 | B2 |
10499914 | Huang et al. | Dec 2019 | B2 |
10499917 | Scheib et al. | Dec 2019 | B2 |
10499918 | Schellin et al. | Dec 2019 | B2 |
10500000 | Swayze et al. | Dec 2019 | B2 |
10500004 | Hanuschik et al. | Dec 2019 | B2 |
10500309 | Shah et al. | Dec 2019 | B2 |
10507034 | Timm | Dec 2019 | B2 |
10508720 | Nicholas | Dec 2019 | B2 |
10512461 | Gupta et al. | Dec 2019 | B2 |
10512462 | Felder et al. | Dec 2019 | B2 |
10512464 | Park et al. | Dec 2019 | B2 |
10517590 | Giordano et al. | Dec 2019 | B2 |
10517592 | Shelton, IV et al. | Dec 2019 | B2 |
10517594 | Shelton, IV et al. | Dec 2019 | B2 |
10517595 | Hunter et al. | Dec 2019 | B2 |
10517596 | Hunter et al. | Dec 2019 | B2 |
10517599 | Baxter, III et al. | Dec 2019 | B2 |
10517682 | Giordano et al. | Dec 2019 | B2 |
10524784 | Kostrzewski | Jan 2020 | B2 |
10524787 | Shelton, IV et al. | Jan 2020 | B2 |
10524788 | Vendely et al. | Jan 2020 | B2 |
10524789 | Swayze et al. | Jan 2020 | B2 |
10524790 | Shelton, IV et al. | Jan 2020 | B2 |
10524795 | Nalagatla et al. | Jan 2020 | B2 |
10524870 | Saraliev et al. | Jan 2020 | B2 |
10531874 | Morgan et al. | Jan 2020 | B2 |
10531887 | Shelton, IV et al. | Jan 2020 | B2 |
10537324 | Shelton, IV et al. | Jan 2020 | B2 |
10537325 | Bakos et al. | Jan 2020 | B2 |
10537351 | Shelton, IV et al. | Jan 2020 | B2 |
10542908 | Mei et al. | Jan 2020 | B2 |
10542974 | Yates et al. | Jan 2020 | B2 |
10542976 | Calderoni et al. | Jan 2020 | B2 |
10542978 | Chowaniec et al. | Jan 2020 | B2 |
10542979 | Shelton, IV et al. | Jan 2020 | B2 |
10542982 | Beckman et al. | Jan 2020 | B2 |
10542985 | Zhan et al. | Jan 2020 | B2 |
10542988 | Schellin et al. | Jan 2020 | B2 |
10542991 | Shelton, IV et al. | Jan 2020 | B2 |
10548504 | Shelton, IV et al. | Feb 2020 | B2 |
10548593 | Shelton, IV et al. | Feb 2020 | B2 |
10548600 | Shelton, IV et al. | Feb 2020 | B2 |
10548673 | Harris et al. | Feb 2020 | B2 |
10561412 | Bookbinder et al. | Feb 2020 | B2 |
10561418 | Richard et al. | Feb 2020 | B2 |
10561419 | Beardsley | Feb 2020 | B2 |
10561420 | Harris et al. | Feb 2020 | B2 |
10561422 | Schellin et al. | Feb 2020 | B2 |
10561432 | Estrella et al. | Feb 2020 | B2 |
10561474 | Adams et al. | Feb 2020 | B2 |
10562160 | Iwata et al. | Feb 2020 | B2 |
10568493 | Blase et al. | Feb 2020 | B2 |
10568621 | Shelton, IV et al. | Feb 2020 | B2 |
10568624 | Shelton, IV et al. | Feb 2020 | B2 |
10568625 | Harris et al. | Feb 2020 | B2 |
10568626 | Shelton, IV et al. | Feb 2020 | B2 |
10568629 | Shelton, IV et al. | Feb 2020 | B2 |
10568632 | Miller et al. | Feb 2020 | B2 |
10568652 | Hess et al. | Feb 2020 | B2 |
10569071 | Harris et al. | Feb 2020 | B2 |
D879808 | Harris et al. | Mar 2020 | S |
D879809 | Harris et al. | Mar 2020 | S |
10575868 | Hall et al. | Mar 2020 | B2 |
10580320 | Kamiguchi et al. | Mar 2020 | B2 |
10582928 | Hunter et al. | Mar 2020 | B2 |
10588231 | Sgroi, Jr. et al. | Mar 2020 | B2 |
10588623 | Schmid et al. | Mar 2020 | B2 |
10588625 | Weaner et al. | Mar 2020 | B2 |
10588626 | Overmyer et al. | Mar 2020 | B2 |
10588629 | Malinouskas et al. | Mar 2020 | B2 |
10588630 | Shelton, IV et al. | Mar 2020 | B2 |
10588631 | Shelton, IV et al. | Mar 2020 | B2 |
10588632 | Shelton, IV et al. | Mar 2020 | B2 |
10588633 | Shelton, IV et al. | Mar 2020 | B2 |
10589410 | Aho | Mar 2020 | B2 |
10595835 | Kerr et al. | Mar 2020 | B2 |
10595862 | Shelton, IV et al. | Mar 2020 | B2 |
10595882 | Parfett et al. | Mar 2020 | B2 |
10595887 | Shelton, IV et al. | Mar 2020 | B2 |
10595929 | Boudreaux et al. | Mar 2020 | B2 |
10603036 | Hunter et al. | Mar 2020 | B2 |
10603039 | Vendely et al. | Mar 2020 | B2 |
10603041 | Miller et al. | Mar 2020 | B2 |
10603117 | Schings et al. | Mar 2020 | B2 |
10603128 | Zergiebel et al. | Mar 2020 | B2 |
D882783 | Shelton, IV et al. | Apr 2020 | S |
10610224 | Shelton, IV et al. | Apr 2020 | B2 |
10610225 | Reed et al. | Apr 2020 | B2 |
10610236 | Baril | Apr 2020 | B2 |
10610313 | Bailey et al. | Apr 2020 | B2 |
10610346 | Schwartz | Apr 2020 | B2 |
10614184 | Solki | Apr 2020 | B2 |
10617411 | Williams | Apr 2020 | B2 |
10617412 | Shelton, IV et al. | Apr 2020 | B2 |
10617413 | Shelton, IV et al. | Apr 2020 | B2 |
10617414 | Shelton, IV et al. | Apr 2020 | B2 |
10617416 | Leimbach et al. | Apr 2020 | B2 |
10617417 | Baxter, III et al. | Apr 2020 | B2 |
10617418 | Barton et al. | Apr 2020 | B2 |
10617420 | Shelton, IV et al. | Apr 2020 | B2 |
10617438 | O'Keefe et al. | Apr 2020 | B2 |
10624616 | Mukherjee et al. | Apr 2020 | B2 |
10624630 | Deville et al. | Apr 2020 | B2 |
10624633 | Shelton, IV et al. | Apr 2020 | B2 |
10624634 | Shelton, IV et al. | Apr 2020 | B2 |
10624635 | Harris et al. | Apr 2020 | B2 |
10624709 | Remm | Apr 2020 | B2 |
10624861 | Widenhouse et al. | Apr 2020 | B2 |
10625062 | Matlock et al. | Apr 2020 | B2 |
10631857 | Kostrzewski | Apr 2020 | B2 |
10631858 | Burbank | Apr 2020 | B2 |
10631859 | Shelton, IV et al. | Apr 2020 | B2 |
10631860 | Bakos et al. | Apr 2020 | B2 |
10636104 | Mazar et al. | Apr 2020 | B2 |
10639018 | Shelton, IV et al. | May 2020 | B2 |
10639034 | Harris et al. | May 2020 | B2 |
10639035 | Shelton, IV et al. | May 2020 | B2 |
10639036 | Yates et al. | May 2020 | B2 |
10639037 | Shelton, IV et al. | May 2020 | B2 |
10639089 | Manwaring et al. | May 2020 | B2 |
10639115 | Shelton, IV et al. | May 2020 | B2 |
10642633 | Chopra et al. | May 2020 | B1 |
10645905 | Gandola et al. | May 2020 | B2 |
10646220 | Shelton, IV et al. | May 2020 | B2 |
10646292 | Solomon et al. | May 2020 | B2 |
10653413 | Worthington et al. | May 2020 | B2 |
10653417 | Shelton, IV et al. | May 2020 | B2 |
10653435 | Shelton, IV et al. | May 2020 | B2 |
10660640 | Yates et al. | May 2020 | B2 |
10667408 | Sgroi, Jr. et al. | May 2020 | B2 |
D888953 | Baxter, III et al. | Jun 2020 | S |
10667808 | Baxter, III et al. | Jun 2020 | B2 |
10667809 | Bakos et al. | Jun 2020 | B2 |
10667810 | Shelton, IV et al. | Jun 2020 | B2 |
10667811 | Harris et al. | Jun 2020 | B2 |
10667818 | McLain et al. | Jun 2020 | B2 |
10674895 | Yeung et al. | Jun 2020 | B2 |
10675021 | Harris et al. | Jun 2020 | B2 |
10675024 | Shelton, IV et al. | Jun 2020 | B2 |
10675025 | Swayze et al. | Jun 2020 | B2 |
10675026 | Harris et al. | Jun 2020 | B2 |
10675028 | Shelton, IV et al. | Jun 2020 | B2 |
10675035 | Zingman | Jun 2020 | B2 |
10675080 | Woloszko et al. | Jun 2020 | B2 |
10675102 | Forgione et al. | Jun 2020 | B2 |
10677035 | Balan et al. | Jun 2020 | B2 |
10682134 | Shelton, IV et al. | Jun 2020 | B2 |
10682136 | Harris et al. | Jun 2020 | B2 |
10682137 | Stokes et al. | Jun 2020 | B2 |
10682138 | Shelton, IV et al. | Jun 2020 | B2 |
10682141 | Moore et al. | Jun 2020 | B2 |
10682142 | Shelton, IV et al. | Jun 2020 | B2 |
10687806 | Shelton, IV et al. | Jun 2020 | B2 |
10687809 | Shelton, IV et al. | Jun 2020 | B2 |
10687810 | Shelton, IV et al. | Jun 2020 | B2 |
10687812 | Shelton, IV et al. | Jun 2020 | B2 |
10687813 | Shelton, IV et al. | Jun 2020 | B2 |
10687817 | Shelton, IV et al. | Jun 2020 | B2 |
10687819 | Stokes et al. | Jun 2020 | B2 |
10687904 | Harris et al. | Jun 2020 | B2 |
10695053 | Hess et al. | Jun 2020 | B2 |
10695055 | Shelton, IV et al. | Jun 2020 | B2 |
10695057 | Shelton, IV et al. | Jun 2020 | B2 |
10695058 | Lytle, IV et al. | Jun 2020 | B2 |
10695062 | Leimbach et al. | Jun 2020 | B2 |
10695063 | Morgan et al. | Jun 2020 | B2 |
10695074 | Carusillo | Jun 2020 | B2 |
10695081 | Shelton, IV et al. | Jun 2020 | B2 |
10695119 | Smith | Jun 2020 | B2 |
10695123 | Allen, IV | Jun 2020 | B2 |
10695187 | Moskowitz et al. | Jun 2020 | B2 |
D890784 | Shelton, IV et al. | Jul 2020 | S |
10702266 | Parihar et al. | Jul 2020 | B2 |
10702267 | Hess et al. | Jul 2020 | B2 |
10702270 | Shelton, IV et al. | Jul 2020 | B2 |
10702271 | Aranyi et al. | Jul 2020 | B2 |
10705660 | Xiao | Jul 2020 | B2 |
10709446 | Harris et al. | Jul 2020 | B2 |
10709468 | Shelton, IV et al. | Jul 2020 | B2 |
10709469 | Shelton, IV et al. | Jul 2020 | B2 |
10709495 | Broderick et al. | Jul 2020 | B2 |
10709496 | Moua et al. | Jul 2020 | B2 |
10716563 | Shelton, IV et al. | Jul 2020 | B2 |
10716565 | Shelton, IV et al. | Jul 2020 | B2 |
10716568 | Hall et al. | Jul 2020 | B2 |
10716614 | Yates et al. | Jul 2020 | B2 |
10717179 | Koenig et al. | Jul 2020 | B2 |
10722232 | Yates et al. | Jul 2020 | B2 |
10722233 | Wellman | Jul 2020 | B2 |
10722292 | Arya et al. | Jul 2020 | B2 |
10722293 | Arya et al. | Jul 2020 | B2 |
10722317 | Ward et al. | Jul 2020 | B2 |
D893717 | Messerly et al. | Aug 2020 | S |
10729432 | Shelton, IV et al. | Aug 2020 | B2 |
10729434 | Harris et al. | Aug 2020 | B2 |
10729435 | Richard | Aug 2020 | B2 |
10729436 | Shelton, IV et al. | Aug 2020 | B2 |
10729443 | Cabrera et al. | Aug 2020 | B2 |
10729458 | Stoddard et al. | Aug 2020 | B2 |
10729501 | Leimbach et al. | Aug 2020 | B2 |
10729509 | Shelton, IV et al. | Aug 2020 | B2 |
10736616 | Scheib et al. | Aug 2020 | B2 |
10736628 | Yates et al. | Aug 2020 | B2 |
10736629 | Shelton, IV et al. | Aug 2020 | B2 |
10736630 | Huang et al. | Aug 2020 | B2 |
10736633 | Vendely et al. | Aug 2020 | B2 |
10736634 | Shelton, IV et al. | Aug 2020 | B2 |
10736636 | Baxter, III et al. | Aug 2020 | B2 |
10736644 | Windolf et al. | Aug 2020 | B2 |
10736702 | Harris et al. | Aug 2020 | B2 |
10737398 | Remirez et al. | Aug 2020 | B2 |
10743849 | Shelton, IV et al. | Aug 2020 | B2 |
10743850 | Hibner et al. | Aug 2020 | B2 |
10743851 | Swayze et al. | Aug 2020 | B2 |
10743868 | Shelton, IV et al. | Aug 2020 | B2 |
10743870 | Hall et al. | Aug 2020 | B2 |
10743872 | Leimbach et al. | Aug 2020 | B2 |
10743873 | Overmyer et al. | Aug 2020 | B2 |
10743874 | Shelton, IV et al. | Aug 2020 | B2 |
10743875 | Shelton, IV et al. | Aug 2020 | B2 |
10743877 | Shelton, IV et al. | Aug 2020 | B2 |
10743930 | Nagtegaal | Aug 2020 | B2 |
10751048 | Whitman et al. | Aug 2020 | B2 |
10751053 | Harris et al. | Aug 2020 | B2 |
10751076 | Laurent et al. | Aug 2020 | B2 |
10751138 | Giordano et al. | Aug 2020 | B2 |
10758229 | Shelton, IV et al. | Sep 2020 | B2 |
10758230 | Shelton, IV et al. | Sep 2020 | B2 |
10758232 | Shelton, IV et al. | Sep 2020 | B2 |
10758233 | Scheib et al. | Sep 2020 | B2 |
10758259 | Demmy et al. | Sep 2020 | B2 |
10765425 | Yates et al. | Sep 2020 | B2 |
10765427 | Shelton, IV et al. | Sep 2020 | B2 |
10765429 | Leimbach et al. | Sep 2020 | B2 |
10765430 | Wixey | Sep 2020 | B2 |
10765432 | Moore et al. | Sep 2020 | B2 |
10765442 | Strobl | Sep 2020 | B2 |
10772625 | Shelton, IV et al. | Sep 2020 | B2 |
10772628 | Chen et al. | Sep 2020 | B2 |
10772629 | Shelton, IV et al. | Sep 2020 | B2 |
10772630 | Wixey | Sep 2020 | B2 |
10772631 | Zergiebel et al. | Sep 2020 | B2 |
10772632 | Kostrzewski | Sep 2020 | B2 |
10772651 | Shelton, IV et al. | Sep 2020 | B2 |
10779818 | Zemlok et al. | Sep 2020 | B2 |
10779820 | Harris et al. | Sep 2020 | B2 |
10779821 | Harris et al. | Sep 2020 | B2 |
10779822 | Yates et al. | Sep 2020 | B2 |
10779823 | Shelton, IV et al. | Sep 2020 | B2 |
10779824 | Shelton, IV et al. | Sep 2020 | B2 |
10779825 | Shelton, IV et al. | Sep 2020 | B2 |
10779826 | Shelton, IV et al. | Sep 2020 | B2 |
10779903 | Wise et al. | Sep 2020 | B2 |
10780539 | Shelton, IV et al. | Sep 2020 | B2 |
10786248 | Rousseau et al. | Sep 2020 | B2 |
10786253 | Shelton, IV et al. | Sep 2020 | B2 |
10786255 | Hodgkinson et al. | Sep 2020 | B2 |
10792038 | Becerra et al. | Oct 2020 | B2 |
10796471 | Leimbach et al. | Oct 2020 | B2 |
10799240 | Shelton, IV et al. | Oct 2020 | B2 |
10799306 | Robinson et al. | Oct 2020 | B2 |
10806448 | Shelton, IV et al. | Oct 2020 | B2 |
10806449 | Shelton, IV et al. | Oct 2020 | B2 |
10806450 | Yates et al. | Oct 2020 | B2 |
10806451 | Harris et al. | Oct 2020 | B2 |
10806453 | Chen et al. | Oct 2020 | B2 |
10806479 | Shelton, IV et al. | Oct 2020 | B2 |
10813638 | Shelton, IV et al. | Oct 2020 | B2 |
10813639 | Shelton, IV et al. | Oct 2020 | B2 |
10813640 | Adams et al. | Oct 2020 | B2 |
10813641 | Setser et al. | Oct 2020 | B2 |
10813683 | Baxter, III et al. | Oct 2020 | B2 |
10813705 | Hares et al. | Oct 2020 | B2 |
10813710 | Grubbs | Oct 2020 | B2 |
10820939 | Sartor | Nov 2020 | B2 |
10828028 | Harris et al. | Nov 2020 | B2 |
10828030 | Weir et al. | Nov 2020 | B2 |
10828032 | Leimbach et al. | Nov 2020 | B2 |
10828033 | Shelton, IV et al. | Nov 2020 | B2 |
10828089 | Clark et al. | Nov 2020 | B2 |
10835245 | Swayze et al. | Nov 2020 | B2 |
10835246 | Shelton, IV et al. | Nov 2020 | B2 |
10835247 | Shelton, IV et al. | Nov 2020 | B2 |
10835249 | Schellin et al. | Nov 2020 | B2 |
10835251 | Shelton, IV et al. | Nov 2020 | B2 |
10835330 | Shelton, IV et al. | Nov 2020 | B2 |
10842357 | Moskowitz et al. | Nov 2020 | B2 |
10842473 | Scheib et al. | Nov 2020 | B2 |
10842488 | Swayze et al. | Nov 2020 | B2 |
10842489 | Shelton, IV | Nov 2020 | B2 |
10842490 | DiNardo et al. | Nov 2020 | B2 |
10842491 | Shelton, IV et al. | Nov 2020 | B2 |
10842492 | Shelton, IV et al. | Nov 2020 | B2 |
D904612 | Wynn et al. | Dec 2020 | S |
D904613 | Wynn et al. | Dec 2020 | S |
D906355 | Messerly et al. | Dec 2020 | S |
10849621 | Whitfield et al. | Dec 2020 | B2 |
10849623 | Dunki-Jacobs et al. | Dec 2020 | B2 |
10849697 | Yates et al. | Dec 2020 | B2 |
10856866 | Shelton, IV et al. | Dec 2020 | B2 |
10856867 | Shelton, IV et al. | Dec 2020 | B2 |
10856868 | Shelton, IV et al. | Dec 2020 | B2 |
10856869 | Shelton, IV et al. | Dec 2020 | B2 |
10856870 | Harris et al. | Dec 2020 | B2 |
10863981 | Overmyer et al. | Dec 2020 | B2 |
10863984 | Shelton, IV et al. | Dec 2020 | B2 |
10863986 | Yates et al. | Dec 2020 | B2 |
10869663 | Shelton, IV et al. | Dec 2020 | B2 |
10869664 | Shelton, IV | Dec 2020 | B2 |
10869665 | Shelton, IV et al. | Dec 2020 | B2 |
10869666 | Shelton, IV et al. | Dec 2020 | B2 |
10869669 | Shelton, IV et al. | Dec 2020 | B2 |
10874290 | Walen et al. | Dec 2020 | B2 |
10874391 | Shelton, IV et al. | Dec 2020 | B2 |
10874392 | Scirica et al. | Dec 2020 | B2 |
10874393 | Satti, III et al. | Dec 2020 | B2 |
10874396 | Moore et al. | Dec 2020 | B2 |
10874399 | Zhang | Dec 2020 | B2 |
10879275 | Li et al. | Dec 2020 | B2 |
D907647 | Siebel et al. | Jan 2021 | S |
D907648 | Siebel et al. | Jan 2021 | S |
D908216 | Messerly et al. | Jan 2021 | S |
10881339 | Peyser et al. | Jan 2021 | B2 |
10881395 | Merchant et al. | Jan 2021 | B2 |
10881396 | Shelton, IV et al. | Jan 2021 | B2 |
10881399 | Shelton, IV et al. | Jan 2021 | B2 |
10881401 | Baber et al. | Jan 2021 | B2 |
10881446 | Strobl | Jan 2021 | B2 |
10888318 | Parihar et al. | Jan 2021 | B2 |
10888321 | Shelton, IV et al. | Jan 2021 | B2 |
10888322 | Morgan et al. | Jan 2021 | B2 |
10888323 | Chen et al. | Jan 2021 | B2 |
10888325 | Harris et al. | Jan 2021 | B2 |
10888328 | Shelton, IV et al. | Jan 2021 | B2 |
10888329 | Moore et al. | Jan 2021 | B2 |
10888330 | Moore et al. | Jan 2021 | B2 |
10888369 | Messerly et al. | Jan 2021 | B2 |
10892899 | Shelton, IV et al. | Jan 2021 | B2 |
10893853 | Shelton, IV et al. | Jan 2021 | B2 |
10893863 | Shelton, IV et al. | Jan 2021 | B2 |
10893864 | Harris et al. | Jan 2021 | B2 |
10893867 | Leimbach et al. | Jan 2021 | B2 |
10898183 | Shelton, IV et al. | Jan 2021 | B2 |
10898184 | Yates et al. | Jan 2021 | B2 |
10898185 | Overmyer et al. | Jan 2021 | B2 |
10898186 | Bakos et al. | Jan 2021 | B2 |
10898190 | Yates et al. | Jan 2021 | B2 |
10898193 | Shelton, IV et al. | Jan 2021 | B2 |
10898194 | Moore et al. | Jan 2021 | B2 |
10898195 | Moore et al. | Jan 2021 | B2 |
10903685 | Yates et al. | Jan 2021 | B2 |
D910847 | Shelton, IV et al. | Feb 2021 | S |
10905415 | DiNardo et al. | Feb 2021 | B2 |
10905418 | Shelton, IV et al. | Feb 2021 | B2 |
10905420 | Jasemian et al. | Feb 2021 | B2 |
10905422 | Bakos et al. | Feb 2021 | B2 |
10905423 | Baber et al. | Feb 2021 | B2 |
10905426 | Moore et al. | Feb 2021 | B2 |
10905427 | Moore et al. | Feb 2021 | B2 |
10911515 | Biasi et al. | Feb 2021 | B2 |
10912559 | Harris et al. | Feb 2021 | B2 |
10912562 | Dunki-Jacobs et al. | Feb 2021 | B2 |
10912575 | Shelton, IV et al. | Feb 2021 | B2 |
10918364 | Applegate et al. | Feb 2021 | B2 |
10918380 | Morgan et al. | Feb 2021 | B2 |
10918385 | Overmyer et al. | Feb 2021 | B2 |
10918386 | Shelton, IV et al. | Feb 2021 | B2 |
10919156 | Roberts et al. | Feb 2021 | B2 |
10925600 | McCuen | Feb 2021 | B2 |
10925605 | Moore et al. | Feb 2021 | B2 |
D914878 | Shelton, IV et al. | Mar 2021 | S |
10932772 | Shelton, IV et al. | Mar 2021 | B2 |
10932774 | Shelton, IV | Mar 2021 | B2 |
10932775 | Shelton, IV et al. | Mar 2021 | B2 |
10932778 | Smith et al. | Mar 2021 | B2 |
10932779 | Vendely et al. | Mar 2021 | B2 |
10932784 | Mozdzierz et al. | Mar 2021 | B2 |
10932804 | Scheib et al. | Mar 2021 | B2 |
10932806 | Shelton, IV et al. | Mar 2021 | B2 |
10932872 | Shelton, IV et al. | Mar 2021 | B2 |
10944728 | Wiener et al. | Mar 2021 | B2 |
10945727 | Shelton, IV et al. | Mar 2021 | B2 |
10945728 | Morgan et al. | Mar 2021 | B2 |
10945729 | Shelton, IV et al. | Mar 2021 | B2 |
10945731 | Baxter, III et al. | Mar 2021 | B2 |
10952708 | Scheib et al. | Mar 2021 | B2 |
10952726 | Chowaniec | Mar 2021 | B2 |
10952727 | Giordano et al. | Mar 2021 | B2 |
10952728 | Shelton, IV et al. | Mar 2021 | B2 |
10952759 | Messerly et al. | Mar 2021 | B2 |
10952767 | Kostrzewski et al. | Mar 2021 | B2 |
10959722 | Morgan et al. | Mar 2021 | B2 |
10959725 | Kerr et al. | Mar 2021 | B2 |
10959726 | Williams et al. | Mar 2021 | B2 |
10959727 | Hunter et al. | Mar 2021 | B2 |
10959731 | Casasanta, Jr. et al. | Mar 2021 | B2 |
10959744 | Shelton, IV et al. | Mar 2021 | B2 |
10959797 | Licht et al. | Mar 2021 | B2 |
D917500 | Siebel et al. | Apr 2021 | S |
10966627 | Shelton, IV et al. | Apr 2021 | B2 |
10966717 | Shah et al. | Apr 2021 | B2 |
10966718 | Shelton, IV et al. | Apr 2021 | B2 |
10966791 | Harris et al. | Apr 2021 | B2 |
10973515 | Harris et al. | Apr 2021 | B2 |
10973516 | Shelton, IV et al. | Apr 2021 | B2 |
10973517 | Wixey | Apr 2021 | B2 |
10973519 | Weir et al. | Apr 2021 | B2 |
10973520 | Shelton, IV et al. | Apr 2021 | B2 |
10980534 | Yates et al. | Apr 2021 | B2 |
10980535 | Yates et al. | Apr 2021 | B2 |
10980536 | Weaner et al. | Apr 2021 | B2 |
10980537 | Shelton, IV et al. | Apr 2021 | B2 |
