Surgical robotic systems and methods thereof

Information

  • Patent Grant
  • 10973594
  • Patent Number
    10,973,594
  • Date Filed
    Friday, July 27, 2018
    5 years ago
  • Date Issued
    Tuesday, April 13, 2021
    3 years ago
Abstract
An automated medical system and method for using the automated medical system. The automated medical system may comprise a robot support system. The robot support system may comprise a robot body. The robot support system may further comprise a selective compliance articulated robot arm coupled to the robot body and operable to position a tool at a selected position in a surgical procedure. The robot support system may further comprise an activation assembly operable to transmit a move signal to the selective compliance articulated robot arm allowing an operator to move the selective compliance articulated robot arm. The automated medical system may further comprise a camera tracking system and an automated imaging system.
Description
FIELD OF THE INVENTION

The present invention relates to robotic surgical systems and methods thereof.


BACKGROUND OF THE INVENTION

Embodiments are directed to an automated medical system and, more particularly, an automated medical system that may assist surgeons with medical tools in an operation. The automated medical system may comprise robot support system and a camera system. Both systems may comprise a plurality of components, wherein the components may allow a surgeon to use an array of medical tools to assist in medical operations.


Various medical procedures require the precise localization of a three-dimensional position of a surgical instrument within the body in order to effect optimized treatment. For example, some surgical procedures to fuse vertebrae require that a surgeon drill multiple holes into the bone structure at specific locations. To achieve high levels of mechanical integrity in the fusing system, and to balance the forces created in the bone structure, it is necessary that the holes are drilled at the correct location. Vertebrae, like most bone structures, have complex shapes made up of non-planar curved surfaces making precise and perpendicular drilling difficult. Conventionally, a surgeon manually holds and positions a drill guide tube by using a guidance system to overlay the drill tube's position onto a three dimensional image of the bone structure. This manual process is both tedious and time consuming. The success of the surgery is largely dependent upon the dexterity of the surgeon who performs it.


Robotic systems have been employed to help reduce tedious and time consuming processes. Many of the current robots used in surgical applications are specifically intended for magnifying/steadying surgical movements or providing a template for milling the bone surface. However, these robots are suboptimal for drilling holes and other related tasks.


Consequently, there is a need for a robot system that minimizes human and robotic error while allowing fast and efficient surgical access. The ability to perform operations on a patient with a robot system will greatly diminish the adverse effects upon the patient. The application of the robot system and the techniques used with the robot system may enhance the overall surgical operation and the results of the operation.


SUMMARY OF THE INVENTION

Embodiments may be directed to an automated medical system. The automated medical system may comprise a robot support system. The robot support system may comprise a robot body. The robot support system may further comprise a selective compliance articulated robot arm coupled to the robot body and operable to position a tool at a selected position in a surgical procedure. The robot support system may further comprise an activation assembly operable to transmit a move signal to the selective compliance articulated robot arm allowing an operator to move the selective compliance articulated robot arm. The automated medical system may further comprise a camera tracking system and an automated imaging system.


Embodiments may be directed to a method of using an automated medical system in a medical procedure, comprising: moving the automated medical system into a room; detaching a camera tracking system from a robot support system; disposing the camera tracking system adjacent a patient; disposing the robot support system adjacent the patient; maneuvering a selective compliance articulated robot arm; and guiding the selective compliance articulated robot arm to a programmed location with a gravity well.





BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of the preferred embodiments of the invention, reference will now be made to the accompanying drawings in which:



FIG. 1 illustrates an embodiment of an automated medical system;



FIG. 2 illustrates an embodiment of a robot support system;



FIG. 3 illustrates an embodiment of a camera tracking system;



FIG. 4 illustrates an embodiment of a SCARA with end effector;



FIG. 5 illustrates an embodiment of a medical operation in which a robot support system and a camera system are disposed around a patient.



FIG. 6 illustrates an embodiment of an end effector;



FIG. 7 illustrates an embodiment of a cut away of an end effector;



FIG. 8 illustrates an embodiment of a perspective view of an end effector cut away;



FIG. 9 illustrates an embodiment of a schematic of software architecture used in an automated medical system;



FIG. 10 illustrates an embodiment of a C-Arm imaging device;



FIG. 11 illustrates an embodiment of an imaging device;



FIG. 12 illustrates an embodiment of a gravity well for a medical procedure;



FIG. 13 illustrates an embodiment of an end effector tool moving toward a gravity well; and



FIG. 14 illustrates an embodiment of an end effector tool positioned along a gravity well.





DETAILED DESCRIPTION

Embodiments are directed to an automated medical system and, more particularly, an automated medical system that may assist surgeons with medical tools in an operation. The automated medical system may comprise robot support system and a camera system. Both systems may comprise a plurality of components, wherein the components may allow a surgeon to use an array of medical tools to assist in medical operations.



FIG. 1 illustrates an embodiment of an automated medical system 2. Prior to performance of an invasive medical procedure, a three-dimensional (“3D”) image scan may be taken of a desired surgical area of a patient and sent to a computer platform in communication with an automated medical system 2. In some embodiments, a physician may then program a desired point of insertion and trajectory for a surgical instrument to reach a desired anatomical target within or upon the body of the patient. In some embodiments, the desired point of insertion and trajectory may be planned on the 3D image scan, which in some embodiments, may be displayed on a display. In some embodiments, a physician may plan the trajectory and desired insertion point (if any) on a computed tomography scan (hereinafter referred to as “CT scan”) of the patient. In some embodiments, the CT scan may be an isocentric C-arm type scan, or any other similar type scan, or intraoperative CT scan as is known in the art. However, in some embodiments, any known 3D image scan may be used in accordance with the embodiments of automated medical system 2.


