The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 26, 2019 and which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 16/453,273, entitled METHOD FOR PROVIDING AN AUTHENTICATION LOCKOUT IN A SURGICAL STAPLER WITH A REPLACEABLE CARTRIDGE, now U.S. Patent Application Publication No. 2020-0261080;
U.S. patent application Ser. No. 16/453,283, entitled SURGICAL STAPLING ASSEMBLY WITH CARTRIDGE BASED RETAINER CONFIGURED TO UNLOCK A FIRING LOCKOUT; now U.S. Patent Application Publication No. 2020-0261081;
U.S. patent application Ser. No. 16/453,289, entitled SURGICAL STAPLING ASSEMBLY WITH CARTRIDGE BASED RETAINER CONFIGURED TO UNLOCK A CLOSURE LOCKOUT, now U.S. Patent Application Publication No. 2020-0261082;
U.S. patent application Ser. No. 16/453,302, entitled UNIVERSAL CARTRIDGE BASED KEY FEATURE THAT UNLOCKS MULTIPLE LOCKOUT ARRANGEMENTS IN DIFFERENT SURGICAL STAPLERS, now U.S. Patent Application Publication No. 2020-0261075
U.S. patent application Ser. No. 16/453,310, entitled STAPLE CARTRIDGE RETAINERS WITH FRANGIBLE RETENTION FEATURES AND METHODS OF USING SAME, now U.S. Patent Application Publication No. 2020-0261083;
U.S. patent application Ser. No. 16/453,330, entitled STAPLE CARTRIDGE RETAINER WITH FRANGIBLE AUTHENTICATION KEY, now U.S. Patent Application Publication No. 2020-0261084;
U.S. patent application Ser. No. 16/453,335, entitled STAPLE CARTRIDGE RETAINER WITH RETRACTABLE AUTHENTICATION KEY, now U.S. Patent Application Publication No. 2020-0261078;
U.S. patent application Ser. No. 16/453,343, entitled STAPLER CARTRIDGE RETAINER SYSTEM WITH AUTHENTICATION KEYS, now U.S. Patent Application Publication No. 2020-0261085;
U.S. patent application Ser. No. 16/453,355, entitled INSERTABLE DEACTIVATOR ELEMENT FOR SURGICAL STAPLER LOCKOUTS, now U.S. Patent Application Publication No. 2020-0261086;
U.S. patent application Ser. No. 16/453,369, entitled DUAL CAM CARTRIDGE BASED FEATURE FOR UNLOCKING A STAPLER LOCKOUT, now U.S. Patent Application Publication No. 2020-0261076;
U.S. patent application Ser. No. 16/453,391, entitled STAPLE CARTRIDGES WITH CAM SURFACES CONFIGURED TO ENGAGE PRIMARY AND SECONDARY PORTIONS OF A LOCKOUT OF A SURGICAL STAPLING DEVICE, now U.S. Patent Application Publication No. 2020-0261077;
U.S. patent application Ser. No. 16/453,423, entitled DEACTIVATOR ELEMENT FOR DEFEATING SURGICAL STAPLING DEVICE LOCKOUTS, now U.S. Patent Application Publication No. 2020-0261088; and
U.S. patent application Ser. No. 16/453,429, entitled SURGICAL STAPLE CARTRIDGES WITH INTEGRAL AUTHENTICATION KEYS, now U.S. Patent Application Publication No. 2020-0261089
Applicant of the present application owns the following U.S. Design Patent Applications that were filed on Jun. 25, 2019 which are each herein incorporated by reference in their respective entireties:
U.S. Design patent application Ser. No. 29/696,066, entitled SURGICAL STAPLE CARTRIDGE RETAINER WITH FIRING SYSTEM AUTHENTICATION KEY;
U.S. Design patent application Ser. No. 29/696,067, entitled SURGICAL STAPLE CARTRIDGE RETAINER WITH CLOSURE SYSTEM AUTHENTICATION KEY; and
U.S. Design patent application Ser. No. 29/696,072, entitled SURGICAL STAPLE CARTRIDGE.
Applicant of the present application owns the following U.S. Patent Applications that were filed on Feb. 21, 2019 which are each herein incorporated by reference in their respective entireties:
U.S. patent application Ser. No. 16/281,658, entitled METHODS FOR CONTROLLING A POWERED SURGICAL STAPLER THAT HAS SEPARATE ROTARY CLOSURE AND FIRING SYSTEMS;
U.S. patent application Ser. No. 16/281,670, entitled STAPLE CARTRIDGE COMPRISING A LOCKOUT KEY CONFIGURED TO LIFT A FIRING MEMBER;
U.S. patent application Ser. No. 16/281,675, entitled SURGICAL STAPLERS WITH ARRANGEMENTS FOR MAINTAINING A FIRING MEMBER THEREOF IN A LOCKED CONFIGURATION UNLESS A COMPATIBLE CARTRIDGE HAS BEEN INSTALLED THEREIN;
U.S. patent application Ser. No. 16/281,685, entitled SURGICAL INSTRUMENT COMPRISING CO-OPERATING LOCKOUT FEATURES;
U.S. patent application Ser. No. 16/281,693, entitled SURGICAL STAPLING ASSEMBLY COMPRISING A LOCKOUT AND AN EXTERIOR ACCESS ORIFICE TO PERMIT ARTIFICIAL UNLOCKING OF THE LOCKOUT;
U.S. patent application Ser. No. 16/281,704, entitled SURGICAL STAPLING DEVICES WITH FEATURES FOR BLOCKING ADVANCEMENT OF A CAMMING ASSEMBLY OF AN INCOMPATIBLE CARTRIDGE INSTALLED THEREIN;
U.S. patent application Ser. No. 16/281,707, entitled SURGICAL INSTRUMENT COMPRISING A DEACTIVATABLE LOCKOUT,
U.S. patent application Ser. No. 16/281,741, entitled SURGICAL INSTRUMENT COMPRISING A JAW CLOSURE LOCKOUT;
U.S. patent application Ser. No. 16/281,762, entitled SURGICAL STAPLING DEVICES WITH CARTRIDGE COMPATIBLE CLOSURE AND FIRING LOCKOUT ARRANGEMENTS;
U.S. patent application Ser. No. 16/281,660, entitled SURGICAL STAPLE CARTRIDGE WITH FIRING MEMBER DRIVEN CAMMING ASSEMBLY THAT HAS AN ONBOARD TISSUE CUTTING FEATURE;
U.S. patent application Ser. No. 16/281,666, entitled SURGICAL STAPLING DEVICES WITH IMPROVED ROTARY DRIVEN CLOSURE SYSTEMS;
U.S. patent application Ser. No. 16/281,672, entitled SURGICAL STAPLING DEVICES WITH ASYMMETRIC CLOSURE FEATURES;
U.S. patent application Ser. No. 16/281,678, entitled ROTARY DRIVEN FIRING MEMBERS WITH DIFFERENT ANVIL AND FRAME ENGAGEMENT FEATURES; and
U.S. patent application e Ser. No. 16/281,682, entitled SURGICAL STAPLING DEVICE WITH SEPARATE ROTARY DRIVEN CLOSURE AND FIRING SYSTEMS AND FIRING MEMBER THAT ENGAGES BOTH JAWS WHILE FIRING.
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working frame through which the end effector and elongate shaft of a surgical instrument can be advanced.
A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which the first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.
The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
The previous housing 1012 depicted in
Referring now to
Still referring to
An arm 1061 may extend from the release button assembly 1062. A magnetic element 1063, such as a permanent magnet, for example, may be mounted to the arm 1061. When the release button assembly 1062 is rotated from its first position to its second position, the magnetic element 1063 can move toward a circuit board 1100. The circuit board 1100 can include at least one sensor that is configured to detect the movement of the magnetic element 1063. In at least one embodiment, for example, a “Hall Effect” sensor (not shown) can be mounted to the bottom surface of the circuit board 1100. The Hall Effect sensor can be configured to detect changes in a magnetic field surrounding the Hall Effect sensor caused by the movement of the magnetic element 1063. The Hall Effect sensor can be in signal communication with a microcontroller, for example, which can determine whether the release button assembly 1062 is in its first position, which is associated with the unactuated position of the closure trigger 1032 and the open configuration of the end effector, its second position, which is associated with the actuated position of the closure trigger 1032 and the closed configuration of the end effector, and/or any position between the first position and the second position.