10980538 | Nalagatla et al. | Apr 2021 | B2 |
10980539 | Harris et al. | Apr 2021 | B2 |
10980560 | Shelton, IV et al. | Apr 2021 | B2 |
10983646 | Yoon et al. | Apr 2021 | B2 |
10987102 | Gonzalez et al. | Apr 2021 | B2 |
10987178 | Shelton, IV et al. | Apr 2021 | B2 |
10993713 | Shelton, IV et al. | May 2021 | B2 |
10993715 | Shelton, IV et al. | May 2021 | B2 |
10993716 | Shelton, IV et al. | May 2021 | B2 |
10993717 | Shelton, IV et al. | May 2021 | B2 |
11000274 | Shelton, IV et al. | May 2021 | B2 |
11000275 | Shelton, IV et al. | May 2021 | B2 |
11000277 | Giordano et al. | May 2021 | B2 |
11000278 | Shelton, IV et al. | May 2021 | B2 |
11000279 | Shelton, IV et al. | May 2021 | B2 |
11005291 | Calderoni | May 2021 | B2 |
11006951 | Giordano et al. | May 2021 | B2 |
11006955 | Shelton, IV et al. | May 2021 | B2 |
11007004 | Shelton, IV et al. | May 2021 | B2 |
11007022 | Shelton, IV et al. | May 2021 | B2 |
11013511 | Huang et al. | May 2021 | B2 |
11013552 | Widenhouse et al. | May 2021 | B2 |
11013563 | Shelton, IV et al. | May 2021 | B2 |
11020016 | Wallace et al. | Jun 2021 | B2 |
11020112 | Shelton, IV et al. | Jun 2021 | B2 |
11020113 | Shelton, IV et al. | Jun 2021 | B2 |
11020114 | Shelton, IV et al. | Jun 2021 | B2 |
11020115 | Scheib et al. | Jun 2021 | B2 |
11020172 | Garrison | Jun 2021 | B2 |
11026678 | Overmyer et al. | Jun 2021 | B2 |
11026680 | Shelton, IV et al. | Jun 2021 | B2 |
11026684 | Shelton, IV et al. | Jun 2021 | B2 |
11026687 | Shelton, IV et al. | Jun 2021 | B2 |
11026712 | Shelton, IV et al. | Jun 2021 | B2 |
11026713 | Stokes et al. | Jun 2021 | B2 |
11026751 | Shelton, IV et al. | Jun 2021 | B2 |
11033267 | Shelton, IV et al. | Jun 2021 | B2 |
11039834 | Harris et al. | Jun 2021 | B2 |
11039836 | Shelton, IV et al. | Jun 2021 | B2 |
11039837 | Shelton, IV et al. | Jun 2021 | B2 |
11039849 | Bucciaglia et al. | Jun 2021 | B2 |
11045189 | Yates et al. | Jun 2021 | B2 |
11045191 | Shelton, IV et al. | Jun 2021 | B2 |
11045192 | Harris et al. | Jun 2021 | B2 |
11045196 | Olson et al. | Jun 2021 | B2 |
11045197 | Shelton, IV et al. | Jun 2021 | B2 |
11045199 | Mozdzierz et al. | Jun 2021 | B2 |
11045270 | Shelton, IV et al. | Jun 2021 | B2 |
11051807 | Shelton, IV et al. | Jul 2021 | B2 |
11051810 | Harris et al. | Jul 2021 | B2 |
11051811 | Shelton, IV et al. | Jul 2021 | B2 |
11051813 | Shelton, IV et al. | Jul 2021 | B2 |
11051836 | Shelton, IV et al. | Jul 2021 | B2 |
11051840 | Shelton, IV et al. | Jul 2021 | B2 |
11051873 | Wiener et al. | Jul 2021 | B2 |
11058418 | Shelton, IV et al. | Jul 2021 | B2 |
11058420 | Shelton, IV et al. | Jul 2021 | B2 |
11058422 | Harris et al. | Jul 2021 | B2 |
11058423 | Shelton, IV et al. | Jul 2021 | B2 |
11058424 | Shelton, IV et al. | Jul 2021 | B2 |
11058425 | Widenhouse et al. | Jul 2021 | B2 |
11058426 | Nalagatla et al. | Jul 2021 | B2 |
11058498 | Shelton, IV et al. | Jul 2021 | B2 |
11064997 | Shelton, IV et al. | Jul 2021 | B2 |
11064998 | Shelton, IV | Jul 2021 | B2 |
11065000 | Shankarsetty et al. | Jul 2021 | B2 |
11065048 | Messerly et al. | Jul 2021 | B2 |
11069012 | Shelton, IV et al. | Jul 2021 | B2 |
11071542 | Chen et al. | Jul 2021 | B2 |
11071543 | Shelton, IV et al. | Jul 2021 | B2 |
11071545 | Baber et al. | Jul 2021 | B2 |
11071554 | Parfett et al. | Jul 2021 | B2 |
11071560 | Deck et al. | Jul 2021 | B2 |
11076853 | Parfett et al. | Aug 2021 | B2 |
11076854 | Baber et al. | Aug 2021 | B2 |
11076921 | Shelton, IV et al. | Aug 2021 | B2 |
11076929 | Shelton, IV et al. | Aug 2021 | B2 |
11083452 | Schmid et al. | Aug 2021 | B2 |
11083453 | Shelton, IV et al. | Aug 2021 | B2 |
11083454 | Harris et al. | Aug 2021 | B2 |
11083455 | Shelton, IV et al. | Aug 2021 | B2 |
11083456 | Shelton, IV et al. | Aug 2021 | B2 |
11083457 | Shelton, IV et al. | Aug 2021 | B2 |
11083458 | Harris et al. | Aug 2021 | B2 |
11090045 | Shelton, IV | Aug 2021 | B2 |
11090046 | Shelton, IV et al. | Aug 2021 | B2 |
11090047 | Shelton, IV et al. | Aug 2021 | B2 |
11090048 | Fanelli et al. | Aug 2021 | B2 |
11090049 | Bakos et al. | Aug 2021 | B2 |
11090075 | Hunter et al. | Aug 2021 | B2 |
11096688 | Shelton, IV et al. | Aug 2021 | B2 |
11096689 | Overmyer et al. | Aug 2021 | B2 |
11100631 | Yates et al. | Aug 2021 | B2 |
11103241 | Yates et al. | Aug 2021 | B2 |
11103248 | Shelton, IV et al. | Aug 2021 | B2 |
11103268 | Shelton, IV et al. | Aug 2021 | B2 |
11103269 | Shelton, IV et al. | Aug 2021 | B2 |
11103301 | Messerly et al. | Aug 2021 | B2 |
11109858 | Shelton, IV et al. | Sep 2021 | B2 |
11109859 | Overmyer et al. | Sep 2021 | B2 |
11109860 | Shelton, IV et al. | Sep 2021 | B2 |
11109866 | Shelton, IV et al. | Sep 2021 | B2 |
11109878 | Shelton, IV et al. | Sep 2021 | B2 |
11109925 | Cooper et al. | Sep 2021 | B2 |
11116485 | Scheib et al. | Sep 2021 | B2 |
11116502 | Shelton, IV et al. | Sep 2021 | B2 |
11116594 | Beardsley | Sep 2021 | B2 |
11123069 | Baxter, III et al. | Sep 2021 | B2 |
11123070 | Shelton, IV et al. | Sep 2021 | B2 |
11129611 | Shelton, IV et al. | Sep 2021 | B2 |
11129613 | Harris et al. | Sep 2021 | B2 |
11129615 | Scheib et al. | Sep 2021 | B2 |
11129616 | Shelton, IV et al. | Sep 2021 | B2 |
11129634 | Scheib et al. | Sep 2021 | B2 |
11129636 | Shelton, IV et al. | Sep 2021 | B2 |
11129666 | Messerly et al. | Sep 2021 | B2 |
11129680 | Shelton, IV et al. | Sep 2021 | B2 |
11132462 | Shelton, IV et al. | Sep 2021 | B2 |
11133106 | Shelton, IV et al. | Sep 2021 | B2 |
11134938 | Timm et al. | Oct 2021 | B2 |
11134940 | Shelton, IV et al. | Oct 2021 | B2 |
11134942 | Harris et al. | Oct 2021 | B2 |
11134943 | Giordano et al. | Oct 2021 | B2 |
11134944 | Wise et al. | Oct 2021 | B2 |
11134947 | Shelton, IV et al. | Oct 2021 | B2 |
11135352 | Shelton, IV et al. | Oct 2021 | B2 |
11141153 | Shelton, IV et al. | Oct 2021 | B2 |
11141154 | Shelton, IV et al. | Oct 2021 | B2 |
11141155 | Shelton, IV | Oct 2021 | B2 |
11141156 | Shelton, IV | Oct 2021 | B2 |
11141159 | Scheib et al. | Oct 2021 | B2 |
11141160 | Shelton, IV et al. | Oct 2021 | B2 |
11147547 | Shelton, IV et al. | Oct 2021 | B2 |
11147549 | Timm et al. | Oct 2021 | B2 |
11147551 | Shelton, IV | Oct 2021 | B2 |
11147553 | Shelton, IV | Oct 2021 | B2 |
11147554 | Aronhalt et al. | Oct 2021 | B2 |
11154296 | Aronhalt et al. | Oct 2021 | B2 |
11154297 | Swayze et al. | Oct 2021 | B2 |
11154298 | Timm et al. | Oct 2021 | B2 |
11154299 | Shelton, IV et al. | Oct 2021 | B2 |
11154300 | Nalagatla et al. | Oct 2021 | B2 |
11154301 | Beckman et al. | Oct 2021 | B2 |
11160551 | Shelton, IV et al. | Nov 2021 | B2 |
11160553 | Simms et al. | Nov 2021 | B2 |
11160601 | Worrell et al. | Nov 2021 | B2 |
11166716 | Shelton, IV et al. | Nov 2021 | B2 |
11166717 | Shelton, IV et al. | Nov 2021 | B2 |
11166720 | Giordano et al. | Nov 2021 | B2 |
11166772 | Shelton, IV et al. | Nov 2021 | B2 |
11166773 | Ragosta et al. | Nov 2021 | B2 |
11172580 | Gaertner, II | Nov 2021 | B2 |
11172927 | Shelton, IV | Nov 2021 | B2 |
11172929 | Shelton, IV | Nov 2021 | B2 |
11179150 | Yates et al. | Nov 2021 | B2 |
11179151 | Shelton, IV et al. | Nov 2021 | B2 |
11179152 | Morgan et al. | Nov 2021 | B2 |
11179153 | Shelton, IV | Nov 2021 | B2 |
11179155 | Shelton, IV et al. | Nov 2021 | B2 |
11179208 | Yates et al. | Nov 2021 | B2 |
11185325 | Shelton, IV et al. | Nov 2021 | B2 |
11185330 | Huitema et al. | Nov 2021 | B2 |
11191539 | Overmyer et al. | Dec 2021 | B2 |
11191540 | Aronhalt et al. | Dec 2021 | B2 |
11191543 | Overmyer et al. | Dec 2021 | B2 |
11191545 | Vendely et al. | Dec 2021 | B2 |
11197668 | Shelton, IV et al. | Dec 2021 | B2 |
11197670 | Shelton, IV et al. | Dec 2021 | B2 |
11197671 | Shelton, IV et al. | Dec 2021 | B2 |
11197672 | Dunki-Jacobs et al. | Dec 2021 | B2 |
11202570 | Shelton, IV et al. | Dec 2021 | B2 |
11202631 | Shelton, IV et al. | Dec 2021 | B2 |
11202633 | Harris et al. | Dec 2021 | B2 |
11207064 | Shelton, IV et al. | Dec 2021 | B2 |
11207065 | Harris et al. | Dec 2021 | B2 |
11207067 | Shelton, IV et al. | Dec 2021 | B2 |
11207089 | Kostrzewski et al. | Dec 2021 | B2 |
11207090 | Shelton, IV et al. | Dec 2021 | B2 |
11207146 | Shelton, IV et al. | Dec 2021 | B2 |
11213293 | Worthington et al. | Jan 2022 | B2 |
11213294 | Shelton, IV et al. | Jan 2022 | B2 |
11213302 | Parfett et al. | Jan 2022 | B2 |
11213359 | Shelton, IV et al. | Jan 2022 | B2 |
11219453 | Shelton, IV et al. | Jan 2022 | B2 |
11219455 | Shelton, IV et al. | Jan 2022 | B2 |
11224423 | Shelton, IV et al. | Jan 2022 | B2 |
11224426 | Shelton, IV et al. | Jan 2022 | B2 |
11224427 | Shelton, IV et al. | Jan 2022 | B2 |
11224428 | Scott et al. | Jan 2022 | B2 |
11224454 | Shelton, IV et al. | Jan 2022 | B2 |
11224497 | Shelton, IV et al. | Jan 2022 | B2 |
11229436 | Shelton, IV et al. | Jan 2022 | B2 |
11229437 | Shelton, IV et al. | Jan 2022 | B2 |
11234698 | Shelton, IV et al. | Feb 2022 | B2 |
11234700 | Ragosta et al. | Feb 2022 | B2 |
11241229 | Shelton, IV et al. | Feb 2022 | B2 |
11241230 | Shelton, IV et al. | Feb 2022 | B2 |
11241235 | Shelton, IV et al. | Feb 2022 | B2 |
11246590 | Swayze et al. | Feb 2022 | B2 |
11246592 | Shelton, IV et al. | Feb 2022 | B2 |
11246616 | Shelton, IV et al. | Feb 2022 | B2 |
11246618 | Hall et al. | Feb 2022 | B2 |
11246678 | Shelton, IV et al. | Feb 2022 | B2 |
11253254 | Kimball et al. | Feb 2022 | B2 |
11253256 | Harris et al. | Feb 2022 | B2 |
11259799 | Overmyer et al. | Mar 2022 | B2 |
11259803 | Shelton, IV et al. | Mar 2022 | B2 |
11259805 | Shelton, IV et al. | Mar 2022 | B2 |
11259806 | Shelton, IV et al. | Mar 2022 | B2 |
11259807 | Shelton, IV et al. | Mar 2022 | B2 |
11266405 | Shelton, IV et al. | Mar 2022 | B2 |
11266406 | Leimbach et al. | Mar 2022 | B2 |
11266409 | Huitema et al. | Mar 2022 | B2 |
11266410 | Shelton, IV et al. | Mar 2022 | B2 |
11266468 | Shelton, IV et al. | Mar 2022 | B2 |
11272927 | Swayze et al. | Mar 2022 | B2 |
11272928 | Shelton, IV | Mar 2022 | B2 |
11272931 | Boudreaux et al. | Mar 2022 | B2 |
11272938 | Shelton, IV et al. | Mar 2022 | B2 |
11278279 | Morgan et al. | Mar 2022 | B2 |
11278280 | Shelton, IV et al. | Mar 2022 | B2 |
11278284 | Shelton, IV et al. | Mar 2022 | B2 |
11284890 | Nalagatla et al. | Mar 2022 | B2 |
11284891 | Shelton, IV et al. | Mar 2022 | B2 |
11284898 | Baxter, III et al. | Mar 2022 | B2 |
11284953 | Shelton, IV et al. | Mar 2022 | B2 |
11291440 | Harris et al. | Apr 2022 | B2 |
11291441 | Giordano et al. | Apr 2022 | B2 |
11291443 | Viola et al. | Apr 2022 | B2 |
11291444 | Boudreaux et al. | Apr 2022 | B2 |
11291445 | Shelton, IV et al. | Apr 2022 | B2 |
11291447 | Shelton, IV et al. | Apr 2022 | B2 |
11291449 | Swensgard et al. | Apr 2022 | B2 |
11291451 | Shelton, IV | Apr 2022 | B2 |
11291465 | Parihar et al. | Apr 2022 | B2 |
11291510 | Shelton, IV et al. | Apr 2022 | B2 |
11298125 | Ming et al. | Apr 2022 | B2 |
11298127 | Shelton, IV | Apr 2022 | B2 |
11298128 | Messerly et al. | Apr 2022 | B2 |
11298129 | Bakos et al. | Apr 2022 | B2 |
11298130 | Bakos et al. | Apr 2022 | B2 |
11298132 | Shelton, IV et al. | Apr 2022 | B2 |
11298134 | Huitema et al. | Apr 2022 | B2 |
11304697 | Fanelli et al. | Apr 2022 | B2 |
11304704 | Thomas et al. | Apr 2022 | B2 |
11311295 | Wingardner et al. | Apr 2022 | B2 |
D950728 | Bakos et al. | May 2022 | S |
D952144 | Boudreaux | May 2022 | S |
11317912 | Jenkins et al. | May 2022 | B2 |
11317978 | Cameron et al. | May 2022 | B2 |
11376002 | Shelton, IV et al. | Jul 2022 | B2 |
11376082 | Shelton, IV et al. | Jul 2022 | B2 |
11406442 | Davison et al. | Aug 2022 | B2 |
11413041 | Viola et al. | Aug 2022 | B2 |
D964564 | Boudreaux | Sep 2022 | S |
11439391 | Bruns et al. | Sep 2022 | B2 |
11452526 | Ross et al. | Sep 2022 | B2 |
D966512 | Shelton, IV et al. | Oct 2022 | S |
D967421 | Shelton, IV et al. | Oct 2022 | S |
D971232 | Siebel et al. | Nov 2022 | S |
11484309 | Harris et al. | Nov 2022 | B2 |
11484312 | Shelton, IV et al. | Nov 2022 | B2 |
11510673 | Chen et al. | Nov 2022 | B1 |
11517390 | Baxter, III | Dec 2022 | B2 |
11523824 | Williams | Dec 2022 | B2 |
11523859 | Shelton, IV et al. | Dec 2022 | B2 |
11534259 | Leimbach et al. | Dec 2022 | B2 |
D974560 | Shelton, IV et al. | Jan 2023 | S |
D975278 | Shelton, IV et al. | Jan 2023 | S |
D975850 | Shelton, IV et al. | Jan 2023 | S |
D975851 | Shelton, IV et al. | Jan 2023 | S |
D976401 | Shelton, IV et al. | Jan 2023 | S |
11553911 | Shelton, IV et al. | Jan 2023 | B2 |
D980425 | Baxter, III | Mar 2023 | S |
11628006 | Henderson et al. | Apr 2023 | B2 |
11638582 | Bakos et al. | May 2023 | B2 |
20010000531 | Casscells et al. | Apr 2001 | A1 |
20010025183 | Shahidi | Sep 2001 | A1 |
20010025184 | Messerly | Sep 2001 | A1 |
20010030219 | Green et al. | Oct 2001 | A1 |
20010034530 | Malackowski et al. | Oct 2001 | A1 |
20010045442 | Whitman | Nov 2001 | A1 |
20020014510 | Richter et al. | Feb 2002 | A1 |
20020022810 | Urich | Feb 2002 | A1 |
20020022836 | Goble et al. | Feb 2002 | A1 |
20020022861 | Jacobs et al. | Feb 2002 | A1 |
20020023126 | Flavin | Feb 2002 | A1 |
20020029032 | Arkin | Mar 2002 | A1 |
20020029036 | Goble et al. | Mar 2002 | A1 |
20020042620 | Julian et al. | Apr 2002 | A1 |
20020045905 | Gerbi et al. | Apr 2002 | A1 |
20020054158 | Asami | May 2002 | A1 |
20020065535 | Kneifel et al. | May 2002 | A1 |
20020066764 | Perry et al. | Jun 2002 | A1 |
20020077660 | Kayan et al. | Jun 2002 | A1 |
20020082612 | Moll et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020087148 | Brock et al. | Jul 2002 | A1 |
20020091374 | Cooper | Jul 2002 | A1 |
20020095175 | Brock et al. | Jul 2002 | A1 |
20020099374 | Pendekanti et al. | Jul 2002 | A1 |
20020103494 | Pacey | Aug 2002 | A1 |
20020111621 | Wallace et al. | Aug 2002 | A1 |
20020111624 | Witt et al. | Aug 2002 | A1 |
20020116063 | Giannetti et al. | Aug 2002 | A1 |
20020117533 | Milliman et al. | Aug 2002 | A1 |
20020117534 | Green et al. | Aug 2002 | A1 |
20020127265 | Bowman et al. | Sep 2002 | A1 |
20020128633 | Brock et al. | Sep 2002 | A1 |
20020133236 | Rousseau | Sep 2002 | A1 |
20020134811 | Napier et al. | Sep 2002 | A1 |
20020135474 | Sylliassen | Sep 2002 | A1 |
20020138086 | Sixto et al. | Sep 2002 | A1 |
20020143340 | Kaneko | Oct 2002 | A1 |
20020151770 | Noll et al. | Oct 2002 | A1 |
20020156497 | Nagase et al. | Oct 2002 | A1 |
20020158593 | Henderson et al. | Oct 2002 | A1 |
20020161277 | Boone et al. | Oct 2002 | A1 |
20020177848 | Truckai et al. | Nov 2002 | A1 |
20020185514 | Adams et al. | Dec 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20020188287 | Zvuloni et al. | Dec 2002 | A1 |
20030004610 | Niemeyer et al. | Jan 2003 | A1 |
20030009193 | Corsaro | Jan 2003 | A1 |
20030011245 | Fiebig | Jan 2003 | A1 |
20030012805 | Chen et al. | Jan 2003 | A1 |
20030018323 | Wallace et al. | Jan 2003 | A1 |
20030028236 | Gillick et al. | Feb 2003 | A1 |
20030040670 | Govari | Feb 2003 | A1 |
20030045835 | Anderson et al. | Mar 2003 | A1 |
20030047230 | Kim | Mar 2003 | A1 |
20030047582 | Sonnenschein et al. | Mar 2003 | A1 |
20030050628 | Whitman et al. | Mar 2003 | A1 |
20030050654 | Whitman et al. | Mar 2003 | A1 |
20030066858 | Holgersson | Apr 2003 | A1 |
20030078647 | Vallana et al. | Apr 2003 | A1 |
20030083648 | Wang et al. | May 2003 | A1 |
20030084983 | Rangachari et al. | May 2003 | A1 |
20030093103 | Malackowski et al. | May 2003 | A1 |
20030093160 | Maksimovic et al. | May 2003 | A1 |
20030094356 | Waldron | May 2003 | A1 |
20030096158 | Takano et al. | May 2003 | A1 |
20030105475 | Sancoff et al. | Jun 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030121586 | Mitra et al. | Jul 2003 | A1 |
20030135204 | Lee et al. | Jul 2003 | A1 |
20030135388 | Martucci et al. | Jul 2003 | A1 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20030144660 | Mollenauer | Jul 2003 | A1 |
20030149406 | Martineau et al. | Aug 2003 | A1 |
20030153908 | Goble et al. | Aug 2003 | A1 |
20030153968 | Geis et al. | Aug 2003 | A1 |
20030158463 | Julian et al. | Aug 2003 | A1 |
20030163029 | Sonnenschein et al. | Aug 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030164172 | Chumas et al. | Sep 2003 | A1 |
20030181800 | Bonutti | Sep 2003 | A1 |
20030181900 | Long | Sep 2003 | A1 |
20030190584 | Heasley | Oct 2003 | A1 |
20030195387 | Kortenbach et al. | Oct 2003 | A1 |
20030205029 | Chapolini et al. | Nov 2003 | A1 |
20030212005 | Petito et al. | Nov 2003 | A1 |
20030216619 | Scirica et al. | Nov 2003 | A1 |
20030216732 | Truckai et al. | Nov 2003 | A1 |
20030220541 | Salisbury et al. | Nov 2003 | A1 |
20030236505 | Bonadio et al. | Dec 2003 | A1 |
20040006335 | Garrison | Jan 2004 | A1 |
20040006340 | Latterell et al. | Jan 2004 | A1 |
20040007608 | Ehrenfels et al. | Jan 2004 | A1 |
20040024457 | Boyce et al. | Feb 2004 | A1 |
20040028502 | Cummins | Feb 2004 | A1 |
20040030333 | Goble | Feb 2004 | A1 |
20040034287 | Hickle | Feb 2004 | A1 |
20040034357 | Beane et al. | Feb 2004 | A1 |
20040044295 | Reinert et al. | Mar 2004 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040049121 | Yaron | Mar 2004 | A1 |
20040049172 | Root et al. | Mar 2004 | A1 |
20040059362 | Knodel et al. | Mar 2004 | A1 |
20040068161 | Couvillon | Apr 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040068307 | Goble | Apr 2004 | A1 |
20040070369 | Sakakibara | Apr 2004 | A1 |
20040073222 | Koseki | Apr 2004 | A1 |
20040078037 | Batchelor et al. | Apr 2004 | A1 |
20040082952 | Dycus et al. | Apr 2004 | A1 |
20040085180 | Juang | May 2004 | A1 |
20040092967 | Sancoff et al. | May 2004 | A1 |
20040092992 | Adams et al. | May 2004 | A1 |
20040093020 | Sinton | May 2004 | A1 |
20040093024 | Lousararian et al. | May 2004 | A1 |
20040098040 | Taniguchi et al. | May 2004 | A1 |
20040101822 | Wiesner et al. | May 2004 | A1 |
20040102783 | Sutterlin et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040110439 | Chaikof et al. | Jun 2004 | A1 |
20040115022 | Albertson et al. | Jun 2004 | A1 |
20040116952 | Sakurai et al. | Jun 2004 | A1 |
20040119185 | Chen | Jun 2004 | A1 |
20040122419 | Neuberger | Jun 2004 | A1 |
20040122423 | Dycus et al. | Jun 2004 | A1 |
20040133095 | Dunki-Jacobs et al. | Jul 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040143297 | Ramsey | Jul 2004 | A1 |
20040147909 | Johnston et al. | Jul 2004 | A1 |
