The present invention generally relates to surgical spacers for spacing adjacent body parts. More particularly, the present invention relates to surgical spacers having a flexible container for containing a material that is compressible during end use, the container being substantially impermeable to the material, and a structure for controlling at least part of a shape of the container when containing the material.
The human spine is a biomechanical structure with thirty-three vertebral members, and is responsible for protecting the spinal cord, nerve roots and internal organs of the thorax and abdomen. The spine also provides structural support for the body while permitting flexibility of motion. A significant portion of the population will experience back pain at some point in their lives resulting from a spinal condition. The pain may range from general discomfort to disabling pain that immobilizes the individual. Back pain may result from a trauma to the spine, the natural aging process, or the result of a degenerative disease or condition.
Procedures to address back problems sometimes require correcting the distance between spinous processes by inserting a device (e.g., a spacer) therebetween. The spacer, which is carefully positioned and aligned within the area occupied by the interspinous ligament, after removal thereof, is sized to position the spinous processes in a manner to return proper spacing thereof.
Dynamic interspinous spacers are currently used to treat patients with a variety of indications. Essentially, these patients present a need for distraction of the posterior elements (e.g., the spinal processes) using a mechanical device. Current clinical indications for the device, as described at SAS (Spine Arthroplasty Society) Summit 2005 by Guizzardi et al., include stenosis, disc herniation, facet arthropathy, degenerative disc disease and adjacent segment degeneration.
Marketed interspinous devices include rigid and flexible spacers made from PEEK, titanium or silicone. Clinical success with these devices has been extremely positive so far as an early stage treatment option, avoiding or delaying the need for lumbar spinal fusion. However, all devices require an open technique to be implanted, and many require destroying important anatomical stabilizers, such as the supraspinous ligament.
Current devices for spacing adjacent interspinous processes are preformed, and are not customizable for different sizes and dimensions of the anatomy of an interspinous area of an actual patient. Instead, preformed devices of an approximately correct size are inserted into the interspinous area of the patient. Further, the stiffness or flexibility of the devices must be determined prior to the devices being inserted into the interspinous area.
Thus, a need exists for improvements to surgical spacers, such as those for spacing adjacent interspinous processes.
Briefly, the present invention satisfies the need for improvements to surgical spacers by providing shape control. A flexible container is provided that is fillable in situ to a desired amount, with a structure for at least part of the container providing shape control thereto. An optional conduit coupled to the container allows for filling of the container, for example, by injecting a material into the container.
The present invention provides in a first aspect, a surgical spacer. The surgical spacer comprises a flexible container for containing a material that is compressible during end use, wherein the container is substantially impermeable to the material. The surgical spacer further comprises a structure for at least part of the container when containing the material, wherein the structure controls at least part of a shape of the surgical spacer.
The present invention provides in a second aspect, an interspinous spacer. The interspinous spacer comprises a flexible container for containing an injectable material that is compressible during end use, wherein the container is substantially impermeable to the injectable material. The interspinous spacer further comprises a conduit coupled to the container for accepting the injectable material, and a structure for at least part of the container when containing the material, wherein the structure has a shape during end use to fit between adjacent spinous processes.
The present invention provides in a third aspect, a method of controlling at least part of a shape of a surgical spacer. The surgical spacer comprises a flexible container for containing a material that is compressible during end use, wherein the container is substantially impermeable to the material. The surgical spacer further comprises a structure for at least part of the container when containing the material. The method comprises creating the structure with at least one material for controlling at least part of a shape of the surgical spacer during end use.
The present invention provides in a fourth aspect, a method of spacing adjacent spinous processes. The method comprises providing an interspinous spacer, the interspinous spacer comprising a flexible container for containing an injectable material that is compressible during end use, wherein the container is substantially impermeable to the injectable material. The interspinous spacer further comprises a conduit coupled to the container for accepting the injectable material, and a structure for at least part of the container when containing the material, wherein the structure has a shape during end use to fit between adjacent spinous processes. The method further comprises implanting the interspinous spacer between adjacent spinous processes, and injecting the injectable material into the container through the conduit such that the shape is achieved.
