The present invention pertains to the field of surgical instruments and techniques, and more particularly to surgical instruments and techniques for use in reduced or restricted working spaces.
Certain surgical procedures require the surgeon to perform delicate surgical operations on tissues within the body that are moving or otherwise unstable. The ability to stabilize or immobilize a surgical site provides greatly improved surgical accuracy and precision and reduces the time required to complete a particular procedure. A large and growing number of surgeons are performing successful coronary artery bypass graft (CABG) surgery on the beating heart by temporarily stabilizing or immobilizing a localized area of the beating heart. Methods and apparatus for performing a CABG procedure on a beating heart are described in U.S. Pat. Nos. 5,894,843 and 5,727,569 to Benetti et al., both of which are incorporated herein, in their entireties, by reference thereto.
In a typical CABG procedure, a blocked or restricted section of coronary artery, which normally supplies blood to some portion of the heart, is bypassed using a source vessel or graft vessel to re-establish blood flow to the artery downstream of the blockage. This procedure requires the surgeon to create a fluid connection, or anastomosis, between the source or graft vessel and an arteriotomy or incision in the coronary artery. Forming an anastomosis between two vessels in this manner is a particularly delicate procedure requiring the precise placement of tiny sutures in the tissue surrounding the arteriotomy in the coronary artery and the source or graft vessel.
The rigors of creating a surgical anastomosis between a coronary artery and a source vessel or graft vessel demands that the target site for the anastomosis be substantially motionless. To this end, a number of devices have been developed which are directed to stabilizing a target site on the beating heart for the purpose of completing a cardiac surgical procedure, such as completing an anastomosis. Stabilization may be provided using a device that provides a mechanical or compression force to the tissue or by a device which applies a negative pressure or suction to the tissue. Representative devices useful for stabilizing a beating heart are described, for example, in U.S. Pat. Nos. 5,894,843; 5,727,569; 5,836,311 and 5,865,730, each of which is incorporated herein, in its entirety, by reference thereto.
As beating heart procedures have evolved, regardless of whether compression or negative pressure has been used to stabilize or immobilize the heart, new challenges have arisen. For example, surgeons may gain access to the heart using a number of different approaches, both open and closed chest, such as through a sternotomy, mini-sternotomy, thoracotomy or mini-thoracotomy, or less invasively through a port provided within the chest cavity of the patient, e.g., between the ribs or in a subxyphoid area, with or without the visual assistance of a thoracoscope. Accordingly, the devices used to stabilize the heart must be configured to accommodate the particular approach chosen. For example, when a closed chest approach is used such as a port access approach wherein the device is introduced into the body cavity through a small access port or stab wound, the device must be designed to be advanced through such small openings without damaging the device or any internal body structures. A continuing need remains for new and better instruments that are capable of being delivered through small openings and still function satisfactorily in a closed-chest environment.
Furthermore, in addition to addressing delivery problems of instruments though small access openings, the working space within a closed-chest surgical environment is extremely limited, allowing much less room to maneuver the instruments, as compared to the space provided in an open-chest surgical site, once they have been successfully delivered or placed in the operative site. Thus, new and better approaches, tools and techniques for controlling instruments in a closed chest environment are needed.
As such, there is continued interest in the development of new devices and methods for easily and effectively stabilizing or immobilizing tissue, e.g., a beating heart, in a limited space environment, such as occurs during closed-chest procedures. Of particular interest would be the development of such devices and methods of use which may be used in a variety of surgical approaches, including a sternotomy, mini-sternotomy, thoracotomy, mini-thoracotomy, transabdominal entry, and particularly in less invasive techniques such as endoscopic or port access procedures (e.g., between the ribs or in a subxyphoid area), with or without the visual assistance of a thoracoscope. Similar interest exists for the development of devices that are operable in other reduced-access surgical environments within a patient.
Devices and methods are provided for stabilizing tissue within a patient's body, wherein such a device is adapted to assume a reduced configuration and an operating configuration. The device assumes the reduced configuration for passage through a small opening to deliver a working end of the device to a site of the tissue to be stabilized. Such a device may comprise a base member, and first and second contact members extending distally from the base member, wherein the contact members are mounted for rotation with respect to said base member. The contact members each have a contact surface adapted to contact a surface of the tissue. When the device is in the operating configuration, the contact surfaces face in a direction to contact the tissue. When the device is in the reduced configuration, the contact members have been rotated with respect to one another so that the contact surfaces substantially face one another.
Devices and methods for stabilizing tissue within a patient's body are provided, wherein such a device is adapted to assume a reduced configuration for passage through a small opening to deliver a working end of the device to a site of the tissue to be stabilized. The device includes first and second contact members extending from a base member, and wherein the contact members are mounted for rotation with respect to the base member. The contact members each have a contact surface adapted to contact a surface of the tissue. The contact members are configured to assume a reduced configuration and an operating configuration. When the contact members are in the operating configuration, the contact surfaces face in a direction to contact the tissue. When the contact members are in the reduced configuration, the contact members have been rotated with respect to one another so that the contact surfaces substantially face one another. The arm may be configured to assume an unlocked configuration and a locked configuration, wherein the arm is adjustable relative to the contact members when in the unlocked configuration, and wherein the arm is fixed relative to the contact members when in the locked configuration. A locking member may be provided which is configured to facilitate locking of the arm, wherein upon locking the arm in the locked configuration, the contact members are also locked against rotation with respect to the base member.
