SURGICAL SEALING AND CUTTING APPARATUS

Abstract
An electrosurgical apparatus for sealing and cutting tissue includes forceps and a power supply. The forceps include jaws that are pivotal about a pin and at least one blade disposed between the jaws. A shaft connects a handle to the jaws for moving the jaws while also conducting electric current from the power supply through the jaws. A wire, routed through the shaft and through a hole in the pin, connects a lever to the blade for moving the blade. In a bipolar configuration, the wire also conducts the electric current through the blade.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The subject application relates generally to a surgical apparatus for cutting and coagulating tissue using electric current and a blade.


2. Description of the Prior Art


Endoscopic surgery, also known as minimally invasive surgery, is a method of surgery designed to minimize discomfort to the patient. This is done by reducing the required size of the opening needed to access the body's internal organs to a small hole. The results are, typically: fewer traumas, less pain, faster recovery time and a shorter, if at all, length of hospitalization. The advantages are in reduced complications, reduced mortality rate and considerable savings to the patient and insurers.


Endoscopic accessing of the internal cavities of the body is usually done by using a cannula and trocar. The skin, fat, and muscle tissues are punctured by a surgical blade or a sharp trocar. Penetrating the body cavity with a trocar that is accompanied by a cannula, establishes a temporary inlet or a working channel. Removing the trocar and leaving the cannula inside the body allows the insertion of a scope, camera, forceps and other accessories into the bodily cavity to perform the surgical procedure.


Endoscopic procedures involve a majority of grasping, cauterizing and dissecting or shearing steps, to detach tendons, muscles and blood vessels. Sealing the cut or dissected portion is essential to avoid bleeding. This is currently achieved, in many cases, by using electro-cautery or thermal coagulation of tissues and vessels. Graspers and/or dissectors that apply electric current to the cut zone are being used, following by dissection with curved or straight scissors that are electro-cauterizing while performing the cut.


It is very desirable to minimize the number of openings in an endoscopic procedure, for the purpose of reduced pain and scarring to the patient and reduced costs by saving usage of extra cannulas and trocars. This could be achieved by combining grasping, cauterizing and dissecting in one instrument. This reduces the number of openings as there is no longer the need for a stand alone opening for a grasper or a scissor. The advantages are obvious: less openings, less scarring, less pain, less complications and less costs in trocar-cannulas and single-function instruments and surgery time.


Numerous electro-surgical instruments are available in the prior art for sealing and cutting tissue. One such instrument is disclosed in U.S. Pat. No. 5,458,598 (the '598 patent) to Feinberg et al. The instrument of the '598 patent includes a forceps having a pair of jaws. The jaws are opened and closed by extending and retracting them into a tube which forces their closure. A power supply for producing electric current includes a pair of feeds with one feed connected to each of the jaws. In operation, the electric current flows from one jaw, through tissue, to the other jaw. A single blade is disposed between the jaws and movable longitudinally to cut the tissue.


Although the instrument of the '598 patent is functional, there remains an opportunity for a surgical apparatus providing a more effective application of electric current and greater tactile response to a surgeon operating the apparatus.


SUMMARY OF THE INVENTION AND ADVANTAGES

The subject invention provides a surgical apparatus for cutting tissue. The apparatus includes a power supply having a first feed and a second feed for supplying electric current between the feeds. A pair of jaws are electrically connected to the first feed for grasping the tissue and applying the electric current to the tissue. At least one handle is operatively connected to the jaws for actuating at least one of the jaws. A blade is disposed between the jaws and a lever is operatively connected to the blade for moving the blade to cut the tissue. The blade is also electrically connected to the second feed for supplying the electric current to the tissue.


The subject invention also provides the surgical apparatus including a tube having a proximal end and a distal end. A clevis component having a proximal end and a distal end is supported at the proximal end by the distal end of the tube. The clevis component defines a slot extending inward from the distal end and separating a pair of legs. A clevis hole is defined through each of the legs and clevis pin is disposed longitudinally through the clevis hole. The pair of jaws is hingably supported by the clevis pin. A wire is operatively connected to the blade and the lever for moving the blade in response to movement of the lever. The clevis pin defines a clevis pin hole extending transverse through the clevis pin wherein the wire is disposed through the clevis pin hole.