Further, additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
A surgical spacer of the present invention can be formed in situ during a procedure. The spacer includes the following basic aspects: a flexible container, and a structure for at least part of the container that controls at least part of the shape of the surgical spacer. The flexible container can be filled or injected through an optional conduit after placement. Further, the structure may be folded or otherwise reduced in size prior to use in some aspects. Together with an unfilled container, in some aspects, the spacer can create a smaller footprint during implantation. Once filled, the structure provides support and containment for the container, as well as providing shape control for at least part of the spacer.
The container is flexible and substantially impermeable to the material it will be filled with. However, depending on the application, the container may be permeable to other materials, for example, it may be air and/or water permeable. In the present example, the container takes the form of a bag or balloon, but can take other forms, so long as flexible and substantially impermeable to the material it will be filled with. Thus, the container must be substantially impermeable to the filling material, for example, in a liquid state during filling and prior to curing. Examples of container materials include silicone, rubber, polyurethane, polyethylene terephthalate (PET), polyolefin, polycarbonate urethane, and silicone copolymers.
Conduit 406 accepts the material being used to fill the container. Preferably, the conduit comprises a one-way valve, however, a two-way valve is also contemplated, as another example. The conduit can comprise any material suitable for implanting, for example, various plastics. Also preferably, the conduit is constructed to be used with a delivery system for filling the container, such as, for example, a pressurized syringe-type delivery system. However, the delivery system itself forms no part of the present invention. As noted above, the conduit is optional. Other examples of how to fill the container comprise the use of a self-sealing material for the container, or leaving an opening in the container that is closed (e.g., sewn shut) intraoperatively after filling. Using a curable material to fill the container may also serve to self-seal the container.
In use, the container is filled with a material that is compressible during end use. The compressibility characteristic ensures that the material exhibits viscoelastic behavior and that, along with the structure, the spacer can accept compressive loads. Of course, the degree of compressibility will depend on the particular application for the surgical spacer. For example, if a spacer according to the present invention is used between adjacent spinous processes, the spacer would need to accept compressive loads typically experienced in the posterior region of the spine, for example, up to about 80 shore A. In other words, the spacer is preferably capable of resisting compressive motion (or loads) with a stiffness of about 40 to about 240 N/mm (newtons per millimeter). The material is preferably injectable, and may be compressible immediately or after a time, for example, after curing. For purposes of the invention, the compressibility characteristic is necessary during end use, i.e., after implantation. Materials that could be used include, for example, a plurality of beads (e.g., polymer beads) that in the aggregate are compressible, or materials that change state from exhibiting fluid properties to exhibiting properties of a solid or semi-solid. Examples of such state-changing materials include two-part curing polymers and adhesive, for example, platinum-catalyzed silicone, epoxy, polyurethane, etc.
As noted above, the structure provides support for and containment of the container when filled, as well as at least partial shape control of the spacer. The structure comprises, for example, a structural mesh comprising a plurality of fibers and/or wires 408. Within the structural mesh are shape-control fibers and/or wires 410. In one example, shape control is provided by wires of a shape-memory alloy (e.g., Nitinol). The shape-memory alloy wire(s) can be coupled to the structural mesh (inside or outside), or weaved into the mesh (i.e., integrated). Coupling can be achieved, for example, by stitching, twisting, or closing the wire on itself. Alternatively, shape control can be provided by other wires or fibers that do not “give” in a particular direction, for example, metal or metal alloys (e.g., tantalum, titanium or steel, and non-metals, for example, carbon fiber, PET, polyethylene, polypropalene, etc.). The shape-memory alloy can be passive (e.g., superelastic) or active (e.g., body-temperature activated). The use of metal, metal alloy or barium coated wires or fibers can also improve radiopacity for imaging. The remainder of the structure can take the form of, for example, a fabric jacket, as shown in
Although the structure is shown in a roughly H-shape in the example of
One example of the construction of a structural mesh 700 for use as one example of a structure of the present invention will now be described with reference to
In an alternate aspect, the rubber shell of
As shown in the example of
Similarly,
Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the scope of the invention as defined in the following claims.