A method of stabilizing tissue is provided to include the steps of: providing a stabilizing device having contact members configured to assume a reduced configuration and an operating configuration; positioning the contact members in the reduced configuration; passing the contact members through an opening, wherein a largest cross-sectional dimension of the contact members in the reduced configuration is smaller than a largest cross-sectional dimension of the opening, and wherein a largest cross-sectional dimension of the contact members in the operating configuration is larger than the largest cross-sectional dimension of the opening; and contacting the tissue with the contact surfaces of the contact members, with the contact members in the operating configuration, wherein the contact members automatically move from the reduced configuration to the operating configuration upon exiting the opening.
Methods and devices are provided for manipulating a surgical instrument in a reduced-access surgical site, wherein the surgical device comprises a working end that, when in an operating configuration, has a largest cross-sectional dimension greater than a largest cross-sectional dimension of an opening provided in a patient. Such a device may be manipulated by withdrawing the device proximally in a direction out of the patient; contacting a portion of the working end against a perimeter of the opening, wherein the working end automatically collapses from the operating configuration to a reduced configuration, and wherein a largest cross-sectional dimension of the working end, in the reduced configuration, is smaller that the largest cross-sectional dimension of the opening; and removing the device from the surgical site by passing the working end in the reduced configuration through the opening.
These and other advantages and features of the invention will become apparent to those persons skilled in the art upon reading the details of the devices and methods as more fully described below.
Before the present devices and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a foot” includes a plurality of such feet and reference to “the biasing member” includes reference to one or more biasing members and equivalents thereof known to those skilled in the art, and so forth.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
The term “open-chest procedure” refers to a surgical procedure wherein access for performing the procedure is provided by a full sternotomy, wherein the sternum is incised and the patient's ribs are separated using a sternal retractor to open the chest cavity for access thereto.
The term “closed-chest procedure” refers to a surgical procedure wherein access for performing the procedure is provided by one or more openings which are much smaller than the opening provided by an open-chest procedure, and wherein a traditional sternotomy is not performed. Closed-chest procedures may include those where access is provided by any of a number of different approaches, including mini-sternotomy, thoracotomy or mini-thoracotomy, or less invasively through a port provided within the chest cavity of the patient, e.g., between the ribs or in a subxyphoid area, with or without the visual assistance of a thoracoscope.
The term “reduced-access surgical site” refers to a surgical site or operating space that has not been opened fully to the environment for access by a surgeon. Thus, for example, closed-chest procedures are carried out in reduced-access surgical sites. Other procedures, including procedures outside of the chest cavity, such as in the abdominal cavity or other locations of the body, may be carried out as reduced access procedures in reduced-access surgical sites. For example, the surgical site may be accessed through one or more ports, cannulae, or other small opening(s). What is often referred to as endoscopic surgery is surgery carried out in a reduced-access surgical site.
As alluded to above, surgical procedures carried out on a patient by “closed-chest” procedures or in “reduced-access surgical sites” allow much less free space for the surgeon to work in than do more conventional “open-chest” or open-site surgical procedures such as those where access is gained through a sternotomy or an open abdominal cavity, for example. As such, the instruments used during reduced-access procedures must be as non-obstructive as possible and require only minimal amounts of space for their use. The present invention provides devices and methods that are useful for performing surgical procedures where working space is limited.
Contact members 12a and 12b of the stabilizer foot extend distally and longitudinally from base 16 and are rotatably mounted thereto so as to be rotatable about longitudinal axes in the directions of the arrows shown. In the example shown in
The example of
A variety of alternative configurations may be employed for delivering negative pressure through contact members 12a,12b to deploy the negative pressure to the tissue surface through contact surfaces 12c, including, but not limited to, ports, open vacuum chambers or diffused vacuum chambers, each with or without a perimeter seal around each contact member or port, etc. Further detailed descriptions of vacuum configurations that may be employed in contact members 12a,12b are found in U.S. Pat. Nos. 6,032,672; 6,511,416; 6,406,424; 6,758,808, co-pending application Ser. No. 10/283,784 filed Oct. 29, 2002 and titled Tissue Stabilizer and Methods of Using the Same; and application Ser. No. 11/137,255, each of which is incorporated herein, in its entirety, by reference thereto.