By completing the electric circuit between the jaws and the blade, the electric current is applied to the tissue in a bi-polar fashion. Since the electric current flows through each jaw, this application could be referred to as “tri-polar”. This provides a more effective, even application of the electric current to the tissue.


Furthermore, the jaws do not frictionally engage a tube to more to a closed position. This provides a more effective tactile response to the surgeon; allowing the surgeon to feel the engagement of the jaws with the tissue.




BRIEF DESCRIPTION OF THE DRAWINGS

Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:



FIG. 1 is a perspective view of a first embodiment of a surgical apparatus showing forceps and a power supply;



FIG. 2 is a side view of a jaw assembly of the forceps showing a pair of jaws in an open position and a blade in a retracted position;



FIG. 3 is a side view of the jaw assembly showing the jaws in a closed position and the blade in an extended position;



FIG. 4 is a partial perspective view of the forceps showing the jaws grasping a blood vessel;



FIG. 5 is a partial exploded view of a jaw assembly of the forceps;



FIG. 6 is a partial cross-sectional side view of the forceps showing a rotary knob for rotating the jaws, handles for actuating the jaws, and a lever for actuating the blade;



FIG. 7 is a partial perspective view of a portion of the jaw assembly;



FIG. 8 is a perspective view of a movable handle;



FIG. 9 is a perspective view of a connecting block for mating the movable handle to the lever;



FIG. 10 is a front view of the connecting block;



FIG. 11 is a cross-sectional side view of the connecting block;



FIG. 12 is a cross-sectional side view of the lever mated with the connecting block;



FIG. 13 is a partial cross-sectional view showing an interface between the rotary knob and a ball plunger for locking the rotary knob in place;



FIG. 14 is a perspective view of the ball plunger;



FIG. 15 is perspective view of a second embodiment of the surgical apparatus;



FIG. 16 is a partial cross-sectional side view of the jaw assembly of the second embodiment with jaws in the open position;



FIG. 16 is a side view of the jaw assembly of the second embodiment with jaws in the open position;



FIG. 17 is a side view of the jaw assembly of the second embodiment with jaws in the closed position;



FIG. 18 is an inside view of one of the jaws showing a channel for accommodating the blade;



FIG. 19 is partial cross-sectional side view of the jaw assembly of the second embodiment;



FIG. 20 is a partial cross-sectional bottom view of the jaw assembly showing the routing of a wire through a pin;



FIG. 21 is a perspective view of a third embodiment of the surgical apparatus;



FIG. 22 is a side view of the jaw assembly of the third embodiment with blades in an open position;



FIG. 23 is a side view of the jaw assembly of the second embodiment with the blades in a closed position;



FIG. 24 is a perspective view of the jaw assembly of the third embodiment grasping and cutting a blood vessel;



FIG. 25 is a partial exploded view of the forceps of the third embodiment;



FIG. 26 is a partial perspective view of the blades of the third embodiment in the open position; and



FIG. 27 is a partial perspective view of the blades of the third embodiment in the close position.




DETAILED DESCRIPTION OF THE INVENTION

Referring to the Figures, wherein like numerals indicate corresponding parts throughout the several views, a surgical apparatus 50 for cutting and/or sealing tissue is shown.


Referring to FIG. 1, the apparatus 50 includes forceps 52 and a power supply 54 for supplying electric current to the forceps 52. Specifically, the power supply 54 includes a first feed 56 and a second feed 58 for electrical connection with the forceps 52. Preferably, the power supply 54 generates an alternating current at a radio frequency (RF). Generating RF current for surgical procedures is well known to those skilled in the art. Furthermore, either the first feed 56 or the second feed 58 may be the “hot” or “positive” feed while the alternate feed is the “neutral” or “negative” feed.


The forceps 52 includes a jaw assembly (not numbered). The jaw assembly includes a pair of jaws 60, 62. The jaws 60, 62 are movable between an open position, as seen in FIG. 2, and a closed position for grasping the tissue, as seen in FIG. 3. As can be seen in FIG. 3, the jaws 60, 62 need not make contact with one another to be in the closed position. Referring to FIG. 4, the jaws 60, 62 are ideally suited for grasping a blood vessel 63. However, those skilled in the art realize other forms of tissue that may be grasped with the jaws 60, 62. In the illustrated embodiments, the jaws 60, 62 are both movable with respect to one another. However, alternative embodiments may be contemplated where one of the jaws 60, 62 is stationary and the other jaw 62, 60 is movable.