This application is a continuation of prior application Ser. No. 11/438,891, filed May 23, 2006, now abandoned, the entirety of which is incorporated herein by reference. In addition, this application contains subject matter which is related to the subject matter of the following applications. Each of the below listed applications is hereby incorporated herein by reference in its entirety: “Surgical Spacer,” by Anderson (U.S. patent application Ser. No. 11/438,940); and “Systems and Methods for Adjusting Properties of a Spinal Implant,” by Trieu et al. (U.S. patent application Ser. No. 11/439,006).
Number | Name | Date | Kind |
---|---|---|---|
2077804 | Morrison | Apr 1937 | A |
2677369 | Knowles | May 1954 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4257409 | Bacal et al. | Mar 1981 | A |
4289123 | Dunn | Sep 1981 | A |
4401112 | Rezaian | Aug 1983 | A |
4553273 | Wu | Nov 1985 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4573454 | Hoffman | Mar 1986 | A |
4599086 | Doty | Jul 1986 | A |
4604995 | Stephens et al. | Aug 1986 | A |
4611582 | Duff | Sep 1986 | A |
4632101 | Freedland | Dec 1986 | A |
4657550 | Daher | Apr 1987 | A |
4686970 | Dove et al. | Aug 1987 | A |
4827918 | Olerud | May 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4886405 | Blomberg | Dec 1989 | A |
4913144 | Del Medico | Apr 1990 | A |
4931055 | Bumpus et al. | Jun 1990 | A |
4932975 | Main et al. | Jun 1990 | A |
4969887 | Sodhi | Nov 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5011484 | Breard | Apr 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5098433 | Freedland | Mar 1992 | A |
5171278 | Pisharodi | Dec 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5201734 | Cozad et al. | Apr 1993 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5306310 | Siebels | Apr 1994 | A |
5360430 | Lin | Nov 1994 | A |
5366455 | Dove | Nov 1994 | A |
5390683 | Pisharodi | Feb 1995 | A |
5395370 | Muller et al. | Mar 1995 | A |
5415661 | Holmes | May 1995 | A |
5437672 | Alleyne | Aug 1995 | A |
5454812 | Lin | Oct 1995 | A |
5458641 | Ramirez Jimenez | Oct 1995 | A |
5496318 | Howland et al. | Mar 1996 | A |
5518498 | Lindenberg et al. | May 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5562736 | Ray et al. | Oct 1996 | A |
5609634 | Voydeville | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5658335 | Allen | Aug 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5690649 | Li | Nov 1997 | A |
5702452 | Argenson et al. | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5707390 | Bonutti | Jan 1998 | A |
5716416 | Lin | Feb 1998 | A |
5723013 | Jeanson et al. | Mar 1998 | A |
5746762 | Bass | May 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5810815 | Morales | Sep 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
6022376 | Assell et al. | Feb 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6126689 | Brett | Oct 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6132464 | Martin | Oct 2000 | A |
6190413 | Sutcliffe | Feb 2001 | B1 |
6190414 | Young | Feb 2001 | B1 |