In at least one form, the handle 1014 and the frame 1020 may operably support another drive system referred to herein as a firing drive system 1080 that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto. The firing drive system 1080 may also be referred to herein as a “second drive system”. The firing drive system 1080 may employ an electric motor 1082 that is located in the pistol grip portion 1019 of the handle 1014. In various forms, the motor 1082 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor 1082 may be powered by a power source 1090 that in one form may comprise a removable power pack 1092. As can be seen in
As outlined above with respect to other various forms, the electric motor 1082 can include a rotatable shaft (not shown) that operably interfaces with a gear reducer assembly 1084 that is mounted in meshing engagement with a set, or rack, of drive teeth 1122 on a longitudinally-movable drive member 1120. In use, a voltage polarity provided by the power source 1090 can operate the electric motor 1082 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 1082 in a counter-clockwise direction. When the electric motor 1082 is rotated in one direction, the drive member 1120 will be axially driven in the distal direction “DD”. When the motor 82 is driven in the opposite rotary direction, the drive member 1120 will be axially driven in a proximal direction “PD”. The handle 1014 can include a switch which can be configured to reverse the polarity applied to the electric motor 1082 by the power source 1090. As with the other forms described herein, the handle 1014 can also include a sensor that is configured to detect the position of the drive member 1120 and/or the direction in which the drive member 1120 is being moved.
Actuation of the motor 1082 can be controlled by a firing trigger 1130 that is pivotally supported on the handle 1014. The firing trigger 1130 may be pivoted between an unactuated position and an actuated position. The firing trigger 1130 may be biased into the unactuated position by a spring 1132 or other biasing arrangement such that when the clinician releases the firing trigger 1130, it may be pivoted or otherwise returned to the unactuated position by the spring 1132 or biasing arrangement. In at least one form, the firing trigger 1130 can be positioned “outboard” of the closure trigger 1032 as was discussed above. In at least one form, a firing trigger safety button 1134 may be pivotally mounted to the closure trigger 1032 by the pin 1035. The safety button 1134 may be positioned between the firing trigger 1130 and the closure trigger 1032 and have a pivot arm 1136 protruding therefrom. See
As indicated above, in at least one form, the longitudinally movable drive member 1120 has a rack of teeth 1122 formed thereon for meshing engagement with a corresponding drive gear 1086 of the gear reducer assembly 1084. At least one form also includes a manually-actuatable “bailout” assembly 1140 that is configured to enable the clinician to manually retract the longitudinally movable drive member 1120 should the motor 1082 become disabled. The bailout assembly 1140 may include a lever or bailout handle assembly 1142 that is configured to be manually pivoted into ratcheting engagement with the rack of teeth 1122 also provided in the drive member 1120. Thus, the clinician can manually retract the drive member 1120 by using the bailout handle assembly 1142 to ratchet the drive member 1120 in the proximal direction “PD”. U.S. Pat. No. 8,608,045, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, discloses bailout arrangements and other components, arrangements and systems that may also be employed with the various instruments disclosed herein. U.S. Pat. No. 8,608,045, is hereby incorporated by reference herein in its entirety.
Turning now to
The interchangeable shaft assembly 1200 can further include a closure system or closure member assembly 3000 which can be utilized to close and/or open the anvil 2000 of the end effector 1300. The shaft assembly 1200 can include a spine 1210 that is configured to, one, slidably support a firing member therein and, two, slidably support the closure member assembly 3000 which extends around the spine 1210. As can be seen in
In the illustrated example, the surgical end effector 1300 is selectively articulatable about the articulation axis AA by an articulation system 2100. In one form, the articulation system 2100 includes proximal articulation driver 2102 that is pivotally coupled to an articulation link 2120. As can be most particularly seen in
In various circumstances, the spine 1210 can comprise a proximal end 1211 which is rotatably supported in a chassis 1240. In one arrangement, for example, the proximal end 1211 of the spine 1210 has a thread 1214 formed thereon for threaded attachment to a spine bearing 1216 configured to be supported within the chassis 1240. See
Referring primarily to
In at least one form, the interchangeable shaft assembly 1200 may further include an articulation joint 3020. Other interchangeable shaft assemblies, however, may not be capable of articulation. As can be seen in
As was also indicated above, the interchangeable shaft assembly 1200 further includes a firing member 1900 that is supported for axial travel within the spine 1210. The firing member 1900 includes an intermediate firing shaft portion 1222 that is configured for attachment to a distal cutting portion or knife bar 1910. The intermediate firing shaft portion 1222 may include a longitudinal slot 1223 in the distal end thereof which can be configured to receive a tab 1912 on the proximal end of the distal knife bar 1910. The longitudinal slot 1223 and the proximal end tab 1912 can be sized and configured to permit relative movement therebetween and can comprise a slip joint 1914. The slip joint 1914 can permit the intermediate firing shaft portion 1222 of the firing member 1900 to be moved to articulate the end effector 1300 without moving, or at least substantially moving, the knife bar 1910. Once the end effector 1300 has been suitably oriented, the intermediate firing shaft portion 1222 can be advanced distally until a proximal sidewall of the longitudinal slot 1223 comes into contact with the tab 1912 in order to advance the knife bar 1910 and fire the staple cartridge 1350 positioned within the frame 1310. The knife bar 1910 includes a knife portion 1920 that includes a blade or tissue cutting edge 1922 and includes an upper anvil engagement tab 1924 and lower frame engagement tabs 1926. Various firing member configurations and operations are disclosed in various other references incorporated herein by reference.
As can be seen in
As also illustrated in
As discussed above, the shaft assembly 1200 can include a proximal portion which is fixably mounted to the handle 1014 and a distal portion which is rotatable about a longitudinal axis. The rotatable distal shaft portion can be rotated relative to the proximal portion about the slip ring assembly 1600, as discussed above. The distal connector flange of the slip ring assembly 1600 can be positioned within the rotatable distal shaft portion. Moreover, further to the above, the switch drum 1500 can also be positioned within the rotatable distal shaft portion. When the rotatable distal shaft portion is rotated, the distal connector flange and the switch drum 1500 can be rotated synchronously with one another. In addition, the switch drum 1500 can be rotated between a first position and a second position relative to the distal connector flange. When the switch drum 1500 is in its first position, the articulation drive system may be operably disengaged from the firing drive system and, thus, the operation of the firing drive system may not articulate the end effector 1300 of the shaft assembly 1200. When the switch drum 1500 is in its second position, the articulation drive system may be operably engaged with the firing drive system and, thus, the operation of the firing drive system may articulate the end effector 1300 of the shaft assembly 1200. When the switch drum 1500 is moved between its first position and its second position, the switch drum 1500 is moved relative to distal connector flange. In various instances, the shaft assembly 1200 can comprise at least one sensor configured to detect the position of the switch drum 1500.
Referring again to
Various shaft assembly embodiments employ a latch system 1710 for removably coupling the shaft assembly 1200 to the housing 1012 and more specifically to the frame 1020. As can be seen in
When employing an interchangeable shaft assembly that includes an end effector of the type described herein that is adapted to cut and fasten tissue, as well as other types of end effectors, it may be desirable to prevent inadvertent detachment of the interchangeable shaft assembly from the housing during actuation of the end effector. For example, in use the clinician may actuate the closure trigger 1032 to grasp and manipulate the target tissue into a desired position. Once the target tissue is positioned within the end effector 1300 in a desired orientation, the clinician may then fully actuate the closure trigger 1032 to close the anvil 2000 and clamp the target tissue in position for cutting and stapling. In that instance, the first drive system 1030 has been fully actuated. After the target tissue has been clamped in the end effector 1300, it may be desirable to prevent the inadvertent detachment of the shaft assembly 1200 from the housing 1012. One form of the latch system 1710 is configured to prevent such inadvertent detachment.
As can be most particularly seen in
Attachment of the interchangeable shaft assembly 1200 to the handle 1014 will now be described. To commence the coupling process, the clinician may position the chassis 1240 of the interchangeable shaft assembly 1200 above or adjacent to the distal attachment flange portion 1700 of the frame 1020 such that the tapered attachment portions 1244 formed on the chassis 1240 are aligned with the dovetail slots 1702 in the frame 1020. The clinician may then move the shaft assembly 1200 along an installation axis that is perpendicular to the shaft axis SA to seat the attachment portions 1244 in “operable engagement” with the corresponding dovetail receiving slots 1702. In doing so, the shaft attachment lug 1226 on the intermediate firing shaft portion 1222 will also be seated in the cradle 1126 in the longitudinally movable drive member 1120 and the portions of the pin 1037 on the second closure link 1038 will be seated in the corresponding hooks 1252 in the closure shuttle 1250. As used herein, the term “operable engagement” in the context of two components means that the two components are sufficiently engaged with each other so that upon application of an actuation motion thereto, the components may carry out their intended action, function and/or procedure.