Referring to FIG. 1, at least one of the jaws 60, 62 is electrically connected to the first feed 56 of the power supply 54 for applying the electric current to the tissue. Preferably, both jaws 60, 62 are electrically connected to the first feed 56 such that the electric potential on each jaw 60, 62 is generally identical at any time. The preferred techniques for conveying the electric current from the power supply 54 to the jaws 60, 62 are described in detail below.


The forceps 52 include at least one handle 64, 66 operatively connected to the jaws 60, 62 for actuating, i.e., moving, at least one of the jaws 60, 62. Preferably, a fixed handle 64 remains stationary, while a movable handle 66 is movable with respect to the fixed handle 64. The movement of the jaws 60, 62 corresponds to the movement of the handle 66. Specifically, it is preferred that when the handles 64, 66 are closest to one another, the jaws 60, 62 are in the closed position, and vice-versa.


Referring to both FIGS. 5 and 6, a shaft 68 includes a proximal end 70 and a distal end 72. The shaft 68 operatively connects the jaws 60, 62 to the movable handle 66. Preferably, the shaft 68 is generally cylindrically shaped with a circular cross-section. However, those skilled in the art realize other suitable shapes for the shaft 68.


A tube 74 having a proximal end 76 and a distal end 78 at least partially encloses the shaft 68. The proximal end 76 of the tube 74 is connected to and supported by the fixed handle 64. The tube 74 is preferably cylindrically shaped, but other suitable shapes are known to those skilled in the art.


Referring specifically to FIG. 5, the forceps 52 includes a clevis component 80 having a proximal end 82 and a distal end 84. The clevis component 80 preferably has a generally cylindrical shape is supported by the tube 74. In the illustrated embodiments, the clevis component 80 defines a recessed surface 86. The recessed surface 86 is sized to fit inside, i.e., mate with, the distal end 78 of the tube 74. An adhesive, welding, soldering, a set screw (not shown), or other techniques may be utilized to secure the recessed surface 86 within the tube 74.


The clevis component 80 defines a slot 88 extending inward from the distal end 84. The slot 88 separates a portion of the clevis component 80 into a pair of legs 90. The clevis component 80 also defines clevis holes 92 extending transverse through each of the legs 90. The clevis component 80 further defines a duct 93 extending from the proximal end 84 to the slot 88. The shaft 68 extends into the clevis component 80 through the duct 93.


A clevis pin 94 is disposed longitudinally through the clevis holes 92. The clevis pin 94 also extends through holes (not numbered) in the jaws 60, 62 to hingably support the jaws 60, 62. Said another way, the jaws 60, 62 move between the open and closed positions about the clevis pin 94. As can be seen in FIGS. 1-4, at least a portion of the jaws 60, 62 are disposed within the slot 88. A link 96 is attached to each of the jaws 60, 62, preferably with a pins (not numbered) and holes (not numbered) in the links 96 and the jaws 60, 62, as can be readily seen in FIGS. 2 and 5. A detailed view of the connection between the clevis pin 94, the links 96, and the jaws 60, 62 can be seen in FIG. 7.


Referring again to FIG. 5, a shaft hole 98 is disposed adjacent the distal end 72 of the shaft 68. The distal end 72 of the shaft 68 preferably defines a flat portion (not numbered) for mating with the flat links 96. A shaft pin 100 interconnects the shaft 68 with the links 96. The shaft pin 100 is generally cylindrical and includes a center section 102 and two end sections 104. The center section 102 is sized to mate with the shaft hole 98 and the end sections 104 are sized to mate with holes (not numbered) in the links 96.


The jaw assembly described above provides excellent tactile feel to a surgeon performing a procedure. Specifically, since the jaws 60, 62 are not being pulled into a tube or housing, as is done in many prior art forceps 52, the surgeon can better feel the friction of the jaws 60, 62 contacting the tissue, instead of the friction of the jaws 60, 62 contacting the tube or housing.