Biasing members 24 (such as torsion springs, leaf springs, or other members that can convert kinetic energy and store it as potential energy for later re-conversion to apply the energy as a spring force) retain less biasing force in the configuration shown in
Stops 26 are provided to abut contact members 12a,12b when contact members 12a,12b have reached the fully expanded or operational configuration (
Alternative to the use of suction for stabilizing tissue, a device as described herein may utilize mechanical force to provide a stabilization force to the tissue. In this type of an arrangement, the contact surfaces 12c of the working end 12 may be provided as planar surfaces, or surfaces designed to substantially conform to a topology of the tissue surface in an area that is to be stabilized. Contact surfaces may include friction enhancing features, such as knurling or other roughened surface, or have a layer or coating that shows increased friction with the tissue to be stabilized relative to the material making up the remainder of contact members 12a,12b, or other friction enhancing features.
A variety of alternative configurations may be employed for delivering mechanical stabilizing forces through contact members 12a,12b. Further detailed descriptions of contact member configurations for mechanical stabilization that may be employed in contact members 12a,12b are found in U.S. Pat. Nos. 6,346,077; 6,331,158; 6,406,424; co-pending application Ser. No. 10/283,784; and application Ser. No. 11/137,255, each of which is incorporated herein, in its entirety, by reference thereto.
Working ends 12 employing contact members 12a,12b that apply mechanical stabilizing forces, without the application of vacuum to the tissue, may also be constructed to move between an operational configuration and a collapsed or reduced cross-sectional area configuration, similar to that described above with regard to configurations that employ suction.
After use of device 10, when withdrawing the device through a small opening, tube 28 or the like, as the operator begins to withdraw device 10 proximally with respect to the tube or opening, pressure or force applied to rods 23 as they come into contact with the tube or opening causes rotation of rings 25a,25b and rotation of feet 12a,12b toward the collapsed configuration so that working end 12 can pass through the tube or opening for removal thereof. In order to initially insert working end 12 into a small opening, the operator may manually collapse feet 12a,12b by rotating them towards one another and then inserting the collapsed feet 12a,12b into the opening.
Biasing member 24 may be a pair of elastically deformable members, or typically, may be a single elastically deformable member such as a wire preformed from spring steel into the shape shown in
Biasing member 24 may be movable mounted in a slot or space 26 that permits movement of biasing members 24 (or portions of biasing member 24 when a single biasing member is provided) toward one another as biasing member is elastically deformed as contact members 12a,12b are rotated and squeezed together toward the reduced or closed configuration, sequentially shown in
Contact members 12a, 12b are mounted to biasing member(s) 24 so that contact members 12a12b cannot rotate about their longitudinal axes with respect to biasing member 24. Thus, when contact members are forced to the intermediate configuration shown in
In addition to the rotation of contact members 12a, 12b about their longitudinal axis, the movement of contact members 12a,12b to the reduced or closed configuration in this example includes tilting of contact members 12a,12b to substantially align contact members 12a,12b with the longitudinal axis L1 of device 10 as shown in
It should be further noted that the rotation and tilting actions do not necessarily proceed sequentially. For example, contact members 12a,12b may begin to be tilted before they are fully rotated to the closed position shown in
Stops 26 may be provided to define the end position of contact members 12a,12b in the open or operating configuration. Stops 26 may function as end points for both rotation and tilting so that biasing member 24 retains some potential energy to be applied about both the rotational and tilting axes (A1,A2,A3), so that positive biasing forces are applied in both the tilting and rotational directions to maintain contact members 12a,12b against stops 26 during usage. Thus, for example, in the case where contact members 12a,12b apply suction to stabilize the tissue, when suction is applied and contact members 12a,12b are slightly raised or retracted to apply additional tension to the tissue grasped by contact members 12a,12b, the residual biasing forces applied by biasing member 24 ensure that contact members 12a,12b remain in the operational position against stops 26 and are not rotated or tilted in the directions toward the closed configuration.
In embodiments where arm 14 is permanently connected to the distal end portion of device 10, the interconnection between arm 14, base 16 and contact members 12a,12b may be arranged to combine the functions of locking the position/orientation of the contact members 12a,12b as well as arm 14 with the same mechanism. For example, as shown in the partial, sectional view of
The distal-most ball joint 18 may be fixed to or integral with base 16 as shown, or halves of such ball joint may be fixed to or integral with proximal ends of contact members 12a,12b. A locking member 30, such as a T-bar or disk with a stem extending perpendicular thereto, or the like is connected to a cable 32 or other flexible line resistant to deformation under tension, and cable 32 passes through the entirety of arm 14 to be connected with a tensioner at a proximal end portion of the device (not shown). Configurations for such a tensioner may be found by referring to U.S. Pat. No. 6,758,808, or U.S. application Ser. No. 10/799,528 which is incorporated herein, in its entirety, by reference thereto. After inserting the working end 12 of device 10 through a tube or other small opening and allowing contact members 12a,12b to assume the operational configuration, device 10 may be locked into a configuration determined by the operator to be useful for stabilizing tissue that is contacted by contact members 12a12b. Thus, the position/orientation of contact members 12a,12b is fixed with the same action that fixes the orientation/positioning of arm 14.