At least five systems of the interchangeable shaft assembly 1200 can be operably coupled with at least five corresponding systems of the handle 1014. A first system can comprise a frame system which couples and/or aligns the frame or spine of the shaft assembly 1200 with the frame 1020 of the handle 1014. Another system can comprise a closure drive system 1030 which can operably connect the closure trigger 1032 of the handle 1014 and the closure tube 3050 and the anvil 2000 of the shaft assembly 1200. As outlined above, the closure shuttle 1250 of the shaft assembly 1200 can be engaged with the pin 1037 on the second closure link 1038. Another system can comprise the firing drive system 1080 which can operably connect the firing trigger 1130 of the handle 1014 with the intermediate firing shaft portion 1222 of the shaft assembly 1200. As outlined above, the shaft attachment lug 1226 can be operably connected with the cradle 1126 of the longitudinal drive member 1120. Another system can comprise an electrical system which can signal to a controller in the handle 1014, such as microcontroller, for example, that a shaft assembly, such as shaft assembly 1200, for example, has been operably engaged with the handle 1014 and/or, two, conduct power and/or communication signals between the shaft assembly 1200 and the handle 1014. For instance, the shaft assembly 1200 can include an electrical connector 1810 that is operably mounted to the shaft circuit board 1610. The electrical connector 1810 is configured for mating engagement with a corresponding electrical connector 1800 on the control circuit board 1100. Further details regaining the circuitry and control systems may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and U.S. patent application Ser. No. 14/226,142, now U.S. Pat. No. 9,913,642, the entire disclosures of each which were previously incorporated by reference herein. The fifth system may consist of the latching system for releasably locking the shaft assembly 1200 to the handle 1014.
The anvil 2000 in the illustrated example includes an anvil body 2002 that terminates in an anvil mounting portion 2010. The anvil mounting portion 2010 is movably or pivotably supported on the elongate frame 1310 for selective pivotal travel relative thereto about a fixed anvil pivot axis PA that is transverse to the shaft axis SA. In the illustrated arrangement, a pivot member or anvil trunnion 2012 extends laterally out of each lateral side of the anvil mounting portion 2010 to be received in a corresponding trunnion cradle 1316 formed in the upstanding walls 1315 of the proximal end portion 1312 of the elongate frame 1310. The anvil trunnions 2012 are pivotally retained in their corresponding trunnion cradle 1316 by the frame cap or anvil retainer 1290. The frame cap or anvil retainer 1290 includes a pair of attachment lugs that are configured to be retainingly received within corresponding lug grooves or notches formed in the upstanding walls 1315 of the proximal end portion 1312 of the elongate frame 1310. See
Still referring to
The disclosures of U.S. Patent Application Publication No. 2004/0232200, entitled SURGICAL STAPLING INSTRUMENT HAVING A SPENT CARTRIDGE LOCKOUT, filed on May 20, 2003, U.S. Patent Application Publication No. 2004/0232199, entitled SURGICAL STAPLING INSTRUMENT HAVING A FIRING LOCKOUT FOR AN UNCLOSED ANVIL, U.S. Patent Application Publication No. 2004/0232197, entitled SURGICAL STAPLING INSTRUMENT INCORPORATING AN E-BEAM FIRING MECHANISM, filed on May 20, 2003, U.S. Patent Application Publication No. 2004/0232196, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, filed on May 20, 2003, U.S. Patent Application Publication No. 2004/0232195, entitled SURGICAL STAPLING INSTRUMENT HAVING A SINGLE LOCKOUT MECHANISM FOR PREVENTION OF FIRING, filed on May 20, 3003, and U.S. Patent Application Publication No. 2018/0085123, entitled ARTICULATING SURGICAL STAPLING INSTRUMENT INCORPORATING A TWO-PIECE E-BEAM FIRING MECHANISM, filed on Aug. 17, 2017 are incorporated by reference in their entireties.
Referring to
Still referring to
Further to the above, the surgical stapling device 4002 comprises a second jaw or anvil 4100 that is movable relative to the first jaw or frame 4010. The anvil 4100 comprises an anvil body 4102 and an anvil mounting portion 4110. The anvil body 4102 comprises a staple forming undersurface or tissue contacting surface 4104 that has a series of staple forming pockets formed therein (not shown) that are arranged to form corresponding staples as they are driven into forming contact therewith. The anvil mounting portion 4110 comprises a pair of laterally extending anvil pins or trunnion pins 4112 that are configured to be received in corresponding trunnion slots 4022 in the upstanding sidewalls 4020 of the first jaw 4010. In the illustrated arrangement, the trunnion slots 4022 are somewhat “kidney-shaped” and facilitate pivotal as well as axial travel of the corresponding trunnion pins 4112 therein. Such pivotal and axial movement of the anvil 4100 may be referred to as “translation” of the anvil during an anvil closure sequence.
As discussed above, as well as in several of the disclosures which have been incorporated by reference herein, the anvil 4100 may be movable from an open position wherein a used or spent surgical staple cartridge may either be removed from the first jaw or frame 4010 or an unfired surgical staple cartridge may be operably seated therein to a closed position. The anvil 4100 may be movable between the open and closed positions by an axially movable closure member which may comprise an end effector closure tube (not shown) that is part of the shaft assembly of the surgical instrument to which the surgical device 4002 is operably attached. For example, as the closure member is moved distally from a proximal position by actuating a closure control system in the surgical instrument, the closure member may operably engage a cam surface on the anvil mounting portion 4110. Such interaction between the closure member and the anvil mounting portion 4110 causes the anvil mounting portion 4110 and the anvil trunnion pins 4112 to pivot and translate up the trunnion slots 4022 until the closure member moves the anvil 4100 to a fully closed position. When in the fully closed position, the staple-forming pockets in the anvil 4100 are properly aligned with the staples in a corresponding compatible surgical staple cartridge that has been operably seated in the first jaw or frame 4010. When the axially movable closure member is thereafter moved in a proximal direction, the closure member interfaces with an upstanding tab 4114 on the anvil mounting portion 4110 to return the anvil 4100 to the open position.
One form of surgical staple cartridge 4200 that may be compatible with the surgical stapling device 4002 comprises a cartridge body 4202 that defines a cartridge deck surface or tissue contacting surface 4204. The cartridge body 4202 further comprises a longitudinal slot 4206 that bisects the cartridge deck surface 4204 and is configured to accommodate axial passage of the firing member 4050 therein between its starting position and an ending position within the cartridge body 4202 during a staple firing stroke. The longitudinal slot 4206 lies along a center axis CA of the cartridge 4200. The surgical staple cartridge 4200 further comprises a series of staple pockets 4208 that are formed in the cartridge body 4202. The staple pockets 4208 may be formed in offset “lines” located on each side of the longitudinal slot 4206. Each staple pocket 4208 may have a staple driver (not shown) associated therewith that supports a surgical staple or fastener (not shown) thereon. In at least one example, the cartridge body 4202 is molded from a polymer material with the staple pockets 4208 molded or machined therein. In one arrangement, the staple pockets 4208 also open through a bottom of the cartridge body 4202 to facilitate installation of the drivers and fasteners into their respective staple pockets 4208. Once the drivers and fasteners are inserted into their respective staple pockets 4208, a cartridge pan 4220 is attached to the cartridge body 4202. In one form, the cartridge pan 4220 is fabricated from a metal material and includes a bottom 4222 that spans across the bottom of the cartridge body 4202. The cartridge pan 4220 also includes two upstanding sidewalls 4224 that correspond to each side of the cartridge body 4202. The cartridge pan 4220 may be removably affixed to the cartridge body 4202 by hooks 4226 that are formed on the sidewalls 4224 and configured to hookingly engage corresponding portions of the cartridge body 4202. In addition, the cartridge body 4202 may also have lugs or attachment formations protruding therefrom that are configured to retainingly engage corresponding portions of the cartridge pan 4220. When installed, the cartridge pan 4220 may, among other things, prevent the drivers and fasteners from falling out of the bottom of the cartridge body 4202 during handling and installation of the staple cartridge into the first jaw or frame 4010.
Some of the staple drivers operably support a single surgical staple thereon and other staple drivers support more than one surgical staple thereon depending upon the particular cartridge design. Each surgical staple comprises a staple crown and two upstanding staple legs. The staple crown is typically supported on a cradle arrangement formed in a corresponding staple driver such that the legs are vertically oriented toward the anvil when the cartridge is operably seated in the frame 4010. In some arrangements, surgical staples have a somewhat V-shape, wherein the ends of the legs flare slightly outward. Such arrangement may serve to retain the staple in its corresponding staple pocket due to frictional engagement between the legs and the sides of the staple pocket should the cartridge be inadvertently inverted or turned upside down during use. Other surgical staples are roughly U-shaped (the ends of the legs do not flare outward) and may be more susceptible to falling out of the staple pocket should the cartridge be inverted prior to use.