Preferably, the electrical current is conducted to the jaws 60, 62 via the shaft 68. Accordingly, the shaft 68 is at least partially formed of an electrically conductive material, such as, but not limited to, a metal. For ease of manufacturing, it is preferred that the entire shaft 68 is formed of the metal and coated with a dielectric coating (not numbered) to provide electrical insulation where needed. The metal is preferably stainless steel, but other suitable metals are known to those skilled in the art. The links 96 and various pins are also formed of an electrically conductive material, such as metal, to conduct the electric current from the shaft to the jaws 60, 62. The first feed 56 of the power supply 54 is electrically connected to the shaft 68 at its proximal end 70 via a cable (not numbered). A connector 105 electrically connects the cable to the shaft 68 as described below.


The forceps 52 also includes at least one blade 106 for cutting tissue. Particularly, the blade 106 includes at least one sharp edge (not numbered) for cutting tissue that is being held in place by the jaws 60, 62. The blade 106 of the first and second embodiments is movable back and forth in a reciprocating fashion with respect to the tube 74.


In a first embodiment and a second embodiment of the invention, a single blade 106 is disposed between the jaws 60, 62. Channels 61, 63, are defined in each of the jaws 60, 62 to accommodate the blade 106, particularly when the jaws 60, 62 are in the closed position.


A lever 108 is operatively connected to the blade 106 for moving the blade 106. In the first embodiment, a wire 110 is operatively connected between the blade 106 and the lever 108 and moves the blade 106 in response to movement of the lever 108. The wire 110 is preferably a rigid component formed of a metal. However, those skilled in the art realize other suitable alternatives for implementing the wire 110.


The shaft 68 defines a hollow conduit 112 disposed longitudinally between the ends 70, 72 of the shaft 68. A lumen 113, having a hollow center and preferably formed of plastic, may be disposed within all or part of the conduit 112. The shaft pin 100 also defines a hole 114 extending transverse through the center section 102. Additionally, the clevis pin 94 defines a hole 116 extending transversely. The wire 110 is routed through the conduit 112, the lumen 113, the hole 114 of the shaft pin 100, and the hole 116 of the clevis pin 100. The wire 110 is preferably connected to the blade 106 by welding or soldering. The lumen 113 provides rigidity to the conduit 112 and allows the wire 110 to be easily guided therethrough.


Referring again to FIG. 1, the movable handle 66 includes a clevis top 118. The clevis top 118 receives and retaining a connecting block 120. Referring now to FIG. 8, the clevis top 118 is generally block-shaped and defines a block-tube cavity 122 and a block-pin cavity 124. The connecting block 120, shown in FIGS. 9-11, includes a block portion 126 and a block tube 128 extending from the block portion 126. The block portion 126 and part of the block tube 128 are inserted within the block-tube cavity 122. The block tube 128 includes a pair of block pins 130 which are inserted within the block pin-cavity 124 of the clevis top 118 for preventing the connecting block 120 from rotating with respect to the fixed handle 64.


As shown in FIG. 12, the lever 108 is slidably disposed in a tube bore 132 defined in the block tube 128. The wire 110 is connected to the lever 108 via a blade wire securing set screw 134. As best seen in FIG. 6, a compression spring 136 is disposed inside the tube bore 132 and biases between the connecting block 120 and the lever 108. As the lever 108 is pushed toward the jaws 60, 62, the wire 110 moves the blade 106 forward to perform dissection of tissue that has been grasped between the jaws 60, 62. The compression spring 136 not only creates resistance as the lever 108 is pushed, but also acts to return the blade 106 to a retracted position, i.e., proximally, in a proximal end of the jaws 60, 62, after the lever 108 is released. Therefore, pressing the lever 108 distally pushes the wire 110, carrying the blade 106 forward to perform dissection of tissue that has been grasped between the jaws 60, 62. The lever 108 is free to move fore and aft against the spring 136, inside the tube bore 132. Referring again to FIG. 12, the lever 108 also defines a groove 137. A set-screw 138 extends through the block tube 128 and limits the aft movement of lever 108 to avoid undesirable detachment from the block 120.


With reference to FIGS. 1, 6, and 13, a rotary knob 140 preferably encircles the tube 74 adjacent its proximal end 76. The rotary knob 140 is preferably attached to the tube 74 via a set-screw 142; however, other connection techniques may also be utilized. The rotary knob 140 extends into and is rotatable within the fixed handle 64. The rotary knob 140 defines a stationary handle cavity 144 which is defined about an exterior surface of the rotary knob 140. The cavity 144 is positioned inside the fixed handle 64. A ball plunger 146, which is preferably coated with a dielectric coating, is shown in detail in FIG. 14. With reference again to FIGS. 6 and 13, the ball plunger 146 is mounted to the fixed handle 64, with the ball (not numbered) of the ball plunger 146 extending into the cavity 144 to retain the rotary knob 140 inside the fixed handle 63. Because the tube 74 is connected to the jaws 60, 62, via the clevis component 80, as the rotary knob 140 is rotated with respect to the fixed handle 64, the jaws 60, 62 also rotate.