To lock device 10 into an operational configuration, tension is applied to cable 32 (in the direction of arrow F1) which in turn forces sleeves 14s and balls 14b in the direction of arrows F2, while providing an opposite force on locking member 30, which draws locking member 30 into contact with rods, shafts or axles 27 with sufficient force to prevent rotation of the rods, shafts or axles 27 with respect to base 16. Shafts rods or axles may be provided with one or more “flat spots” 27f (see
Note that tension may be released or partially released from tensioning member 32 to allow slight repositioning of the components of device 10 and then tension may be re-established with sufficient force to lock all components for use in a different orientation.
While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
452131 | Haughawout | May 1891 | A |
810675 | Richter | Jan 1906 | A |
820721 | Kohlbach | May 1906 | A |
1706500 | Smith | Mar 1929 | A |
2082782 | Allen | Jun 1937 | A |
2233561 | Kalle | Mar 1941 | A |
2296793 | Kirschbaum | Sep 1942 | A |
2590527 | Fluck | Mar 1952 | A |
2693795 | Grieshaber | Nov 1954 | A |
2863444 | Winsten | Dec 1958 | A |
3096962 | Meijs | Jul 1963 | A |
3361133 | Kimberley et al. | Jan 1968 | A |
3392722 | Jorgensen | Jul 1968 | A |
3466079 | Mammel | Sep 1969 | A |
3584822 | Oram | Jun 1971 | A |
3683926 | Suzuki | Aug 1972 | A |
3720433 | Rosfelder | Mar 1973 | A |
3782387 | Falabella | Jan 1974 | A |
3783873 | Jacobs | Jan 1974 | A |
3807406 | Rafferty et al. | Apr 1974 | A |
3858926 | Ottenhues | Jan 1975 | A |
3882855 | Schulte et al. | May 1975 | A |
3912317 | Ohnaka | Oct 1975 | A |
3916909 | Kletschka et al. | Nov 1975 | A |
3983863 | Janke et al. | Oct 1976 | A |
4047532 | Phillips et al. | Sep 1977 | A |
4048987 | Hurson | Sep 1977 | A |
4049000 | Williams | Sep 1977 | A |
4049002 | Kletschka et al. | Sep 1977 | A |
4049484 | Priest et al. | Sep 1977 | A |
4052980 | Grams et al. | Oct 1977 | A |
4094484 | Galione et al. | Jun 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4096864 | Kletschka et al. | Jun 1978 | A |
4185636 | Gabbay et al. | Jan 1980 | A |
4217890 | Owens | Aug 1980 | A |
4226228 | Shin et al. | Oct 1980 | A |
4230119 | Blum | Oct 1980 | A |
4300541 | Burgin | Nov 1981 | A |
4300564 | Furihata | Nov 1981 | A |
4306561 | de Medinaceli | Dec 1981 | A |
4350160 | Kolesov et al. | Sep 1982 | A |
4366819 | Kaster | Jan 1983 | A |
4368736 | Kaster | Jan 1983 | A |
4421107 | Estes et al. | Dec 1983 | A |
4428368 | Torii | Jan 1984 | A |
4434791 | Darnell | Mar 1984 | A |
4457300 | Budde | Jul 1984 | A |
4461284 | Fackler | Jul 1984 | A |
4492229 | Grunwald | Jan 1985 | A |
4597382 | Perez, Jr. et al. | Jul 1986 | A |
4617916 | LeVahn et al. | Oct 1986 | A |
4627421 | Symbas et al. | Dec 1986 | A |
4637377 | Loop | Jan 1987 | A |
4646747 | Lundback | Mar 1987 | A |
4688570 | Kramer et al. | Aug 1987 | A |
4702230 | Pelta | Oct 1987 | A |
4708510 | McConnell et al. | Nov 1987 | A |
D293470 | Adler | Dec 1987 | S |
4718418 | L'Esperance, Jr. | Jan 1988 | A |
4726356 | Santilli et al. | Feb 1988 | A |
4726358 | Brady | Feb 1988 | A |
4736749 | Lundback | Apr 1988 | A |
4747394 | Watanabe | May 1988 | A |
4747395 | Brief | May 1988 | A |
4754746 | Cox | Jul 1988 | A |
4787662 | Dewez | Nov 1988 | A |
4803984 | Narayanan et al. | Feb 1989 | A |
4808163 | Laub | Feb 1989 | A |
4827926 | Carol | May 1989 | A |
4829985 | Couetil | May 1989 | A |
4841967 | Chang et al. | Jun 1989 | A |
4852552 | Chaux | Aug 1989 | A |
4854318 | Solem et al. | Aug 1989 | A |
4858552 | Glatt et al. | Aug 1989 | A |
4863133 | Bonnell | Sep 1989 | A |
4865019 | Phillips | Sep 1989 | A |
4884559 | Collins | Dec 1989 | A |
4904012 | Nishiguchi et al. | Feb 1990 | A |