6214050 | Huene | Apr 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6336930 | Stalcup et al. | Jan 2002 | B1 |
6348053 | Cachia | Feb 2002 | B1 |
6352537 | Strnad | Mar 2002 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6371987 | Weiland et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6402751 | Hoeck et al. | Jun 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6520991 | Huene | Feb 2003 | B2 |
6554833 | Levy | Apr 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6582467 | Teitelbaum et al. | Jun 2003 | B1 |
6592585 | Lee et al. | Jul 2003 | B2 |
6626944 | Taylor | Sep 2003 | B1 |
6645207 | Dixon et al. | Nov 2003 | B2 |
6685742 | Jackson | Feb 2004 | B1 |
6695842 | Zucherman et al. | Feb 2004 | B2 |
6709435 | Lin | Mar 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6730126 | Boehm, Jr. et al. | May 2004 | B2 |
6733533 | Lozier | May 2004 | B1 |
6733534 | Sherman | May 2004 | B2 |
6736818 | Perren et al. | May 2004 | B2 |
6758863 | Estes et al. | Jul 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6770096 | Bolger et al. | Aug 2004 | B2 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6905512 | Paes et al. | Jun 2005 | B2 |
6946000 | Senegas et al. | Sep 2005 | B2 |
6958077 | Suddaby | Oct 2005 | B2 |
6969404 | Ferree | Nov 2005 | B2 |
6981975 | Michelson | Jan 2006 | B2 |
7011685 | Arnin et al. | Mar 2006 | B2 |
7041136 | Goble et al. | May 2006 | B2 |
7048736 | Robinson et al. | May 2006 | B2 |
7081120 | Li et al. | Jul 2006 | B2 |
7087083 | Pasquet et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7163558 | Senegas et al. | Jan 2007 | B2 |
7201751 | Zucherman et al. | Apr 2007 | B2 |
7217293 | Branch, Jr. | May 2007 | B2 |
7238204 | Le Couedic et al. | Jul 2007 | B2 |
7306628 | Zucherman et al. | Dec 2007 | B2 |
7377942 | Berry | May 2008 | B2 |
7442208 | Mathieu et al. | Oct 2008 | B2 |
7445637 | Taylor | Nov 2008 | B2 |
7582106 | Teitelbaum et al. | Sep 2009 | B2 |
7998174 | Malandain et al. | Aug 2011 | B2 |
20020143331 | Zucherman et al. | Oct 2002 | A1 |
20030153915 | Nekozuka et al. | Aug 2003 | A1 |
20040083002 | Belef et al. | Apr 2004 | A1 |
20040097931 | Mitchell | May 2004 | A1 |
20040133204 | Davies | Jul 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040260397 | Lambrecht et al. | Dec 2004 | A1 |
20050010293 | Zucherman et al. | Jan 2005 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050203512 | Hawkins et al. | Sep 2005 | A1 |
20050203624 | Serhan et al. | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050261768 | Trieu | Nov 2005 | A1 |
20050288672 | Ferree | Dec 2005 | A1 |
20060004447 | Mastrorio et al. | Jan 2006 | A1 |
20060004455 | Leonard et al. | Jan 2006 | A1 |
20060015181 | Elberg | Jan 2006 | A1 |
20060064165 | Zucherman et al. | Mar 2006 | A1 |
20060084983 | Kim | Apr 2006 | A1 |
20060084985 | Kim | Apr 2006 | A1 |
20060084987 | Kim | Apr 2006 | A1 |
20060084988 | Kim | Apr 2006 | A1 |
20060085069 | Kim | Apr 2006 | A1 |
20060085070 | Kim | Apr 2006 | A1 |
20060085074 | Raiszadeh | Apr 2006 | A1 |
20060089654 | Lins et al. | Apr 2006 | A1 |
20060089719 | Trieu | Apr 2006 | A1 |