A medical procedure may begin with automated medical system 2 moving from medical storage to a medical procedure room. Automated medical system 2 may be maneuvered through doorways, halls, and elevators to reach a medical procedure room. Within the room, automated medical system 2 may be physically separated into two separate and distinct systems, a robot support system 4 and a camera tracking system 6. Robot support system 4 may be positioned adjacent the patient at any suitable location to properly assist medical personnel. Camera tracking system 6 may be positioned at the base of the patient or any other location suitable to track movement of robot support system 4 and the patient. Robot support system 4 and camera tracking system 6 may be powered by an onboard power source and/or plugged into an external wall outlet.


Automated medical system 2, as illustrated in FIG. 1, may assist surgeons and doctors during medical procedures. Automated medical system 2 may assist surgeons and doctors by holding tools, aligning tools, using tools, guiding tools, and/or positioning tools for use. In embodiments, as illustrated in FIG. 1, automated medical system 2 may comprise of a robot support system 4 and a camera tracking system 6. Both systems may be coupled together by any suitable means. Suitable means may be, but are not limited to mechanical latches, ties, clamps, buttresses, magnetic and/or magnetic surfaces. The ability to combine robot support system 4 and camera tracking system 6 may allow for automated medical system 2 to maneuver and move as a single unit. This combination may allow automated medical system 2 to have a small footprint in an area, allow easier movement through narrow passages and around turns, and allow and storage within a smaller area.


Robot support system 4 may be used to assist a surgeon by holding and/or using tools during a medical procedure. To properly utilize and hold tools, robot support system 4 may rely on a plurality of motors, computers, and/or actuators to function properly. Illustrated in FIG. 1, robot body 8 may act as the structure in which the plurality of motors, computers, and/or actuators may be secured within robot support system 4. Robot body 8 may also provide support for robot telescoping support arm 16. In embodiments, robot body 8 may be made of any suitable material. Suitable material may be, but is not limited to, metal such as titanium, aluminum, or stainless steel, carbon fiber, fiberglass, or heavy-duty plastic. The size of robot body 8 may provide a solid platform on which other components may connect and operate. Robot body 8 may house, conceal, and protect the plurality of motors, computers, and/or actuators that may operate attached components.


Robot base 10 may act as a lower support for robot support system 4. In embodiments, robot base 10 may support robot body 8 and may attach robot body 8 to a plurality of powered wheels 12. This attachment to the wheels may allow robot body 8 to move in space efficiently. Robot base 10 may run the length and width of robot body 8. Robot base 10 may be about an two inches to about ten inches tall. Robot base 10 may be made of any suitable material. Suitable material may be, but is not limited to, metal such as titanium, aluminum, or stainless steel, carbon fiber, fiberglass, or heavy-duty plastic or resin. Robot base 10 may cover, protect, and support powered wheels 12.


In embodiments, as illustrated in FIG. 1, at least one powered wheel 12 may be attached to robot base 10. Powered wheels 12 may attach to robot base 10 at any location. Each individual powered wheel 12 may rotate about a vertical axis in any direction. A motor may be disposed above, within, or adjacent to powered wheel 12. This motor may allow for automated medical system 2 to maneuver into any location and stabilize and/or level automated medical system 2. A rod, located within or adjacent to powered wheel 12, may be pressed into a surface by the motor. The rod, not pictured, may be made of any suitable metal to lift automated medical system 2. Suitable metal may be, but is not limited to, stainless steel, aluminum, or titanium. Additionally, the rod may comprise at the contact surface-side end a buffer, not pictured, which may prevent the rod from slipping and/or create a suitable contact surface. The material may be any suitable material to act as a buffer. Suitable material may be, but is not limited to, a plastic, neoprene, rubber, or textured metal. The rod may lift powered wheel 10, which may lift automated medical system 2, to any height required to level or otherwise fix the orientation of the automated medical system 2 in relation to a patient. The weight of automated medial system 2, supported through small contact areas by the rod on each wheel, prevents automated medical system 2 from moving during a medical procedure. This rigid positioning may prevent objects and/or people from moving automated medical system 2 by accident.


Moving automated medical system 2 may be facilitated using robot railing 14. Robot railing 14 provides a person with the ability to move automated medical system 2 without grasping robot body 8. As illustrated in FIG. 1, robot railing 14 may run the length of robot body 8, shorter than robot body 8, and/or may run longer the length of robot body 8. Robot railing 14 may be made of any suitable material, but is not limited to, metal such as titanium, aluminum, or stainless steel, carbon fiber, fiberglass, or heavy-duty plastic. Robot railing 14 may further provide protection to robot body 8, preventing objects and or personnel from touching, hitting, or bumping into robot body 8.


Robot body 8 may provide support for a Selective Compliance Articulated Robot Arm, hereafter referred to as a “SCARA.” A SCARA 24 may be beneficial to use within the automated medical system due to the repeatability and compactness of the robotic arm. The compactness of a SCARA may provide additional space within a medical procedure, which may allow medical professionals to perform medical procedures free of excess clutter and confining areas. SCARA 24 may comprise robot telescoping support 16, robot support arm 18, and/or robot arm 20. Robot telescoping support 16 may be disposed along robot body 8. As illustrated in FIG. 1, robot telescoping support 16 may provide support for the SCARA 24 and display 34. In embodiments, robot telescoping support 16 may extend and contract in a vertical direction. Robot telescoping support 16 may be made of any suitable material, but not limited to, metal such as titanium or stainless steel, carbon fiber, fiberglass, or heavy-duty plastic. The body of robot telescoping support 16 may be any width and/or height in which to support the stress and weight placed upon it. In embodiments, medical personnel may move SCARA 24 through a command submitted by the medical personnel. The command may originate from input received on display 34 and/or a tablet. The command may come from the depression of a switch and/or the depression of a plurality of switches. Best illustrated in FIGS. 4 and 5, an activation assembly 60 may comprise a switch and/or a plurality of switches. The activation assembly 60 may be operable to transmit a move command to the SCARA 24 allowing an operator to manually manipulate the SCARA 24. When the switch, or plurality of switches, is depressed the medical personnel may have the ability to move SCARA 24 easily. Additionally, when the SCARA 24 is not receiving a command to move, the SCARA 24 may lock in place to prevent accidental movement by personnel and/or other objects. By locking in place, the SCARA 24 provides a solid platform upon which an end effector 22 and end effector tool 26 may be used during a medical operation.