4925443 | Heilman et al. | May 1990 | A |
4931341 | Haffer et al. | Jun 1990 | A |
4949707 | LeVahn et al. | Aug 1990 | A |
4949927 | Madocks et al. | Aug 1990 | A |
4955896 | Freeman | Sep 1990 | A |
4957477 | Lundback | Sep 1990 | A |
4962758 | Lasner et al. | Oct 1990 | A |
4971037 | Pelta | Nov 1990 | A |
4973300 | Wright | Nov 1990 | A |
4989587 | Farley | Feb 1991 | A |
4991566 | Shulman et al. | Feb 1991 | A |
4991578 | Cohen | Feb 1991 | A |
4993862 | Pelta | Feb 1991 | A |
5009660 | Clapham | Apr 1991 | A |
5011469 | Buckberg et al. | Apr 1991 | A |
5019086 | Neward | May 1991 | A |
5025779 | Bugge | Jun 1991 | A |
5036868 | Berggren et al. | Aug 1991 | A |
5037428 | Picha et al. | Aug 1991 | A |
5052373 | Michelson | Oct 1991 | A |
5053041 | Ansari et al. | Oct 1991 | A |
5080088 | LeVahn | Jan 1992 | A |
5098369 | Heilman et al. | Mar 1992 | A |
5098432 | Wagenknecht et al. | Mar 1992 | A |
5119804 | Anstadt | Jun 1992 | A |
5125395 | Adair | Jun 1992 | A |
5131905 | Grooters | Jul 1992 | A |
5133724 | Wilson, Jr. et al. | Jul 1992 | A |
5139517 | Corral | Aug 1992 | A |
5150706 | Cox et al. | Sep 1992 | A |
5152777 | Goldberg et al. | Oct 1992 | A |
5159921 | Hoover | Nov 1992 | A |
RE34150 | Santilli et al. | Dec 1992 | E |
5167223 | Koros et al. | Dec 1992 | A |
5171254 | Sher | Dec 1992 | A |
5192070 | Nagai et al. | Mar 1993 | A |
5196003 | Bilweis | Mar 1993 | A |
5231974 | Giglio et al. | Aug 1993 | A |
5256132 | Snyders | Oct 1993 | A |
5268640 | Du et al. | Dec 1993 | A |
5287861 | Wilk | Feb 1994 | A |
5290082 | Palmer et al. | Mar 1994 | A |
5293863 | Zhu et al. | Mar 1994 | A |
5300087 | Knoepfler | Apr 1994 | A |
5306234 | Johnson | Apr 1994 | A |
5318013 | Wilk | Jun 1994 | A |
5336252 | Cochen | Aug 1994 | A |
5339801 | Poloyko et al. | Aug 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5363841 | Coker | Nov 1994 | A |
5363882 | Chikama | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5381788 | Matula et al. | Jan 1995 | A |
5382756 | Dagan | Jan 1995 | A |
5383840 | Heilman et al. | Jan 1995 | A |
5417709 | Slater | May 1995 | A |
5425705 | Evard et al. | Jun 1995 | A |
5433700 | Peters | Jul 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5453078 | Valentine et al. | Sep 1995 | A |
5467763 | McMahon et al. | Nov 1995 | A |
5480425 | Ogilive | Jan 1996 | A |
5484391 | Buckman, Jr. et al. | Jan 1996 | A |
5498256 | Furnish | Mar 1996 | A |
5503617 | Jako | Apr 1996 | A |
5509890 | Kazama | Apr 1996 | A |
5512037 | Russell et al. | Apr 1996 | A |
5513827 | Michelson | May 1996 | A |
5514075 | Moll et al. | May 1996 | A |
5514076 | Ley | May 1996 | A |
5520609 | Moll et al. | May 1996 | A |
5520610 | Giglio et al. | May 1996 | A |
5522819 | Graves et al. | Jun 1996 | A |
5529571 | Daniel | Jun 1996 | A |
5536251 | Evard et al. | Jul 1996 | A |
5547458 | Ortiz et al. | Aug 1996 | A |
5554101 | Matula et al. | Sep 1996 | A |
RE35352 | Peters | Oct 1996 | E |
5564682 | Tsuji | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5571074 | Buckman, Jr. et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573496 | McPherson et al. | Nov 1996 | A |
5578061 | Stroetmann et al. | Nov 1996 | A |
5582580 | Buckman, Jr. et al. | Dec 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5607421 | Jeevanandam et al. | Mar 1997 | A |
5607446 | Beehler et al. | Mar 1997 | A |
5613937 | Garrison et al. | Mar 1997 | A |
5613950 | Yoon | Mar 1997 | A |
5632746 | Middleman et al. | May 1997 | A |
5651378 | Metheny et al. | Jul 1997 | A |
5662300 | Michelson | Sep 1997 | A |
5667480 | Knight et al. | Sep 1997 | A |
5707362 | Yoon | Jan 1998 | A |
5713951 | Garrison et al. | Feb 1998 | A |