The surgical staple cartridge 4200 further comprises a sled or camming member 4230 that is configured to be axially advanced through the cartridge body 4202 during a staple firing stroke. In a “new”, “fresh” or “unfired” surgical staple cartridge, the sled 4230 is in its proximal-most, “unfired” position. The sled 4230 comprises a plurality of wedges or cam members 4232 that are configured to drivingly engage the corresponding lines of staple drivers in the cartridge body. During the staple firing stroke, the firing member 4050 abuts and pushes the sled 4230 distally into camming contact with the staple drivers thereby sequentially driving the staple drivers upward toward the anvil 4100 as the sled 4230 is driven from its unfired position to its distal-most fully fired position within the cartridge body 4202. As the staple drivers are driven upwardly, the staples are driven through the tissue that is clamped between the deck surface 4204 of the staple cartridge 4200 and the anvil 4100 and into forming contact with the staple-forming undersurface 4104 of the anvil 4100. The tissue-cutting knife 4053 on the firing member 4050 cuts through the stapled tissue as the firing member 4050 is driven distally. After the staple firing stroke has been completed, and/or after a sufficient length of the staple firing stroke has been completed, the firing member 4050 is retracted proximally. However, the sled 4230 is not retracted proximally with the firing member 4050. Instead, the sled 4230 is left behind at the distal-most position in which it was pushed by the firing member 4050.
After a staple cartridge has been fired, or at least partially fired, it is removed from the frame and then replaced with another replaceable staple cartridge, if desired. At such point, the stapling device can be re-used to continue stapling and incising the patient tissue. In some instances, however, a previously-fired staple cartridge can be accidentally loaded into the frame. If the firing member were to be advanced distally within such a previously-fired staple cartridge, the stapling instrument would cut the patient tissue without stapling it. The stapling instrument would similarly cut the patient tissue without stapling it if the firing member were advanced distally through a staple firing stroke without a staple cartridge positioned in the cartridge jaw at all. In addition, various surgical staple cartridges may have different arrays of and/or orientations of staples/fasteners therein. The sizes of the staples or fasteners, as well as the number of fasteners may vary from cartridge type to cartridge type depending upon a particular surgical procedure or application. To ensure that the staples are properly crimped or formed, the surgical staple cartridges must be used in connection with corresponding, compatible anvils that have the proper array of staple-forming pockets therein as well as the proper cutting and firing components. Should a “non-compatible” cartridge be loaded into a surgical stapling device that has an anvil that is mismatched to the staple cartridge, the staples may not be properly formed during the firing process which could lead to catastrophic results. To this end, the surgical stapling assembly 4000 comprises one or more lockouts which prevents this from happening, as discussed in greater detail below.
Further to the above, the surgical stapling device 4002 comprises a first lockout 4300 that is configured to prevent the firing member 4050 from moving distally from its proximal-most, starting position unless an authorized or compatible staple cartridge is operably seated in the first jaw or frame 4010. The first lockout 4300 may also be referred to herein as an “authentication” lockout. In the illustrated arrangement, the first lockout 4300 comprises a single, bi-lateral first lockout spring 4310 that is supported in the proximal end 4014 of the frame 4010 and attached to the shaft mount flange 4030. In one arrangement for example, the first lockout spring 4310 comprises a first lockout arm 4312 that is located on one side of the cartridge axis CA and a second lockout arm 4314 that is located on an opposite side of the cartridge axis CA. The first and second lockout arms 4312, 4314 are attached to a central body portion 4316. See
Turning now to
In one arrangement, the retainer 4400 may be molded from a polymer material and include a plurality of retainer lugs 4410 that are configured to latchingly engage outwardly extending deck ledge portions 4205 that are formed on the cartridge body 4202. The retainer 4400 may further comprise an angled nose portion 4420 and distal latch tab 4422 that that is configured to latching engage a distal nose 4203 of the cartridge body 4202. The retainer 4400 may be removably coupled to the surgical staple cartridge 4200 by engaging the distal latch tab 4422 with an end of the distal nose 4203 and aligning the retainer 4400 such that the underside of the top portion 4402 confronts the cartridge deck surface 4204 and the retainer lugs 4410 are located above the deck ledge portions 4205 on each side of the cartridge body 4202. Thereafter, the retainer 4400 may be pressed toward the staple cartridge 4200 causing the retainer lugs 4410 to flex laterally outward and snap into latching engagement with the corresponding deck ledge portions 4205. Other retainer latching arrangements disclosed herein may also be employed to removably affix the retainer 4400 to the staple cartridge 4200. The retainer 4400 may be removed from the staple cartridge 4200 by applying a prying motion to the distal latch tab 4422 until the retainer lugs 4410 disengage the deck ledge portions 4205. In the illustrated example, the term “LIFT” is molded, embossed, imprinted or otherwise provided on the nose portion 4420 to provide removal instructions to the user.
Referring now to
Referring now to
The user may then remove the retainer 4400 from the staple cartridge 4200 by prying the up the distal latch tab 4422 and lifting the retainer 4400 upward until the retainer lugs 4410 disengage the deck ledge portions 4205 on the cartridge body 4202. With the first lockout 4300 defeated or unlocked, the firing member 4050 may be distally advanced from the starting position and is in a “ready state”. After the staple cartridge 4200 has been fired, the firing member 4050 is retracted back to the starting position and the second jaw or anvil 4100 is pivoted back to the open position. The spent staple cartridge may then be removed from the first jaw or frame 4010. Once the spent staple cartridge 4200 has been removed from the first jaw or frame 4010, the first and second lockout arms 4312, 4314 spring back into engagement with the corresponding central pins 4058 on the firing member 4050 to once again retain the firing member 4050 in the starting position.
Other first lockout spring arrangements are contemplated. For example, a first lockout spring may only comprise one lateral lockout arm and engage only one side of the firing member. In such arrangements, an authentication key comprising only one ramp may be needed to unlock the lockout arm.
As discussed above, when the cartridge assembly 4500 is operably seated in the frame 4010, the first lockout 4300 is defeated or unlocked to permit the firing member 4050 to be distally advanced from that ready state during a staple firing stroke. When attached to the staple cartridge 4200, the retainer 4400 covers the cartridge deck surface 4204 and prevents staples from falling out of the staple pockets 4208 as well as prevents any debris or contamination from entering the longitudinal slot 4206 or staple pockets 4208 which could damage the staple cartridge or prevent it from operating properly. Other variations of the retainer 4400 are contemplated wherein only a portion of the cartridge deck surface 4204 is covered by the retainer. Other configurations may not cover any of staple pockets and/or any of the deck surface.
As was also discussed above, after a staple cartridge has been fired, or at least partially fired, it is removed from the first jaw or frame and then replaced with another compatible staple cartridge, if desired. At such point, the stapling device can be re-used to continue stapling and incising the patient tissue. In some instances, however, a previously-fired staple cartridge can be accidentally loaded into the frame. If the firing member were to be advanced distally within such a previously-fired staple cartridge (sometimes referred to herein as a “spent” cartridge), the stapling instrument would cut the patient tissue without stapling it. This could conceivably happen even if the retainer 4400 were inadvertently accidentally attached to the spent cartridge and the resulting cartridge assembly is then seated into the frame so as to defeat the first lockout. The surgical stapling device would similarly cut the patient tissue without stapling it if the firing member were advanced distally through a staple firing stroke without a staple cartridge positioned in the cartridge jaw at all. To prevent these occurrences from happening, the surgical stapling device 4002 further comprises a second lockout 4600 that is configured to prevent the firing member 4050 from distally advancing through the staple firing stroke when a spent staple cartridge is seated in the first jaw or frame 4010.
Referring now to
As can be appreciated from the foregoing, the first lockout 4300 is proximal to the second lockout 4600. The first lockout 4300 is positioned within the surgical stapling device 4002 such that the first lockout 4300 is proximal to the sled 4230 of an unfired staple cartridge 4200 that has been seated in the first jaw or frame 4010. The first lockout 4300 is configured to move laterally between engaged positions wherein the first lock prevents distal advancement of the firing member 4050 from a starting position and disengaged positions wherein the firing member 4050 may be distally advanced therefrom (sometimes referred to herein as a “ready state”). For example, the first and second lockout arms 4312 and 4314 are configured to move in a first horizontal plane FP between engaged and disengaged positions. See
Still referring to
Further to the above, the surgical stapling device 5002 further comprises a second jaw or anvil 5100 that is movable relative to the first jaw or frame 5010. The anvil 5100 comprises an anvil body 5102 and an anvil mounting portion 5110. The anvil body 5102 comprises a staple forming undersurface or tissue contacting surface 5104 that has a series of staple forming pockets (not shown) formed therein that are arranged to form corresponding staples as they are driven into forming contact therewith. The anvil mounting portion 5110 comprises a pair of laterally extending anvil pins or trunnion pins 5112 that are configured to be received in corresponding trunnion holes 5022 provided in the upstanding sidewalls 5020 of the first jaw or frame 5010. Unlike the anvil 4100 described above, the anvil 5100 is pivotally pinned to the frame 5010 for pivotal travel relative thereto about a fixed pivot axis. Stated another way, unlike anvil 4100, anvil 5100 does not materially move axially or translate during the anvil closure process. In various arrangements, the trunnion holes 5022 may be sized relative to the trunnion pins 5112 to facilitate installation therein and free pivotal travel of the trunnion pins such that the trunnion pins may have some slight axial movement therein, but any of such axial motion is much less than the axial translation of the anvil 4100.