20040153100 | Ahlberg et al. | Aug 2004 | A1 |
20040158261 | Vu | Aug 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040166169 | Malaviya et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040181219 | Goble et al. | Sep 2004 | A1 |
20040193189 | Kortenbach et al. | Sep 2004 | A1 |
20040197367 | Rezania et al. | Oct 2004 | A1 |
20040199181 | Knodel et al. | Oct 2004 | A1 |
20040204735 | Shiroff et al. | Oct 2004 | A1 |
20040218451 | Said et al. | Nov 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040225186 | Horne et al. | Nov 2004 | A1 |
20040231870 | McCormick et al. | Nov 2004 | A1 |
20040232194 | Pedicini et al. | Nov 2004 | A1 |
20040232197 | Shelton, IV et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040236352 | Wang et al. | Nov 2004 | A1 |
20040239582 | Seymour | Dec 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040243151 | Demmy et al. | Dec 2004 | A1 |
20040243163 | Casiano et al. | Dec 2004 | A1 |
20040247415 | Mangone | Dec 2004 | A1 |
20040249366 | Kunz | Dec 2004 | A1 |
20040254455 | Iddan | Dec 2004 | A1 |
20040254566 | Plicchi et al. | Dec 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040254680 | Sunaoshi | Dec 2004 | A1 |
20040260315 | Deli et al. | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050010158 | Brugger et al. | Jan 2005 | A1 |
20050010213 | Stad et al. | Jan 2005 | A1 |
20050021078 | Vleugels et al. | Jan 2005 | A1 |
20050023325 | Gresham et al. | Feb 2005 | A1 |
20050032511 | Malone et al. | Feb 2005 | A1 |
20050033352 | Zepf et al. | Feb 2005 | A1 |
20050044489 | Yamagami et al. | Feb 2005 | A1 |
20050051163 | Deem et al. | Mar 2005 | A1 |
20050054946 | Krzyzanowski | Mar 2005 | A1 |
20050057225 | Marquet | Mar 2005 | A1 |
20050058890 | Brazell et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050067548 | Inoue | Mar 2005 | A1 |
20050070925 | Shelton et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050075561 | Golden | Apr 2005 | A1 |
20050079088 | Wirth et al. | Apr 2005 | A1 |
20050080342 | Gilreath et al. | Apr 2005 | A1 |
20050085693 | Belson et al. | Apr 2005 | A1 |
20050085838 | Thompson et al. | Apr 2005 | A1 |
20050090709 | Okada et al. | Apr 2005 | A1 |
20050090817 | Phan | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050116673 | Carl et al. | Jun 2005 | A1 |
20050119524 | Sekine et al. | Jun 2005 | A1 |
20050120836 | Anderson | Jun 2005 | A1 |
20050124855 | Jaffe et al. | Jun 2005 | A1 |
20050125028 | Looper et al. | Jun 2005 | A1 |
20050125897 | Wyslucha et al. | Jun 2005 | A1 |
20050129730 | Pang et al. | Jun 2005 | A1 |
20050129735 | Cook et al. | Jun 2005 | A1 |
20050130682 | Takara et al. | Jun 2005 | A1 |
20050131173 | McDaniel et al. | Jun 2005 | A1 |
20050131211 | Bayley et al. | Jun 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050131436 | Johnston et al. | Jun 2005 | A1 |
20050131457 | Douglas et al. | Jun 2005 | A1 |
20050137454 | Saadat et al. | Jun 2005 | A1 |
20050137455 | Ewers et al. | Jun 2005 | A1 |
20050139636 | Schwemberger et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050143769 | White et al. | Jun 2005 | A1 |
20050145671 | Viola | Jul 2005 | A1 |
20050145672 | Schwemberger et al. | Jul 2005 | A1 |
20050150928 | Kameyama et al. | Jul 2005 | A1 |
20050154258 | Tartaglia et al. | Jul 2005 | A1 |
20050154406 | Bombard et al. | Jul 2005 | A1 |
20050159778 | Heinrich et al. | Jul 2005 | A1 |
20050165419 | Sauer et al. | Jul 2005 | A1 |
20050169974 | Tenerz et al. | Aug 2005 | A1 |
20050171522 | Christopherson | Aug 2005 | A1 |
20050177176 | Gerbi et al. | Aug 2005 | A1 |
20050177181 | Kagan et al. | Aug 2005 | A1 |
20050177249 | Kladakis et al. | Aug 2005 | A1 |
20050182298 | Ikeda et al. | Aug 2005 | A1 |
20050182443 | Jonn et al. | Aug 2005 | A1 |
20050184121 | Heinrich | Aug 2005 | A1 |
20050186240 | Ringeisen et al. | Aug 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050191936 | Marine et al. | Sep 2005 | A1 |
20050197859 | Wilson et al. | Sep 2005 | A1 |
20050203550 | Laufer et al. | Sep 2005 | A1 |
20050209614 | Fenter et al. | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050222587 | Jinno et al. | Oct 2005 | A1 |
20050222611 | Weitkamp | Oct 2005 | A1 |
20050222616 | Rethy et al. | Oct 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050228224 | Okada et al. | Oct 2005 | A1 |
20050228446 | Mooradian et al. | Oct 2005 | A1 |
20050230453 | Viola | Oct 2005 | A1 |
20050240178 | Morley et al. | Oct 2005 | A1 |
20050242950 | Lindsay et al. | Nov 2005 | A1 |
20050245965 | Orban, III et al. | Nov 2005 | A1 |
20050246881 | Kelly et al. | Nov 2005 | A1 |
20050251063 | Basude | Nov 2005 | A1 |
20050251110 | Nixon | Nov 2005 | A1 |
20050256452 | DeMarchi et al. | Nov 2005 | A1 |
20050256546 | Vaisnys et al. | Nov 2005 | A1 |
20050258963 | Rodriguez et al. | Nov 2005 | A1 |
20050261676 | Hall et al. | Nov 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20050267455 | Eggers et al. | Dec 2005 | A1 |
20050267464 | Truckai et al. | Dec 2005 | A1 |
20050267529 | Crockett et al. | Dec 2005 | A1 |
20050274034 | Hayashida et al. | Dec 2005 | A1 |
20050283188 | Loshakove et al. | Dec 2005 | A1 |
20050283226 | Haverkost | Dec 2005 | A1 |
20060000867 | Shelton et al. | Jan 2006 | A1 |
20060008787 | Hayman et al. | Jan 2006 | A1 |
20060011698 | Okada et al. | Jan 2006 | A1 |
20060015009 | Jaffe et al. | Jan 2006 | A1 |
20060020167 | Sitzmann | Jan 2006 | A1 |
20060020258 | Strauss et al. | Jan 2006 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025812 | Shelton | Feb 2006 | A1 |
20060041188 | Dirusso et al. | Feb 2006 | A1 |
20060047275 | Goble | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052824 | Ransick et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060053951 | Revelis et al. | Mar 2006 | A1 |
20060064086 | Odom | Mar 2006 | A1 |
20060079735 | Martone et al. | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060079879 | Faller et al. | Apr 2006 | A1 |
20060086032 | Valencic et al. | Apr 2006 | A1 |
20060087746 | Lipow | Apr 2006 | A1 |
20060089535 | Raz et al. | Apr 2006 | A1 |
20060097699 | Kamenoff | May 2006 | A1 |
20060100643 | Laufer et al. | May 2006 | A1 |
20060100649 | Hart | May 2006 | A1 |
20060106369 | Desai et al. | May 2006 | A1 |
20060111711 | Goble | May 2006 | A1 |
20060111723 | Chapolini et al. | May 2006 | A1 |
20060116634 | Shachar | Jun 2006 | A1 |
20060142656 | Malackowski et al. | Jun 2006 | A1 |
20060142772 | Ralph et al. | Jun 2006 | A1 |
20060144898 | Bilotti et al. | Jul 2006 | A1 |
20060154546 | Murphy et al. | Jul 2006 | A1 |
20060161050 | Butler et al. | Jul 2006 | A1 |
20060161185 | Saadat et al. | Jul 2006 | A1 |
20060167471 | Phillips | Jul 2006 | A1 |
20060173290 | Lavallee et al. | Aug 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060176031 | Forman et al. | Aug 2006 | A1 |
20060176242 | Jaramaz et al. | Aug 2006 | A1 |
20060178556 | Hasser et al. | Aug 2006 | A1 |
20060180633 | Emmons | Aug 2006 | A1 |
20060180634 | Shelton et al. | Aug 2006 | A1 |
20060185682 | Marczyk | Aug 2006 | A1 |
20060189440 | Gravagne | Aug 2006 | A1 |
20060199999 | Ikeda et al. | Sep 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20060206100 | Eskridge et al. | Sep 2006 | A1 |
20060217729 | Eskridge et al. | Sep 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060226957 | Miller et al. | Oct 2006 | A1 |
20060235368 | Oz | Oct 2006 | A1 |
20060241666 | Briggs et al. | Oct 2006 | A1 |
20060241691 | Wilk | Oct 2006 | A1 |
20060244460 | Weaver | Nov 2006 | A1 |
20060247584 | Sheetz et al. | Nov 2006 | A1 |
20060252981 | Matsuda et al. | Nov 2006 | A1 |
20060252990 | Kubach | Nov 2006 | A1 |
20060252993 | Freed et al. | Nov 2006 | A1 |
20060258904 | Stefanchik et al. | Nov 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060261763 | Iott et al. | Nov 2006 | A1 |
20060263444 | Ming et al. | Nov 2006 | A1 |
20060264831 | Skwarek et al. | Nov 2006 | A1 |
20060264929 | Goble et al. | Nov 2006 | A1 |
20060271042 | Latterell et al. | Nov 2006 | A1 |
20060271102 | Bosshard et al. | Nov 2006 | A1 |
20060282064 | Shimizu et al. | Dec 2006 | A1 |
20060284730 | Schmid et al. | Dec 2006 | A1 |
20060287576 | Tsuji et al. | Dec 2006 | A1 |
20060289600 | Wales et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20060291981 | Viola et al. | Dec 2006 | A1 |
20070005045 | Mintz et al. | Jan 2007 | A1 |
20070009570 | Kim et al. | Jan 2007 | A1 |
20070010702 | Wang et al. | Jan 2007 | A1 |
20070010838 | Shelton et al. | Jan 2007 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016272 | Thompson et al. | Jan 2007 | A1 |
20070018958 | Tavakoli et al. | Jan 2007 | A1 |
20070026039 | Drumheller et al. | Feb 2007 | A1 |
20070026040 | Crawley et al. | Feb 2007 | A1 |
20070027459 | Horvath et al. | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070027551 | Farnsworth et al. | Feb 2007 | A1 |
20070043338 | Moll et al. | Feb 2007 | A1 |
20070043384 | Ortiz et al. | Feb 2007 | A1 |
20070043387 | Vargas et al. | Feb 2007 | A1 |
20070049951 | Menn | Mar 2007 | A1 |
20070049966 | Bonadio et al. | Mar 2007 | A1 |
20070051375 | Milliman | Mar 2007 | A1 |
20070055228 | Berg et al. | Mar 2007 | A1 |
20070055305 | Schnyder et al. | Mar 2007 | A1 |
20070069851 | Sung et al. | Mar 2007 | A1 |
20070073341 | Smith et al. | Mar 2007 | A1 |
20070073389 | Bolduc et al. | Mar 2007 | A1 |
20070078328 | Ozaki et al. | Apr 2007 | A1 |
20070078484 | Talarico et al. | Apr 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070088376 | Zacharias | Apr 2007 | A1 |
20070090788 | Hansford et al. | Apr 2007 | A1 |
20070093869 | Bloom et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070103437 | Rosenberg | May 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070106317 | Shelton et al. | May 2007 | A1 |
20070118115 | Artale et al. | May 2007 | A1 |
20070134251 | Ashkenazi et al. | Jun 2007 | A1 |
20070135686 | Pruitt et al. | Jun 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070152612 | Chen et al. | Jul 2007 | A1 |
20070152829 | Lindsay et al. | Jul 2007 | A1 |
20070155010 | Farnsworth et al. | Jul 2007 | A1 |
20070162056 | Gerbi et al. | Jul 2007 | A1 |
20070170225 | Shelton et al. | Jul 2007 | A1 |
20070173687 | Shima et al. | Jul 2007 | A1 |
20070173813 | Odom | Jul 2007 | A1 |
20070173872 | Neuenfeldt | Jul 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070179476 | Shelton et al. | Aug 2007 | A1 |
20070179477 | Danger | Aug 2007 | A1 |
20070185545 | Duke | Aug 2007 | A1 |
20070187857 | Riley et al. | Aug 2007 | A1 |
20070190110 | Pameijer et al. | Aug 2007 | A1 |
20070191868 | Theroux et al. | Aug 2007 | A1 |
20070191915 | Strother et al. | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194081 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070197954 | Keenan | Aug 2007 | A1 |
20070198039 | Jones et al. | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070207010 | Caspi | Sep 2007 | A1 |
20070208359 | Hoffman | Sep 2007 | A1 |
20070208375 | Nishizawa et al. | Sep 2007 | A1 |
20070213750 | Weadock | Sep 2007 | A1 |
20070221701 | Ortiz et al. | Sep 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070233163 | Bombard et al. | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070244471 | Malackowski | Oct 2007 | A1 |
20070244496 | Hellenkamp | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070260132 | Sterling | Nov 2007 | A1 |
20070260242 | Dycus et al. | Nov 2007 | A1 |
20070262592 | Hwang et al. | Nov 2007 | A1 |
20070270660 | Caylor et al. | Nov 2007 | A1 |
20070270790 | Smith et al. | Nov 2007 | A1 |
20070275035 | Herman et al. | Nov 2007 | A1 |
20070276409 | Ortiz et al. | Nov 2007 | A1 |
20070279011 | Jones et al. | Dec 2007 | A1 |
20070286892 | Herzberg et al. | Dec 2007 | A1 |
20070290027 | Maatta et al. | Dec 2007 | A1 |
20070296286 | Avenell | Dec 2007 | A1 |
20080000941 | Sonnenschein et al. | Jan 2008 | A1 |
20080003196 | Jonn et al. | Jan 2008 | A1 |
20080007237 | Nagashima et al. | Jan 2008 | A1 |
20080015598 | Prommersberger | Jan 2008 | A1 |
20080021486 | Oyola et al. | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080030170 | Dacquay et al. | Feb 2008 | A1 |
20080039746 | Hissong et al. | Feb 2008 | A1 |
20080042861 | Dacquay et al. | Feb 2008 | A1 |
20080046000 | Lee et al. | Feb 2008 | A1 |
20080051833 | Gramuglia et al. | Feb 2008 | A1 |
20080064920 | Bakos et al. | Mar 2008 | A1 |
20080064921 | Larkin et al. | Mar 2008 | A1 |
20080065153 | Allard et al. | Mar 2008 | A1 |
20080069736 | Mingerink et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080077158 | Haider et al. | Mar 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080081948 | Weisenburgh et al. | Apr 2008 | A1 |
20080082114 | McKenna et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080083807 | Beardsley et al. | Apr 2008 | A1 |
20080083811 | Marczyk | Apr 2008 | A1 |
20080085296 | Powell et al. | Apr 2008 | A1 |
20080086078 | Powell et al. | Apr 2008 | A1 |
20080091072 | Omori et al. | Apr 2008 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080108443 | Jinno et al. | May 2008 | A1 |
20080114250 | Urbano et al. | May 2008 | A1 |
20080125634 | Ryan et al. | May 2008 | A1 |
20080125749 | Olson | May 2008 | A1 |
20080126984 | Fleishman et al. | May 2008 | A1 |
20080128469 | Dalessandro et al. | Jun 2008 | A1 |
20080129253 | Shiue et al. | Jun 2008 | A1 |
20080135600 | Hiranuma et al. | Jun 2008 | A1 |
20080140088 | Orban, III | Jun 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080140159 | Bornhoft et al. | Jun 2008 | A1 |
20080149682 | Uhm | Jun 2008 | A1 |
20080154299 | Livneh | Jun 2008 | A1 |
20080154335 | Thrope et al. | Jun 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172087 | Fuchs et al. | Jul 2008 | A1 |
20080177392 | Williams et al. | Jul 2008 | A1 |
20080190989 | Crews et al. | Aug 2008 | A1 |
20080196253 | Ezra et al. | Aug 2008 | A1 |
20080196419 | Dube | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080200755 | Bakos | Aug 2008 | A1 |
20080200762 | Stokes et al. | Aug 2008 | A1 |
20080200835 | Monson et al. | Aug 2008 | A1 |
20080200911 | Long | Aug 2008 | A1 |
20080200933 | Bakos et al. | Aug 2008 | A1 |
20080200934 | Fox | Aug 2008 | A1 |
20080206186 | Butler et al. | Aug 2008 | A1 |
20080208058 | Sabata et al. | Aug 2008 | A1 |
20080214967 | Aranyi et al. | Sep 2008 | A1 |
20080216704 | Eisenbeis et al. | Sep 2008 | A1 |
20080217376 | Clauson et al. | Sep 2008 | A1 |
20080234709 | Houser | Sep 2008 | A1 |
20080234866 | Kishi et al. | Sep 2008 | A1 |
20080242939 | Johnston | Oct 2008 | A1 |
20080243088 | Evans | Oct 2008 | A1 |
20080243143 | Kuhns et al. | Oct 2008 | A1 |
20080249536 | Stahler et al. | Oct 2008 | A1 |
20080249608 | Dave | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255420 | Lee et al. | Oct 2008 | A1 |
20080255421 | Hegeman et al. | Oct 2008 | A1 |
20080255663 | Akpek et al. | Oct 2008 | A1 |
20080262305 | Omoto | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080269596 | Revie et al. | Oct 2008 | A1 |
20080281171 | Fennell et al. | Nov 2008 | A1 |
20080281332 | Taylor | Nov 2008 | A1 |
20080287944 | Pearson et al. | Nov 2008 | A1 |
20080293910 | Kapiamba et al. | Nov 2008 | A1 |
20080294179 | Balbierz et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080296347 | Shelton, IV et al. | Dec 2008 | A1 |
20080297287 | Shachar et al. | Dec 2008 | A1 |
20080298784 | Kastner | Dec 2008 | A1 |
20080308504 | Hallan et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20080308607 | Timm et al. | Dec 2008 | A1 |
20080308807 | Yamazaki et al. | Dec 2008 | A1 |
20080312686 | Ellingwood | Dec 2008 | A1 |
20080312687 | Blier | Dec 2008 | A1 |
20080315829 | Jones et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090004455 | Gravagna et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090007014 | Coomer et al. | Jan 2009 | A1 |
20090012534 | Madhani et al. | Jan 2009 | A1 |
20090015195 | Loth-Krausser | Jan 2009 | A1 |
20090020958 | Soul | Jan 2009 | A1 |
20090030437 | Houser et al. | Jan 2009 | A1 |
20090043253 | Podaima | Feb 2009 | A1 |
20090048583 | Williams et al. | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090053288 | Eskridge, Jr. et al. | Feb 2009 | A1 |
20090057369 | Smith et al. | Mar 2009 | A1 |
20090069806 | De La Mora Levy et al. | Mar 2009 | A1 |
20090076506 | Baker | Mar 2009 | A1 |
20090078736 | Van Lue | Mar 2009 | A1 |
20090081313 | Aghion et al. | Mar 2009 | A1 |
20090088659 | Graham et al. | Apr 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099579 | Nentwick et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090110533 | Jinno | Apr 2009 | A1 |
20090112234 | Crainich et al. | Apr 2009 | A1 |
20090114701 | Zemlok et al. | May 2009 | A1 |
20090118762 | Crainch et al. | May 2009 | A1 |
20090119011 | Kondo et al. | May 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090131819 | Ritchie et al. | May 2009 | A1 |
20090132400 | Conway | May 2009 | A1 |
20090135280 | Johnston et al. | May 2009 | A1 |
20090138003 | Deville et al. | May 2009 | A1 |
20090143797 | Smith et al. | Jun 2009 | A1 |
20090143855 | Weber et al. | Jun 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090167548 | Sugahara | Jul 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090177218 | Young et al. | Jul 2009 | A1 |
20090177226 | Reinprecht et al. | Jul 2009 | A1 |
20090181290 | Baldwin et al. | Jul 2009 | A1 |
20090188964 | Orlov | Jul 2009 | A1 |
20090192534 | Ortiz et al. | Jul 2009 | A1 |
20090198272 | Kerver et al. | Aug 2009 | A1 |
20090204108 | Steffen | Aug 2009 | A1 |
20090204109 | Grove et al. | Aug 2009 | A1 |
20090204126 | Le | Aug 2009 | A1 |
20090204925 | Bhat et al. | Aug 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090221993 | Sohi et al. | Sep 2009 | A1 |
20090227834 | Nakamoto et al. | Sep 2009 | A1 |
20090234273 | Intoccia et al. | Sep 2009 | A1 |
20090236401 | Cole et al. | Sep 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090246873 | Yamamoto et al. | Oct 2009 | A1 |
20090247368 | Chiang | Oct 2009 | A1 |
20090247901 | Zimmer | Oct 2009 | A1 |
20090248100 | Vaisnys et al. | Oct 2009 | A1 |
20090253959 | Yoshie et al. | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090261141 | Stratton et al. | Oct 2009 | A1 |
20090262078 | Pizzi | Oct 2009 | A1 |
20090264940 | Beale et al. | Oct 2009 | A1 |