20060095136 | McLuen | May 2006 | A1 |
20060106381 | Ferree et al. | May 2006 | A1 |
20060106397 | Lins | May 2006 | A1 |
20060111728 | Abdou | May 2006 | A1 |
20060116690 | Pagano | Jun 2006 | A1 |
20060122620 | Kim | Jun 2006 | A1 |
20060136060 | Taylor | Jun 2006 | A1 |
20060184247 | Edidin et al. | Aug 2006 | A1 |
20060184248 | Edidin et al. | Aug 2006 | A1 |
20060195102 | Malandain | Aug 2006 | A1 |
20060217726 | Maxy et al. | Sep 2006 | A1 |
20060235387 | Peterman | Oct 2006 | A1 |
20060235532 | Meunier et al. | Oct 2006 | A1 |
20060241613 | Brueneau et al. | Oct 2006 | A1 |
20060247623 | Anderson et al. | Nov 2006 | A1 |
20060247640 | Blackwell et al. | Nov 2006 | A1 |
20060264938 | Zucherman et al. | Nov 2006 | A1 |
20060271044 | Petrini et al. | Nov 2006 | A1 |
20060271049 | Zucherman et al. | Nov 2006 | A1 |
20060293662 | Boyer, II et al. | Dec 2006 | A1 |
20060293663 | Walkenhorst et al. | Dec 2006 | A1 |
20070043362 | Malandain et al. | Feb 2007 | A1 |
20070142915 | Altarac et al. | Jun 2007 | A1 |
20070151116 | Malandain | Jul 2007 | A1 |
20070162000 | Perkins | Jul 2007 | A1 |
20070191838 | Bruneau et al. | Aug 2007 | A1 |
20070198091 | Boyer et al. | Aug 2007 | A1 |
20070203493 | Zucherman et al. | Aug 2007 | A1 |
20070225807 | Phan et al. | Sep 2007 | A1 |
20070233068 | Bruneau et al. | Oct 2007 | A1 |
20070233081 | Pasquet et al. | Oct 2007 | A1 |
20070233089 | DiPoto et al. | Oct 2007 | A1 |
20070270834 | Bruneau et al. | Nov 2007 | A1 |
20070276369 | Allard et al. | Nov 2007 | A1 |
20070276493 | Malandain et al. | Nov 2007 | A1 |
20070282443 | Globerman et al. | Dec 2007 | A1 |
20080021457 | Anderson et al. | Jan 2008 | A1 |
20080058934 | Malandain et al. | Mar 2008 | A1 |
20080161818 | Kloss et al. | Jul 2008 | A1 |
20080221685 | Altarac et al. | Sep 2008 | A9 |
20080262617 | Froehlich et al. | Oct 2008 | A1 |
20090270918 | Attia et al. | Oct 2009 | A1 |
Number | Date | Country |
---|---|---|
2821678 | Nov 1979 | DE |
3922044 | Feb 1991 | DE |
4012622 | Jul 1991 | DE |
0322334 | Feb 1992 | EP |
0767636 | Jan 1999 | EP |
1004276 | May 2000 | EP |
1138268 | Oct 2001 | EP |
1302169 | Apr 2003 | EP |
1330987 | Jul 2003 | EP |
1982664 | Oct 2008 | EP |
2623085 | May 1989 | FR |
2625097 | Jun 1989 | FR |
2681525 | Mar 1993 | FR |
2700941 | Aug 1994 | FR |
2703239 | Oct 1994 | FR |
2707864 | Jan 1995 | FR |
2717675 | Sep 1995 | FR |
2722087 | Jan 1996 | FR |
2722088 | Jan 1996 | FR |
2724554 | Mar 1996 | FR |
2725892 | Apr 1996 | FR |
2730156 | Aug 1996 | FR |
2731643 | Sep 1996 | FR |
2775183 | Aug 1999 | FR |
2799948 | Apr 2001 | FR |
2816197 | May 2002 | FR |
02-224660 | Sep 1990 | JP |
09-075381 | Mar 1997 | JP |
988281 | Jan 1983 | SU |
1484348 | Jun 1989 | SU |
WO 9426192 | Nov 1994 | WO |
WO 9426195 | Nov 1994 | WO |
WO 9820939 | May 1998 | WO |
WO 9926562 | Jun 1999 | WO |
WO 9959669 | Nov 1999 | WO |
WO 0044319 | Aug 2000 | WO |
WO 0154598 | Aug 2001 | WO |
WO 03057055 | Jul 2003 | WO |
WO 2004047689 | Jun 2004 | WO |
WO 2004047691 | Jun 2004 | WO |
WO 2004084768 | Oct 2004 | WO |
WO 2005002474 | Jan 2005 | WO |
WO 2005009300 | Feb 2005 | WO |