5722935 | Christian | Mar 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5730757 | Benetti et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5749892 | Vierra et al. | May 1998 | A |
5755660 | Tyagi | May 1998 | A |
5755682 | Knudson | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5772583 | Wright et al. | Jun 1998 | A |
5782746 | Wright | Jul 1998 | A |
5782813 | Yoon | Jul 1998 | A |
5789661 | Fauque et al. | Aug 1998 | A |
5795291 | Koros et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5803902 | Sienkiewicz et al. | Sep 1998 | A |
5807243 | Vierra et al. | Sep 1998 | A |
5813410 | Levin | Sep 1998 | A |
5818231 | Smith | Oct 1998 | A |
5820555 | Watkins, III et al. | Oct 1998 | A |
5836311 | Borst et al. | Nov 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846193 | Wright et al. | Dec 1998 | A |
5846194 | Wasson et al. | Dec 1998 | A |
5864275 | Ohashi et al. | Jan 1999 | A |
5865730 | Fox et al. | Feb 1999 | A |
5868770 | Rygaard | Feb 1999 | A |
5871489 | Ovil | Feb 1999 | A |
5875782 | Ferrari et al. | Mar 1999 | A |
5876332 | Looney | Mar 1999 | A |
5879291 | Kolata et al. | Mar 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5882299 | Rastegar et al. | Mar 1999 | A |
5882345 | Yoon | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5888247 | Benetti | Mar 1999 | A |
5891017 | Swindle et al. | Apr 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5899425 | Corey, Jr. et al. | May 1999 | A |
5906607 | Taylor et al. | May 1999 | A |
5908378 | Kovacs et al. | Jun 1999 | A |
5908382 | Koros | Jun 1999 | A |
5913876 | Taylor et al. | Jun 1999 | A |
5921979 | Kovacs et al. | Jul 1999 | A |
5924424 | Stevens et al. | Jul 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5944658 | Koros et al. | Aug 1999 | A |
5944736 | Taylor et al. | Aug 1999 | A |
5947125 | Benetti | Sep 1999 | A |
5947896 | Sherts et al. | Sep 1999 | A |
5957832 | Taylor et al. | Sep 1999 | A |
5957835 | Anderson et al. | Sep 1999 | A |
5961481 | Sterman et al. | Oct 1999 | A |
5967972 | Santilli et al. | Oct 1999 | A |
5967973 | Sherts et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5976069 | Navia et al. | Nov 1999 | A |
5976080 | Farascioni et al. | Nov 1999 | A |
5976171 | Taylor et al. | Nov 1999 | A |
5984864 | Fox et al. | Nov 1999 | A |
5984865 | Farley et al. | Nov 1999 | A |
5984867 | Deckman et al. | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
6007486 | Hunt et al. | Dec 1999 | A |
6007523 | Mangosong | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6013027 | Khan et al. | Jan 2000 | A |
6015378 | Borst et al. | Jan 2000 | A |
6015382 | Zwart et al. | Jan 2000 | A |
6015427 | Mueller et al. | Jan 2000 | A |
6017304 | Vierra et al. | Jan 2000 | A |
6019722 | Spence et al. | Feb 2000 | A |
6027476 | Sterman et al. | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030340 | Maffei et al. | Feb 2000 | A |
D421803 | Koros et al. | Mar 2000 | S |
6032672 | Taylor | Mar 2000 | A |
6033362 | Cohn | Mar 2000 | A |
6036641 | Taylor et al. | Mar 2000 | A |
6042539 | Harper et al. | Mar 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6050266 | Benetti et al. | Apr 2000 | A |
6063021 | Hossain et al. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6071235 | Furnish et al. | Jun 2000 | A |
6071295 | Takahashi | Jun 2000 | A |
6074343 | Nathanson et al. | Jun 2000 | A |
6099468 | Santilli et al. | Aug 2000 | A |
6102853 | Scirica et al. | Aug 2000 | A |
6102854 | Carfier et al. | Aug 2000 | A |
6110187 | Donlon | Aug 2000 | A |
6120436 | Anderson et al. | Sep 2000 | A |
6132370 | Furnish et al. | Oct 2000 | A |
6139492 | Vierra et al. | Oct 2000 | A |
6149583 | Vierra et al. | Nov 2000 | A |
6152874 | Looney et al. | Nov 2000 | A |
6159201 | Hamilton et al. | Dec 2000 | A |