20090270895 | Churchill et al. | Oct 2009 | A1 |
20090273353 | Kroh et al. | Nov 2009 | A1 |
20090277288 | Doepker et al. | Nov 2009 | A1 |
20090278406 | Hoffman | Nov 2009 | A1 |
20090290016 | Suda | Nov 2009 | A1 |
20090292283 | Odom | Nov 2009 | A1 |
20090306639 | Nevo et al. | Dec 2009 | A1 |
20090308907 | Nalagatla et al. | Dec 2009 | A1 |
20090318557 | Stockel | Dec 2009 | A1 |
20090318936 | Harris et al. | Dec 2009 | A1 |
20090325859 | Ameer et al. | Dec 2009 | A1 |
20100002013 | Kagaya | Jan 2010 | A1 |
20100005035 | Carpenter et al. | Jan 2010 | A1 |
20100012703 | Calabrese et al. | Jan 2010 | A1 |
20100015104 | Fraser et al. | Jan 2010 | A1 |
20100016853 | Burbank | Jan 2010 | A1 |
20100016888 | Calabrese et al. | Jan 2010 | A1 |
20100017715 | Balassanian | Jan 2010 | A1 |
20100023024 | Zeiner et al. | Jan 2010 | A1 |
20100030233 | Whitman et al. | Feb 2010 | A1 |
20100030239 | Viola et al. | Feb 2010 | A1 |
20100032179 | Hanspers et al. | Feb 2010 | A1 |
20100036370 | Mirel et al. | Feb 2010 | A1 |
20100036441 | Procter | Feb 2010 | A1 |
20100051668 | Milliman et al. | Mar 2010 | A1 |
20100057118 | Dietz et al. | Mar 2010 | A1 |
20100065604 | Weng | Mar 2010 | A1 |
20100069833 | Wenderow et al. | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100076433 | Taylor et al. | Mar 2010 | A1 |
20100076474 | Yates | Mar 2010 | A1 |
20100076483 | Imuta | Mar 2010 | A1 |
20100076489 | Stopek et al. | Mar 2010 | A1 |
20100081883 | Murray et al. | Apr 2010 | A1 |
20100089970 | Smith | Apr 2010 | A1 |
20100094312 | Ruiz Morales | Apr 2010 | A1 |
20100094340 | Stopek et al. | Apr 2010 | A1 |
20100094400 | Bolduc et al. | Apr 2010 | A1 |
20100100123 | Bennett | Apr 2010 | A1 |
20100100124 | Calabrese et al. | Apr 2010 | A1 |
20100106167 | Boulnois et al. | Apr 2010 | A1 |
20100116519 | Gareis | May 2010 | A1 |
20100122339 | Boccacci | May 2010 | A1 |
20100125786 | Ozawa et al. | May 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100137990 | Apatsidis et al. | Jun 2010 | A1 |
20100138659 | Carmichael et al. | Jun 2010 | A1 |
20100145146 | Melder | Jun 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100159435 | Mueller et al. | Jun 2010 | A1 |
20100168741 | Sanai et al. | Jul 2010 | A1 |
20100179022 | Shirokoshi | Jul 2010 | A1 |
20100180711 | Kilibarda et al. | Jul 2010 | A1 |
20100187285 | Harris et al. | Jul 2010 | A1 |
20100191255 | Crainioh et al. | Jul 2010 | A1 |
20100191262 | Harris et al. | Jul 2010 | A1 |
20100191292 | DeMeo et al. | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100194541 | Stevenson et al. | Aug 2010 | A1 |
20100198159 | Voss et al. | Aug 2010 | A1 |
20100204717 | Knodel | Aug 2010 | A1 |
20100204721 | Young et al. | Aug 2010 | A1 |
20100217281 | Matsuoka et al. | Aug 2010 | A1 |
20100218019 | Eckhard | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20100228250 | Brogna | Sep 2010 | A1 |
20100230465 | Smith | Sep 2010 | A1 |
20100234687 | Azarbarzin et al. | Sep 2010 | A1 |
20100241115 | Benamou et al. | Sep 2010 | A1 |
20100241137 | Doyle et al. | Sep 2010 | A1 |
20100245102 | Yokoi | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249947 | Lesh et al. | Sep 2010 | A1 |
20100256675 | Romans | Oct 2010 | A1 |
20100258327 | Esenwein et al. | Oct 2010 | A1 |
20100267525 | Tanner | Oct 2010 | A1 |
20100267662 | Fielder et al. | Oct 2010 | A1 |
20100274160 | Yachi et al. | Oct 2010 | A1 |
20100291184 | Clark et al. | Nov 2010 | A1 |
20100292540 | Hess et al. | Nov 2010 | A1 |
20100298636 | Castro et al. | Nov 2010 | A1 |
20100301097 | Scirica et al. | Dec 2010 | A1 |
20100310623 | Laurencin et al. | Dec 2010 | A1 |
20100312261 | Suzuki et al. | Dec 2010 | A1 |
20100318085 | Austin et al. | Dec 2010 | A1 |
20100325568 | Pedersen et al. | Dec 2010 | A1 |
20100327041 | Milliman et al. | Dec 2010 | A1 |
20100331856 | Carlson et al. | Dec 2010 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110009694 | Schultz et al. | Jan 2011 | A1 |
20110009863 | Marczyk et al. | Jan 2011 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110016960 | Debrailly | Jan 2011 | A1 |
20110021871 | Berkelaar | Jan 2011 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110024477 | Hall | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110025311 | Chauvin et al. | Feb 2011 | A1 |
20110028991 | Ikeda et al. | Feb 2011 | A1 |
20110029003 | Lavigne et al. | Feb 2011 | A1 |
20110029270 | Mueglitz | Feb 2011 | A1 |
20110036891 | Zemlok et al. | Feb 2011 | A1 |
20110046667 | Culligan et al. | Feb 2011 | A1 |
20110052660 | Yang et al. | Mar 2011 | A1 |
20110056717 | Herisse | Mar 2011 | A1 |
20110060363 | Hess et al. | Mar 2011 | A1 |
20110066156 | McGahan et al. | Mar 2011 | A1 |
20110071473 | Rogers et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110088921 | Forgues et al. | Apr 2011 | A1 |
20110091515 | Zilberman et al. | Apr 2011 | A1 |
20110095064 | Taylor et al. | Apr 2011 | A1 |
20110095067 | Ohdaira | Apr 2011 | A1 |
20110101069 | Bombard et al. | May 2011 | A1 |
20110101794 | Schroeder et al. | May 2011 | A1 |
20110112517 | Peine et al. | May 2011 | A1 |
20110112530 | Keller | May 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110118708 | Burbank et al. | May 2011 | A1 |
20110118754 | Dachs, II et al. | May 2011 | A1 |
20110125149 | El-Galley et al. | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110127945 | Yoneda | Jun 2011 | A1 |
20110129706 | Takahashi et al. | Jun 2011 | A1 |
20110144764 | Bagga et al. | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110155781 | Swensgard | Jun 2011 | A1 |
20110160725 | Kabaya et al. | Jun 2011 | A1 |
20110163146 | Ortiz et al. | Jul 2011 | A1 |
20110172495 | Armstrong | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110189957 | Hocke | Aug 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110198381 | McCardle et al. | Aug 2011 | A1 |
20110199225 | Touchberry et al. | Aug 2011 | A1 |
20110218400 | Ma et al. | Sep 2011 | A1 |
20110218550 | Ma | Sep 2011 | A1 |
20110220381 | Friese et al. | Sep 2011 | A1 |
20110224543 | Johnson et al. | Sep 2011 | A1 |
20110225105 | Scholer et al. | Sep 2011 | A1 |
20110230713 | Kleemann et al. | Sep 2011 | A1 |
20110235168 | Sander | Sep 2011 | A1 |
20110238044 | Main et al. | Sep 2011 | A1 |
20110241597 | Zhu et al. | Oct 2011 | A1 |
20110251606 | Kerr | Oct 2011 | A1 |
20110256266 | Orme et al. | Oct 2011 | A1 |
20110271186 | Owens | Nov 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110278035 | Chen | Nov 2011 | A1 |
20110278343 | Knodel et al. | Nov 2011 | A1 |
20110279268 | Konishi et al. | Nov 2011 | A1 |
20110285507 | Nelson | Nov 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110290858 | Whitman et al. | Dec 2011 | A1 |
20110292258 | Adler et al. | Dec 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20110295299 | Braithwaite et al. | Dec 2011 | A1 |
20110313894 | Dye et al. | Dec 2011 | A1 |
20110315413 | Fisher et al. | Dec 2011 | A1 |
20120004636 | Lo | Jan 2012 | A1 |
20120007442 | Rhodes et al. | Jan 2012 | A1 |
20120008880 | Toth | Jan 2012 | A1 |
20120010615 | Cummings et al. | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120016413 | Timm et al. | Jan 2012 | A1 |
20120016467 | Chen et al. | Jan 2012 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120029550 | Forsell | Feb 2012 | A1 |
20120033360 | Hsu | Feb 2012 | A1 |
20120043100 | Isobe et al. | Feb 2012 | A1 |
20120059286 | Hastings et al. | Mar 2012 | A1 |
20120064483 | Lint et al. | Mar 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120078243 | Worrell et al. | Mar 2012 | A1 |
20120078244 | Worrell et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080491 | Shelton, IV et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120083836 | Shelton, IV et al. | Apr 2012 | A1 |
20120086276 | Sawyers | Apr 2012 | A1 |
20120095458 | Cybulski et al. | Apr 2012 | A1 |
20120101488 | Aldridge et al. | Apr 2012 | A1 |
20120109186 | Parrott et al. | May 2012 | A1 |
20120116261 | Mumaw et al. | May 2012 | A1 |
20120116262 | Houser et al. | May 2012 | A1 |
20120116263 | Houser et al. | May 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116266 | Houser et al. | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120118595 | Pellenc | May 2012 | A1 |
20120123463 | Jacobs | May 2012 | A1 |
20120125792 | Cassivi | May 2012 | A1 |
20120130217 | Kauphusman et al. | May 2012 | A1 |
20120132286 | Lim et al. | May 2012 | A1 |
20120132663 | Kasvikis et al. | May 2012 | A1 |
20120143173 | Steege et al. | Jun 2012 | A1 |
20120143175 | Hermann et al. | Jun 2012 | A1 |
20120171539 | Rejman et al. | Jul 2012 | A1 |
20120175398 | Sandborn et al. | Jul 2012 | A1 |
20120190964 | Hyde et al. | Jul 2012 | A1 |
20120197239 | Smith et al. | Aug 2012 | A1 |
20120197272 | Oray et al. | Aug 2012 | A1 |
20120203213 | Kimball et al. | Aug 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120220990 | McKenzie et al. | Aug 2012 | A1 |
20120233298 | Verbandt et al. | Sep 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120239068 | Morris et al. | Sep 2012 | A1 |
20120241494 | Marczyk | Sep 2012 | A1 |
20120241503 | Baxter, III et al. | Sep 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120251861 | Liang et al. | Oct 2012 | A1 |
20120253328 | Cunningham et al. | Oct 2012 | A1 |
20120256494 | Kesler et al. | Oct 2012 | A1 |
20120271327 | West et al. | Oct 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120286019 | Hueil et al. | Nov 2012 | A1 |
20120289811 | Viola et al. | Nov 2012 | A1 |
20120289979 | Eskaros et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120296316 | Imuta | Nov 2012 | A1 |
20120296342 | Haglund Wendelschafer | Nov 2012 | A1 |
20120298722 | Hess et al. | Nov 2012 | A1 |
20120301498 | Altreuter et al. | Nov 2012 | A1 |
20120310254 | Manzo et al. | Dec 2012 | A1 |
20120312861 | Gurumurthy et al. | Dec 2012 | A1 |
20120316424 | Stopek | Dec 2012 | A1 |
20120330285 | Hartoumbekis et al. | Dec 2012 | A1 |
20120330329 | Harris et al. | Dec 2012 | A1 |
20130006227 | Takash I No | Jan 2013 | A1 |
20130008937 | Viola | Jan 2013 | A1 |
20130012983 | Kleyman | Jan 2013 | A1 |
20130018400 | Milton et al. | Jan 2013 | A1 |
20130020375 | Shelton, IV et al. | Jan 2013 | A1 |
20130020376 | Shelton, IV et al. | Jan 2013 | A1 |
20130023861 | Shelton, IV et al. | Jan 2013 | A1 |
20130023910 | Solomon et al. | Jan 2013 | A1 |
20130023915 | Mueller | Jan 2013 | A1 |
20130026208 | Shelton, IV et al. | Jan 2013 | A1 |
20130026210 | Shelton, IV et al. | Jan 2013 | A1 |
20130030462 | Keating et al. | Jan 2013 | A1 |
20130041292 | Cunningham | Feb 2013 | A1 |
20130056522 | Swensgard | Mar 2013 | A1 |
20130057162 | Pollischansky | Mar 2013 | A1 |
20130068816 | Mandakolathur Vasudevan et al. | Mar 2013 | A1 |
20130069088 | Speck et al. | Mar 2013 | A1 |
20130075447 | Weisenburgh, II et al. | Mar 2013 | A1 |
20130087597 | Shelton, IV et al. | Apr 2013 | A1 |
20130090534 | Burns et al. | Apr 2013 | A1 |
20130096568 | Justis | Apr 2013 | A1 |
20130098968 | Aranyi et al. | Apr 2013 | A1 |
20130098970 | Racenet et al. | Apr 2013 | A1 |
20130106352 | Nagamine | May 2013 | A1 |
20130112729 | Beardsley et al. | May 2013 | A1 |
20130116669 | Shelton, IV et al. | May 2013 | A1 |
20130123816 | Hodgkinson et al. | May 2013 | A1 |
20130126202 | Oomori et al. | May 2013 | A1 |
20130131476 | Siu et al. | May 2013 | A1 |
20130131651 | Strobl et al. | May 2013 | A1 |
20130136969 | Yasui et al. | May 2013 | A1 |
20130153639 | Hodgkinson et al. | Jun 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130158390 | Tan et al. | Jun 2013 | A1 |
20130162198 | Yokota et al. | Jun 2013 | A1 |
20130165908 | Purdy et al. | Jun 2013 | A1 |
20130169217 | Watanabe et al. | Jul 2013 | A1 |
20130172713 | Kirschenman | Jul 2013 | A1 |
20130172878 | Smith | Jul 2013 | A1 |
20130175315 | Milliman | Jul 2013 | A1 |
20130175317 | Yates et al. | Jul 2013 | A1 |
20130183769 | Tajima | Jul 2013 | A1 |
20130186936 | Shelton, IV | Jul 2013 | A1 |
20130211244 | Nathaniel | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130215449 | Yamasaki | Aug 2013 | A1 |
20130231681 | Robinson et al. | Sep 2013 | A1 |
20130233906 | Hess et al. | Sep 2013 | A1 |
20130238021 | Gross et al. | Sep 2013 | A1 |
20130248578 | Arteaga Gonzalez | Sep 2013 | A1 |
20130253480 | Kimball et al. | Sep 2013 | A1 |
20130253499 | Kimball et al. | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130267950 | Rosa et al. | Oct 2013 | A1 |
20130267978 | Trissel | Oct 2013 | A1 |
20130270322 | Scheib et al. | Oct 2013 | A1 |
20130274722 | Kostrzewski | Oct 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130282052 | Aranyi | Oct 2013 | A1 |
20130284792 | Ma | Oct 2013 | A1 |
20130289565 | Hassler, Jr. | Oct 2013 | A1 |
20130293353 | McPherson et al. | Nov 2013 | A1 |
20130296908 | Schulte | Nov 2013 | A1 |
20130303845 | Skula et al. | Nov 2013 | A1 |
20130304084 | Beira et al. | Nov 2013 | A1 |
20130306704 | Balbierz et al. | Nov 2013 | A1 |
20130310849 | Malkowski | Nov 2013 | A1 |
20130327552 | Lovelass et al. | Dec 2013 | A1 |
20130331826 | Steege | Dec 2013 | A1 |
20130333910 | Tanimoto et al. | Dec 2013 | A1 |
20130334280 | Krehel et al. | Dec 2013 | A1 |
20130334283 | Swayze et al. | Dec 2013 | A1 |
20130334285 | Swayze et al. | Dec 2013 | A1 |
20130341374 | Shelton, IV et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140002322 | Kanome et al. | Jan 2014 | A1 |
20140005550 | Lu et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005678 | Shelton, IV et al. | Jan 2014 | A1 |
20140005702 | Timm et al. | Jan 2014 | A1 |
20140005718 | Shelton, IV et al. | Jan 2014 | A1 |
20140008289 | Williams et al. | Jan 2014 | A1 |
20140012289 | Snow | Jan 2014 | A1 |
20140014704 | Onukuri et al. | Jan 2014 | A1 |
20140014705 | Baxter, III | Jan 2014 | A1 |
20140014707 | Onukuri et al. | Jan 2014 | A1 |
20140018832 | Shelton, IV | Jan 2014 | A1 |
20140022283 | Chan et al. | Jan 2014 | A1 |
20140039549 | Belsky et al. | Feb 2014 | A1 |
20140041191 | Knodel | Feb 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140069240 | Dauvin et al. | Mar 2014 | A1 |
20140078715 | Pickard et al. | Mar 2014 | A1 |
20140081176 | Hassan | Mar 2014 | A1 |
20140088614 | Blumenkranz | Mar 2014 | A1 |
20140088639 | Bartels et al. | Mar 2014 | A1 |
20140094681 | Valentine et al. | Apr 2014 | A1 |
20140100554 | Williams | Apr 2014 | A1 |
20140100558 | Schmitz et al. | Apr 2014 | A1 |
20140107697 | Patani et al. | Apr 2014 | A1 |
20140110453 | Wingardner | Apr 2014 | A1 |
20140115229 | Kothamasu et al. | Apr 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140131419 | Bettuchi | May 2014 | A1 |
20140135832 | Park et al. | May 2014 | A1 |
20140148803 | Taylor | May 2014 | A1 |
20140151433 | Shelton, IV et al. | Jun 2014 | A1 |
20140155916 | Hodgkinson et al. | Jun 2014 | A1 |
20140158747 | Measamer et al. | Jun 2014 | A1 |
20140166718 | Swayze et al. | Jun 2014 | A1 |
20140166723 | Beardsley et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140166725 | Schellin et al. | Jun 2014 | A1 |
20140166726 | Schellin et al. | Jun 2014 | A1 |
20140175147 | Manoux et al. | Jun 2014 | A1 |
20140175150 | Shelton, IV et al. | Jun 2014 | A1 |
20140175152 | Hess et al. | Jun 2014 | A1 |
20140181710 | Baalu et al. | Jun 2014 | A1 |
20140183244 | Duque et al. | Jul 2014 | A1 |
20140188091 | Vidal et al. | Jul 2014 | A1 |
20140188101 | Bales, Jr. et al. | Jul 2014 | A1 |
20140188159 | Steege | Jul 2014 | A1 |
20140194874 | Dietz et al. | Jul 2014 | A1 |
20140207124 | Aldridge et al. | Jul 2014 | A1 |
20140209658 | Skalla et al. | Jul 2014 | A1 |
20140215242 | Jung | Jul 2014 | A1 |
20140224857 | Schmid | Aug 2014 | A1 |
20140228632 | Sholev et al. | Aug 2014 | A1 |
20140228867 | Thomas et al. | Aug 2014 | A1 |
20140239047 | Hodgkinson et al. | Aug 2014 | A1 |
20140243865 | Swayze et al. | Aug 2014 | A1 |
20140246471 | Jaworek | Sep 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140248167 | Sugimoto et al. | Sep 2014 | A1 |
20140249557 | Koch, Jr. | Sep 2014 | A1 |
20140249573 | Arav | Sep 2014 | A1 |
20140262408 | Woodard | Sep 2014 | A1 |
20140263535 | Rajani et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263543 | Leimbach | Sep 2014 | A1 |
20140263550 | Aranyi | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140263558 | Hausen et al. | Sep 2014 | A1 |
20140276720 | Parihar et al. | Sep 2014 | A1 |
20140276730 | Boudreaux et al. | Sep 2014 | A1 |
20140276776 | Parihar et al. | Sep 2014 | A1 |
20140284371 | Morgan et al. | Sep 2014 | A1 |
20140287703 | Herbsommer et al. | Sep 2014 | A1 |
20140288460 | Ouyang et al. | Sep 2014 | A1 |
20140291379 | Schellin et al. | Oct 2014 | A1 |
20140291383 | Spivey et al. | Oct 2014 | A1 |
20140299648 | Shelton, IV et al. | Oct 2014 | A1 |
20140303645 | Morgan et al. | Oct 2014 | A1 |
20140303660 | Boyden et al. | Oct 2014 | A1 |
20140330161 | Swayze et al. | Nov 2014 | A1 |
20140330298 | Arshonsky et al. | Nov 2014 | A1 |
20140330579 | Cashman et al. | Nov 2014 | A1 |
20140358163 | Farin et al. | Dec 2014 | A1 |
20140367445 | Ingmanson et al. | Dec 2014 | A1 |
20140371764 | Oyola et al. | Dec 2014 | A1 |
20140373003 | Grez et al. | Dec 2014 | A1 |
20140374130 | Nakamura et al. | Dec 2014 | A1 |
20140378950 | Chiu | Dec 2014 | A1 |
20140379000 | Romo et al. | Dec 2014 | A1 |
20150001272 | Sniffin et al. | Jan 2015 | A1 |
20150002089 | Rejman et al. | Jan 2015 | A1 |
20150022012 | Kim et al. | Jan 2015 | A1 |
20150025549 | Kilroy et al. | Jan 2015 | A1 |
20150025571 | Suzuki et al. | Jan 2015 | A1 |
20150034697 | Mastri et al. | Feb 2015 | A1 |
20150039010 | Beardsley et al. | Feb 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150053743 | Yates et al. | Feb 2015 | A1 |
20150053746 | Shelton, IV et al. | Feb 2015 | A1 |
20150053748 | Yates | Feb 2015 | A1 |
20150060516 | Collings et al. | Mar 2015 | A1 |
20150060519 | Shelton, IV et al. | Mar 2015 | A1 |
20150060520 | Shelton, IV et al. | Mar 2015 | A1 |
20150060521 | Weisenburgh, II et al. | Mar 2015 | A1 |
20150066000 | An et al. | Mar 2015 | A1 |
20150067582 | Donnelly et al. | Mar 2015 | A1 |
20150076208 | Shelton, IV | Mar 2015 | A1 |
20150076209 | Shelton, IV et al. | Mar 2015 | A1 |
20150076210 | Shelton, IV et al. | Mar 2015 | A1 |
20150076211 | Irka et al. | Mar 2015 | A1 |