In the first embodiment, the apparatus 50 functions in a unipolar mode. Specifically, a conductive pad 148 is electrically connected to the second feed 58 of the power supply 54. During operation of the apparatus 50, the conductive pad 148 is placed in contact with the skin of a patient. Thus, a circuit is formed for conducting the electric current from the first feed 56, through the jaws 60, 62, through the tissue of the patient, through the conductive pad 148, and back to the power supply 54 via the second feed 56.


In a second embodiment, as shown in FIG. 15, the apparatus 50 functions in a bipolar mode. Specifically, the blade 106 is electrically connected to the second feed 58 of the power supply 54 for applying the electric current to the tissue. Therefore, a circuit is completed through the tissue between the jaws 60, 62 and the blade 106. The RF energy assists in the treatment of the tissue by coagulating the blood and making the tissue easier to cut with the blade 106. When the tissue is a blood vessel, this coagulation of the blood helps seal the blood vessel before and after cutting. The wire 110 is preferably formed of an electrically conductive material and electrically connected to the blade 106 for conducting the electric current to the blade 106.


The shaft 68 and the wire 110 are electrically insulated from one another such that the electric current does not flow directly between the shaft 68 and the wire 110. As stated above, the wire 110 runs through a conduit 112 defined in the shaft 68. Preferably, a dielectric coating (not numbered) is applied to least part of the wire 110 for electrically insulating the wire 110 from the shaft 68. Those skilled in the art will realize other techniques for electrically insulating the wire 110 and the shaft 68.


In a third embodiment, as shown in FIGS. 21-27, the at least one blade is implemented as a first blade 150 and a second blade 152. The first and second blades 150, 152 are arranged in a scissors-like configuration. Much of the components of the third embodiment are similar to those recited above with respect to the first and second embodiments. Therefore, only the substantial deviations will be described in detail.


Referring specifically to FIG. 25, each of the blades 150, 152 defines a hole (not numbered). The clevis pin 94 is disposed through the holes of the blades 150, 152 as well as the clevis hole 92, and the holes of the jaws 60, 62. The blades 150, 152 are disposed between the jaws 60, 62. The channels 61, 63 of the jaws 60, 62 may also accommodate the blades 150, 152.


A fork 154 extends from an end of the wire 110. The fork 154 includes a pair of tongs 156 with a hole (not numbered) disposed through each tong 156. An elongated slot (not numbered) is formed in each of the blades 150, 152. The fork 154 is disposed through the hole 116 of the clevis pin 94. A pin (not numbered) connects the tongs 156 of the fork 154 with the elongated slots of the blades 150, 152.


As shown in FIG. 6, the lever 108 is normally pushed proximally by compression of the spring 136 disposed within the block element 120. Therefore, in order to achieve cutting by the blades 150, 152, the lever 108 is pushed forward to close a gap defined between the lever 108 and the block element 120. Referring to FIGS. 22, 23, 26, and 27, the fork 156 and the pin slide within the slots defined in the blades 150, 152 to force the blades 150, 152 to pivot about the clevis pin 94 and close. As stated above, the clevis pin 94 is shared by the blades 150, 152 and the jaws 60, 62. Therefore while the blades 150, 152 and the jaws 60, 62 each pivot about the clevis pin 94, the pivotal movement is independent of one another.


It is important to understand that the blades 150,152, via the wire 110 disposed in the fork 154, which are normally pulled backward by the spring 136, are always retained in the jaws 60, 62, as long as the lever 108 is not pushed forward. The outward movement of the blades 72, 73 is limited by the closed portion 80 in the proximal-end of the jaws 70, 71. Further, the blades 72, 73 are forced to close without performing a cut when the handles 2, 3 are squeezed together to force a closure of the jaws 70, 71. Farther overlapping of the blades 72, 73 is achieved by the forced movement of the transverse-pin 75, held by the clevis 74, via the slots 78, defined within the scissor blades 72, 73.