6159231 | Looney et al. | Dec 2000 | A |
6183486 | Snow et al. | Feb 2001 | B1 |
6190311 | Glines et al. | Feb 2001 | B1 |
6193652 | Berky et al. | Feb 2001 | B1 |
6193732 | Frantzen et al. | Feb 2001 | B1 |
6199556 | Benetti et al. | Mar 2001 | B1 |
6200263 | Person | Mar 2001 | B1 |
6210323 | Gilhuly et al. | Apr 2001 | B1 |
6213940 | Sherts et al. | Apr 2001 | B1 |
6213941 | Benetti et al. | Apr 2001 | B1 |
6224545 | Cocchia et al. | May 2001 | B1 |
6228068 | Yoon | May 2001 | B1 |
6231506 | Hu et al. | May 2001 | B1 |
6231585 | Takahashi et al. | May 2001 | B1 |
6251065 | Kochamba | Jun 2001 | B1 |
6254535 | Furnish et al. | Jul 2001 | B1 |
6264605 | Scirica et al. | Jul 2001 | B1 |
6283912 | Hu et al. | Sep 2001 | B1 |
6290644 | Green et al. | Sep 2001 | B1 |
6308104 | Taylor et al. | Oct 2001 | B1 |
6315717 | Benetti et al. | Nov 2001 | B1 |
6328688 | Borst et al. | Dec 2001 | B1 |
6331157 | Hancock | Dec 2001 | B2 |
6331158 | Hu et al. | Dec 2001 | B1 |
6332468 | Benetti | Dec 2001 | B1 |
6334843 | Borst et al. | Jan 2002 | B1 |
6336898 | Borst et al. | Jan 2002 | B1 |
6338710 | Takahashi et al. | Jan 2002 | B1 |
6338712 | Spence et al. | Jan 2002 | B2 |
6346077 | Taylor et al. | Feb 2002 | B1 |
6348036 | Looney et al. | Feb 2002 | B1 |
6350229 | Borst et al. | Feb 2002 | B1 |
6355028 | Castaneda et al. | Mar 2002 | B2 |
6361493 | Spence et al. | Mar 2002 | B1 |
6364826 | Borst et al. | Apr 2002 | B1 |
6371906 | Borst et al. | Apr 2002 | B1 |
6371910 | Zwart et al. | Apr 2002 | B1 |
6375611 | Voss et al. | Apr 2002 | B1 |
6379297 | Furnish et al. | Apr 2002 | B1 |
6390976 | Spence et al. | May 2002 | B1 |
6394948 | Borst et al. | May 2002 | B1 |
6394951 | Taylor et al. | May 2002 | B1 |
6395026 | Aboul-Hosn et al. | May 2002 | B1 |
6398726 | Romans et al. | Jun 2002 | B1 |
6406424 | Williamson et al. | Jun 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6447443 | Keogh et al. | Sep 2002 | B1 |
6458079 | Cohn et al. | Oct 2002 | B1 |
6464629 | Boone et al. | Oct 2002 | B1 |
6464630 | Borst et al. | Oct 2002 | B1 |
6464690 | Castaneda et al. | Oct 2002 | B1 |
6468265 | Evans et al. | Oct 2002 | B1 |
6471644 | Sidor, Jr. | Oct 2002 | B1 |
6475142 | Parsons et al. | Nov 2002 | B1 |
6478028 | Paolitto et al. | Nov 2002 | B1 |
6478029 | Boyd et al. | Nov 2002 | B1 |
6478728 | Wright | Nov 2002 | B1 |
6478729 | Rogers et al. | Nov 2002 | B1 |
6478734 | Taylor et al. | Nov 2002 | B1 |
6482151 | Vierra et al. | Nov 2002 | B1 |
6494211 | Boyd et al. | Dec 2002 | B1 |
6500170 | Palmer et al. | Dec 2002 | B2 |
6503245 | Palmer et al. | Jan 2003 | B2 |
6506149 | Peng et al. | Jan 2003 | B2 |
6511416 | Green, II et al. | Jan 2003 | B1 |
6537212 | Sherts et al. | Mar 2003 | B2 |
6554823 | Palmer et al. | Apr 2003 | B2 |
6565508 | Scirica et al. | May 2003 | B2 |
6579281 | Palmer et al. | Jun 2003 | B2 |
6582420 | Castaneda et al. | Jun 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6589166 | Knight et al. | Jul 2003 | B2 |
6592573 | Castaneda et al. | Jul 2003 | B2 |
6599240 | Puchovsky et al. | Jul 2003 | B2 |
6602189 | Bennetti et al. | Aug 2003 | B1 |
6607478 | Williams | Aug 2003 | B2 |
6607479 | Kochamba et al. | Aug 2003 | B1 |
6610008 | Spence et al. | Aug 2003 | B1 |
6610009 | Person | Aug 2003 | B2 |
6613039 | Namba | Sep 2003 | B1 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6626830 | Califiore et al. | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6644319 | Benetti | Nov 2003 | B1 |
6652454 | Hu et al. | Nov 2003 | B2 |
6656113 | Green, II et al. | Dec 2003 | B2 |
6659939 | Moll et al. | Dec 2003 | B2 |
6663645 | Nishtala et al. | Dec 2003 | B2 |
6673013 | Benetti et al. | Jan 2004 | B2 |
6685632 | Hu et al. | Feb 2004 | B1 |