20150080883 | Haverkost et al. | Mar 2015 | A1 |
20150082624 | Craig et al. | Mar 2015 | A1 |
20150083781 | Giordano et al. | Mar 2015 | A1 |
20150087952 | Albert et al. | Mar 2015 | A1 |
20150088127 | Craig et al. | Mar 2015 | A1 |
20150088547 | Balram et al. | Mar 2015 | A1 |
20150090760 | Giordano et al. | Apr 2015 | A1 |
20150090762 | Giordano et al. | Apr 2015 | A1 |
20150127021 | Harris et al. | May 2015 | A1 |
20150133957 | Kostrzewski | May 2015 | A1 |
20150134077 | Shelton, IV et al. | May 2015 | A1 |
20150150620 | Miyamoto et al. | Jun 2015 | A1 |
20150173749 | Shelton, IV et al. | Jun 2015 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150173789 | Baxter, III et al. | Jun 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150196299 | Swayze et al. | Jul 2015 | A1 |
20150201918 | Kumar et al. | Jul 2015 | A1 |
20150201932 | Swayze et al. | Jul 2015 | A1 |
20150201936 | Swayze et al. | Jul 2015 | A1 |
20150201937 | Swayze et al. | Jul 2015 | A1 |
20150201938 | Swayze et al. | Jul 2015 | A1 |
20150201939 | Swayze et al. | Jul 2015 | A1 |
20150201940 | Swayze et al. | Jul 2015 | A1 |
20150201941 | Swayze et al. | Jul 2015 | A1 |
20150202013 | Teichtmann et al. | Jul 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
20150216605 | Baldwin | Aug 2015 | A1 |
20150222212 | Iwata | Aug 2015 | A1 |
20150223868 | Brandt et al. | Aug 2015 | A1 |
20150230697 | Phee et al. | Aug 2015 | A1 |
20150230794 | Wellman et al. | Aug 2015 | A1 |
20150230861 | Woloszko et al. | Aug 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150238118 | Legassey et al. | Aug 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272575 | Leimbach | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150272606 | Nobis | Oct 2015 | A1 |
20150297200 | Fitzsimmons et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297223 | Huitema et al. | Oct 2015 | A1 |
20150297225 | Huitema et al. | Oct 2015 | A1 |
20150297228 | Huitema et al. | Oct 2015 | A1 |
20150297824 | Cabiri et al. | Oct 2015 | A1 |
20150303417 | Koeder et al. | Oct 2015 | A1 |
20150305743 | Casasanta et al. | Oct 2015 | A1 |
20150313594 | Shelton, IV et al. | Nov 2015 | A1 |
20150324317 | Collins et al. | Nov 2015 | A1 |
20150352699 | Sakai et al. | Dec 2015 | A1 |
20150366585 | Lemay et al. | Dec 2015 | A1 |
20150367497 | Ito et al. | Dec 2015 | A1 |
20150372265 | Morisaku et al. | Dec 2015 | A1 |
20150374372 | Zergiebel | Dec 2015 | A1 |
20150374378 | Giordano et al. | Dec 2015 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160000452 | Yates et al. | Jan 2016 | A1 |
20160000453 | Yates et al. | Jan 2016 | A1 |
20160029998 | Brister et al. | Feb 2016 | A1 |
20160030042 | Heinrich et al. | Feb 2016 | A1 |
20160030043 | Fanelli et al. | Feb 2016 | A1 |
20160030076 | Faller et al. | Feb 2016 | A1 |
20160047423 | Bodtker | Feb 2016 | A1 |
20160051316 | Boudreaux | Feb 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160069449 | Kanai et al. | Mar 2016 | A1 |
20160074035 | Whitman et al. | Mar 2016 | A1 |
20160074040 | Widenhouse et al. | Mar 2016 | A1 |
20160081678 | Kappel et al. | Mar 2016 | A1 |
20160082161 | Zilberman et al. | Mar 2016 | A1 |
20160089175 | Hibner et al. | Mar 2016 | A1 |
20160099601 | Leabman et al. | Apr 2016 | A1 |
20160100838 | Beaupré et al. | Apr 2016 | A1 |
20160118201 | Nicholas et al. | Apr 2016 | A1 |
20160132026 | Wingardner et al. | May 2016 | A1 |
20160135835 | Onuma | May 2016 | A1 |
20160135895 | Faasse et al. | May 2016 | A1 |
20160139666 | Rubin et al. | May 2016 | A1 |
20160174969 | Kerr et al. | Jun 2016 | A1 |
20160174983 | Shelton, IV et al. | Jun 2016 | A1 |
20160175021 | Hassler, Jr. | Jun 2016 | A1 |
20160183939 | Shelton, IV et al. | Jun 2016 | A1 |
20160183943 | Shelton, IV | Jun 2016 | A1 |
20160183944 | Swensgard et al. | Jun 2016 | A1 |
20160192927 | Kostrzewski | Jul 2016 | A1 |
20160192960 | Bueno et al. | Jul 2016 | A1 |
20160199063 | Mandakolathur Vasudevan et al. | Jul 2016 | A1 |
20160199956 | Shelton, IV et al. | Jul 2016 | A1 |
20160220150 | Sharonov | Aug 2016 | A1 |
20160235494 | Shelton, IV et al. | Aug 2016 | A1 |
20160242783 | Shelton, IV et al. | Aug 2016 | A1 |
20160242855 | Fichtinger et al. | Aug 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160249922 | Morgan et al. | Sep 2016 | A1 |
20160249929 | Cappola et al. | Sep 2016 | A1 |
20160256159 | Pinjala et al. | Sep 2016 | A1 |
20160256184 | Shelton, IV et al. | Sep 2016 | A1 |
20160256221 | Smith | Sep 2016 | A1 |
20160256229 | Morgan et al. | Sep 2016 | A1 |
20160262745 | Morgan et al. | Sep 2016 | A1 |
20160262921 | Balbierz et al. | Sep 2016 | A1 |
20160270781 | Scirica | Sep 2016 | A1 |
20160287265 | MacDonald et al. | Oct 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160302820 | Hibner et al. | Oct 2016 | A1 |
20160310143 | Bettuchi | Oct 2016 | A1 |
20160314716 | Grubbs | Oct 2016 | A1 |
20160314717 | Grubbs | Oct 2016 | A1 |
20160345972 | Beardsley et al. | Dec 2016 | A1 |
20160367122 | Ichimura et al. | Dec 2016 | A1 |
20160374669 | Overmyer et al. | Dec 2016 | A1 |
20160374716 | Kessler | Dec 2016 | A1 |
20170000549 | Gilbert et al. | Jan 2017 | A1 |
20170007234 | Chin et al. | Jan 2017 | A1 |
20170007244 | Shelton, IV et al. | Jan 2017 | A1 |
20170007245 | Shelton, IV et al. | Jan 2017 | A1 |
20170007347 | Jaworek et al. | Jan 2017 | A1 |
20170020616 | Vale et al. | Jan 2017 | A1 |
20170035419 | Decker et al. | Feb 2017 | A1 |
20170055819 | Hansen et al. | Mar 2017 | A1 |
20170055980 | Vendely et al. | Mar 2017 | A1 |
20170056008 | Shelton, IV et al. | Mar 2017 | A1 |
20170056016 | Barton et al. | Mar 2017 | A1 |
20170056018 | Zeiner et al. | Mar 2017 | A1 |
20170066054 | Birky | Mar 2017 | A1 |
20170079642 | Overmyer et al. | Mar 2017 | A1 |
20170086829 | Vendely et al. | Mar 2017 | A1 |
20170086830 | Yates et al. | Mar 2017 | A1 |
20170086842 | Shelton, IV et al. | Mar 2017 | A1 |
20170086930 | Thompson et al. | Mar 2017 | A1 |
20170086932 | Auld et al. | Mar 2017 | A1 |
20170095252 | Smith et al. | Apr 2017 | A1 |
20170095922 | Licht et al. | Apr 2017 | A1 |
20170105727 | Scheib et al. | Apr 2017 | A1 |
20170105733 | Scheib et al. | Apr 2017 | A1 |
20170105786 | Scheib et al. | Apr 2017 | A1 |
20170106302 | Cummings et al. | Apr 2017 | A1 |
20170135711 | Overmyer et al. | May 2017 | A1 |
20170135717 | Boudreaux et al. | May 2017 | A1 |
20170135747 | Broderick et al. | May 2017 | A1 |
20170143336 | Shah et al. | May 2017 | A1 |
20170168187 | Calderon et al. | Jun 2017 | A1 |
20170172382 | Nir et al. | Jun 2017 | A1 |
20170172549 | Smaby et al. | Jun 2017 | A1 |
20170172662 | Panescu et al. | Jun 2017 | A1 |
20170181803 | Mayer-Ullmann et al. | Jun 2017 | A1 |
20170182195 | Wagner | Jun 2017 | A1 |
20170182211 | Raxworthy et al. | Jun 2017 | A1 |
20170189018 | Harris | Jul 2017 | A1 |
20170189019 | Harris | Jul 2017 | A1 |
20170189020 | Harris | Jul 2017 | A1 |
20170196558 | Morgan et al. | Jul 2017 | A1 |
20170196649 | Yates et al. | Jul 2017 | A1 |
20170202605 | Shelton, IV et al. | Jul 2017 | A1 |
20170202607 | Shelton, IV et al. | Jul 2017 | A1 |
20170202770 | Friedrich et al. | Jul 2017 | A1 |
20170209145 | Swayze et al. | Jul 2017 | A1 |
20170224332 | Hunter et al. | Aug 2017 | A1 |
20170231623 | Shelton, IV | Aug 2017 | A1 |
20170231626 | Shelton, IV | Aug 2017 | A1 |
20170231627 | Shelton, IV | Aug 2017 | A1 |
20170231628 | Shelton, IV | Aug 2017 | A1 |
20170231629 | Stopek et al. | Aug 2017 | A1 |
20170238962 | Hansen et al. | Aug 2017 | A1 |
20170238991 | Worrell et al. | Aug 2017 | A1 |
20170242455 | Dickens | Aug 2017 | A1 |
20170245880 | Honda et al. | Aug 2017 | A1 |
20170245949 | Randle | Aug 2017 | A1 |
20170249431 | Shelton, IV et al. | Aug 2017 | A1 |
20170252060 | Ellingson et al. | Sep 2017 | A1 |
20170255799 | Zhao et al. | Sep 2017 | A1 |
20170258471 | DiNardo et al. | Sep 2017 | A1 |
20170262110 | Polishchuk et al. | Sep 2017 | A1 |
20170265774 | Johnson et al. | Sep 2017 | A1 |
20170281161 | Shelton, IV | Oct 2017 | A1 |
20170281186 | Shelton, IV et al. | Oct 2017 | A1 |
20170296169 | Yates | Oct 2017 | A1 |
20170296173 | Shelton, IV | Oct 2017 | A1 |
20170296177 | Harris | Oct 2017 | A1 |
20170296178 | Miller | Oct 2017 | A1 |
20170296179 | Shelton, IV | Oct 2017 | A1 |
20170296180 | Harris | Oct 2017 | A1 |
20170296183 | Shelton, IV | Oct 2017 | A1 |
20170296184 | Harris | Oct 2017 | A1 |
20170296185 | Swensgard | Oct 2017 | A1 |
20170296189 | Vendely | Oct 2017 | A1 |
20170296213 | Swensgard | Oct 2017 | A1 |
20170303984 | Malackowski | Oct 2017 | A1 |
20170308665 | Heck et al. | Oct 2017 | A1 |
20170312042 | Giordano et al. | Nov 2017 | A1 |
20170319047 | Poulsen et al. | Nov 2017 | A1 |
20170319201 | Morgan et al. | Nov 2017 | A1 |
20170333034 | Morgan et al. | Nov 2017 | A1 |
20170333035 | Morgan et al. | Nov 2017 | A1 |
20170348010 | Chiang | Dec 2017 | A1 |
20170348042 | Drochner et al. | Dec 2017 | A1 |
20170348043 | Wang et al. | Dec 2017 | A1 |
20170354413 | Chen et al. | Dec 2017 | A1 |
20170358052 | Yuan | Dec 2017 | A1 |
20170360441 | Sgroi | Dec 2017 | A1 |
20180008265 | Hatanaka et al. | Jan 2018 | A1 |
20180036024 | Allen, IV | Feb 2018 | A1 |
20180036025 | Drochner et al. | Feb 2018 | A1 |
20180042610 | Sgroi, Jr. | Feb 2018 | A1 |
20180042689 | Mozdzierz et al. | Feb 2018 | A1 |
20180049738 | Meloul et al. | Feb 2018 | A1 |
20180049794 | Swayze et al. | Feb 2018 | A1 |
20180051780 | Shelton, IV et al. | Feb 2018 | A1 |
20180055501 | Zemlok et al. | Mar 2018 | A1 |
20180067004 | Sgroi, Jr. | Mar 2018 | A1 |
20180085116 | Yates et al. | Mar 2018 | A1 |
20180085117 | Shelton, IV et al. | Mar 2018 | A1 |
20180085120 | Viola | Mar 2018 | A1 |
20180092710 | Bosisio et al. | Apr 2018 | A1 |
20180114591 | Pribanic et al. | Apr 2018 | A1 |
20180116658 | Aronhalt, IV et al. | May 2018 | A1 |
20180116662 | Shelton, IV et al. | May 2018 | A1 |
20180125481 | Yates et al. | May 2018 | A1 |
20180125487 | Beardsley | May 2018 | A1 |
20180125488 | Morgan et al. | May 2018 | A1 |
20180125594 | Beardsley | May 2018 | A1 |
20180132845 | Schmid et al. | May 2018 | A1 |
20180132849 | Miller et al. | May 2018 | A1 |
20180132850 | Leimbach et al. | May 2018 | A1 |
20180132926 | Asher et al. | May 2018 | A1 |
20180132952 | Spivey et al. | May 2018 | A1 |
20180133521 | Frushour et al. | May 2018 | A1 |
20180140299 | Weaner et al. | May 2018 | A1 |
20180146960 | Shelton, IV et al. | May 2018 | A1 |
20180153542 | Shelton, IV et al. | Jun 2018 | A1 |
20180153634 | Zemlok et al. | Jun 2018 | A1 |
20180161034 | Scheib et al. | Jun 2018 | A1 |
20180168572 | Burbank | Jun 2018 | A1 |
20180168574 | Robinson et al. | Jun 2018 | A1 |
20180168575 | Simms et al. | Jun 2018 | A1 |
20180168577 | Aronhalt et al. | Jun 2018 | A1 |
20180168579 | Aronhalt et al. | Jun 2018 | A1 |
20180168592 | Overmyer et al. | Jun 2018 | A1 |
20180168598 | Shelton, IV et al. | Jun 2018 | A1 |
20180168608 | Shelton, IV et al. | Jun 2018 | A1 |
20180168609 | Fanelli et al. | Jun 2018 | A1 |
20180168610 | Shelton, IV et al. | Jun 2018 | A1 |
20180168615 | Shelton, IV et al. | Jun 2018 | A1 |
20180168618 | Scott et al. | Jun 2018 | A1 |
20180168619 | Scott et al. | Jun 2018 | A1 |
20180168623 | Simms et al. | Jun 2018 | A1 |
20180168625 | Posada et al. | Jun 2018 | A1 |
20180168633 | Shelton, IV et al. | Jun 2018 | A1 |
20180168647 | Shelton, IV et al. | Jun 2018 | A1 |
20180168648 | Shelton, IV et al. | Jun 2018 | A1 |
20180168650 | Shelton, IV et al. | Jun 2018 | A1 |
20180168754 | Overmyer | Jun 2018 | A1 |
20180168756 | Liao et al. | Jun 2018 | A1 |
20180206904 | Felder et al. | Jul 2018 | A1 |
20180228490 | Richard et al. | Aug 2018 | A1 |
20180231111 | Mika et al. | Aug 2018 | A1 |
20180231475 | Brown et al. | Aug 2018 | A1 |
20180235609 | Harris et al. | Aug 2018 | A1 |
20180235617 | Shelton, IV et al. | Aug 2018 | A1 |
20180235618 | Kostrzewski | Aug 2018 | A1 |
20180235626 | Shelton, IV et al. | Aug 2018 | A1 |
20180236181 | Marlin et al. | Aug 2018 | A1 |
20180242970 | Mozdzierz | Aug 2018 | A1 |
20180247711 | Terry | Aug 2018 | A1 |
20180250002 | Eschbach | Sep 2018 | A1 |
20180271520 | Shelton, IV et al. | Sep 2018 | A1 |
20180271526 | Zammataro | Sep 2018 | A1 |
20180271553 | Worrell | Sep 2018 | A1 |
20180271604 | Grout et al. | Sep 2018 | A1 |
20180273597 | Stimson | Sep 2018 | A1 |
20180279994 | Schaer et al. | Oct 2018 | A1 |
20180280026 | Zhang et al. | Oct 2018 | A1 |
20180280073 | Sanai et al. | Oct 2018 | A1 |
20180289371 | Wang et al. | Oct 2018 | A1 |
20180296216 | Shelton, IV et al. | Oct 2018 | A1 |
20180296290 | Namiki et al. | Oct 2018 | A1 |
20180310995 | Gliner et al. | Nov 2018 | A1 |
20180317905 | Olson et al. | Nov 2018 | A1 |
20180317915 | McDonald, II | Nov 2018 | A1 |
20180325514 | Harris et al. | Nov 2018 | A1 |
20180333169 | Leimbach et al. | Nov 2018 | A1 |
20180360446 | Shelton, IV et al. | Dec 2018 | A1 |
20180360456 | Shelton, IV et al. | Dec 2018 | A1 |
20180360472 | Harris et al. | Dec 2018 | A1 |
20180360473 | Shelton, IV et al. | Dec 2018 | A1 |
20180368066 | Howell et al. | Dec 2018 | A1 |
20180368833 | Shelton, IV et al. | Dec 2018 | A1 |
20180368843 | Shelton, IV et al. | Dec 2018 | A1 |
20180368844 | Bakos et al. | Dec 2018 | A1 |
20180372806 | Laughery et al. | Dec 2018 | A1 |
20180375165 | Shelton, IV et al. | Dec 2018 | A1 |
20190000459 | Shelton, IV et al. | Jan 2019 | A1 |
20190000461 | Shelton, IV et al. | Jan 2019 | A1 |
20190000462 | Shelton, IV et al. | Jan 2019 | A1 |
20190000470 | Yates et al. | Jan 2019 | A1 |
20190000474 | Shelton, IV et al. | Jan 2019 | A1 |
20190000475 | Shelton, IV et al. | Jan 2019 | A1 |
20190000476 | Shelton, IV et al. | Jan 2019 | A1 |
20190000477 | Shelton, IV et al. | Jan 2019 | A1 |
20190000481 | Harris et al. | Jan 2019 | A1 |
20190000535 | Messerly et al. | Jan 2019 | A1 |
20190000536 | Yates et al. | Jan 2019 | A1 |
20190006047 | Gorek et al. | Jan 2019 | A1 |
20190008515 | Beardsley et al. | Jan 2019 | A1 |
20190015102 | Baber et al. | Jan 2019 | A1 |
20190015165 | Giordano et al. | Jan 2019 | A1 |
20190017311 | McGettrick et al. | Jan 2019 | A1 |
20190021733 | Burbank | Jan 2019 | A1 |
20190029682 | Huitema et al. | Jan 2019 | A1 |
20190029701 | Shelton, IV et al. | Jan 2019 | A1 |
20190033955 | Leimbach et al. | Jan 2019 | A1 |
20190038279 | Shelton, IV et al. | Feb 2019 | A1 |
20190038281 | Shelton, IV et al. | Feb 2019 | A1 |
20190038282 | Shelton, IV et al. | Feb 2019 | A1 |
20190038283 | Shelton, IV et al. | Feb 2019 | A1 |
20190038285 | Mozdzierz | Feb 2019 | A1 |
20190059984 | Otrembiak et al. | Feb 2019 | A1 |
20190059986 | Shelton, IV et al. | Feb 2019 | A1 |
20190076143 | Smith | Mar 2019 | A1 |
20190090871 | Shelton, IV et al. | Mar 2019 | A1 |
20190091183 | Tomat et al. | Mar 2019 | A1 |
20190099179 | Leimbach et al. | Apr 2019 | A1 |
20190099181 | Shelton, IV et al. | Apr 2019 | A1 |
20190099229 | Spivey et al. | Apr 2019 | A1 |
20190104919 | Shelton, IV et al. | Apr 2019 | A1 |
20190105035 | Shelton, IV et al. | Apr 2019 | A1 |
20190105036 | Morgan et al. | Apr 2019 | A1 |
20190105037 | Morgan et al. | Apr 2019 | A1 |
20190105039 | Morgan et al. | Apr 2019 | A1 |
20190105043 | Jaworek et al. | Apr 2019 | A1 |
20190105044 | Shelton, IV et al. | Apr 2019 | A1 |
20190110779 | Gardner et al. | Apr 2019 | A1 |
20190110791 | Shelton, IV et al. | Apr 2019 | A1 |
20190110792 | Shelton, IV et al. | Apr 2019 | A1 |
20190117220 | Nativ et al. | Apr 2019 | A1 |
20190117224 | Setser et al. | Apr 2019 | A1 |
20190117287 | Nativ et al. | Apr 2019 | A1 |
20190122840 | Zergiebel et al. | Apr 2019 | A1 |
20190125320 | Shelton, IV et al. | May 2019 | A1 |
20190125335 | Shelton, IV et al. | May 2019 | A1 |
20190125336 | Deck et al. | May 2019 | A1 |
20190125338 | Shelton, IV et al. | May 2019 | A1 |
20190125342 | Beardsley et al. | May 2019 | A1 |
20190125344 | DiNardo et al. | May 2019 | A1 |
20190125357 | Shelton, IV et al. | May 2019 | A1 |
20190125358 | Shelton, IV et al. | May 2019 | A1 |
20190125361 | Shelton, IV et al. | May 2019 | A1 |
20190125377 | Shelton, IV | May 2019 | A1 |
20190125378 | Shelton, IV et al. | May 2019 | A1 |
20190125388 | Shelton, IV et al. | May 2019 | A1 |
20190125430 | Shelton, IV et al. | May 2019 | A1 |
20190125431 | Shelton, IV et al. | May 2019 | A1 |
20190125432 | Shelton, IV et al. | May 2019 | A1 |
20190125454 | Stokes et al. | May 2019 | A1 |
20190125455 | Shelton, IV et al. | May 2019 | A1 |
20190125457 | Parihar et al. | May 2019 | A1 |
20190125458 | Shelton, IV et al. | May 2019 | A1 |
20190125459 | Shelton, IV et al. | May 2019 | A1 |
20190125476 | Shelton, IV et al. | May 2019 | A1 |
20190133422 | Nakamura | May 2019 | A1 |
20190133577 | Weadock et al. | May 2019 | A1 |
20190138770 | Compaijen et al. | May 2019 | A1 |
20190142421 | Shelton, IV | May 2019 | A1 |
20190142423 | Satti, III et al. | May 2019 | A1 |
20190150925 | Marczyk et al. | May 2019 | A1 |
20190151029 | Robinson | May 2019 | A1 |
20190159778 | Shelton, IV et al. | May 2019 | A1 |
20190175847 | Pocreva et al. | Jun 2019 | A1 |
20190183502 | Shelton, IV et al. | Jun 2019 | A1 |
20190192138 | Shelton, IV et al. | Jun 2019 | A1 |
20190192141 | Shelton, IV et al. | Jun 2019 | A1 |
20190192146 | Widenhouse et al. | Jun 2019 | A1 |
20190192147 | Shelton, IV et al. | Jun 2019 | A1 |
20190192148 | Shelton, IV et al. | Jun 2019 | A1 |
20190192150 | Widenhouse et al. | Jun 2019 | A1 |
20190192151 | Shelton, IV et al. | Jun 2019 | A1 |
20190192153 | Shelton, IV et al. | Jun 2019 | A1 |
20190192154 | Shelton, IV et al. | Jun 2019 | A1 |
20190192155 | Shelton, IV et al. | Jun 2019 | A1 |
20190192156 | Simms et al. | Jun 2019 | A1 |
20190192157 | Scott et al. | Jun 2019 | A1 |
20190192235 | Harris et al. | Jun 2019 | A1 |
20190200844 | Shelton, IV et al. | Jul 2019 | A1 |
20190200905 | Shelton, IV et al. | Jul 2019 | A1 |
20190200906 | Shelton, IV et al. | Jul 2019 | A1 |
20190200977 | Shelton, IV et al. | Jul 2019 | A1 |
20190200981 | Harris et al. | Jul 2019 | A1 |
20190200986 | Shelton, IV et al. | Jul 2019 | A1 |
20190200987 | Shelton, IV et al. | Jul 2019 | A1 |
20190200988 | Shelton, IV | Jul 2019 | A1 |
20190200989 | Burbank et al. | Jul 2019 | A1 |
20190200997 | Shelton, IV et al. | Jul 2019 | A1 |
20190200998 | Shelton, IV et al. | Jul 2019 | A1 |