As discussed above, as well as in several of the disclosures which have been incorporated by reference herein, the anvil 5100 may be movable from an open position wherein a used or spent staple cartridge may either be removed from the first jaw or frame 5010 or an unfired staple cartridge may be operably seated therein to a closed position by an axially movable closure member or end effector closure tube (not shown). For example, as the closure member is moved distally from a proximal position, the closure tube may operably engage a cam surface on the anvil mounting portion 5110. Such interaction between the closure member and the anvil mounting portion 5110 causes the anvil mounting portion 5110 and the anvil trunnion pins 5112 to pivot until the closure member moves the anvil 5100 to a fully closed position. When in the fully closed position, the staple-forming pockets in the anvil 5100 are properly aligned with the staples in a corresponding compatible surgical staple cartridge that has been operably seated in the first jaw or frame 5010. When the axially movable closure member is thereafter moved in a proximal direction, the closure member causes the anvil 5100 to pivot back to the open position.
Further to the above, the surgical stapling device 5002 comprises a first lockout 5300 that is configured to prevent the firing member 5050 from moving distally from its proximal-most, starting position when an authorized or compatible staple cartridge is not operably seated in the frame 5010. The first lockout 5300 may also be referred to herein as an “authentication” lockout. In the illustrated arrangement, the first lockout 5300 comprises a single, a pivotal first spring assembly 5310 that is supported in a proximal end 5014 of the first jaw or frame 5010 and is attached to the shaft mount flange 5030. In one arrangement for example, the first spring assembly 5310 comprises a first lockout arm 5312 and a second lockout arm 5314 that are attached to a central body portion 5316. The first spring assembly 5310 is attached to the shaft mount flange 5030 by a pin 5034 that extends through holes 5036 in the shaft mount flange 5030 and through holes 5318 in the first lockout arm 5312 and the second lockout arm 5314. The first lockout arm 5312 and the second lockout arm 5314 each further comprise a lockout latch feature 5320. Each lockout latch feature 5320 is adapted to releasably capture therein a corresponding central pin 5058 on the firing member 5050 when the firing member 5050 is in its proximal-most or starting position. See
The surgical stapling assembly 5000 may further comprise a retainer 5400 that is similar to retainer 4400 described above. The retainer 5400 comprises a top portion 5402 that is coextensive with and configured to be received on the deck surface 4204 of the staple cartridge 4200 such that when the retainer 5400 is attached to the cartridge body 4202, the retainer 5400 covers all of the staple pockets 4208 in the cartridge body 4202. Thus, when the retainer 5400 is attached to the staple cartridge 4200, the retainer 5400 may prevent the surgical staples stored within the staple pockets 4208 from falling out should the surgical staple cartridge 4200 be inverted or turned upside down prior to use. Other retainer configurations are contemplated wherein the retainer top does not cover all or any of the staple pockets. In the illustrated arrangement, the retainer 5400 may be molded from a polymer material and include a plurality of retainer lugs 5410 that are configured to latchingly engage outwardly extending deck ledge portions 4205 on the staple cartridge body 4202. The retainer 5400 may further comprise an angled nose portion 5420 and a distal latch tab 5422 that that is configured to latchingly engage the distal nose 4203 of the cartridge body 4202. The retainer 5400 may be removably coupled to the staple cartridge 4200 by engaging the distal latch tab 5422 with the end of the staple cartridge distal nose 4203 and aligning the retainer 5400 such that the underside of the top portion 5402 confronts the cartridge deck surface 4204 and the retainer lugs 5410 are located above the deck ledge portions 4205 on each side of the staple cartridge body 4202. Thereafter, the retainer 5400 may be pressed toward the staple cartridge 4200 causing the retainer lugs 5410 to flex laterally outward and snap into latching engagement with the corresponding deck ledge portions 4205. Other retainer latching arrangements disclosed herein may also be employed to removably affix the retainer 5400 to the staple cartridge 4200.
The retainer 5400 further comprises an authentication key 5430 that is adapted to engage key pockets 5322 that are formed in the first lockout arm 5312 and the second lockout arm 5314. As can be seen in
In use, the retainer 5400 is removably attached to the staple cartridge 4200 to form a cartridge assembly 5500. Thereafter, the cartridge assembly is initially inserted into the first jaw or frame 5010 so as to insert the ramps 5440 and 5450 of the authentication key 5430 into the key pockets 5322 in the first and second lockout arms 5312, 5314. See
The surgical stapling device 5002 also includes a second lockout 5600 that is very similar to the second lockout 4600 described above. Referring now to
Referring to
Further to the above, the surgical stapling device 6002 comprises a second jaw or anvil 6100 that is movable relative to the first jaw or frame 6010. The anvil 6100 is similar to anvil 4100 described above and comprises an anvil body 6102 and an anvil mounting portion 6110. The anvil body 6102 comprises a staple forming undersurface or tissue contacting surface 6104 that has a series of staple forming pockets (not shown) formed therein that are arranged to form corresponding staples as they are driven into forming contact therewith. The anvil mounting portion 6110 comprises a pair of laterally extending anvil pins or trunnion assemblies 6112. Each trunnion assembly 6112 comprises an outwardly and downwardly protruding lock lug portion 6120 that has a trunnion pin 6122 extending therefrom. Each trunnion pin 6122 is configured to be received in corresponding trunnion slots 6022 in the upstanding sidewalls 6020 of the first jaw 6010. In the illustrated arrangement, the trunnion slots 6022 are somewhat “kidney-shaped” and facilitate pivotal as well as axial travel of the corresponding trunnion pins 6122 therein.
As discussed above, as well as in several of the disclosures which have been incorporated by reference herein, the anvil 6100 may be movable from an open position wherein a used or spent surgical staple cartridge may either be removed from the frame 6010 or a fresh, new staple cartridge may be operably seated therein to a closed position by an axially movable closure member or end effector closure tube (not shown). For example, as the closure member is moved distally from a proximal position, the closure member may operably engage a cam surface on the anvil mounting portion 6110. Such interaction between the closure member and the anvil mounting portion 6110 causes the anvil mounting portion 6110 and the anvil trunnion pins 6122 to pivot and translate up the trunnion slots 6022 until the closure member moves the anvil 6100 to a closed position. When in the fully closed position, the staple-forming pockets in the anvil 6100 are properly aligned with the staples in a corresponding compatible staple cartridge that has been operably seated in the frame 6010. When the axially movable closure member is thereafter moved in a proximal direction, the closure member interfaces with an upstanding tab 6114 on the anvil mounting portion 6110 to return the anvil 6100 to the open position.
Further to the above, the surgical stapling device 6002 comprises a first lockout 6300 that is configured to prevent the second jaw or anvil 6100 from being movable from the open position to the closed position by the closure member. The first lockout 6300 may also be referred to herein as an “authentication” lockout. In the illustrated arrangement, the first lockout 6300 comprises a first lockout arm 6310 that is pivotally supported in the frame 6010 by a lockout pin 6312 that is attached thereto. In one example, the first lockout arm 6310 is fabricated from stainless steel or the like and the lockout pin 6312 is welded or otherwise attached thereto. The lockout pin 6312 is pivotally seated in a pivot hole 6013 in the frame 6010 to facilitate pivotal travel of the first lockout arm 6310 between a locked position and an unlocked position. See
Still referring to
Turning now to
Referring now to
As can be appreciated from the foregoing, the space required to interface with the first lockout 6300 is available when the anvil 6100 is open, but is not available when the anvil 6100 is closed. The retainer 6400 is present on the cartridge 4200 only when the anvil 6100 is open during the cartridge insertion process. Thereafter, the retainer 6400 is removed from the staple cartridge 4200. The anvil 6100 cannot be closed when the retainer 6400 is in place. When closed, the anvil 6100 occupies the space that was occupied by the retainer 6400. This arrangement is very different from a cartridge-based authentication key arrangement that remains resident in the stapling device during the closing and firing of the device. Dual sequential ramps/camming surfaces are employed in this arrangement to move the first lockout arm 6310 laterally through a distance that is approximately at least twice as wide as the authentication key 6430. This may be an important aspect to this design.