Robot support arm 18 may be disposed on robot telescoping support 16 by any suitable means. Suitable means may be, but is not limited to, nuts and bolts, ball and socket fitting, press fitting, weld, adhesion, screws, rivets, clamps, latches and/or any combination thereof In embodiments, best seen in FIGS. 1 and 2, robot support arm 18 may rotate in any direction in regard to robot telescoping support 16. Robot support arm 18 may rotate three hundred and sixty degrees around robot telescoping support 16. Robot arm 20 may connect to robot support arm 18 at any suitable location. Robot arm 20 may attach to robot support arm 16 by any suitable means. Suitable means may be, but is not limited to, nuts and bolts, ball and socket fitting, press fitting, weld, adhesion, screws, rivets, clamps, latches and/or any combination thereof. Robot arm 20 may rotate in any direction in regards to robot support arm 18, in embodiments, robot arm 20 may rotate three hundred and sixty degrees in regards to robot support arm 18. This may allow an operator to position robot arm 20 as desired.


End effector 22 may attach to robot arm 20 in any suitable location. End effector 22 may attach to robot arm 20 by any suitable means. Suitable means may be, but is not limited to, latch, clamp, nuts and bolts, ball and socket fitting, press fitting, weld, screws, and/or any combination thereof. End effector 22 may move in any direction in relation to robot arm 20. This may allow a user to move end effector 22 to a desired area. An end effector tool 26, as illustrated in FIG. 4 may attach to end effector 22. End effector tool 26 may be any tool selected for a medical procedure. End effector tool 26 may be disposed and removed from end effector 22. In embodiments, end effector tool 26 may have a dynamic reference array 52. Dynamic reference arrays 52, herein referred to as “DRAs”, are rigid bodies which may be disposed on a patient and/or tool in a navigated surgical procedure. Their purpose may be to allow 3D localization systems to track the positions of tracking markers that are embedded in the DRA 52, and thereby track the real-time position of relevant anatomy. Radio-opaque markers may be seen, recorded, and/or processed by camera 46. This tracking of 3D coordinates of tracking markers may allow automated medical system 2 to find the DRA 52 in any space in relation to a patient 50.


As illustrated in FIG. 1, a light indicator 28 may be positioned on top of the SCARA 24. Light indicator 28 may illuminate as any type of light to indicate “conditions” in which automated medical system 2 is currently operating. For example, the illumination of green may indicate that all systems are normal. Illuminating red may indicate that automated medical system 2 is not operating normally. A pulsating light may mean automated medical system 2 is performing a function. Combinations of light and pulsation may create a nearly limitless amount of combinations in which to communicate the current operating “conditions.” In embodiments, the light may be produced by LED bulbs, which may form a ring around light indicator 28. Light indicator 28 may comprise a fully permeable material that may let light shine through the entirety of light indicator 28. In embodiments, light indicator 28 may only allow a ring and/or designated sections of light indicator 28 to allow light to pass through.


Light indicator 28 may be attached to lower display support 30. Lower display support 30, as illustrated in FIG. 2 may allow an operator to maneuver display 34 to any suitable location. Lower display support 30 may attach to light indicator 28 by any suitable means. Suitable means may be but is not limited to, latch, clamp, nuts and bolts, ball and socket fitting, press fitting, weld, adhesion, screws, rivets, and/or any combination thereof. In embodiments, lower display support 30 may rotate about light indicator 28. In embodiments, lower display support 30 may attach rigidly to light indicator 28. Light indicator 28 may then rotate three hundred and sixty degrees about robot support arm 18. Lower display support 30 may be of any suitable length, a suitable length may be about eight inches to about thirty four inches. Lower display support 30 may act as a base for upper display support 32.


Upper display support 32 may attach to lower display support 30 by any suitable means. Suitable means may be, but are not limited to, latch, clamp, nuts and bolts, ball and socket fitting, press fitting, weld, adhesion, screws, rivets, and/or any combination thereof. Upper display support 32 may be of any suitable length, a suitable length may be about eight inches to about thirty four inches. In embodiments, as illustrated in FIG. 1, upper display support 32 may allow display 34 to rotate three hundred and sixty degrees in relation to upper display support 32. Likewise, upper display support 32 may rotate three hundred and sixty degrees in relation to lower display support 30.


Display 34 may be any device which may be supported by upper display support 32. In embodiments, as illustrated in FIG. 2, display 34 may produce color and/or black and white images. The width of display 34 may be about eight inches to about thirty inches wide. The height of display 34 may be about six inches to about twenty two inches wide. The depth of display 34 may be about one half inch to about four inches.


In embodiments, a tablet may be used in conjunction with display 34 and/or without display 34. In embodiments, the table may be disposed on upper display support 32, in place of display 34, and may be removable from upper display support 32 during a medical operation. In addition the tablet may communicate with display 34. The table may be able to connect to robot support system 4 by any suitable wireless and/or wired connection. In embodiments, the tablet may be able to program and/or control automated medical system 2 during a medical operation. When controlling automated medical system 2 with the tablet, all input and output commands may be duplicated on display 34. The use of a tablet may allow an operator to manipulate robot support system 4 without having to move around patient 50 and/or to robot support system 4.