20190201020 | Shelton, IV et al. | Jul 2019 | A1 |
20190201023 | Shelton, IV et al. | Jul 2019 | A1 |
20190201024 | Shelton, IV et al. | Jul 2019 | A1 |
20190201025 | Shelton, IV et al. | Jul 2019 | A1 |
20190201026 | Shelton, IV et al. | Jul 2019 | A1 |
20190201027 | Shelton, IV et al. | Jul 2019 | A1 |
20190201028 | Shelton, IV et al. | Jul 2019 | A1 |
20190201029 | Shelton, IV et al. | Jul 2019 | A1 |
20190201030 | Shelton, IV et al. | Jul 2019 | A1 |
20190201033 | Yates et al. | Jul 2019 | A1 |
20190201034 | Shelton, IV et al. | Jul 2019 | A1 |
20190201045 | Yates et al. | Jul 2019 | A1 |
20190201046 | Shelton, IV et al. | Jul 2019 | A1 |
20190201047 | Yates et al. | Jul 2019 | A1 |
20190201079 | Shelton, IV et al. | Jul 2019 | A1 |
20190201104 | Shelton, IV et al. | Jul 2019 | A1 |
20190201112 | Wiener et al. | Jul 2019 | A1 |
20190201113 | Shelton, IV et al. | Jul 2019 | A1 |
20190201115 | Shelton, IV et al. | Jul 2019 | A1 |
20190201118 | Shelton, IV et al. | Jul 2019 | A1 |
20190201120 | Shelton, IV et al. | Jul 2019 | A1 |
20190201136 | Shelton, IV et al. | Jul 2019 | A1 |
20190201137 | Shelton, IV et al. | Jul 2019 | A1 |
20190201139 | Shelton, IV et al. | Jul 2019 | A1 |
20190201140 | Yates et al. | Jul 2019 | A1 |
20190201142 | Shelton, IV et al. | Jul 2019 | A1 |
20190201158 | Shelton, IV et al. | Jul 2019 | A1 |
20190201594 | Shelton, IV et al. | Jul 2019 | A1 |
20190205001 | Messerly et al. | Jul 2019 | A1 |
20190205567 | Shelton, IV et al. | Jul 2019 | A1 |
20190206003 | Harris et al. | Jul 2019 | A1 |
20190206551 | Yates et al. | Jul 2019 | A1 |
20190206555 | Morgan et al. | Jul 2019 | A1 |
20190206561 | Shelton, IV et al. | Jul 2019 | A1 |
20190206562 | Shelton, IV et al. | Jul 2019 | A1 |
20190206563 | Shelton, IV et al. | Jul 2019 | A1 |
20190206564 | Shelton, IV et al. | Jul 2019 | A1 |
20190206565 | Shelton, IV | Jul 2019 | A1 |
20190206569 | Shelton, IV et al. | Jul 2019 | A1 |
20190208641 | Yates et al. | Jul 2019 | A1 |
20190209172 | Shelton, IV et al. | Jul 2019 | A1 |
20190209247 | Giordano et al. | Jul 2019 | A1 |
20190209248 | Giordano et al. | Jul 2019 | A1 |
20190209249 | Giordano et al. | Jul 2019 | A1 |
20190209250 | Giordano et al. | Jul 2019 | A1 |
20190216558 | Giordano et al. | Jul 2019 | A1 |
20190239873 | Laurent et al. | Aug 2019 | A1 |
20190247048 | Gasparovich et al. | Aug 2019 | A1 |
20190261982 | Holsten | Aug 2019 | A1 |
20190261983 | Granger et al. | Aug 2019 | A1 |
20190261984 | Nelson et al. | Aug 2019 | A1 |
20190261987 | Viola et al. | Aug 2019 | A1 |
20190262153 | Tassoni et al. | Aug 2019 | A1 |
20190269400 | Mandakolathur Vasudevan et al. | Sep 2019 | A1 |
20190269402 | Murray et al. | Sep 2019 | A1 |
20190269428 | Allen et al. | Sep 2019 | A1 |
20190274685 | Olson et al. | Sep 2019 | A1 |
20190274716 | Nott et al. | Sep 2019 | A1 |
20190282233 | Burbank et al. | Sep 2019 | A1 |
20190290264 | Morgan et al. | Sep 2019 | A1 |
20190290266 | Scheib et al. | Sep 2019 | A1 |
20190290267 | Baxter, III et al. | Sep 2019 | A1 |
20190290297 | Haider et al. | Sep 2019 | A1 |
20190298340 | Shelton, IV et al. | Oct 2019 | A1 |
20190298350 | Shelton, IV et al. | Oct 2019 | A1 |
20190298352 | Shelton, IV et al. | Oct 2019 | A1 |
20190298353 | Shelton, IV et al. | Oct 2019 | A1 |
20190298360 | Shelton, IV et al. | Oct 2019 | A1 |
20190298361 | Shelton, IV et al. | Oct 2019 | A1 |
20190298362 | Shelton, IV et al. | Oct 2019 | A1 |
20190298381 | Kreidler et al. | Oct 2019 | A1 |
20190307452 | Shelton, IV et al. | Oct 2019 | A1 |
20190307453 | Shelton, IV et al. | Oct 2019 | A1 |
20190307454 | Shelton, IV et al. | Oct 2019 | A1 |
20190307456 | Shelton, IV et al. | Oct 2019 | A1 |
20190307479 | Shelton, IV et al. | Oct 2019 | A1 |
20190314015 | Shelton, IV et al. | Oct 2019 | A1 |
20190314018 | Huitema et al. | Oct 2019 | A1 |
20190321040 | Shelton, IV | Oct 2019 | A1 |
20190321062 | Williams | Oct 2019 | A1 |
20190328387 | Overmyer et al. | Oct 2019 | A1 |
20190328390 | Harris et al. | Oct 2019 | A1 |
20190343515 | Morgan et al. | Nov 2019 | A1 |
20190343525 | Shelton, IV et al. | Nov 2019 | A1 |
20190350581 | Baxter, III et al. | Nov 2019 | A1 |
20190350582 | Shelton, IV | Nov 2019 | A1 |
20190357909 | Huitema et al. | Nov 2019 | A1 |
20190374224 | Huitema et al. | Dec 2019 | A1 |
20190388091 | Eschbach et al. | Dec 2019 | A1 |
20200000471 | Shelton, IV et al. | Jan 2020 | A1 |
20200000531 | Giordano et al. | Jan 2020 | A1 |
20200008802 | Aronhalt et al. | Jan 2020 | A1 |
20200008809 | Shelton, IV et al. | Jan 2020 | A1 |
20200008827 | Dearden et al. | Jan 2020 | A1 |
20200015817 | Harris et al. | Jan 2020 | A1 |
20200015819 | Shelton, IV et al. | Jan 2020 | A1 |
20200015836 | Nicholas et al. | Jan 2020 | A1 |
20200015915 | Swayze et al. | Jan 2020 | A1 |
20200030020 | Wang et al. | Jan 2020 | A1 |
20200037939 | Castagna et al. | Feb 2020 | A1 |
20200038016 | Shelton, IV et al. | Feb 2020 | A1 |
20200038018 | Shelton, IV et al. | Feb 2020 | A1 |
20200038020 | Yates et al. | Feb 2020 | A1 |
20200038021 | Contini et al. | Feb 2020 | A1 |
20200046348 | Shelton, IV et al. | Feb 2020 | A1 |
20200046355 | Harris et al. | Feb 2020 | A1 |
20200046356 | Baxter, III et al. | Feb 2020 | A1 |
20200054320 | Harris et al. | Feb 2020 | A1 |
20200054321 | Harris et al. | Feb 2020 | A1 |
20200054324 | Shelton, IV et al. | Feb 2020 | A1 |
20200054329 | Shelton, IV et al. | Feb 2020 | A1 |
20200054332 | Shelton, IV et al. | Feb 2020 | A1 |
20200054333 | Shelton, IV et al. | Feb 2020 | A1 |
20200054334 | Shelton, IV et al. | Feb 2020 | A1 |
20200054355 | Laurent et al. | Feb 2020 | A1 |
20200060523 | Matsuda et al. | Feb 2020 | A1 |
20200060680 | Shelton, IV et al. | Feb 2020 | A1 |
20200060713 | Leimbach et al. | Feb 2020 | A1 |
20200061385 | Schwarz et al. | Feb 2020 | A1 |
20200077994 | Shelton, IV et al. | Mar 2020 | A1 |
20200078015 | Miller et al. | Mar 2020 | A1 |
20200085427 | Giordano et al. | Mar 2020 | A1 |
20200085431 | Swayze et al. | Mar 2020 | A1 |
20200085435 | Shelton, IV et al. | Mar 2020 | A1 |
20200085436 | Beckman et al. | Mar 2020 | A1 |
20200085518 | Giordano et al. | Mar 2020 | A1 |
20200093484 | Shelton, IV et al. | Mar 2020 | A1 |
20200093485 | Shelton, IV et al. | Mar 2020 | A1 |
20200093506 | Leimbach et al. | Mar 2020 | A1 |
20200093550 | Spivey et al. | Mar 2020 | A1 |
20200100699 | Shelton, IV et al. | Apr 2020 | A1 |
20200100783 | Yates et al. | Apr 2020 | A1 |
20200107829 | Shelton, IV et al. | Apr 2020 | A1 |
20200113563 | Gupta et al. | Apr 2020 | A1 |
20200114505 | Kikuchi | Apr 2020 | A1 |
20200138434 | Miller et al. | May 2020 | A1 |
20200138435 | Shelton, IV et al. | May 2020 | A1 |
20200138436 | Yates et al. | May 2020 | A1 |
20200138507 | Davison et al. | May 2020 | A1 |
20200138534 | Garcia Kilroy et al. | May 2020 | A1 |
20200146166 | Sgroi, Jr. | May 2020 | A1 |
20200146676 | Yates et al. | May 2020 | A1 |
20200146741 | Long et al. | May 2020 | A1 |
20200187943 | Shelton, IV et al. | Jun 2020 | A1 |
20200197027 | Hershberger et al. | Jun 2020 | A1 |
20200205810 | Posey et al. | Jul 2020 | A1 |
20200205811 | Posey et al. | Jul 2020 | A1 |
20200205823 | Vendely et al. | Jul 2020 | A1 |
20200214706 | Vendely et al. | Jul 2020 | A1 |
20200214731 | Shelton, IV et al. | Jul 2020 | A1 |
20200222047 | Shelton, IV et al. | Jul 2020 | A1 |
20200229812 | Parihar et al. | Jul 2020 | A1 |
20200229814 | Amariglio et al. | Jul 2020 | A1 |
20200229816 | Bakos et al. | Jul 2020 | A1 |
20200237371 | Huitema et al. | Jul 2020 | A1 |
20200253605 | Swayze et al. | Aug 2020 | A1 |
20200261075 | Boudreaux et al. | Aug 2020 | A1 |
20200261078 | Bakos et al. | Aug 2020 | A1 |
20200261081 | Boudreaux et al. | Aug 2020 | A1 |
20200261083 | Bakos et al. | Aug 2020 | A1 |
20200261085 | Boudreaux et al. | Aug 2020 | A1 |
20200261086 | Zeiner et al. | Aug 2020 | A1 |
20200261087 | Timm et al. | Aug 2020 | A1 |
20200261088 | Harris et al. | Aug 2020 | A1 |
20200261106 | Hess et al. | Aug 2020 | A1 |
20200268377 | Schmid et al. | Aug 2020 | A1 |
20200268381 | Roberts et al. | Aug 2020 | A1 |
20200275926 | Shelton, IV et al. | Sep 2020 | A1 |
20200275927 | Shelton, IV et al. | Sep 2020 | A1 |
20200275928 | Shelton, IV et al. | Sep 2020 | A1 |
20200275930 | Harris et al. | Sep 2020 | A1 |
20200280219 | Laughery et al. | Sep 2020 | A1 |
20200281585 | Timm et al. | Sep 2020 | A1 |
20200281587 | Schmid et al. | Sep 2020 | A1 |
20200281590 | Shelton, IV et al. | Sep 2020 | A1 |
20200289112 | Whitfield et al. | Sep 2020 | A1 |
20200289119 | Viola et al. | Sep 2020 | A1 |
20200297340 | Hess et al. | Sep 2020 | A1 |
20200297341 | Yates et al. | Sep 2020 | A1 |
20200297346 | Shelton, IV et al. | Sep 2020 | A1 |
20200305862 | Yates et al. | Oct 2020 | A1 |
20200305863 | Yates et al. | Oct 2020 | A1 |
20200305864 | Yates et al. | Oct 2020 | A1 |
20200305870 | Shelton, IV | Oct 2020 | A1 |
20200305871 | Shelton, IV et al. | Oct 2020 | A1 |
20200305872 | Weidner et al. | Oct 2020 | A1 |
20200305874 | Huitema et al. | Oct 2020 | A1 |
20200315612 | Shelton, IV et al. | Oct 2020 | A1 |
20200315623 | Eisinger et al. | Oct 2020 | A1 |
20200315625 | Hall et al. | Oct 2020 | A1 |
20200315983 | Widenhouse et al. | Oct 2020 | A1 |
20200323526 | Huang et al. | Oct 2020 | A1 |
20200330092 | Shelton, IV et al. | Oct 2020 | A1 |
20200330093 | Shelton, IV et al. | Oct 2020 | A1 |
20200330094 | Baxter, III et al. | Oct 2020 | A1 |
20200330096 | Shelton, IV et al. | Oct 2020 | A1 |
20200330181 | Junger et al. | Oct 2020 | A1 |
20200337693 | Shelton, IV et al. | Oct 2020 | A1 |
20200337702 | Shelton, IV et al. | Oct 2020 | A1 |
20200337703 | Shelton, IV et al. | Oct 2020 | A1 |
20200337706 | Truckai et al. | Oct 2020 | A1 |
20200337791 | Shelton, IV et al. | Oct 2020 | A1 |
20200345346 | Shelton, IV et al. | Nov 2020 | A1 |
20200345349 | Kimball et al. | Nov 2020 | A1 |
20200345352 | Shelton, IV et al. | Nov 2020 | A1 |
20200345353 | Leimbach et al. | Nov 2020 | A1 |
20200345354 | Leimbach et al. | Nov 2020 | A1 |
20200345355 | Baxter, III et al. | Nov 2020 | A1 |
20200345356 | Leimbach et al. | Nov 2020 | A1 |
20200345357 | Leimbach et al. | Nov 2020 | A1 |
20200345358 | Jenkins | Nov 2020 | A1 |
20200345359 | Baxter, III et al. | Nov 2020 | A1 |
20200345360 | Leimbach et al. | Nov 2020 | A1 |
20200345363 | Shelton, IV et al. | Nov 2020 | A1 |
20200345435 | Traina | Nov 2020 | A1 |
20200345446 | Kimball et al. | Nov 2020 | A1 |
20200352562 | Timm et al. | Nov 2020 | A1 |
20200367885 | Yates et al. | Nov 2020 | A1 |
20200367886 | Shelton, IV et al. | Nov 2020 | A1 |
20200375585 | Swayze et al. | Dec 2020 | A1 |
20200375592 | Hall et al. | Dec 2020 | A1 |
20200375593 | Hunter et al. | Dec 2020 | A1 |
20200375597 | Shelton, IV et al. | Dec 2020 | A1 |
20200390444 | Harris et al. | Dec 2020 | A1 |
20200397430 | Patel et al. | Dec 2020 | A1 |
20200397433 | Lytle, IV et al. | Dec 2020 | A1 |
20200397434 | Overmyer et al. | Dec 2020 | A1 |
20200397439 | Eisinger | Dec 2020 | A1 |
20200405290 | Shelton, IV et al. | Dec 2020 | A1 |
20200405292 | Shelton, IV et al. | Dec 2020 | A1 |
20200405293 | Shelton, IV et al. | Dec 2020 | A1 |
20200405294 | Shelton, IV | Dec 2020 | A1 |
20200405295 | Shelton, IV et al. | Dec 2020 | A1 |
20200405296 | Shelton, IV et al. | Dec 2020 | A1 |
20200405302 | Shelton, IV et al. | Dec 2020 | A1 |
20200405304 | Mozdzierz et al. | Dec 2020 | A1 |
20200405306 | Shelton, IV et al. | Dec 2020 | A1 |
20200405307 | Shelton, IV et al. | Dec 2020 | A1 |
20200405308 | Shelton, IV | Dec 2020 | A1 |
20200405312 | Shelton, IV et al. | Dec 2020 | A1 |
20200405314 | Shelton, IV et al. | Dec 2020 | A1 |
20200405316 | Shelton, IV et al. | Dec 2020 | A1 |
20200405341 | Hess et al. | Dec 2020 | A1 |
20200405375 | Shelton, IV et al. | Dec 2020 | A1 |
20200405403 | Shelton, IV et al. | Dec 2020 | A1 |
20200405404 | Shelton, IV et al. | Dec 2020 | A1 |
20200405409 | Shelton, IV et al. | Dec 2020 | A1 |
20200405410 | Shelton, IV | Dec 2020 | A1 |
20200405416 | Shelton, IV et al. | Dec 2020 | A1 |
20200405436 | Shelton, IV et al. | Dec 2020 | A1 |
20200405437 | Shelton, IV et al. | Dec 2020 | A1 |
20200405438 | Shelton, IV et al. | Dec 2020 | A1 |
20200405439 | Shelton, IV et al. | Dec 2020 | A1 |
20200410177 | Shelton, IV | Dec 2020 | A1 |
20200410180 | Shelton, IV et al. | Dec 2020 | A1 |
20210000466 | Leimbach et al. | Jan 2021 | A1 |
20210000467 | Shelton, IV et al. | Jan 2021 | A1 |
20210000470 | Leimbach et al. | Jan 2021 | A1 |
20210007742 | Rector et al. | Jan 2021 | A1 |
20210015480 | Shelton, IV et al. | Jan 2021 | A1 |
20210022741 | Baxter, III et al. | Jan 2021 | A1 |
20210030416 | Shelton, IV et al. | Feb 2021 | A1 |
20210045742 | Shelton, IV et al. | Feb 2021 | A1 |
20210052271 | Harris et al. | Feb 2021 | A1 |
20210059661 | Schmid et al. | Mar 2021 | A1 |
20210059662 | Shelton, IV | Mar 2021 | A1 |
20210059664 | Hensel et al. | Mar 2021 | A1 |
20210059666 | Schmid et al. | Mar 2021 | A1 |
20210059669 | Yates et al. | Mar 2021 | A1 |
20210059670 | Overmyer et al. | Mar 2021 | A1 |
20210059671 | Shelton, IV et al. | Mar 2021 | A1 |
20210059672 | Giordano et al. | Mar 2021 | A1 |
20210059673 | Shelton, IV et al. | Mar 2021 | A1 |
20210068817 | Shelton, IV et al. | Mar 2021 | A1 |
20210068818 | Overmyer et al. | Mar 2021 | A1 |
20210068820 | Parihar et al. | Mar 2021 | A1 |
20210068829 | Miller et al. | Mar 2021 | A1 |
20210068830 | Baber et al. | Mar 2021 | A1 |
20210068831 | Baber et al. | Mar 2021 | A1 |
20210068832 | Yates et al. | Mar 2021 | A1 |
20210068835 | Shelton, IV et al. | Mar 2021 | A1 |
20210077092 | Parihar et al. | Mar 2021 | A1 |
20210077099 | Shelton, IV et al. | Mar 2021 | A1 |
20210077100 | Shelton, IV et al. | Mar 2021 | A1 |
20210077109 | Harris et al. | Mar 2021 | A1 |
20210084700 | Daniels | Mar 2021 | A1 |
20210085313 | Morgan et al. | Mar 2021 | A1 |
20210085314 | Schmid et al. | Mar 2021 | A1 |
20210085315 | Aronhalt et al. | Mar 2021 | A1 |
20210085316 | Harris et al. | Mar 2021 | A1 |
20210085317 | Miller et al. | Mar 2021 | A1 |
20210085318 | Swayze et al. | Mar 2021 | A1 |
20210085319 | Swayze et al. | Mar 2021 | A1 |
20210085320 | Leimbach et al. | Mar 2021 | A1 |
20210085321 | Shelton, IV et al. | Mar 2021 | A1 |
20210085325 | Shelton, IV et al. | Mar 2021 | A1 |
20210085326 | Vendely et al. | Mar 2021 | A1 |
20210093321 | Auld et al. | Apr 2021 | A1 |
20210093323 | Scirica et al. | Apr 2021 | A1 |
20210100541 | Shelton, IV et al. | Apr 2021 | A1 |
20210100550 | Shelton, IV et al. | Apr 2021 | A1 |
20210100982 | Laby et al. | Apr 2021 | A1 |
20210106333 | Shelton, IV et al. | Apr 2021 | A1 |
20210107031 | Bales, Jr. et al. | Apr 2021 | A1 |
20210121175 | Yates et al. | Apr 2021 | A1 |
20210128146 | Shelton, IV et al. | May 2021 | A1 |
20210128153 | Sgroi | May 2021 | A1 |
20210137522 | Shelton, IV et al. | May 2021 | A1 |
20210153866 | Knapp et al. | May 2021 | A1 |
20210177401 | Abramek et al. | Jun 2021 | A1 |
20210177411 | Williams | Jun 2021 | A1 |
20210177528 | Cappelleri et al. | Jun 2021 | A1 |
20210186492 | Shelton, IV et al. | Jun 2021 | A1 |
20210186493 | Shelton, IV et al. | Jun 2021 | A1 |
20210186494 | Shelton, IV et al. | Jun 2021 | A1 |
20210186495 | Shelton, IV et al. | Jun 2021 | A1 |
20210186497 | Shelton, IV et al. | Jun 2021 | A1 |
20210186498 | Boudreaux et al. | Jun 2021 | A1 |
20210186499 | Shelton, IV et al. | Jun 2021 | A1 |
20210186500 | Shelton, IV et al. | Jun 2021 | A1 |
20210186501 | Shelton, IV et al. | Jun 2021 | A1 |
20210186502 | Shelton, IV et al. | Jun 2021 | A1 |
20210186503 | Shelton, IV et al. | Jun 2021 | A1 |
20210186504 | Shelton, IV et al. | Jun 2021 | A1 |
20210186505 | Shelton, IV et al. | Jun 2021 | A1 |
20210186507 | Shelton, IV et al. | Jun 2021 | A1 |
20210196265 | Shelton, IV et al. | Jul 2021 | A1 |
20210196269 | Shelton, IV et al. | Jul 2021 | A1 |
20210196270 | Shelton, IV et al. | Jul 2021 | A1 |
20210204941 | Dewaele et al. | Jul 2021 | A1 |
20210204951 | Sgroi et al. | Jul 2021 | A1 |
20210212671 | Ramadan et al. | Jul 2021 | A1 |
20210212691 | Smith et al. | Jul 2021 | A1 |
20210212776 | Schmitt et al. | Jul 2021 | A1 |
20210219976 | DiNardo et al. | Jul 2021 | A1 |
20210228209 | Shelton, IV et al. | Jul 2021 | A1 |
20210236117 | Morgan et al. | Aug 2021 | A1 |
20210236124 | Shelton, IV et al. | Aug 2021 | A1 |
20210244406 | Kerr et al. | Aug 2021 | A1 |
20210244407 | Shelton, IV et al. | Aug 2021 | A1 |
20210244410 | Swayze et al. | Aug 2021 | A1 |
20210244411 | Smith et al. | Aug 2021 | A1 |
20210244412 | Vendely et al. | Aug 2021 | A1 |
20210251720 | Jhaveri et al. | Aug 2021 | A1 |
20210259681 | Shelton, IV et al. | Aug 2021 | A1 |
20210259687 | Gonzalez et al. | Aug 2021 | A1 |
20210259790 | Kaiser | Aug 2021 | A1 |
20210259986 | Widenhouse et al. | Aug 2021 | A1 |
20210259987 | Widenhouse et al. | Aug 2021 | A1 |
20210267589 | Swayze et al. | Sep 2021 | A1 |
20210267592 | Baxter, III et al. | Sep 2021 | A1 |
20210267594 | Morgan et al. | Sep 2021 | A1 |
20210267595 | Posada et al. | Sep 2021 | A1 |
20210267596 | Fanelli et al. | Sep 2021 | A1 |
20210275053 | Shelton, IV et al. | Sep 2021 | A1 |
20210275172 | Harris et al. | Sep 2021 | A1 |
20210275173 | Shelton, IV et al. | Sep 2021 | A1 |
20210275175 | Vadali et al. | Sep 2021 | A1 |
20210275176 | Beckman et al. | Sep 2021 | A1 |
20210282767 | Shelton, IV et al. | Sep 2021 | A1 |
20210282769 | Baxter, III et al. | Sep 2021 | A1 |
20210282774 | Shelton, IV et al. | Sep 2021 | A1 |
20210282776 | Overmyer et al. | Sep 2021 | A1 |
20210290226 | Mandakolathur Vasudevan et al. | Sep 2021 | A1 |
20210290231 | Baxter, III et al. | Sep 2021 | A1 |
20210290232 | Harris et al. | Sep 2021 | A1 |
20210290233 | Shelton, IV et al. | Sep 2021 | A1 |
20210290236 | Moore et al. | Sep 2021 | A1 |
20210290322 | Traina | Sep 2021 | A1 |
20210298745 | Leimbach et al. | Sep 2021 | A1 |
20210298746 | Leimbach et al. | Sep 2021 | A1 |
20210307744 | Walcott et al. | Oct 2021 | A1 |
20210307748 | Harris et al. | Oct 2021 | A1 |
20210307754 | Shelton, IV et al. | Oct 2021 | A1 |
20210313975 | Shan et al. | Oct 2021 | A1 |
20210315566 | Yates et al. | Oct 2021 | A1 |
20210315570 | Shelton, IV | Oct 2021 | A1 |
20210315571 | Swayze et al. | Oct 2021 | A1 |
20210315573 | Shelton, IV et al. | Oct 2021 | A1 |