6689054 | Furnish et al. | Feb 2004 | B2 |
6695868 | Looney et al. | Feb 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6701930 | Benetti et al. | Mar 2004 | B2 |
6702732 | Lau et al. | Mar 2004 | B1 |
6705988 | Spence et al. | Mar 2004 | B2 |
6726622 | Spence et al. | Apr 2004 | B2 |
6730020 | Peng et al. | May 2004 | B2 |
6736774 | Benetti et al. | May 2004 | B2 |
6740028 | Boone et al. | May 2004 | B2 |
6743169 | Taylor et al. | Jun 2004 | B1 |
6743170 | Spence et al. | Jun 2004 | B1 |
6746467 | Taylor et al. | Jun 2004 | B1 |
6755780 | Borst et al. | Jun 2004 | B2 |
6758808 | Paul et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6817972 | Snow | Nov 2004 | B2 |
6821247 | Vierra et al. | Nov 2004 | B2 |
6849044 | Voss et al. | Feb 2005 | B1 |
6852075 | Taylor | Feb 2005 | B1 |
6893391 | Taylor | May 2005 | B2 |
6899670 | Peng et al. | May 2005 | B2 |
6936001 | Snow | Aug 2005 | B1 |
7025722 | Vierra et al. | Apr 2006 | B2 |
7217240 | Snow | May 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
20010023311 | Snow | Sep 2001 | A1 |
20020082625 | Huxel et al. | Jun 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020120177 | Borst et al. | Aug 2002 | A1 |
20020124856 | Borst et al. | Sep 2002 | A1 |
20020161277 | Boone et al. | Oct 2002 | A1 |
20030060685 | Houser et al. | Mar 2003 | A1 |
20030078470 | Borst et al. | Apr 2003 | A1 |
20030158463 | Julian et al. | Aug 2003 | A1 |
20040082837 | Willis | Apr 2004 | A1 |
20040087834 | Benetti et al. | May 2004 | A1 |
20040092798 | Spence et al. | May 2004 | A1 |
20040092799 | Hu et al. | May 2004 | A1 |
20040143168 | Hu et al. | Jul 2004 | A1 |
20040176659 | Peng et al. | Sep 2004 | A1 |
20040225195 | Spence et al. | Nov 2004 | A1 |
20040236184 | Benetti et al. | Nov 2004 | A1 |
20050010197 | Lau et al. | Jan 2005 | A1 |
20050033111 | Taylor | Feb 2005 | A1 |
20050038316 | Taylor | Feb 2005 | A1 |
938967 | Jul 1982 |
Number | Date | Country |
---|---|---|
31 38 589 | Apr 1983 | DE |
90 04 513 | Jun 1990 | DE |
41 39 695 | Jun 1993 | DE |
697 21 099 | Feb 2004 | DE |
0 293 760 | Dec 1988 | EP |
0 293 760 | Dec 1988 | EP |
0 630 629 | May 1994 | EP |
0 668 058 | Feb 1995 | EP |
0 792 620 | Feb 1997 | EP |
0 792 620 | Feb 1997 | EP |
0 792 620 | Feb 1997 | EP |
0 803 228 | Apr 1997 | EP |
0 820 721 | Jul 1997 | EP |
0 791 329 | Aug 1997 | EP |
0 791 330 | Aug 1997 | EP |
0 808 606 | Nov 1997 | EP |
0 919 193 | Oct 1998 | EP |
0 993 806 | Sep 1999 | EP |
473.451 | Jan 1915 | GB |
168216 | Sep 1921 | GB |
2 233 561 | Jan 1991 | GB |
2 267 827 | Dec 1993 | GB |
938967 | Jul 1982 | SU |
WO 8704081 | Jul 1987 | WO |
WO 8800481 | Jan 1988 | WO |
WO 9309720 | May 1993 | WO |
WO 9414383 | Jul 1994 | WO |
WO 9418881 | Sep 1994 | WO |
WO 9501757 | Jan 1995 | WO |
WO 9515715 | Jun 1995 | WO |
WO 9517127 | Jun 1995 | WO |
WO 9600033 | Jan 1996 | WO |
WO 9632882 | Oct 1996 | WO |
WO 9640354 | Dec 1996 | WO |
WO 9710753 | Mar 1997 | WO |
WO 9726828 | Jul 1997 | WO |
WO 9732514 | Sep 1997 | WO |
WO 9740738 | Nov 1997 | WO |
WO 9740752 | Nov 1997 | WO |
WO 9817182 | Apr 1998 | WO |
WO 9827869 | Jul 1998 | WO |
WO 9848703 | Nov 1998 | WO |
WO 9849944 | Nov 1998 | WO |
WO 9849947 | Nov 1998 | WO |
WO 9908585 | Feb 1999 | WO |
WO 9909892 | Mar 1999 | WO |
WO 9916367 | Apr 1999 | WO |
WO 0006041 | Feb 2000 | WO |
WO 0010466 | Mar 2000 | WO |
WO 0016367 | Mar 2000 | WO |
WO 0042920 | Jul 2000 | WO |
WO 0042921 | Jul 2000 | WO |
WO 0042935 | Jul 2000 | WO |
WO 0042936 | Jul 2000 | WO |
WO 0042937 | Jul 2000 | WO |
WO 0066008 | Sep 2000 | WO |
WO 0115607 | Mar 2001 | WO |
WO 0117437 | Mar 2001 | WO |
WO 0117437 | Mar 2001 | WO |
WO 0158362 | Aug 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060270910 A1 | Nov 2006 | US |