As illustrated in FIG. 5, camera tracking system 6 may work in conjunction with robot support system 4. Described above, camera tracking system 6 and robot support system 4 may be able to attach to each other. Camera tracking system 6, now referring to FIG. 1, may comprise similar components of robot support system 4. For example, camera body 36 may provide the functionality found in robot body 8. Robot body 8 may provide the structure upon which camera 46 may be mounted. The structure within robot body 8 may also provide support for the electronics, communication devices, and power supplies used to operate camera tracking system 6. Camera body 36 may be made of the same material as robot body 8. Camera tracking system 6 may also communicate with robot support system 4 by any suitable means. Suitable means may be, but are not limited to, a wired or wireless connection. Additionally, camera tracking system 6 may communicate directly to the table by a wireless and/or wired connection. This communication may allow the tablet to control the functions of camera tracking system 6.


Camera body 36 may rest upon camera base 38. Camera base 38 may function as robot base 10. In embodiments, as illustrated in FIG. 1, camera base 38 may be wider than robot base 10. The width of camera base 38 may allow for camera tracking system 6 to connect with robot support system 4. As illustrated in FIG. 1, the width of camera base 38 may be large enough to fit outside robot base 10. When camera tracking system 6 and robot support system 4 are connected, the additional width of camera base 38 may allow automated medical system 2 additional maneuverability and support for automated medical system 2.


As with robot base 10, a plurality of powered wheels 12 may attach to camera base 38. Powered wheel 12 may allow camera tracking system 6 to stabilize and level or set fixed orientation in regards to patient 50, similar to the operation of robot base 10 and powered wheels 12. This stabilization may prevent camera tracking system 6 from moving during a medical procedure and may keep camera 46 from losing track of DRA 52 within a designated area. This stability and maintenance of tracking may allow robot support system 4 to operate effectively with camera tracking system 6. Additionally, the wide camera base 38 may provide additional support to camera tracking system 6. Specifically, a wide camera base 38 may prevent camera tracking system 6 from tipping over when camera 46 is disposed over a patient, as illustrated in FIG. 5. Without the wide camera base 38, the outstretched camera 46 may unbalance camera tracking system 6, which may result in camera tracking system 6 falling over.


Camera telescoping support 40 may support camera 46. In embodiments, telescoping support 40 may move camera 46 higher or lower in the vertical direction. Telescoping support 40 may be made of any suitable material in which to support camera 46. Suitable material may be, but is not limited to, metal such as titanium, aluminum, or stainless steel, carbon fiber, fiberglass, or heavy-duty plastic. Camera handle 48 may be attached to camera telescoping support 40 at any suitable location. Cameral handle 48 may be any suitable handle configuration. A suitable configuration may be, but is not limited to, a bar, circular, triangular, square, and/or any combination thereof. As illustrated in FIG. 1, camera handle 48 may be triangular, allowing an operator to move camera tracking system 6 into a desired position before a medical operation. In embodiments, camera handle 48 may be used to lower and raise camera telescoping support 40. Camera handle 48 may perform the raising and lowering of camera telescoping support 40 through the depression of a button, switch, lever, and/or any combination thereof.


Lower camera support arm 42 may attach to camera telescoping support 40 at any suitable location, in embodiments, as illustrated in FIG. 1, lower camera support arm 42 may rotate three hundred and sixty degrees around telescoping support 40. This free rotation may allow an operator to position camera 46 in any suitable location. Lower camera support arm 42 may be made of any suitable material in which to support camera 46. Suitable material may be, but is not limited to, metal such as titanium, aluminum, or stainless steel, carbon fiber, fiberglass, or heavy-duty plastic. Cross-section of lower camera support arm 42 may be any suitable shape. Suitable cross-sectional shape may be, but is not limited to, circle, square, rectangle, hexagon, octagon, or i-beam. The cross-sectional length and width may be about one to ten inches. Length of the lower camera support arm may be about four inches to about thirty-six inches. Lower camera support arm 42 may connect to telescoping support 40 by any suitable means. Suitable means may be, but is not limited to, nuts and bolts, ball and socket fitting, press fitting, weld, screws, and/or any combination thereof. Lower camera support arm 42 may be used to provide support for camera 46. Camera 46 may be attached to lower camera support arm 42 by any suitable means. Suitable means may be, but is not limited to, nuts and bolts, ball and socket fitting, press fitting, weld, screws, and/or any combination thereof. Camera 46 may pivot in any direction at the attachment area between camera 46 and lower camera support arm 42. In embodiments a curved rail 44 may be disposed on lower camera support arm 42.


Curved rail 44 may be disposed at any suitable location on lower camera support arm 42. As illustrated in FIG. 3, curved rail 44 may attach to lower camera support arm 42 by any suitable means. Suitable means may be, but are not limited to nuts and bolts, ball and socket fitting, press fitting, weld, adhesion, screws, rivets, clamps, latches, and/or any combination thereof. Curved rail 44 may be of any suitable shape, a suitable shape may be a crescent, circular, oval, elliptical and/or any combination thereof. In embodiments, curved rail 44 may be any appropriate length. An appropriate length may be about one foot to about six feet. Camera 46 may be moveably disposed along curved rail 44. Camera 46 may attach to curved rail 44 by any suitable means. Suitable means may be, but are not limited to rollers, brackets, braces, motors, and/or any combination thereof. Motors and rollers, not illustrated, may be used to move camera 46 along curved rail 44. As illustrated in FIG. 3, during a medical procedure, if an object prevents camera 46 from viewing one or more DRAs 52, the motors may move camera 46 along curved rail 44 using rollers. This motorized movement may allow camera 46 to move to a new position that is no longer obstructed by the object without moving camera tracking system 6. While camera 46 is obstructed from viewing DRAs 52, camera tracking system 6 may send a stop signal to robot support system 4, display 34, and/or a tablet. The stop signal may prevent SCARA 24 from moving until camera 46 has reacquired DRAs 52. This stoppage may prevent SCARA 24 and/or end effector 22 from moving and/or using medical tools without being tracked by automated medical system 2.