Those familiar with the art will appreciate the adaptability of this embodiment to other monopolar applications, such as single-jaw instruments and curved-jaw instruments, where the curvature of the scissor blades will follow a curved slot within the jaws.


The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described.

Claims
  • 1. A surgical apparatus for cutting tissue comprising: a power supply having a first feed and a second feed for supplying electric current between said feeds; a pair of jaws electrically connected to said first feed for grasping the tissue and applying the electric current to the tissue; at least one handle operatively connected to said jaws for actuating at least one of said jaws; a blade disposed between said jaws; a lever operatively connected to said blade for moving said blade to cut the tissue; and said blade electrically connected to said second feed for supplying the electric current to the tissue.
  • 2. An apparatus as set forth in claim 1 further comprising a shaft having a proximal end and a distal end operatively connecting said jaws to said handle.
  • 3. An apparatus as set forth in claim 2 wherein said shaft is formed of an electrically conductive material and is electrically connected to said jaws and said first feed for conducting the electric current between said jaws and said current supply.
  • 4. An apparatus as set forth in claim 3 wherein said shaft defines a hole disposed longitudinally between said ends of said shaft.
  • 5. An apparatus as set forth in claim 4 further comprising a wire operatively connecting said blade and said lever.
  • 6. An apparatus as set forth in claim 5 wherein said wire is formed of an electrically conductive material and is electrically connected to said blade and said second feed for conducting the electric current between said blade and said current supply.
  • 7. An apparatus as set forth in claim 6 wherein said shaft and said wire are electrically insulated from one another such that the electric current does not flow directly between said shaft and said wire.
  • 8. An apparatus as set forth in claim 7 further comprising a dielectric coating disposed around at least part of said wire for electrically insulating said wire from said shaft.
  • 9. An apparatus as set forth in claim 1 further comprising a tube disposed between said jaws and said handle for providing a length between said jaws and said handle.
  • 10. An apparatus as set forth in claim 9 further comprising a clevis component having a proximal end and a distal end and supported by said tube.
  • 11. An apparatus as set forth in claim 10 wherein said clevis component defines a slot extending inward from said distal end and separating a pair of legs and defines a clevis hole through each of said legs.
  • 12. An apparatus as set forth in claim 11 further comprising a clevis pin disposed longitudinally through said clevis hole and connected to each of said jaws for hingably supporting said jaws.
  • 13. An apparatus as set forth in claim 12 wherein said clevis pin defines a clevis pin hole extending transverse through said pin.
  • 14. An apparatus as set forth in claim 13 further comprising a wire disposed through said clevis pin hole and operatively connecting said blade and said lever.
  • 15. A surgical apparatus for cutting tissue comprising: a tube having a proximal end and a distal end; a clevis component having a proximal end and a distal end and supported at said proximal end by said distal end of said tube; said clevis component defining a slot extending inward from said distal end and separating a pair of legs and defining a clevis hole through each of said legs. a clevis pin disposed longitudinally through said clevis hole; a pair of jaws hingably supported by said clevis pin and actuatable for grasping the tissue; at least one handle operatively connected to said jaws for actuating at least one of said jaws; a blade disposed adjacent said jaws and movable for cutting the tissue; a lever for moving said blade to cut the tissue; a wire operatively connected to said blade and said lever for moving said blade in response to movement of said lever; and said clevis pin defining a clevis pin hole extending transverse through said clevis pin wherein said wire is disposed through said clevis pin hole.
  • 16. A surgical apparatus as set forth in claim 15 further comprising a power supply having a first feed and a second feed for supplying electric current between said feeds.
  • 17. A surgical apparatus as set forth in claim 16 wherein said first feed is electrically connected to at least one of said jaws.
  • 18. A surgical apparatus as set forth in claim 17 wherein said first feed is electrically connected to both of said jaws.
  • 19. A surgical apparatus as set forth in claim 16 wherein said second feed is electrically connected to a conductive pad.
  • 20. A surgical apparatus as set forth in claim 16 wherein said second feed line is electrically connected to said blade.
CROSS REFERENCE TO RELATED APPLICATION

The subject patent application claims priority to and all the benefits of U.S. Provisional Patent Application Ser. No. 60/830,442 which was filed on Jul. 13, 2006, the entire specification of which is expressly incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60830442 Jul 2006 US