The proximal high ramp or camming surface begins the unlocking movement and engages the upstanding actuator cam arm 6322 that is distal to the firing member 4050. It will be appreciated that a stationary locking feature that is unable to be moved or removed would not be able to reach this area without affecting the ability to move the firing member 4050 through the staple firing stroke. The second lower ramp/camming surface completes the unlocking movement of the first unlocking arm 6310 so that it is completely clear for the anvil 6100 to close. The second ramp/camming surface is sequentially spaced behind the first ramp/camming surface so that it can only engage the distal end of the first lockout arm 6310 after the first ramp/camming surface has pivoted it to that intermediate position.
After the staple cartridge 4200′ has been fired, the user returns a firing member of the surgical stapling device 6002′ back to a starting position and the anvil 6100′ is pivoted to the open position allowing the spent staple cartridge to be removed from the frame 6010′. When the spent staple cartridge 4200′ is removed from the frame 6010′, the lockout spring 6330′ pivots the first lockout arm 6310′ back to the jaw locking position. In some instances, the spent staple cartridge may be “reprocessed” for reuse in another stapling procedure and/or another stapling device. It is important for those reprocessing entities to install the proper surgical staples as well as the proper number of surgical staples into the reprocessed staple cartridge required to make that cartridge compatible with a particular stapling device to ensure the desired results during use. Unfortunately, some reprocessing entities at times fail to properly reprocess the spent cartridge, yet still offer the reprocessed spent cartridge as a new cartridge manufactured by the original manufacturer. The end user may unwittingly obtain the defective cartridge and use it in a surgical stapling device. In an effort to prevent such instances from occurring, once the spent cartridge has been removed from the surgical stapling device 6002′, the authentication key 4228″ may be irretrievably flattened. For example, as can be seen in
In many aspects, surgical stapling device 6002″ is substantially identical to surgical stapling device 6002 and includes a first lockout arm 6310″ that is pivotally supported in a frame 6010″ by a lockout pin 6312″ that is attached thereto. A proximal end 6314″ of the first lockout arm 6310″ may be identical to the proximal end 6314 of the first lockout arm 6310 and is configured to blockingly engage a lock lug portion on the corresponding trunnion assembly 6112″ of an anvil 6100″ in the manner described in detail above. A lockout spring 6330″ serves to pivot the first lockout arm 6310″ to the locked or jaw locking position in the manner described above. A distal end of the first lockout arm 6310″ comprises an upstanding actuator cam arm 6322″ that is configured to be engaged by the authentication key 4228′″ on the staple cartridge 4200′″.
Still referring to
As discussed above, as well as in several of the disclosures which have been incorporated by reference herein, the anvil 7100 may be movable from an open position wherein a used or spent staple cartridge may either be removed from the first jaw or frame 7010 or an unfired staple cartridge may be operably seated therein to a closed position by an axially movable closure member or end effector closure tube 7600. For example, as the closure tube 7600 is moved distally from a proximal position, the closure tube 7600 may operably engage a cam surface 7113 on the anvil mounting portion 7110. Such interaction between the closure tube 7600 and the anvil mounting portion 7110 causes the anvil mounting portion 7110 and the trunnion pins 7112 to pivot until the closure member moves the anvil 7100 to a fully closed position. When in the fully closed position, the staple-forming pockets in the anvil 7100 are properly aligned with the staples in a corresponding compatible staple cartridge 4200 that has been operably seated in the first jaw or frame 7010. When the axially movable closure tube 7600 is thereafter moved in a proximal direction, a tab 7602 on the closure tube 7600 interfaces with a tab 7114 on the anvil mounting portion 7110 to cause the anvil 7100 to pivot back to the open position.
Further to the above, the surgical stapling device 7002 comprises a first lockout 7300 that is configured to prevent the second jaw or anvil 7100 from being movable from the open position to the closed position by the closure member 7600. The first lockout 7300 may also be referred to herein as an “authentication” lockout. In the illustrated arrangement, the first lockout 7300 comprises a first lockout arm 7310 that is pivotally supported in the first jaw or frame 7010 by a lockout pin 7312 that is attached thereto. In one example, the first lockout arm 7310 is fabricated from stainless steel or the like and the lockout pin 7312 may be machined into the proximal end thereof. The lockout pin 7312 is pivotally seated in a pivot hole 7013 in the frame 7010 to facilitate pivotal travel of the first lockout arm 7310 in a locking direction LD between a jaw locking position and a jaw closure position. See
Referring now to
Turning again to
The retainer 7400 may be removably coupled to the surgical staple cartridge 4200 by engaging the distal latch tab 7422 with the end of the distal nose 4203 and aligning the retainer 7400 such that the underside of the top portion 7402 confronts the cartridge deck surface 4204 and the retainer lugs 7410 are located above the deck ledge portions 4205 on each side of the cartridge body 4202. Thereafter, the retainer 7400 may be pressed toward the staple cartridge 4200 causing the retainer lugs 7410 to flex laterally outward and snap into latching engagement with the corresponding deck ledge portions 4205. Other retainer latching arrangements disclosed herein may also be employed to removably affix the retainer 7400 to the staple cartridge 4200. The retainer 7400 may be removed from the staple cartridge 4200 by applying a prying motion to the distal latch tab 7422 and lifting upward until the retainer lugs 7410 disengage the deck ledge portions 4205. In the illustrated example, the term “LIFT” is molded or embossed into the nose portion 7420 to provide removal instructions to the user.
Referring now to
In use, the retainer 7400 is attached to the staple cartridge 4200 in the various manners disclosed herein to form a cartridge assembly 7500. The cartridge assembly 7500 may then be inserted into the first jaw or frame 7010 so as to bring the right ramp 7440 of the authentication key 7430 into engagement with the actuator cam surface 7324 on the actuator cam arm 7322. During the initial proximal insertion of the cartridge assembly 7500, the first right cam surface 7444 biases the actuator cam arm 7322 laterally outward to an intermediate position. Further longitudinal advancement of the cartridge assembly 7500 into the first jaw or frame 7010 in a proximal direction causes the first cam surface 7444 to disengage the actuator cam surface 7324 and the second right cam surface 7446 to engage the actuator cam surface 7324 to move the first lockout arm 7310 from the intermediate position into the fully disengaged or jaw closure position. When the first lockout arm 7310 is in the unlocked or jaw closure position, the retention tab 7326 is received within the tab window 7024 in the frame sidewall 7020 and is retained therein by the staple cartridge 4200. When in that position, the first lockout 7300 is in the unlocked or jaw closure position or stated another way is “defeated”, unlocked or unlatched. The user may then remove the retainer 7400 from the surgical staple cartridge 4200 by prying the up the distal latch tab 7422 and lifting the retainer 7400 upward until the retainer lugs 7410 disengage the deck ledge portions 4205. The anvil 7100 is now movable between the open and closed position and the surgical staple cartridge 4200 is otherwise capable of being fired. In at least one version, the surgical stapling device 7002 may include a second lockout 4600 that is configured to prevent the firing member 4050 from distally advancing through the staple firing stroke when a spent staple cartridge is seated in the first jaw or frame 7010 in the various manners discussed above. After the staple cartridge 4200 has been fired, the firing member 4050 is retracted back to the starting position and the second jaw or anvil 7100 is pivoted back to the open position. The spent staple cartridge may then be removed from the first jaw or frame 7010. Once the spent staple cartridge 4200 has been removed from the first jaw or frame 7010, the first lockout spring biases the first lockout arm 7310 back to an engaged or jaw locking position wherein second jaw or anvil is prevented from moving from the open to closed position.
As can be seen in
Referring to
Still referring to
Further to the above, the surgical stapling device 8002 further comprises a second jaw or anvil 8100 that is movable relative to the first jaw or frame 8010. The anvil 8100 comprises an anvil body 8102 and an anvil mounting portion 8110. The anvil body 8102 comprises a staple forming undersurface or tissue contacting surface 8104 that has a series of staple forming pockets (not shown) formed therein that are arranged to form corresponding staples as they are driven into forming contact therewith. The anvil mounting portion 8110 comprises a pair of laterally extending anvil pins or trunnion pins 8112 that are configured to be received in corresponding trunnion holes 8022 in the upstanding sidewalls 8020 of the first jaw or frame 8010. Unlike the anvil 4100 described above, the anvil 8100 is pivotally pinned to the frame 8010 for pivotal travel relative thereto about a fixed pivot axis. Stated another way, unlike anvil 4100, anvil 8100 does not materially move axially or translate during the anvil closure process.