End effector 22, as illustrated in FIG. 6, may be used to connect surgical tools to robot support system 4. End effector 22 may comprise a saddle joint 62, an activation assembly 60, a load cell 64, and a tool connection 66. Saddle joint 62 may attach end effector 22 to SCARA 24. Saddle joint 62 may be made of any suitable material. Suitable material may be, but is not limited to metal such as titanium, aluminum, or stainless steel, carbon fiber, fiberglass, or heavy-duty plastic. Saddle joint 62 may be made of a single piece of metal which may provide end effector with additional strength and durability. In examples saddle joint 62 may attach to SCARA 24 by an attachment point 68. There may be a plurality of attachment points 68 disposed about saddle joint 62. Attachment points 68 may be sunk, flush, and/or disposed upon saddle joint 62. In examples, screws, nuts and bolts, and/or any combination thereof may pass through attachment point 68 and secure saddle joint 62 to SCARA 24. The nuts and bolts may connect saddle joint 62 to a motor, not illustrated, within SCARA 24. The motor may move saddle joint 62 in any direction. The motor may further prevent saddle joint 62 from moving from accidental bumps and/or accidental touches by actively servoing at the current location or passively by applying spring actuated brakes. Saddle joint 62 may provide the base upon which a load cell 64 and a tool connection 66 may be disposed.


Load cell 64, as illustrated in FIGS. 7 and 8 may attach to saddle joint 62 by any suitable means. Suitable means may be, but is not limited to, screws, nuts and bolts, threading, press fitting, and/or any combination thereof. Load cell 64 may be any suitable instrument used to detect and measurement movement. In examples, load cell 64 may be a six axis load cell, a three-axis load cell or a uniaxial load cell. Load cell 64 may be used to track the force applied to end effector 22. As illustrated in FIG. 17, a schematic may show the communication between load cell 64 and a motor 120. In embodiments a load cell 64 may communicate with a plurality of motors 120. As load cell 64 senses pressure, information as to the amount of force applied may be distributed from a switch array 122 and/or a plurality of switch arrays to a microcontroller unit 122. Microcontroller unit 124 may take the force information from load cell 64 and process it with a switch algorithm. The switch algorithm may allow microcontroller unit 124 to communicate with a motor driver 126. A motor driver 126 may control the function of a motor 120, with which motor driver 126 may communicate with. Motor driver 126 may direct specific motors 120 to produce an equal amount of force measured by load cell 64 through motor 120. In embodiments, the force produced may come from a plurality of motors 120, as directed by microcontroller unit 124. Additionally, motor driver 126 may receive input from motion controller 128. Motion controller 128 may receive information from load cell 64 as to the direction of force sensed by load cell 64. Motion controller 128 may process this information using a motion controller algorithm. The algorithm may be used to provide information to specific motor drivers 126. To replicate the direction of force, motion controller 128 may activate and/or deactivate certain motor drivers 126. Working in unison and/or separately, microcontroller unit 124 and motion controller 128 may control motor 120 (or a plurality of motors 120) to induce in the direction the motion and direction of force sensed by load cell 64. This force-controlled motion may allow an operator to move SCARA 24 and end effector 22 effortlessly and/or with very little resistance. Movement of end effector 22 may position tool connection 66 in any suitable location for use by medical personnel.


Tool connection 66 may attach to load cell 64. Tool connection 66 may comprise attachment points 68, a sensory button 70, tool guides 72, and/or tool connections 74. Best illustrated in FIGS. 6 and 8, there may be a plurality of attachment points 68. Attachment points 68 may connect tool connection 66 to load cell 64. Attachment points 68 may be sunk, flush, and/or disposed upon tool connection 66. Connectors 76 may use attachment points 68 to attach tool connection 66 to load cell 64. In examples, connectors 76 may be screws, nuts and bolts, press fittings, and/or any combination thereof.


As illustrated in FIG. 6, a sensory button 70 may be disposed about center of tool connection 66. Sensory button 70 may be depressed when an end effector tool 26, best illustrated in FIG. 4, is connected to end effector 22. Depression of sensory button 70 may alert robot support system 4, and in turn medical personnel, that an end effector tool 26 has been attached to end effector 22. As illustrated in FIG. 6, tool guides 72 may be used to facilitate proper attachment of end effector tool 26 to end effector 22. Tool guides 72 may be sunk, flush, and/or disposed upon tool connection 66. In examples there may be a plurality of tool guides 72 and may have any suitable patterns and may be oriented in any suitable direction. Tool guides 72 may be any suitable shape to facilitate attachment of end effector tool 26 to end effector 22. A suitable shape may be, but is not limited to, circular, oval, square, polyhedral, and/or any combination thereof. Additionally, tool guides 72 may be cut with a bevel, straight, and/or any combination thereof.


Tool connection 66 may have attachment points 74. As illustrated in FIG. 6, attachment points 74 may form a ledge and/or a plurality of ledges. Attachment points 74 may provide end effector tool 26 a surface upon which end effector tool 26 may clamp. In examples, attachment points 74 may be disposed about any surface of tool connection 66 and oriented in any suitable manner in relation to tool connection 66.