WO 2005011507 | Feb 2005 | WO |
WO 2005044118 | May 2005 | WO |
WO 2005048856 | Jun 2005 | WO |
WO 2005110258 | Nov 2005 | WO |
WO 2006064356 | Jun 2006 | WO |
WO 2007034516 | Mar 2007 | WO |
WO 2007052975 | May 2007 | WO |
Entry |
---|
Benzel et al., “Posterior Cervical Interspinous Compression Wiring and Fusion for Mid to Low Cervical Spinal Injuries,” J. Neurosurg., Jun. 1989, pp. 893-899, vol. 70. |
Caserta et al., “Elastic Stabilization Alone or Combined with Rigid Fusion in Spinal Surgery: a Biomechanical Study and Clinical Experience Based on 82 Cases,” Eur. Spine J., Oct. 2002, pp. S192-S197, vol. 11, Suppl. 2. |
Christie et al., “Dynamic Interspinous Process Technology,” Spine, 2005, pp. S73-S78, vol. 30, No. 16S. |
Cousin Biotech, Dispositif Intervertébral Amortissant, Jun. 1998, pp. 1-4. |
Dickman et al., “The Interspinous Method of Posterior Atlantoaxial Arthrodesis,” J. Neurosurg., Feb. 1991, pp. 190-198, vol. 74. |
Dubois et al., “Dynamic Neutralization: A New Concept for Restabilization of the Spine,” Lumbar Segmental Insability, Szpalski et al., eds., 1999, pp. 233-240, Lippincott Williams & Wilkins, Philadelphia, Pennsylvania. |
Duff, “Methyl Methacrylate in Spinal Stabilization,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 147-151, Ch. 14, Thieme, New York. |
Ebara et al., “Inoperative Measurement of Lumbar Spinal Instability,” Spine, 1992, pp. S44-S50, vol. 17, No. 3S. |
Fassio et al., “Treatment of Degenerative Lumbar Spinal Instability L4-L5 by Interspinous Ligamentoplasty,” Rachis, Dec. 1991, pp. 465-474, vol. 3, No. 6. |
Fassio, “Mise au Point Sur la Ligamentoplastie Inter-Epineuse Lombaire Dans les Instabilites,” Maîtrise Orthopédique, Jul. 1993, pp. 18, No. 25. |
Garner et al., “Development and Preclinical Testing of a New Tension-Band Device for the Spine: the Loop System,” Eur. Spine J., Aug. 7, 2002, pp. S186-S191, vol. 11, Suppl. 2. |
Guang et al., “Interspinous Process Segmental Instrumentation with Bone-Button-Wire for Correction of Scoliosis,” Chinese Medical J., 1990, pp. 721-725, vol. 103. |
Guizzardi et al., “The Use of DIAM (Interspinous Stress-Breaker Device) in the Prevention of Chronic Low Back Pain in Young Patients Operated on for Large Dimension Lumbar Disc Herniation,” 12th Eur. Cong. Neurosurg., Sep. 7-12, 2003, pp. 835-839, Port. |
Hambly et al., “Tension Band Wiring-Bone Grafting for Spondylolysis and Spondylolisthesis,” Spine, 1989, pp. 455-460, vol. 14, No. 4. |
Kiwerski, “Rehabilitation of Patients with Thoracic Spine Injury Treated by Spring Alloplasty,” Int. J. Rehab. Research, 1983, pp. 469-474, vol. 6, No. 4. |
Kramer et al., “Intervetertebral Disk Diseases: Causes, Diagnosis, Treatment and Prophylaxis,” pp. 244-249, Medical, 1990. |
Laudet et al., “Comportement Bio-Mécanique D'Un Ressort Inter-Apophysaire Vertébral Postérieur Analyse Expérimentale Due Comportement Discal En Compression Et En Flexion/Extension,” Rachis, 1993, vol. 5, No. 2. |
Mah et al., “Threaded K-Wire Spinous Process Fixation of the Axis for Modified Gallie Fusion in Children and Adolescents,” J. Pediatric Othopaedics, 1989, pp. 675-679, vol. 9. |