As discussed above, as well as in several of the disclosures which have been incorporated by reference herein, the anvil 8100 may be movable from an open position wherein a used or spent staple cartridge may either be removed from the first jaw or frame 8010 or an unfired staple cartridge may be operably seated therein to a closed position by an axially movable closure member or end effector closure tube (not shown). For example, as the closure member is moved distally from a proximal position, the closure tube may operably engage a cam surface on the anvil mounting portion 8110. Such interaction between the closure member and the anvil mounting portion 8110 causes the anvil mounting portion 8110 and the trunnion pins 8112 to pivot until the closure member moves the anvil 8100 to a fully closed position. When in the fully closed position, the staple-forming pockets in the anvil 8100 are properly aligned with the staples in a corresponding compatible surgical staple cartridge that has been operably seated in the first jaw or frame 8010. When the axially movable closure member is thereafter moved in a proximal direction, the closure member causes the anvil 8100 to pivot back to the open position.
Further to the above, the surgical stapling assembly 8000 further comprises a first lockout 8300 that is configured to prevent the firing member 5050 from moving distally from its proximal-most starting position when an authorized or compatible staple cartridge is not operably seated in the first jaw or frame 8010. The first lockout 8300 may also be referred to herein as an “authentication” lockout. In the illustrated arrangement, the first lockout 8300 comprises a single, bi-lateral first spring 8310 that is supported in the proximal end 8014 of the frame 8010 and attached to the shaft mount flange 8030. In one arrangement for example, the first spring 8310 comprises a first lockout arm 8312 that is located on one side of the cartridge axis CA and a second lockout arm 8314 that is located on an opposite side of the cartridge axis CA from the first lockout arm 8312. The first and second lockout arms 8312, 8314 are attached to a central body portion 8316. See
Turning now to
Referring now to
When the cartridge assembly 4500 has been operably seated in the first jaw or frame 5010, a distal first retention tab 8326 on the first lockout arm 8312 engages a corresponding side of the staple cartridge 4200 to retain the first lockout arm 8312 in that unlocked position. As can be seen in
After the staple cartridge 4200 has been fired, the firing member 5050 is retracted back to the starting position and the second jaw or anvil 8100 is pivoted back to the open position. The spent staple cartridge may then be removed from the first jaw or frame 8010. Once the spent staple cartridge 4200 has been removed from the first jaw or frame 8010, the first and second lockout arms 8312, 8314 spring back into engagement with the corresponding central pins 5058 on the firing member 5050 to once again retain the firing member 5050 in the starting position. Also, in at least one version, the surgical stapling device 8002 also includes a second lockout 5600 that is configured to prevent the firing member 5050 from distally advancing through the staple firing stroke when a spent staple cartridge is seated in the first jaw or frame 8010. Details concerning the operation of the second lockout were provided above and will not be repeated here.
Further to the above, at least one form of the retainer 4400 may be attached to various staple cartridges that are adapted to be used with (compatible with) different forms of surgical stapling devices. Stated another way, the retainer 4400 may be used on staple cartridges that can be seated in different stapling devices to defeat the various lockout mechanisms of those stapling devices. Staple cartridge 8200 may similarly be used with different stapling devices that have different forms of lockouts. For example,
In connection with another general aspect, the various authentication keys and authentication ramps disclosed herein may be mixed and matched with retainer body configurations disclosed herein such that one retainer/authentication key/ramp configuration may be employed with staple cartridges that can be used in a plurality of stapling devices disclosed herein. Such retainer authentication key/ramp configurations may be used to defeat a plurality of the lockout systems in those various stapling devices. Stated another way, one retainer/authentication key/authentication ramp configuration may be employed to unlock the jaw blocking lockouts and/or the firing member lockouts on several of the stapling devices disclosed herein.
As discussed herein, the authentication key arrangement may be provided on a detachable retainer, on the cartridge pan, on the cartridge body, on the sled or on another ancillary attached part. These authentication keys may be fashioned such that they could defeat the various first lockout systems of those surgical stapling devices disclosed herein that employ a translating jaw arrangement as well as the first lockout systems of those surgical stapling devices that employ a jaw arrangement that is pivotable about a fixed pivot axis. The design of such “universal” authentication keys may be limited and dictated by the amount of available space in such devices when the movable jaw or anvil is in the closed position (for those keys designed to be resident in the device throughout the stapling firing operation) as well as in the open position.
When designing authentication key configurations that may be employed to defeat lockouts in surgical stapling devices that employ a translating jaw as well lockouts in surgical stapling devices that employ a movable jaw that pivots about a fixed axis, the amount of available space that is available in each surgical stapling device will necessarily dictate a particular shape of a “universal” authentication key. Because the jaw shapes and travel paths are different in these types of surgical stapling devices, the amount of available space for the authentication keys when the jaws are open and closed differ.
Still referring to
As discussed above, as well as in several of the disclosures which have been incorporated by reference herein, the anvil 9100 may be movable from an open position wherein a used or spent staple cartridge may either be removed from the first jaw or frame 9010 or an unfired staple cartridge may be operably seated therein to a closed position by an axially movable closure member or end effector closure tube 9600 (
Further to the above, the surgical stapling device 9002 comprises a first lockout 9300 that is configured to prevent the second jaw or anvil 9100 from being movable from the open position to the closed position by the closure tube 9600. The first lockout 9300 may also be referred to herein as an “authentication” lockout. In the illustrated arrangement, the first lockout 9300 comprises a first lockout arm 9310 that is pivotally supported in the first jaw or frame 9010 by a lockout pin 9312 that is attached thereto. See
Referring now to
In at least one example, the stapling assembly 9000 comprises a staple cartridge 9200 that is identical to staple cartridge 4200 described above except that an authentication key 9430 is formed into a cartridge pan 9220. See
The surgical stapling device 9002 may further comprise a second lockout similar to second lockout 4600 for preventing the firing member 4050 from advancing through the firing stroke when a spent staple cartridge is seated in the first jaw of frame 9010. The second lockout 4600 was described in detail above and will not be repeated here.
Still referring to
Still referring to
As can be seen in
Also in at least one arrangement, a series of frangible retainer tabs are molded onto the bottom surface of the retainer 10400 between the proximal keel 10470 and the central keel 10472 and between the central keel 10472 and the distal keel 10474. More specifically and with reference to
As used in this context, the term “frangible joint” means a joint that is configured to facilitate detachment of a tab from the body of the retainer. Such joint may comprise an area of reduced cross-section as compared to the remaining cross-section of the tab/body portion to which it is attached. In other arrangements, a frangible joint may be fabricated from material that has different properties from the properties of the retainer body material. Such properties may result in the joint being easily broken by the user. In all of such cases, once the frangible joint has been broken and the tab detached from the retainer body, the tab cannot be reattached to the body for reuse by the user. Such frangible joint/attachment feature arrangements are distinguishable from other retainer arrangements that employ removable clips or other features that may be reattached to the retainer to facilitate its reuse.
The retainer 10400 may be removably coupled to the surgical staple cartridge 4200 by engaging the inwardly extending lip 10424 on the distal latch tab 10422 with the end of the distal nose 4203 and aligning the retainer 10400 such that the underside of the retainer top 10402 confronts the cartridge deck surface 4204 and the proximal keel feature 10470, the central keel feature 10472, the distal keel feature 10474, and the frangible retention tabs 10490R, 10490L are aligned with the longitudinal slot 4206 in the staple cartridge 4200. Thereafter, the retainer 10400 may be pressed toward the staple cartridge 4200 causing the retainer arms 10412, 10480, 10484 to flex laterally outward and snap into latching engagement with the corresponding portions of the staple cartridge body 4202. As the retainer 10400 is pressed downward, the angled frangible retention tabs 10490R, 10490L frictionally engage the sidewalls of the longitudinal slot 4206. The retention tabs 10490R, 10490L as well as the retainer arms 10412, 10480, 10484 affix the retainer 10400 to the staple cartridge 4200.
The retainer 10400 may be removed from the staple cartridge 4200 by applying a prying motion to the distal latch tab 10422 and lifting the retainer 10400 upward until the retention tabs 10490R, 10490L and the retainer arms 10412, 10480, 10484 disengage from the cartridge 4200. In the illustrated example, the term “LIFT” is molded or embossed into the nose portion 10420 to provide removal instructions to the user. In various instances, the retainer 10400 may be reused on another staple cartridge after being cleaned and re-sterilized using conventional cleaning and sterilization methods that are compatible with the retainer material. The attachment and removal of the retainer as well as the re-sterilization may tend to degrade the retainer over time to point wherein the retainer 10400 may become unreliable. At that point, the retainer 10400 may be discarded for a new retainer. In keeping with such process, the user may remove one or more of the frangible retention tabs 10490R, 10490L after each use until all of the frangible retention tabs 10490R, 10490L have been removed at which point the retainer 10400 should be discarded. See
In the illustrated example, the retainer 10400 comprises an authentication key 10430 that is similar in construction and operation as authentication key 6430. The construction and operation of authentication key 6430 is described in detail above and will not be repeated here. In alternative configurations, the retainer 10400 may be formed with any one of the various authentication key/authentication ramp arrangements disclosed herein, however.