Tool connection 66 may further serve as a platform for activation assembly 60. Activation assembly 60, best illustrated in FIGS. 6 and 8, may encircle tool connection 66. In embodiments, activation assembly 60 may take the form of a bracelet. As bracelet, activation assembly 60 may wrap around tool connection 66. In embodiments, activation assembly 60, may be located in any suitable area within automated medical system 2. In examples, activation assembly 60 may be located on any part of SCARA 24, any part of end effector 22, may be worn by medical personnel (and communicate wirelessly), and/or any combination thereof. Activation assembly 60 may be made of any suitable material. Suitable material may be, but is not limited to neoprene, plastic, rugger, gel, carbon fiber, fabric and/or any combination thereof. Activation assembly 60 may comprise of a primary button 78 and a secondary button 80. Primary button 78 and secondary button 80 may encircle the entirety of tool connection 66. Primary button 78 may be a single ridge, as illustrated in FIG. 6, which may encircle tool connection 66. In examples, primary button 78 may be disposed upon activation assembly 60 along the end farthest away from saddle joint 62. Primary button 78 may be disposed upon primary activation switch 82, best illustrated on FIG. 7. Primary activation switch 82 may be disposed between tool connection 66 and activation assembly 60. In examples, there may be a plurality of primary activation switches 82, which may be disposed adjacent and beneath primary button 78 along the entire length of primary button 78. Depressing primary button 78 upon primary activation switch 82 may allow an operator to move SCARA 24 and end effector 22. As discussed above, once set in place, SCARA 24 and end effector 22 may not move until an operator programs robot support system 4 to move SCARA 24 and end effector 22, or is moved using primary button 78 and primary activation switch 82. In examples, it may require the depression of at least two non-adjacent primary activation switches 82 before SCARA 24 and end effector 22 will respond to commands. Depression of at least two primary activation switches 82 may prevent the accidental movement of SCARA 24 and end effector 22 during a medical procedure.


Activated by primary button 78 and primary activation switch 82, load cell 64 may measure the force magnitude and/or direction of force exerted upon end effector 22 by medical personnel. This information may be transferred to motors within SCARA 24 that may be used to move SCARA 24 and end effector 22. Information as to the magnitude and direction of force measured by load cell 64 may cause the motors to move SCARA 24 and end effector 22 in the same direction as sensed by load cell 64. This force controlled movement may allow the operator to move SCARA 24 and end effector 22 easily and without large amounts of exertion due to the motors moving SCARA 24 and end effector 22 at the same time the operator is moving SCARA 24 and end effector 22.


Secondary button 80, as illustrated in FIG. 6, may be disposed upon the end of activation assembly 60 closest to saddle joint 62. In examples secondary button 80 may comprise a plurality of ridges. The plurality of ridges may be disposed adjacent to each other and may encircle tool connection 66. Additionally, secondary button 80 may be disposed upon secondary activation switch 84. Secondary activation switch 84, as illustrated in FIG. 7, may be disposed between secondary button 80 and tool connection 66. In examples, secondary button 80 may be used by an operator as a “selection” device. During a medical operation, robot support system 4 may notify medical personnel to certain conditions by display 34 and/or light indicator 28. Medical personnel may be prompted by robot support system 4 to select a function, mode, and/or asses the condition of automated medical system 2. Depressing secondary button 80 upon secondary activation switch 84 a single time may activate certain functions, modes, and/or acknowledge information communicated to medical personnel through display 34 and/or light indicator 28. Additionally, depressing secondary button 80 upon secondary activation switch 84 multiple times in rapid succession may activate additional functions, modes, and/or select information communicated to medical personnel through display 34 and/or light indicator 28. In examples, at least two non-adjacent secondary activation switches 84 may be depressed before secondary button 80 may function properly. This requirement may prevent unintended use of secondary button 80 from accidental bumping by medical personnel upon activation assembly 60. Primary button 78 and secondary button 80 may use software architecture 86 to communicate commands of medical personnel to automated medical system 2.



FIG. 9 illustrates a flow chart of software architecture 86 which may be used within automated medical system 2. Software architecture 86 may be used to automated robot support system 4 and camera tracking system 6. Additionally, software architecture 86 may allow an operator to manipulate automated medical system 2 based upon commands given from the operator. In examples, operator commands may comprise Picture Archival and Communication Systems (PACS) 88 (which may communicate with automated imaging system 104, discussed below), USB Devices 90, and commands from tablet 54. These operator commands may be received and transferred throughout automated medical system 2 by a computer processor 92. Computer processor 92 may be able to receive all commands and manipulate automated medical system 2 accordingly. In examples, computer processor 92 may be able to control and identify the location of individual parts that comprise automated medical system 2. Communicating with camera tracking system 6 and display 34, computer processor 92 may be able to locate a patient, end effector 22, and robot support system 4 in a defined space (e.g., illustrated in FIG. 5). Additionally, computer processor 92 may be able to use commands from display 34 and camera tracking system 6 to alter the positions of SCARA 24. Information from load cell 64, based upon measured force magnitude and direction, may be processed by computer processor 92 and sent to motors within SACARA 24, as discussed above. A General Algebraic Modeling System (GAMS) 94 may translate information regarding force magnitude from load cell 64 to electronic signals which may be useable by computer processor 92. This translation may allow computer processor 92 to track the location and movement of robot support system 4 in a defined space when SCARA 24 and end effector 22 are moving. Computer processor 92 may further use firmware 96 to control commands and signals from robot body 8. Firmware 96 may comprise commands that are hardwired to automated medical system 2. For example, computer processor 92 may require power from power supply 98 to operate. Firmware 96 may control the distribution of power from power supply 98 to automated medical system 2. Additionally, computer processor 92 may control firmware 96 and the power distribution based on operator commands. In examples, firmware 96 may communicate with light indicator 28, powered wheels 12, and platform interface 100. Platform interface 100 may be a series of hardwired button commands that directly control automated medical system 2. Buttons commands are not limited to but may comprise functions that may move automated medical system 2 in any direction, initiate an emergency stop, initiate movement of SCARA 24, and/or communicate current system functionality to medical personnel. Computer processor 92 may process and distribute all operator commends to perform programmed tasks by medical personnel.