Mariottini et al., “Preliminary Results of a Soft Novel Lumbar Intervertebral Prothesis (DIAM) in the Degenerative Spinal Pathology,” Acta Neurochir., Adv. Peripheral Nerve Surg. and Minimal Invas. Spinal Surg., 2005, pp. 129-131, vol. 92, Suppl. |
McDonnell et al., “Posterior Atlantoaxial Fusion: Indications and Techniques,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 92-106, Ch. 9, Thieme, New York. |
Minns et al., “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” Spine, 1997, pp. 1819-1825, vol. 22, No. 16. |
Müller, “Restauration Dynamique de la Stabilité Rachidienne,” Tiré de la Sulzer Technical Review, Jan. 1999, Sulzer Management Ltd, Winterthur, Switzerland. |
Pennal et al., “Stenosis of the Lumbar Spinal Canal,” Clinical Neurosurgery: Proceedings of the Congress of Neurological Surgeons, St. Louis, Missouri, 1970, Tindall et al., eds., 1971, Ch. 6, pp. 86-105, vol. 18. |
Petrini et al., “Analisi Di Un'Esperienza Clinica Con Un Impianto Posteriore Ammortizzante,” S.O.T.I.M.I. Società di Ortopedia e Traumatologia dell'Italia Meridionale e Insulare 90° Congresso, Jun. 21-23, 2001, Paestum. |
Petrini et al., “Stabilizzazione Elastica,” Patologia Degenerativa del Rachide Lombare, Oct. 5-6, 2001, Rimini. |
Porter, “Spinal Stenosis and Neurogenic Claudication,” Spine, Sep. 1, 1996, pp. 2046-2052, vol. 21, No. 17. |
Pupin et al., “Clinical Experience with a Posterior Shock-Absorbing Implant in Lumbar Spine,” World Spine 1: First Interdisciplinary World Congress on Spinal Surgery and Related Disciplines, Aug. 27-Sep. 1, 2000, Berlin, Germany. |
Rengachary et al., “Cervical Spine Stabilization with Flexible, Multistrand Cable System,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 79-81, Ch. 7, Thieme, New York. |
Richards et al., “The Treatment Mechanism of an Interspinous Process Implant for Lumbar Neurogenic Intermittent Claudication,” Spine, 2005, pp. 744-749, vol. 30, No. 7. |
Schiavone et al., “The Use of Disc Assistance Prosthesis (DIAM) in Degenerative Lumbar Pathology: Indications, Technique, Results,” Italian J. Spinal Disorders, 2003, pp. 213-220, vol. 3, No. 2. |
Schlegel et al., “The Role of Distraction in Improving the Space Available in the Lumbar Stenotic Canal and Foramen,” Spine, 1994, pp. 2041-2047, vol. 19, No. 18. |
Senegas et al., “Le Recalibrage du Canal Lombaire, Alternative à la Laminectomie dans le Traitement des Sténoses du Canal Lombaire,” Revue de Chirurgie Orthopédique, 1988, pp. 15-22. |
Senegas et al., “Stabilisation Lombaire Souple,” Instabilité Vertébrales Lombaires, Gastambide, ed., 1995, pp. 122-132, Expansion Scientifique Française, Paris, France. |
Senegas, “La Ligamentoplastie Inter Vertébrale Lombaire, Alternative a L'Arthrodèse,” La Revue de Medécine Orthopédique, Jun. 1990, pp. 33-35, No. 20. |
Senegas, “La Ligamentoplastie Intervertébrale, Alternative à L'arthrodèse dans le Traitement des Instabilités Dégénératives,” Acta Othopaedica Belgica, 1991, pp. 221-226, vol. 57, Suppl. I. |