20210315574 | Shelton, IV et al. | Oct 2021 | A1 |
20210315576 | Shelton, IV et al. | Oct 2021 | A1 |
20210315577 | Shelton, IV et al. | Oct 2021 | A1 |
20210322009 | Huang et al. | Oct 2021 | A1 |
20210330321 | Leimbach et al. | Oct 2021 | A1 |
20210338233 | Shelton, IV et al. | Nov 2021 | A1 |
20210338234 | Shelton, IV et al. | Nov 2021 | A1 |
20210338260 | Le Rolland et al. | Nov 2021 | A1 |
20210346082 | Adams et al. | Nov 2021 | A1 |
20210353284 | Yang et al. | Nov 2021 | A1 |
20210369271 | Schings et al. | Dec 2021 | A1 |
20210369273 | Yates et al. | Dec 2021 | A1 |
20210378669 | Shelton, IV et al. | Dec 2021 | A1 |
20210393260 | Shelton, IV et al. | Dec 2021 | A1 |
20210393261 | Harris et al. | Dec 2021 | A1 |
20210393262 | Shelton, IV et al. | Dec 2021 | A1 |
20210393268 | Shelton, IV et al. | Dec 2021 | A1 |
20210393366 | Shelton, IV et al. | Dec 2021 | A1 |
20210401487 | Apostolopoulos et al. | Dec 2021 | A1 |
20210401513 | Apostolopoulos et al. | Dec 2021 | A1 |
20220000478 | Shelton, IV et al. | Jan 2022 | A1 |
20220000479 | Shelton, IV et al. | Jan 2022 | A1 |
20220015760 | Beardsley et al. | Jan 2022 | A1 |
20220031313 | Bakos et al. | Feb 2022 | A1 |
20220031314 | Bakos et al. | Feb 2022 | A1 |
20220031315 | Bakos et al. | Feb 2022 | A1 |
20220031319 | Witte et al. | Feb 2022 | A1 |
20220031320 | Hall et al. | Feb 2022 | A1 |
20220031322 | Parks | Feb 2022 | A1 |
20220031323 | Witte | Feb 2022 | A1 |
20220031324 | Hall et al. | Feb 2022 | A1 |
20220031345 | Witte | Feb 2022 | A1 |
20220031346 | Parks | Feb 2022 | A1 |
20220031350 | Witte | Feb 2022 | A1 |
20220031351 | Moubarak et al. | Feb 2022 | A1 |
20220049593 | Groover et al. | Feb 2022 | A1 |
20220054125 | Ji et al. | Feb 2022 | A1 |
20220054130 | Overmyer et al. | Feb 2022 | A1 |
20220061642 | Park et al. | Mar 2022 | A1 |
20220061836 | Parihar et al. | Mar 2022 | A1 |
20220061843 | Vendely et al. | Mar 2022 | A1 |
20220061845 | Shelton, IV et al. | Mar 2022 | A1 |
20220061862 | Shelton, IV et al. | Mar 2022 | A1 |
20220071630 | Swayze et al. | Mar 2022 | A1 |
20220071631 | Harris et al. | Mar 2022 | A1 |
20220071635 | Shelton, IV et al. | Mar 2022 | A1 |
20220079580 | Vendely et al. | Mar 2022 | A1 |
20220079586 | Shelton, IV et al. | Mar 2022 | A1 |
20220079588 | Harris et al. | Mar 2022 | A1 |
20220079589 | Harris et al. | Mar 2022 | A1 |
20220079590 | Harris et al. | Mar 2022 | A1 |
20220079595 | Huitema et al. | Mar 2022 | A1 |
20220079596 | Huitema et al. | Mar 2022 | A1 |
20220087676 | Shelton, IV et al. | Mar 2022 | A1 |
20220104695 | Russell | Apr 2022 | A1 |
20220104814 | Shelton, IV et al. | Apr 2022 | A1 |
20220104816 | Fernandes et al. | Apr 2022 | A1 |
20220104820 | Shelton, IV et al. | Apr 2022 | A1 |
20220110673 | Boronyak et al. | Apr 2022 | A1 |
20220117602 | Wise et al. | Apr 2022 | A1 |
20220125472 | Beckman et al. | Apr 2022 | A1 |
20220133299 | Baxter, III | May 2022 | A1 |
20220133300 | Leimbach et al. | May 2022 | A1 |
20220133301 | Leimbach | May 2022 | A1 |
20220133302 | Zerkle et al. | May 2022 | A1 |
20220133303 | Huang | May 2022 | A1 |
20220133304 | Leimbach et al. | May 2022 | A1 |
20220133310 | Ross | May 2022 | A1 |
20220133311 | Huang | May 2022 | A1 |
20220133312 | Huang | May 2022 | A1 |
20220133318 | Hudson et al. | May 2022 | A1 |
20220142643 | Shelton, IV et al. | May 2022 | A1 |
20220151611 | Shelton, IV et al. | May 2022 | A1 |
20220151613 | Vendely et al. | May 2022 | A1 |
20220151614 | Vendely et al. | May 2022 | A1 |
20220151615 | Shelton, IV et al. | May 2022 | A1 |
20220151616 | Shelton, IV et al. | May 2022 | A1 |
20220160355 | Harris et al. | May 2022 | A1 |
20220160358 | Wixey | May 2022 | A1 |
20220167968 | Worthington et al. | Jun 2022 | A1 |
20220167970 | Aronhalt et al. | Jun 2022 | A1 |
20220167971 | Shelton, IV et al. | Jun 2022 | A1 |
20220167972 | Shelton, IV et al. | Jun 2022 | A1 |
20220167973 | Shelton, IV et al. | Jun 2022 | A1 |
20220167974 | Shelton, IV et al. | Jun 2022 | A1 |
20220167975 | Shelton, IV et al. | Jun 2022 | A1 |
20220167977 | Shelton, IV et al. | Jun 2022 | A1 |
20220167979 | Yates et al. | Jun 2022 | A1 |
20220167980 | Shelton, IV et al. | Jun 2022 | A1 |
20220167981 | Shelton, IV et al. | Jun 2022 | A1 |
20220167982 | Shelton, IV et al. | Jun 2022 | A1 |
20220167983 | Shelton, IV et al. | Jun 2022 | A1 |
20220167984 | Shelton, IV et al. | Jun 2022 | A1 |
20220167995 | Parfett et al. | Jun 2022 | A1 |
20220168038 | Shelton, IV et al. | Jun 2022 | A1 |
20220175370 | Shelton, IV et al. | Jun 2022 | A1 |
20220175371 | Hess et al. | Jun 2022 | A1 |
20220175372 | Shelton, IV et al. | Jun 2022 | A1 |
20220175375 | Harris et al. | Jun 2022 | A1 |
20220175378 | Leimbach et al. | Jun 2022 | A1 |
20220175381 | Scheib et al. | Jun 2022 | A1 |
20220183685 | Shelton, IV et al. | Jun 2022 | A1 |
20220202487 | Shelton, IV et al. | Jun 2022 | A1 |
20220211367 | Schmid et al. | Jul 2022 | A1 |
20220218332 | Shelton, IV | Jul 2022 | A1 |
20220218333 | Parihar et al. | Jul 2022 | A1 |
20220218334 | Parihar et al. | Jul 2022 | A1 |
20220218336 | Timm et al. | Jul 2022 | A1 |
20220218337 | Timm et al. | Jul 2022 | A1 |
20220218338 | Shelton, IV et al. | Jul 2022 | A1 |
20220218340 | Harris et al. | Jul 2022 | A1 |
20220218344 | Leimbach et al. | Jul 2022 | A1 |
20220218345 | Shelton, IV et al. | Jul 2022 | A1 |
20220218346 | Shelton, IV et al. | Jul 2022 | A1 |
20220218347 | Shelton, IV et al. | Jul 2022 | A1 |
20220218348 | Swensgard et al. | Jul 2022 | A1 |
20220218349 | Shelton, IV et al. | Jul 2022 | A1 |
20220218350 | Shelton, IV et al. | Jul 2022 | A1 |
20220218351 | Shelton, IV et al. | Jul 2022 | A1 |
20220218376 | Shelton, IV et al. | Jul 2022 | A1 |
20220218378 | Shelton, IV et al. | Jul 2022 | A1 |
20220218381 | Leimbach et al. | Jul 2022 | A1 |
20220218382 | Leimbach et al. | Jul 2022 | A1 |
20220225980 | Shelton, IV et al. | Jul 2022 | A1 |
20220225982 | Yates et al. | Jul 2022 | A1 |
20220225986 | Shelton, IV et al. | Jul 2022 | A1 |
20220225992 | Smith et al. | Jul 2022 | A1 |
20220225993 | Huitema et al. | Jul 2022 | A1 |
20220225994 | Setser et al. | Jul 2022 | A1 |
20220226012 | Shelton, IV et al. | Jul 2022 | A1 |
20220226013 | Hall et al. | Jul 2022 | A1 |
20220233184 | Parihar et al. | Jul 2022 | A1 |
20220233185 | Parihar et al. | Jul 2022 | A1 |
20220233186 | Timm et al. | Jul 2022 | A1 |
20220233187 | Timm et al. | Jul 2022 | A1 |
20220233188 | Timm et al. | Jul 2022 | A1 |
20220233194 | Baxter, III et al. | Jul 2022 | A1 |
20220233195 | Shelton, IV et al. | Jul 2022 | A1 |
20220233257 | Shelton, IV et al. | Jul 2022 | A1 |
20220240927 | Timm et al. | Aug 2022 | A1 |
20220240928 | Timm et al. | Aug 2022 | A1 |
20220240929 | Timm et al. | Aug 2022 | A1 |
20220240930 | Yates et al. | Aug 2022 | A1 |
20220240936 | Huitema et al. | Aug 2022 | A1 |
20220240937 | Shelton, IV et al. | Aug 2022 | A1 |
20220249095 | Shelton, IV et al. | Aug 2022 | A1 |
20220265272 | Li et al. | Aug 2022 | A1 |
20220273291 | Shelton, IV et al. | Sep 2022 | A1 |
20220273292 | Shelton, IV et al. | Sep 2022 | A1 |
20220273293 | Shelton, IV et al. | Sep 2022 | A1 |
20220273294 | Creamer et al. | Sep 2022 | A1 |
20220273299 | Shelton, IV et al. | Sep 2022 | A1 |
20220273300 | Shelton, IV et al. | Sep 2022 | A1 |
20220273301 | Creamer et al. | Sep 2022 | A1 |
20220273302 | Shelton, IV et al. | Sep 2022 | A1 |
20220273303 | Creamer et al. | Sep 2022 | A1 |
20220273304 | Shelton, IV et al. | Sep 2022 | A1 |
20220273305 | Shelton, IV et al. | Sep 2022 | A1 |
20220273306 | Shelton, IV et al. | Sep 2022 | A1 |
20220273307 | Shelton, IV et al. | Sep 2022 | A1 |
20220273308 | Shelton, IV et al. | Sep 2022 | A1 |
20220278438 | Shelton, IV et al. | Sep 2022 | A1 |
20220287711 | Ming et al. | Sep 2022 | A1 |
20220296230 | Adams et al. | Sep 2022 | A1 |
20220296231 | Adams et al. | Sep 2022 | A1 |
20220296232 | Adams et al. | Sep 2022 | A1 |
20220296233 | Morgan et al. | Sep 2022 | A1 |
20220296234 | Shelton, IV et al. | Sep 2022 | A1 |
20220296235 | Morgan et al. | Sep 2022 | A1 |
20220296236 | Bakos et al. | Sep 2022 | A1 |
20220296237 | Bakos et al. | Sep 2022 | A1 |
20220304679 | Bakos et al. | Sep 2022 | A1 |
20220304680 | Shelton, IV et al. | Sep 2022 | A1 |
20220304681 | Shelton, IV et al. | Sep 2022 | A1 |
20220304682 | Shelton, IV et al. | Sep 2022 | A1 |
20220304683 | Shelton, IV et al. | Sep 2022 | A1 |
20220304684 | Bakos et al. | Sep 2022 | A1 |
20220304685 | Bakos et al. | Sep 2022 | A1 |
20220304686 | Shelton, IV et al. | Sep 2022 | A1 |
20220304687 | Shelton, IV et al. | Sep 2022 | A1 |
20220304688 | Shelton, IV et al. | Sep 2022 | A1 |
20220304689 | Shelton, IV | Sep 2022 | A1 |
20220304690 | Baxter, III et al. | Sep 2022 | A1 |
20220304714 | Shelton, IV et al. | Sep 2022 | A1 |
20220304715 | Shelton, IV | Sep 2022 | A1 |
20220313253 | Shelton, IV et al. | Oct 2022 | A1 |
20220313263 | Huitema et al. | Oct 2022 | A1 |
20220313619 | Schmid et al. | Oct 2022 | A1 |
20220323067 | Overmyer et al. | Oct 2022 | A1 |
20220323070 | Ross et al. | Oct 2022 | A1 |
20220330940 | Shelton, IV et al. | Oct 2022 | A1 |
20220338870 | Swayze et al. | Oct 2022 | A1 |
20220346774 | Hess et al. | Nov 2022 | A1 |
20220346775 | Hess et al. | Nov 2022 | A1 |
20220346776 | Aronhalt et al. | Nov 2022 | A1 |
20220346781 | Shelton, IV et al. | Nov 2022 | A1 |
20220346783 | Shelton, IV et al. | Nov 2022 | A1 |
20220346785 | Aronhalt et al. | Nov 2022 | A1 |
20220354492 | Baril | Nov 2022 | A1 |
20220354493 | Shelton, IV et al. | Nov 2022 | A1 |
20220354495 | Baxter, III et al. | Nov 2022 | A1 |
20220361879 | Baxter, III et al. | Nov 2022 | A1 |
20220370069 | Simms et al. | Nov 2022 | A1 |
20220378418 | Huang et al. | Dec 2022 | A1 |
20220378420 | Leimbach et al. | Dec 2022 | A1 |
20220378424 | Huang et al. | Dec 2022 | A1 |
20220378425 | Huang et al. | Dec 2022 | A1 |
20220378426 | Huang et al. | Dec 2022 | A1 |
20220378427 | Huang et al. | Dec 2022 | A1 |
20220378428 | Shelton, IV et al. | Dec 2022 | A1 |
20220378435 | Dholakia et al. | Dec 2022 | A1 |
20220387030 | Shelton, IV et al. | Dec 2022 | A1 |
20220387031 | Yates et al. | Dec 2022 | A1 |
20220387032 | Huitema et al. | Dec 2022 | A1 |
20220387033 | Huitema et al. | Dec 2022 | A1 |
20220387034 | Huitema et al. | Dec 2022 | A1 |
20220387035 | Huitema et al. | Dec 2022 | A1 |
20220387036 | Huitema et al. | Dec 2022 | A1 |
20220387037 | Huitema et al. | Dec 2022 | A1 |
20220387038 | Huitema et al. | Dec 2022 | A1 |
20220387125 | Leimbach et al. | Dec 2022 | A1 |
20230016171 | Yates et al. | Jan 2023 | A1 |
20230018950 | Shelton, IV et al. | Jan 2023 | A1 |
20230057935 | Baber et al. | Feb 2023 | A1 |
20230088531 | Hall et al. | Mar 2023 | A1 |
20230094712 | Shelton, IV et al. | Mar 2023 | A1 |
20230120983 | Stokes et al. | Apr 2023 | A1 |
20230121131 | Swayze et al. | Apr 2023 | A1 |
20230121658 | Stokes et al. | Apr 2023 | A1 |
20230133811 | Huang | May 2023 | A1 |
20230134883 | Leimbach | May 2023 | A1 |
20230135070 | Shelton, IV et al. | May 2023 | A1 |
20230135282 | Schings et al. | May 2023 | A1 |
20230135811 | Guest | May 2023 | A1 |
20230138314 | Jenkins | May 2023 | A1 |
20230138743 | Ross et al. | May 2023 | A1 |
Number | Date | Country |
---|---|---|
2012200594 | Feb 2012 | AU |
2012203035 | Jun 2012 | AU |
2012268848 | Jan 2013 | AU |
2011218702 | Jun 2013 | AU |
2012200178 | Jul 2013 | AU |
112013007744 | Jun 2016 | BR |
112013027777 | Jan 2017 | BR |
1015829 | Aug 1977 | CA |
1125615 | Jun 1982 | CA |
2520413 | Mar 2007 | CA |
2725181 | Nov 2007 | CA |
2851239 | Nov 2007 | CA |
2664874 | Nov 2009 | CA |
2813230 | Apr 2012 | CA |
2940510 | Aug 2015 | CA |
2698728 | Aug 2016 | CA |
1163558 | Oct 1997 | CN |
2488482 | May 2002 | CN |
1634601 | Jul 2005 | CN |
2716900 | Aug 2005 | CN |
2738962 | Nov 2005 | CN |
1777406 | May 2006 | CN |
2785249 | May 2006 | CN |
2796654 | Jul 2006 | CN |
2868212 | Feb 2007 | CN |
200942099 | Sep 2007 | CN |
200984209 | Dec 2007 | CN |
200991269 | Dec 2007 | CN |
201001747 | Jan 2008 | CN |
101143105 | Mar 2008 | CN |
201029899 | Mar 2008 | CN |
101188900 | May 2008 | CN |
101203085 | Jun 2008 | CN |
101273908 | Oct 2008 | CN |
101378791 | Mar 2009 | CN |
101401736 | Apr 2009 | CN |
101507635 | Aug 2009 | CN |
101522120 | Sep 2009 | CN |
101669833 | Mar 2010 | CN |
101716090 | Jun 2010 | CN |
101721236 | Jun 2010 | CN |
101756727 | Jun 2010 | CN |
101828940 | Sep 2010 | CN |
101856250 | Oct 2010 | CN |
101873834 | Oct 2010 | CN |
201719298 | Jan 2011 | CN |
102038532 | May 2011 | CN |
201879759 | Jun 2011 | CN |
201949071 | Aug 2011 | CN |
102217961 | Oct 2011 | CN |
102217963 | Oct 2011 | CN |
102243850 | Nov 2011 | CN |
102247182 | Nov 2011 | CN |
102247183 | Nov 2011 | CN |
101779977 | Dec 2011 | CN |
102309352 | Jan 2012 | CN |
101912284 | Jul 2012 | CN |
102125450 | Jul 2012 | CN |
202313537 | Jul 2012 | CN |
202397539 | Aug 2012 | CN |
202426586 | Sep 2012 | CN |
102743201 | Oct 2012 | CN |
202489990 | Oct 2012 | CN |
102228387 | Nov 2012 | CN |
102835977 | Dec 2012 | CN |
202568350 | Dec 2012 | CN |
103037781 | Apr 2013 | CN |
103083053 | May 2013 | CN |
103391037 | Nov 2013 | CN |
203328751 | Dec 2013 | CN |
103505264 | Jan 2014 | CN |
103584893 | Feb 2014 | CN |
103635150 | Mar 2014 | CN |
103690212 | Apr 2014 | CN |
103764046 | Apr 2014 | CN |
203564285 | Apr 2014 | CN |
203564287 | Apr 2014 | CN |
203597997 | May 2014 | CN |
103829981 | Jun 2014 | CN |
103829983 | Jun 2014 | CN |
103860221 | Jun 2014 | CN |
103908313 | Jul 2014 | CN |
203693685 | Jul 2014 | CN |
203736251 | Jul 2014 | CN |
103981635 | Aug 2014 | CN |
104027145 | Sep 2014 | CN |
203815517 | Sep 2014 | CN |
102783741 | Oct 2014 | CN |
102973300 | Oct 2014 | CN |
204092074 | Jan 2015 | CN |
104337556 | Feb 2015 | CN |
204158440 | Feb 2015 | CN |
204158441 | Feb 2015 | CN |
102469995 | Mar 2015 | CN |
104422849 | Mar 2015 | CN |
104586463 | May 2015 | CN |
204520822 | Aug 2015 | CN |
204636451 | Sep 2015 | CN |
103860225 | Mar 2016 | CN |
103750872 | May 2016 | CN |
105682566 | Jun 2016 | CN |
105919642 | Sep 2016 | CN |
103648410 | Oct 2016 | CN |
105997173 | Oct 2016 | CN |
106344091 | Jan 2017 | CN |
104921730 | Sep 2017 | CN |
104349800 | Nov 2017 | CN |
107635483 | Jan 2018 | CN |
208625784 | Mar 2019 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3036217 | Apr 1982 | DE |
3210466 | Sep 1983 | DE |
3709067 | Sep 1988 | DE |
19534043 | Mar 1997 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
20016423 | Feb 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
202004012389 | Sep 2004 | DE |
10314072 | Oct 2004 | DE |
102004014011 | Oct 2005 | DE |
102004041871 | Mar 2006 | DE |
102004063606 | Jul 2006 | DE |
202007003114 | Jun 2007 | DE |
102010013150 | Sep 2011 | DE |
102012213322 | Jan 2014 | DE |
102013101158 | Aug 2014 | DE |
002220467-0008 | Apr 2013 | EM |
0000756 | Feb 1979 | EP |
0122046 | Oct 1984 | EP |
0129442 | Nov 1987 | EP |
0251444 | Jan 1988 | EP |
0255631 | Feb 1988 | EP |
0169044 | Jun 1991 | EP |
0541950 | May 1993 | EP |
0548998 | Jun 1993 | EP |
0594148 | Apr 1994 | EP |
0646357 | Apr 1995 | EP |
0505036 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0516544 | Mar 1996 | EP |
0705571 | Apr 1996 | EP |
0528478 | May 1996 | EP |
0770355 | May 1997 | EP |
0625335 | Nov 1997 | EP |
0879742 | Nov 1998 | EP |
0650701 | Mar 1999 | EP |
0923907 | Jun 1999 | EP |
0484677 | Jul 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
0726632 | Oct 2000 | EP |
1053719 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1064882 | Jan 2001 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
0806914 | Sep 2001 | EP |
1234587 | Aug 2002 | EP |
1284120 | Feb 2003 | EP |
0717967 | May 2003 | EP |
0869742 | May 2003 | EP |
1374788 | Jan 2004 | EP |
1407719 | Apr 2004 | EP |
0996378 | Jun 2004 | EP |
1558161 | Aug 2005 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
1330989 | Dec 2005 | EP |
1632191 | Mar 2006 | EP |
1082944 | May 2006 | EP |
1253866 | Jul 2006 | EP |
1723914 | Nov 2006 | EP |
1285633 | Dec 2006 | EP |
1011494 | Jan 2007 | EP |
1767163 | Mar 2007 | EP |
1837041 | Sep 2007 | EP |
0922435 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
1330201 | Jun 2008 | EP |
2039302 | Mar 2009 | EP |
1719461 | Jun 2009 | EP |
2116196 | Nov 2009 | EP |
2153793 | Feb 2010 | EP |
1769754 | Jun 2010 | EP |
1627605 | Dec 2010 | EP |
2316345 | May 2011 | EP |
1962711 | Feb 2012 | EP |
2486862 | Aug 2012 | EP |
2486868 | Aug 2012 | EP |
2517638 | Oct 2012 | EP |
2529671 | Dec 2012 | EP |
2606812 | Jun 2013 | EP |
2649948 | Oct 2013 | EP |
2649949 | Oct 2013 | EP |
2668910 | Dec 2013 | EP |
2687164 | Jan 2014 | EP |
2713902 | Apr 2014 | EP |
2743042 | Jun 2014 | EP |
2764827 | Aug 2014 | EP |
2777524 | Sep 2014 | EP |
2789299 | Oct 2014 | EP |
2842500 | Mar 2015 | EP |
2853220 | Apr 2015 | EP |
2878274 | Jun 2015 | EP |
2298220 | Jun 2016 | EP |
2510891 | Jun 2016 | EP |
3031404 | Jun 2016 | EP |
3047806 | Jul 2016 | EP |
3078334 | Oct 2016 | EP |
2364651 | Nov 2016 | EP |
2747235 | Nov 2016 | EP |
3095399 | Nov 2016 | EP |
3120781 | Jan 2017 | EP |
3135225 | Mar 2017 | EP |
2789299 | May 2017 | EP |
3225190 | Oct 2017 | EP |
3235445 | Oct 2017 | EP |
3326548 | May 2018 | EP |
3363378 | Aug 2018 | EP |
3409216 | Dec 2018 | EP |
3476301 | May 2019 | EP |
3476334 | May 2019 | EP |
3275378 | Jul 2019 | EP |
3505095 | Jul 2019 | EP |
3791810 | Mar 2021 | EP |
1070456 | Sep 2009 | ES |
459743 | Nov 1913 | FR |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2689749 | Jul 1994 | FR |
2765794 | Jan 1999 | FR |
2815842 | May 2002 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2024012 | Jan 1980 | GB |
2109241 | Jun 1983 | GB |
2090534 | Jun 1984 | GB |
2272159 | May 1994 | GB |
2336214 | Oct 1999 | GB |
2509523 | Jul 2014 | GB |
930100110 | Nov 1993 | GR |
S4711908 | May 1972 | JP |
S5033988 | Apr 1975 | JP |
S5367286 | Jun 1978 | JP |
S56112235 | Sep 1981 | JP |
S60113007 | Jun 1985 | JP |
S62170011 | Oct 1987 | JP |
S6333137 | Feb 1988 | JP |
S63270040 | Nov 1988 | JP |
S63318824 | Dec 1988 | JP |
H0129503 | Jun 1989 | JP |
H02106189 | Apr 1990 | JP |
H0378514 | Aug 1991 | JP |
H0385009 | Aug 1991 | JP |
H0489041 | Mar 1992 | JP |
H04215747 | Aug 1992 | JP |
H04131860 | Dec 1992 | JP |
H0584252 | Apr 1993 | JP |
H05123325 | May 1993 | JP |