Automated imaging system 104 may be used in conjunction with automated medical system 2 to acquire pre-operative, intra-operative, post-operative, and/or real-time image data of patient 50. Any appropriate subject matter may be imaged for any appropriate procedure using automated imaging system 104. In embodiments, automated imaging system 104 may be an any imaging device such as imaging device 106 and/or a C-arm 108 device. It may be desirable to take x-rays of patient 50 from a number of different positions, without the need for frequent manual repositioning of patient 50 which may be required in an x-ray system. C-arm 108 x-ray diagnostic equipment may solve the problems of frequent manual repositioning and may be well known in the medical art of surgical and other interventional procedures. As illustrated in FIG. 10, a C-arm 108 may comprise an elongated C-shaped member 110 terminating in opposing distal ends 112 of the “C” shape. C-shaped member 110 may further comprise an x-ray source 114 and an image receptor 116, which may be mounted at or near distal ends 112, respectively, of C-arm 108 in opposing orientation, with C-arm 108 supported in a suspended position. The space within C-arm 108 of the arm may provide room for the physician to attend to the patient substantially free of interference from x-ray support structure 118. X-ray support structure 118 may rest upon wheels 120, which may enable C-arm 108 to be wheeled from room to room and further along the length of patient 50 during a medical procedure. X-ray images produced from C-arm 108 may be used in an operating room environment to help ensure that automated medial system 2 may be properly positioned during a medical procedure.


C-arm 108 may be mounted to enable rotational movement of the arm in two degrees of freedom, (i.e. about two perpendicular axes in a spherical motion). C-arm 108 may be slidably mounted to x-ray support structure 118, which may allow orbiting rotational movement of C-arm 108 about its center of curvature, which may permit selective orientation of x-ray source 114 and image receptor 116 vertically and/or horizontally. C-arm 108 may also be laterally rotatable, (i.e. in a perpendicular direction relative to the orbiting direction to enable selectively adjustable positioning of x-ray source 114 and image receptor 116 relative to both the width and length of patient 50). Spherically rotational aspects of C-arm 108 apparatus may allow physicians to take x-rays of patient 50 at an optimal angle as determined with respect to the particular anatomical condition being imaged. In embodiments a C-arm 108 may be supported on a wheeled support cart 120. In embodiments imaging device 106 may be used separately and/or in conjunction with C-arm 108.


An imaging device 106, as illustrated in FIG. 11, may comprise a gantry housing 124, which may enclose an image capturing portion, not illustrated. The image capturing portion may include an x-ray source and/or emission portion and an x-ray receiving and/or image receiving portion, which may be disposed about one hundred and eighty degrees from each other and mounted on a rotor (not illustrated) relative to a track of the image capturing portion. The image capturing portion may be operable to rotate three hundred and sixty degrees during image acquisition. The image capturing portion may rotate around a central point and/or axis, allowing image data of patient 50 to be acquired from multiple directions or in multiple planes.


In embodiments imaging device 106 may comprises a gantry housing 124 having a central opening 126 for positioning around an object to be imaged, a source of radiation that is rotatable around the interior of gantry housing 124, which may be adapted to project radiation from a plurality of different projection angles. A detector system may be adapted to detect the radiation at each projection angle to acquire object images from multiple projection planes in a quasi-simultaneous manner. In embodiments, a gantry may be attached to a support structure imaging device support structure 128, such as a wheeled mobile cart 130 with wheels 132, in a cantilevered fashion. A positioning unit 134 may translate and/or tilt the gantry to a desired position and orientation, preferably under control of a computerized motion control system. The gantry may include a source and detector disposed opposite one another on the gantry. The source and detector may be secured to a motorized rotor, which may rotate the source and detector around the interior of the gantry in coordination with one another. The source may be pulsed at multiple positions and orientations over a partial and/or full three hundred and sixty degree rotation for multi-planar imaging of a targeted object located inside the gantry. The gantry may further comprise a rail and bearing system for guiding the rotor as it rotates, which may carry the source and detector. Both and/or either imaging device 106 and C-arm 108 may be used as automated imaging system 104 to scan patient 50 and send information to automated medical system 2.


Automated imaging system 104 may communicate with automated medical system 2 before, during, and/or after imaging has taken place. Communication may be performed through hard wire connections and/or wireless connections. Imaging may be produced and sent to automated medical system 2 in real time. Images captured by automated imaging system 104 may be displayed on display 34, which may allow medical personal to locate bone and organs within a patient. This may further allow medical personnel to program automated medial system 2 to assist during a medical operation.


During a medical operation, medical personnel may program robot support system 4 to operate within defined specifications. For examples, as illustrated in FIG. 12, a patient 50 may have a medical procedure performed upon the spine. Medical personnel may use imaging equipment to locate and find the spine, as detailed above. Using the images, an operator may upload the information regarding the location of the spine into automated medical system 2. Automated medical system 2 may then track, locate, and move end effector tools 26 to areas specified by the operator. In an example, a gravity well 102 and/or a plurality of gravity wells 102 may be mapped onto the spine of patient 50, as illustrated in FIG. 12. Gravity wells 102 may be areas, programmed by an operator, to attract end effector tools 26. These areas may cause SCARA 24 and end effector 22 to move toward the direction, angle, and location programmed by medical personnel.