Senegas, “Mechanical Supplementation by Non-Rigid Fixation in Degenerative Intervertebral Lumbar Segments: the Wallis System,” Eur. Spine J., 2002, p. S164-S169, vol. 11, Suppl. 2. |
Senegas, “Rencontre,” Maîtrise Orthopédique, May 1995, pp. 1-3, No. 44. |
Serhan, “Spinal Implants: Past, Present, and Future,” 19th International IEEE/EMBS Conference, Oct. 30-Nov. 2, 1997, pp. 2636-2639, Chicago, Illinois. |
Spadea et al., “Interspinous Fusion for the Treatment of Herniated Intervertebral Discs: Utilizing a Lumbar Spinous Process as a Bone Graft,” Annals of Surgery, 1952, pp. 982-986, vol. 136, No. 6. |
Taylor et al., “Analyse d'une expérience clinique d'un implant postérieur amortissant,” Rachis Revue de Pathologie Vertébrale, Oct./Nov. 1999, vol. 11, No. 4-5, Gieda Inter Rachis. |
Taylor et al., “Technical and Anatomical Considerations for the Placement of a Posterior Interspinous Stabilizer,” 2004, pp. 1-10, Medtronic Sofamor Danek USA, Inc., Memphis, Tennessee. |
Taylor, “Biomechanical Requirements for the Posterior Control of the Centers of Rotation,” Swiss Spine Institute International Symposium: Progress in Spinal Fixation, Jun. 21-22, 2002, pp. 1-2, Swiss Spine Institute, Bern, Switzerland. |
Taylor, “Non-Fusion Technologies of the Posterior Column: A New Posterior Shock Absorber,” International Symposium on Intervertebral Disc Replacement and Non-Fusion-Technology, May 3-5, 2001, Spine Arthroplasty. |
Taylor, “Présentation à un an d'un dispositif amortissant d'assistance discale,” 5èmes journées Avances & Controverses en pathologic rachidienne, Oct. 1-2, 1998, Faculté Libre de Médecine de Lille. |
Tsuji et al., “Ceramic Interspinous Block (CISB) Assisted Anterior Interbody Fusion,” J. Spinal Disorders, 1990, pp. 77-86, vol. 3, No. 1. |
Vangilder, “Interspinous, Laminar, and Facet Posterior Cervical Bone Fusions,” Techniques in Spinal Fusion and Stabilization, Hitchon et al., eds., 1995, pp. 135-146, Ch. 13, Thieme, New York. |
Voydeville et al., “Experimental Lumbar Instability and Artificial Ligament,” Eur. J. Orthop. Surg. Traumatol., Jul. 15, 2000, pp. 167-176, vol. 10. |
Voydeville et al., “Lumbar Instability Treated by Intervertebral Ligamentoplasty with Smooth Wedges,” Orthopédie Traumatologie, 1992, pp. 259-264, vol. 2, No. 4. |
Waldemar Link, “Spinal Surgery: Instrumentation and Implants for Spinal Surgery,” 1981, Link America Inc., New Jersey. |
Wiltse et al., “The Treatment of Spinal Stenosis,” Clinical Orthopaedics and Related Research, Urist, ed., Mar.-Apr. 1976, pp. 83-91, No. 115. |
Wisneski et al., “Decompressive Surgery for Lumbar Spinal Stenosis,” Seminars in Spine Surgery, Wiesel, ed., Jun. 1994, pp. 116-123, vol. 6, No. 2. |
Zdeblick et al., “Two-Point Fixation of the Lumbar Spine Differential Stability in Rotation,” Spine, 1991, pp. S298-S301, vol. 16, No. 6, Supplement. |
Zucherman et al., “Clinical Efficacy of Spinal Instrumentation in Lumbar Degenerative Disc Disease,” Spine, Jul. 1992, pp. 834-837, vol. 17, No. 7. |
Number | Date | Country | |
---|---|---|---|
20100114320 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11438891 | May 2006 | US |
Child | 12649409 | US |