H05226945 | Sep 1993 | JP |
H0630945 | Feb 1994 | JP |
H0636757 | Feb 1994 | JP |
H06237937 | Aug 1994 | JP |
H06304176 | Nov 1994 | JP |
H06327684 | Nov 1994 | JP |
H079622 | Feb 1995 | JP |
H07124166 | May 1995 | JP |
H07163573 | Jun 1995 | JP |
H07255735 | Oct 1995 | JP |
H07285089 | Oct 1995 | JP |
H0833642 | Feb 1996 | JP |
H08164141 | Jun 1996 | JP |
H08182684 | Jul 1996 | JP |
H08507708 | Aug 1996 | JP |
H08229050 | Sep 1996 | JP |
H08289895 | Nov 1996 | JP |
H0950795 | Feb 1997 | JP |
H09-323068 | Dec 1997 | JP |
H10118090 | May 1998 | JP |
H10-200699 | Jul 1998 | JP |
H10296660 | Nov 1998 | JP |
2000014632 | Jan 2000 | JP |
2000033071 | Feb 2000 | JP |
2000112002 | Apr 2000 | JP |
2000166932 | Jun 2000 | JP |
2000171730 | Jun 2000 | JP |
2000210299 | Aug 2000 | JP |
2000271141 | Oct 2000 | JP |
2000287987 | Oct 2000 | JP |
2000325303 | Nov 2000 | JP |
2001-69758 | Mar 2001 | JP |
2001087272 | Apr 2001 | JP |
2001208655 | Aug 2001 | JP |
2001514541 | Sep 2001 | JP |
2001276091 | Oct 2001 | JP |
2002051974 | Feb 2002 | JP |
2002054903 | Feb 2002 | JP |
2002085415 | Mar 2002 | JP |
2002143078 | May 2002 | JP |
2002153481 | May 2002 | JP |
2002528161 | Sep 2002 | JP |
2002314298 | Oct 2002 | JP |
2003135473 | May 2003 | JP |
2003521301 | Jul 2003 | JP |
3442423 | Sep 2003 | JP |
2003300416 | Oct 2003 | JP |
2004147701 | May 2004 | JP |
2004162035 | Jun 2004 | JP |
2004229976 | Aug 2004 | JP |
2005013573 | Jan 2005 | JP |
2005080702 | Mar 2005 | JP |
2005131163 | May 2005 | JP |
2005131164 | May 2005 | JP |
2005131173 | May 2005 | JP |
2005131211 | May 2005 | JP |
2005131212 | May 2005 | JP |
2005137423 | Jun 2005 | JP |
2005187954 | Jul 2005 | JP |
2005211455 | Aug 2005 | JP |
2005328882 | Dec 2005 | JP |
2005335432 | Dec 2005 | JP |
2005342267 | Dec 2005 | JP |
3791856 | Jun 2006 | JP |
2006187649 | Jul 2006 | JP |
2006218228 | Aug 2006 | JP |
2006281405 | Oct 2006 | JP |
2006291180 | Oct 2006 | JP |
2006346445 | Dec 2006 | JP |
2007-97252 | Apr 2007 | JP |
2007289715 | Nov 2007 | JP |
2007304057 | Nov 2007 | JP |
2007306710 | Nov 2007 | JP |
D1322057 | Feb 2008 | JP |
2008154804 | Jul 2008 | JP |
2008220032 | Sep 2008 | JP |
2009507526 | Feb 2009 | JP |
2009189838 | Aug 2009 | JP |
2009189846 | Aug 2009 | JP |
2009207260 | Sep 2009 | JP |
2009226028 | Oct 2009 | JP |
2009538684 | Nov 2009 | JP |
2009539420 | Nov 2009 | JP |
D1383743 | Feb 2010 | JP |
2010065594 | Mar 2010 | JP |
2010069307 | Apr 2010 | JP |
2010069310 | Apr 2010 | JP |
2010098844 | Apr 2010 | JP |
2010214128 | Sep 2010 | JP |
2011072574 | Apr 2011 | JP |
4722849 | Jul 2011 | JP |
4728996 | Jul 2011 | JP |
2011524199 | Sep 2011 | JP |
2011200665 | Oct 2011 | JP |
D1432094 | Dec 2011 | JP |
1433631 | Feb 2012 | JP |
2012115542 | Jun 2012 | JP |
2012143283 | Aug 2012 | JP |
5154710 | Feb 2013 | JP |
2013099551 | May 2013 | JP |
2013126430 | Jun 2013 | JP |
D1481426 | Sep 2013 | JP |
2013541982 | Nov 2013 | JP |
2013541983 | Nov 2013 | JP |
2013541997 | Nov 2013 | JP |
2014018667 | Feb 2014 | JP |
D1492363 | Feb 2014 | JP |
2014121599 | Jul 2014 | JP |
2014171879 | Sep 2014 | JP |
1517663 | Feb 2015 | JP |
2015512725 | Apr 2015 | JP |
2015513956 | May 2015 | JP |
2015513958 | May 2015 | JP |
2015514471 | May 2015 | JP |
2015516838 | Jun 2015 | JP |
2015521524 | Jul 2015 | JP |
2015521525 | Jul 2015 | JP |
2016007800 | Jan 2016 | JP |
2016508792 | Mar 2016 | JP |
2016512057 | Apr 2016 | JP |
2016518914 | Jun 2016 | JP |
2016530949 | Oct 2016 | JP |
2017513563 | Jun 2017 | JP |
1601498 | Apr 2018 | JP |
2019513530 | May 2019 | JP |
2020501797 | Jan 2020 | JP |
D1677030 | Jan 2021 | JP |
D1696539 | Oct 2021 | JP |
20100110134 | Oct 2010 | KR |
20110003229 | Jan 2011 | KR |
300631507 | Mar 2012 | KR |
300747646 | Jun 2014 | KR |
20180053811 | May 2018 | KR |
1814161 | May 1993 | RU |
2008830 | Mar 1994 | RU |
2052979 | Jan 1996 | RU |
2066128 | Sep 1996 | RU |
2069981 | Dec 1996 | RU |
2098025 | Dec 1997 | RU |
2104671 | Feb 1998 | RU |
2110965 | May 1998 | RU |
2141279 | Nov 1999 | RU |
2144791 | Jan 2000 | RU |
2161450 | Jan 2001 | RU |
2181566 | Apr 2002 | RU |
2187249 | Aug 2002 | RU |
32984 | Oct 2003 | RU |
2225170 | Mar 2004 | RU |
42750 | Dec 2004 | RU |
61114 | Feb 2007 | RU |
61122 | Feb 2007 | RU |
2430692 | Oct 2011 | RU |
189517 | Jan 1967 | SU |
297156 | May 1971 | SU |
328636 | Sep 1972 | SU |
511939 | Apr 1976 | SU |
674747 | Jul 1979 | SU |
728848 | Apr 1980 | SU |
1009439 | Apr 1983 | SU |
1042742 | Sep 1983 | SU |
1271497 | Nov 1986 | SU |
1333319 | Aug 1987 | SU |
1377052 | Feb 1988 | SU |
1377053 | Feb 1988 | SU |
1443874 | Dec 1988 | SU |
1509051 | Sep 1989 | SU |
1561964 | May 1990 | SU |
1708312 | Jan 1992 | SU |
1722476 | Mar 1992 | SU |
1752361 | Aug 1992 | SU |
1814161 | May 1993 | SU |
WO-9308754 | May 1993 | WO |
WO-9315648 | Aug 1993 | WO |
WO-9420030 | Sep 1994 | WO |
WO-9517855 | Jul 1995 | WO |
WO-9520360 | Aug 1995 | WO |
WO-9623448 | Aug 1996 | WO |
WO-9635464 | Nov 1996 | WO |
WO-9639086 | Dec 1996 | WO |
WO-9639088 | Dec 1996 | WO |
WO-9724073 | Jul 1997 | WO |
WO-9734533 | Sep 1997 | WO |
WO-9827870 | Jul 1998 | WO |
WO-9903407 | Jan 1999 | WO |
WO-9903409 | Jan 1999 | WO |
WO-9948430 | Sep 1999 | WO |
WO-0024322 | May 2000 | WO |
WO-0024330 | May 2000 | WO |
WO-0036690 | Jun 2000 | WO |
WO-0053112 | Sep 2000 | WO |
WO-0024448 | Oct 2000 | WO |
WO-0057796 | Oct 2000 | WO |
WO-0105702 | Jan 2001 | WO |
WO-0154594 | Aug 2001 | WO |
WO-0158371 | Aug 2001 | WO |
WO-0162164 | Aug 2001 | WO |
WO-0162169 | Aug 2001 | WO |
WO-0191646 | Dec 2001 | WO |
WO-0219932 | Mar 2002 | WO |
WO-0226143 | Apr 2002 | WO |
WO-0236028 | May 2002 | WO |
WO-02065933 | Aug 2002 | WO |
WO-03055402 | Jul 2003 | WO |
WO-03094747 | Nov 2003 | WO |
WO-03079909 | Mar 2004 | WO |
WO-2004019803 | Mar 2004 | WO |
WO-2004032783 | Apr 2004 | WO |
WO-2004047626 | Jun 2004 | WO |
WO-2004047653 | Jun 2004 | WO |
WO-2004056277 | Jul 2004 | WO |
WO-2004078050 | Sep 2004 | WO |
WO-2004078051 | Sep 2004 | WO |
WO-2004096015 | Nov 2004 | WO |
WO-2006044581 | Apr 2006 | WO |
WO-2006051252 | May 2006 | WO |
WO-2006059067 | Jun 2006 | WO |
WO-2006073581 | Jul 2006 | WO |
WO-2006085389 | Aug 2006 | WO |
WO-2007015971 | Feb 2007 | WO |
WO-2007074430 | Jul 2007 | WO |
WO-2007129121 | Nov 2007 | WO |
WO-2007137304 | Nov 2007 | WO |
WO-2007142625 | Dec 2007 | WO |
WO-2008021969 | Feb 2008 | WO |
WO-2008061566 | May 2008 | WO |
WO-2008089404 | Jul 2008 | WO |
WO-2009005969 | Jan 2009 | WO |
WO-2009067649 | May 2009 | WO |
WO-2009091497 | Jul 2009 | WO |
WO-2010126129 | Nov 2010 | WO |
WO-2010134913 | Nov 2010 | WO |
WO-2011008672 | Jan 2011 | WO |
WO-2011044343 | Apr 2011 | WO |
WO-2012006306 | Jan 2012 | WO |
WO-2012013577 | Feb 2012 | WO |
WO-2012044606 | Apr 2012 | WO |
WO-2012061725 | May 2012 | WO |
WO-2012072133 | Jun 2012 | WO |
WO-2012166503 | Dec 2012 | WO |
WO-2013087092 | Jun 2013 | WO |
WO-2013151888 | Oct 2013 | WO |
WO-2014004209 | Jan 2014 | WO |
WO-2014113438 | Jul 2014 | WO |
WO-2014175894 | Oct 2014 | WO |
WO-2015032797 | Mar 2015 | WO |
WO-2015076780 | May 2015 | WO |
WO-2015137040 | Sep 2015 | WO |
WO-2015138760 | Sep 2015 | WO |
WO-2015187107 | Dec 2015 | WO |
WO-2016100682 | Jun 2016 | WO |
WO-2016107448 | Jul 2016 | WO |
WO-2017138905 | Aug 2017 | WO |
WO-2018011664 | Jan 2018 | WO |
WO-2019036490 | Feb 2019 | WO |
WO-2019130087 | Jul 2019 | WO |
WO-2019130089 | Jul 2019 | WO |
WO-2019208902 | Oct 2019 | WO |
WO-2021189234 | Sep 2021 | WO |
WO-2022249091 | Dec 2022 | WO |
WO-2022249094 | Dec 2022 | WO |
Entry |
---|
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 a Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001). |
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98. |
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51. |
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages. |
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12. |
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12. |
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246. |
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986. |
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986). |
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345. |
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, on Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. And Brebbia, C. WIT Press, Boston, 493-504. |
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523. |
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages). |
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, a Guide for Surgeons,” (6 pages). |
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages). |
Covidien Brochure “iDrive™ Ultra Powered Stapling System,” (6 pages). |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages. |
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages. |
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004. |
Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001), Mar. 1, 2001. |
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached. |
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-Ds, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en. |
Data Sheet of LM4F230H5QR, 2007. |
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages). |
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161. |
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf; Wayback Machine to Feb. 15, 2012. |
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671. |
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991). |
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages. |
Biomedical Coatings, Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages. |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20., pp. 1744-1748. |
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012. |
Lyon et al. “The Relationship Between Current Load and Temperature for Quasi-Steady State and Transient Conditions,” SPIE—International Society for Optical Engineering. Proceedings, vol. 4020, (pp. 62-70), Mar. 30, 2000. |
Anonymous: “Sense & Control Application Note Current Sensing Using Linear Hall Sensors,” Feb. 3, 2009, pp. 1-18. Retrieved from the Internet: URL: http://www.infineon.com/dgdl/Current_Sensing_Rev.1.1.pdf?fileId=db3a304332d040720132d939503e5f17 [retrieved on Oct. 18, 2016]. |
Mouser Electronics, “LM317M 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Mar. 31, 2014 (Mar. 31, 2014), XP0555246104, Retrieved from the Internet: URL: http://www.mouser.com/ds/2/405/lm317m-440423.pdf, pp. 1-8. |
Mouser Electronics, “LM317 3-Terminal Adjustable Regulator with Overcurrent/Overtemperature Self Protection”, Sep. 30, 2016 (Sep. 30, 2016), XP0555246104, Retrieved from the Internet: URL: http://www.mousercom/ds/2/405/lm317m-440423.pdf, pp. 1-9. |
Cuper et al., “The Use of Near-Infrared Light for Safe and Effective Visualization of Subsurface Blood Vessels to Facilitate Blood Withdrawal in Children,” Medical Engineering & Physics, vol. 35, No. 4, pp. 433-440 (2013). |
Yan et al, Comparison of the effects of Mg—6Zn and Ti—3Al-2.5V alloys on TGF-β/TNF-α/VEGF/b-FGF in the healing of the intestinal track in vivo, Biomed. Mater. 9 (2014), 11 pages. |
Pellicer et al. “On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials,” J Biomed Mater Res Part A ,2013:101A:502-517. |
Anonymous, Analog Devices Wiki, Chapter 11: the Current Mirror, Aug. 20, 2017, 22 pages. https://wiki.analog.com/university/courses/electronics/text/chapter-11?rev=1503222341. |
Yan et al., “Comparison of the effects of Mg—6Zn and titanium on intestinal tract in vivo,” J Mater Sci: Mater Med (2013), 11 pages. |
Brar et al., “Investigation of the mechanical and degradation properties of Mg—Sr and Mg—Zn—Sr alloys for use as potential biodegradable implant materials,” J. Mech. Behavior of Biomed. Mater. 7 (2012) pp. 87-95. |
Texas Instruments: “Current Recirculation and Decay Modes,” Application Report SLVA321—Mar. 2009; Retrieved from the Internet: URL:http://www.ti.com/lit/an/slva321/slva321 [retrieved on Apr. 25, 2017], 7 pages. |
Qiu Li Loh et al.: “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size”, Tissue Engineering Part B—Reviews, vol. 19, No. 6, Dec. 1, 2013, pp. 485-502. |
Gao et al., “Mechanical Signature Enhancement of Response Vibrations in the Time Lag Domain,” Fifth International Congress on Sound and Vibration, Dec. 15-18, 1997, pp. 1-8. |
Trendafilova et al., “Vibration-based Methods for Structural and Machinery Fault Diagnosis Based on Nonlinear Dynamics Tools,” In: Fault Diagnosis in Robotic and Industrial Systems, IConcept Press Ltd, 2012, pp. 1-29. |
Youtube.com; video by Fibran (retrieved from URL https://www.youtube.com/watch?v=vN2Qjt51gFQ); (Year: 2018). |
Foot and Ankle: Core Knowledge in Orthopaedics; by DiGiovanni MD, Elsevier; (p. 27, left column, heading “Materials for Soft Orthoses”, 7th bullet point); (Year: 2007). |
Lee, Youbok, “Antenna Circuit Design for RFID Applications,” 2003, pp. 1-50, DS00710C, Microchip Technology Inc., Available: http://ww1.microchip.com/downloads/en/AppNotes/00710c.pdf. |
Kawamura, Atsuo, et al. “Wireless Transmission of Power and Information Through One High-Frequency Resonant AC Link Inverter for Robot Manipulator Applications,” Journal, May/Jun. 1996, pp. 503-508, vol. 32, No. 3, IEEE Transactions on Industry Applications. |
Honda HS1332AT and Atd Model Info, powerequipment.honda.com [online], published on or before Mar. 22, 2016, [retrieved on May 19, 2019], retrieved from the Internet [URL: https://powerequipment.honda.com/snowblowers/models/hss1332at-hss1332atd] {Year: 2016). |
Slow Safety Sign, shutterstock.com [online], published on or before May 9, 2017, [retrieved on May 31, 2019], retrieved from the https://www.shutterstock.com/image-victor/slow-safety-sign-twodimensional-turtle-symbolizing- . . . see PDF in file for full URL] (Year: 2017). |
Warning Sign Beveled Buttons, by Peter, flarestock.com [online], published on or before Jan. 1, 2017, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.flarestock.com/stock-images/warning-sign-beveled-buttons/70257] (Year: 2017). |
Arrow Sign Icon Next Button, by Blan-k, shutterstock.com [online], published on or before Aug. 6, 2014, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL:https://www.shutterstock.com/de/image-vector/arrow-sign-icon-next-button-navigation-207700303?irgwc=1&utm . . . see PDF in file for full URL] (Year: 2014). |
Elite Icons, by smart/icons, iconfinder.com [online], published on Aug. 18, 2016, [retrieved on Jun. 4, 2019], retrieved from the Internet [URL: https://www.iconfinder.com/iconsets/elite] (Year: 2016). |
Tutorial overview of inductively coupled RFID Systems, UPM, May 2003, pp. 1-7, UPM Rafsec,<htto://cdn.mobiusconsulting.com/papers/rfidsystems.pdf>. |
Schroeter, John, “Demystifying UHF Gen 2 RFID, HF RFID,” Online Article, Jun. 2, 2008, pp. 1-3, <https://www.edn.com/design/industrial-control/4019123/Demystifying-UHF-Gen-2-RFID-HF-RFID>. |
Adeeb, et al., “An Inductive Link-Based Wireless Power Transfer System for Biomedical Applications,” Research Article, Nov. 14, 2011, pp. 1-12, vol. 2012, Article ID 879294, Hindawi Publishing Corporation. |
Pushing Pixels (GIF), published on dribble.com, 2013. |
Sodium stearate C18H35NaO2, Chemspider Search and Share Chemistry, Royal Society of Chemistry, pp. 1-3, 2015, http://www.chemspider.com/Chemical-Structure.12639.html, accessed May 23, 2016. |
NF Monographs: Sodium Stearate, U.S. Pharmacopeia, http://www.pharmacopeia.cn/v29240/usp29nf24s0_m77360.html, accessed May 23, 2016. |
Fischer, Martin H, “Colloid-Chemical Studies on Soaps”, The Chemical Engineer, pp. 184-193, Aug. 1919. |
V.K. Ahluwalia and Madhuri Goyal, A Textbook of Organic Chemistry, Section 19.11.3, p. 356, 2000. |
A.V. Kasture and S.G. Wadodkar, Pharmaceutical Chemistry—II: Second Year Diploma in Pharmacy, Nirali Prakashan, p. 339, 2007. |
Forum discussion regarding “Speed Is Faster”, published on Oct 1, 2014 and retrieved on Nov. 8, 2019 from URL https://english.stackexchange.com/questions/199018/how-is-that-correct-speed-is-faster-or-prices-are-cheaper (Year: 2014). |
“Understanding the Requirements of ISO/IEC 14443 for Type B Proximity Contactless Identification Cards,” retrieved from https://www.digchip.com/application-notes/22/15746.php on Mar. 2, 2020, pp. 1-28 (Nov. 2005). |
Jauchem, J.R., “Effects of low-level radio-frequency (3 kHz to 300 GHz) enery on human cardiovascular, reproductive, immune, and other systems: A review of the recent literatured,” Int. J. Hyg. Environ. Health 211 (2008) 1-29. |
Sandvik, “Welding Handbook,” https://www.meting.rs/wp-content/uploads/2018/05/welding-handbook.pdf, retrieved on Jun. 22, 2020. pp. 5-6. |
Ludois, Daniel C., “Capacitive Power Transfer for Rotor Field Current in Synchronous Machines,” IEEE Transactions on Power Electronics, Institute of Electrical and Electronics Engineers, USA, vol. 27, No. 11, Nov. 1, 2012, pp. 4638-4645. |
Rotary Systems: Sealed Slip Ring Categories, Rotary Systems, May 22, 2017, retrieved from the internet: http://web.archive.org/we/20170522174710/http:/rotarysystems.com: 80/slip-rings/sealed/, retrieved on Aug. 12, 2020, pp. 1-2. |
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012. |
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committee, published Aug. 2003. |
Yang et al.; “4D printing reconfigurable, deployable and mechanically tunable metamaterials,” Material Horizions, vol. 6, pp. 1244-1250 (2019). |
“Council Directive 93/42/EEC of Jun. 14, 1993 Concerning Medical Devices,” Official Journal of the European Communities, L&C. Ligislation and Competition, S, No. L 169, Jun. 14, 1993, pp. 1-43. |
Arjo Loeve et al., Scopes Too Flexible . . . and Too Stiff, 2010, IEEE Pulse, Nov./Dec. 2010 (Year: 2010), 16 pages. |
Molina, “Low Level Reader Protocol (LLRP),” Oct. 13, 2010, pp. 1-198. |
Makerbot, 10 Advantages of 3D Printing, 2020 (retrieved via the wayback machine), Makerbot.com (Year: 2020). |
U.S. Appl. No. 62/798,651, filed Jan. 30, 2019. |
U.S. Appl. No. 62/840,602, filed Apr. 30, 2019. |
Number | Date | Country | |
---|---|---|---|
20220218332 A1 | Jul 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16432319 | Jun 2019 | US |
Child | 17708064 | US | |
Parent | 15131963 | Apr 2016 | US |
Child | 16432319 | US |