As illustrated in FIG. 13, a gravity well 102 indicates, in a virtual space, the angle and location end effector tool 26 may need to be positioned for a medical procedure. End effector tool 26, as illustrated, may be moved by an operator using activation assembly 60, discussed above. As end effector tool 26 moves within the area of gravity well 102, the operator may feel the motors in SCARA 24 being to move end effector tool 26 into the programmed position of gravity well 102. As illustrated in FIG. 14, gravity well 102 may maneuver end effector tool 26 into the programmed position. In an example, if the operator begins to move end effector tool 26 using activation assembly 60, the operator may feel the motors provide resistance against the movement. The resistance from the motors may not be strong enough resistance to keep end effector tool 26 within gravity well 102. This may be beneficial as it may allow the operator to maneuver end effector tool 26 to additional gravity wells 102. Gravity well 102 may be programmed into automated medical system 2 before the medical operation and/or during the medical operation. This may allow medical personnel to move a gravity well 102 based on the changing conditions of the medical procedure. Gravity wells 102 may allow automated medical system 2 to place end effector tools 26 in the required area quickly, easily, and correctly.


Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the invention as defined by the appended claims

Claims
  • 1. An automated medical system, comprising: a robot support system, wherein the robot support system comprises: a robot body,a selective compliance articulated robot arm coupled to the robot body and operable to position a tool at a selected position in a surgical procedure; andan activation assembly operable to transmit a move signal to the selective compliance articulated robot arm allowing an operator to move the selective compliance articulated robot arm;a camera tracking system having a camera and a curved rail, wherein the camera is moveably disposed along the curved rail; andan automated imaging system.
  • 2. The automated medical system of claim 1, wherein the selective compliance articulated robot arm comprises a robot telescoping arm coupled to the robot body and operable to rise and lower in a vertical direction, a robot support arm coupled to and rotatable about the robot telescoping arm, and a robot arm coupled to the robot support arm.
  • 3. The automated medical system of claim 1, wherein the robot support system further comprises an end effector coupled to a distal end of the selective compliance articulated robot arm, wherein the end effector is operable to couple a surgical tool to the robot support system.
  • 4. The automated medical system of claim 1, wherein the activation assembly comprises a primary button.
  • 5. The automated medical system of claim 4, wherein the activation assembly further two or more primary activation switches activated by the primary button, wherein depression of at least two of the primary activation switches is required for the operator to move the selective compliance articulated robot arm in response to the move signal.
  • 6. The automated medical system of claim 1, wherein the camera tracking system is configured to send a stop signal to the robot support system if the camera is obstructed from viewing one or more dynamic reference arrays.
  • 7. The automated medical system of claim 1, wherein the automated imaging system comprises a gantry arm.
  • 8. The automated medical system of claim 7, wherein the gantry arm comprises a main arm, an imaging arm, and an imaging device.
  • 9. The automated medical system of claim 8, wherein the gantry arm rotates the imaging device around a patient.
  • 10. The automated medical system of claim 1, wherein the camera tracking system is coupled to the robot support system.
  • 11. A method of using an automated medical system in a medical procedure comprising: moving the automated medical system into a room;detaching a camera tracking system from a robot support system;disposing the camera tracking system adjacent a patient;disposing the robot support system adjacent the patient;maneuvering a selective compliance articulated robot arm;guiding the selective compliance articulated robot arm to a programmed location with a gravity well; andautonomously moving a camera of the camera tracking system around an obstruction.
  • 12. The method of claim 11, further comprising tracking the selective compliance articulated robot arm with the camera tracking system while the selective compliance articulated robot arm is guided to the programmed location.
  • 13. The method of claim 11, wherein the camera moves along a curved rail on the camera tracking system.
  • 14. The method of claim 11, further comprising depressing a primary button on an activation assembly to allow movement of the selective compliance articulated robot arm by an operator.
  • 15. The method of claim 14, wherein movement of the selective compliance articulated robot arm is allowed by depressing a primary button that activates at least two primary activation switches.
  • 16. The method of claim 11, wherein the selective compliance articulated robot arm resists leaving the gravity well as it is guided to the programmed location.
  • 17. The method of claim 16, wherein a medical operation has a plurality of gravity wells.
  • 18. The method of claim 11, wherein the method further comprises: moving an automated imaging system into a room;placing the automated imaging system adjacent to a patient;activating the automated imaging system;imaging the patient; andtransferring the images to the automated medical system.
  • 19. The method of claim 18, wherein the automated imaging system comprises: an imaging system base;at least one omni directional wheel; anda gantry, wherein the gantry further comprises a main arm, an imaging arm, and an imaging device.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a Continuation of U.S. patent application Ser. No. 14/853,238, filed on Sep. 14, 2015, the contents of which are incorporated herein in their entirety by reference for all purposes.

US Referenced Citations (690)
Number Name Date Kind
4150293 Franke Apr 1979 A
5246010 Gazzara et al. Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5408409 Glassman et al. Apr 1995 A
5598453 Baba et al. Jan 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman et al. Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6246900 Cosman et al. Jun 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Suri et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7935130 Williams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8035685 Jensen Oct 2011 B2
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma de la Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8208988 Jensen Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Larkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Ramos de la Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556807 Scott et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Green et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821511 Von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Iott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Iott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Li et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
10034717 Miller et al. Jul 2018 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20050096502 Khalili May 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050165271 Shioda et al. Jul 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20060100610 Wallace et al. May 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080013809 Zhu et al. Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 Von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080161680 Von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100224022 Choi Sep 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100250000 Blumenkranz Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110022229 Jang et al. Jan 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110277775 Holop Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130110128 Schostek May 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140163736 Azizian et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 von Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140200621 Malackowski et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20150032164 Crawford et al. Jan 2015 A1
20150039034 Frankel et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170360493 Zucker et al. Dec 2017 A1
Foreign Referenced Citations (6)
Number Date Country
102008019646 Oct 2009 DE
1557134 Jul 2005 EP
2997617 May 2014 FR
2004-223128 Aug 2004 JP
2005-204999 Aug 2005 JP
2017023825 Feb 2017 WO
Non-Patent Literature Citations (1)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Related Publications (1)
Number Date Country
20190021799 A1 Jan 2019 US
Continuations (1)
Number Date Country
Parent 14853238 Sep 2015 US
Child 16047202 US