In certain situations, some retainers are designed to be easily installed onto a compatible staple cartridge as well as removed therefrom. Many retainers are typically installed by the cartridge manufacturer, wherein the manufacturer can ensure that the retainer is matched with a particular staple cartridge that is compatible for use with a particular stapling device. Once the retainer has been removed from the staple cartridge and the staple cartridge has been used, the retainer, as well as the spent staple cartridge, may be discarded. In some instances, however, the staple cartridge as well as the retainer may be “reprocessed” for reuse in another stapling procedure and/or another stapling device. It is important for those reprocessing entities to install the proper surgical staples as well as the proper number of surgical staples into the reprocessed staple cartridge that make that cartridge compatible with a particular stapling device to ensure the desired results during use. Further, when using a reprocessed retainer, it is important that the retainer is attached to a staple cartridge that is compatible or matched with the particular stapling device. If, for example, a reprocessed retainer is inadvertently attached to a staple cartridge that is incompatible with a particular stapling device and that cartridge assembly is seated into the device to defeat the various lockouts therein, the user may then unwittingly fire the device with the improper cartridge installed. Thus, some of the retainers disclosed herein are designed to be used once or a limited number of times to reduce the chances of their reuse on incompatible or improper staple cartridges.
Still referring to
Also in at least one arrangement, a series of releasable retention members are molded onto the bottom surface between the proximal keel 11470 and the distal keel 11474. In the illustrated arrangement, two pairs of right and left releasable retention members are positioned between the proximal keel 11470 and the distal keel 11474. Each pair comprises a right releasable retention member 11480R and a left releasable retention member 11480L. Each right releasable retention member 11480R is molded with a leftwardly angled bias (when viewed from the distal end of the retainer) and each left releasable retention member 11480L is molded with a rightwardly angled bias. See
As can also be seen in
Referring now to
In various instances, it is desirable for the user to ensure that the staple cartridge that is being employed in a particular surgical stapling device is authentic or compatible with the surgical stapling device. For example, in many instances those cartridges that are manufactured by the same manufacturer of the surgical stapling device are generally compatible with those stapling devices. To provide the user with and indication as to the identity of the manufacturer of a staple cartridge 4200, for example, the manufacturer's logo 4260 or source indicator marking may be provided, for example, on the nose 4203 or other portion of the cartridge 4200. Such source indicator markings may be applied to each of the components of the surgical stapling device as well as each of the components of the staple cartridge and retainer. In the example depicted in
In various instances, it is also desirable to ensure that the retainer that is being used in connection with a staple cartridge is authentic or compatible with that cartridge and surgical stapling device. In the examples of
The retainer cover 14600 comprises a cover top 14602 and two cover sidewalls 14604 that have a series of cover attachment features or attachment lugs 14606 formed therein to releasably engage the sidewalls 14504 of the retainer base 14500. A distal latch tab 14608 is formed on a distal end of the retainer cover 14600 for assisting with the removal of the retainer cover 14600. In use, the retainer cover 14600 may be snapped over the retainer base 14500 such that the attachment lugs 14606 latchingly engage an underside of the sidewalls 14504 as shown in
When assembled, the retainer cover 14600 completely covers the staple cartridge 4200 and forms a cartridge assembly 14702. See
Once the retainer assembly 14700 has been inserted onto the staple cartridge 4200 to form the cartridge assembly 14702, the cartridge assembly 14702 may then be inserted into the channel of a surgical stapling device such that contact between the sidewalls of the channel and the attachment lugs 14606 in the cover sidewalls 14604 causes the cover attachment features or attachment lugs 14606 to disengage from the retainer base 14500. Alternatively, the retainer cover 14600 may be removed from the retainer assembly 14700 prior to installation of the cartridge assembly 14702 in the channel of the surgical stapling device by applying a prying motion to the distal latch tab 14608. In either event, after the retainer cover 14600 has been detached, the cartridge assembly 14702 minus the retainer cover 14600 continues to be inserted into the channel in the various manners described herein until the authentication key feature 14530 has defeated, unlocked or unlatched a lockout of the surgical stapling device and the cartridge assembly 14702 is seated in the channel. As can be seen in
The retainer assembly 15400 further comprises a retainer cover 15600 that is removably coupled to the retainer base 15410 by a series of frangible attachment joints 15604. In the illustrated arrangement, the retainer cover 15600 comprises a distal latch tab 15602 and a window 15606. The window 15606 is configured to enable the user to view the cartridge body 4202 when the retainer assembly 15400 is attached thereto. When the retainer assembly 15400 is attached to the staple cartridge 4200, the retainer assembly 15400 covers the entire staple cartridge 4200 and forms a cartridge assembly 15700. The cartridge assembly 15700 may then be inserted into a frame of a surgical stapling device such that contact between a proximal end portion 15608 or other portions of the retainer cover 15600 and the sidewalls or other portions of the channel causes the frangible attachment joints 15604 to rupture to permit the retainer cover 15600 to be detached from the retainer base 15410. Alternatively, once the cartridge assembly 15700 has been seated in the channel of the surgical stapling device, the user may apply a prying motion to the distal latch tab 15602 to cause the frangible attachment joints 15604 to rupture to permit the retainer cover 15600 to be removed from the retainer base 15410. See
In at least one arrangement, after the staples have been loaded into the staple cartridge 4200 by the manufacturer, the retainer 16400 is inserted over the staple cartridge 4200 in the manner illustrated in
In various instances wherein it may be desirable to prevent any of the various retainers disclosed herein from being reprocessed/reused, the various authentication keys disclosed herein may also be attached to the respective retainer body portion with a joint arrangement that permits the authentication key to be unrepairably broken or deformed or repositioned from a first or proper actuation position to a position rendering the authentication key unusable to defeat a lockout in a surgical stapling device and without completely detaching the authentication key from the remaining portion of the retainer. For example,
In still other arrangements, any of the retainer arrangements disclosed herein may be temporarily affixed to an unfired staple cartridge by an appropriate adhesive. The adhesive will affix the retainer to the cartridge body for example, but fracture and permit the retainer to be removed from the cartridge body by the user.
Turning next to
The retainer 18400 comprises a top portion 18403 that is coextensive with, and configured to be received on, the deck surface 18204 of the cartridge body 18202. Thus, in at least one configuration, when the retainer 18400 is attached to the cartridge body 18202, the retainer 18400 covers all of the staple pockets 18208 in the cartridge body 4202. As such, when the retainer 18400 is attached to the staple cartridge 18200, the retainer 18400 may prevent the surgical staples stored within the staple pockets 18208 from falling out should the staple cartridge 18200 be inverted or turned upside down prior to use. The retainer body 18402 may comprise any of the retainer body arrangements disclosed herein so that the retainer 18400 is removably attachable to the staple cartridge 18200. In one arrangement, the retainer 18400 may be molded from a polymer material and include a plurality of retainer lugs 18410 that are configured to latchingly engage outwardly extending deck ledge portions 18205 form on the cartridge body 4202. See
In the illustrated example, the retainer 18400 comprises an authentication key 18430 that is movably supported on the retainer body 18402 such that it is movable between a first actuation position and a retracted position. The authentication key 18430 is L-shaped with one leg 18440 pivotally pinned to the retainer body 18402 and another leg 18442 that comprises a ramp feature 18446. The authentication key 18430 is supported within a key housing 18450 that is molded or otherwise attached to a proximal end 18405 of the retainer body 18402. When the authentication key 18430 is in the actuation position, the leg 18442 protrudes proximally out of the key housing 18450 and when the authentication key 18430 is in the retracted position, the authentication key 18430 is completely contained within the key housing 18450. In another arrangement, when the authentication key 18430 is in the retracted position, at least the leg 18442 is inoperably received within the key housing 18450. As can be seen in
In the illustrated example, the retainer 19400 comprises an authentication key 19430 that is movably supported on the retainer body 19402 such that it is movable between a first actuation position and a retracted position. The authentication key 19430 is supported for axial movement within a key housing 19450 that is molded or otherwise attached to a proximal end 19405 of the retainer body 19402. The authentication key 19400 slidably extends through a housing wall 19452 and has a flange 19431 formed thereon. A retraction spring 19454 is journaled on the authentication key 19430 between the housing wall 19452 and the flange 19431 to bias the authentication key 19430 distally (direction DD) into the retracted position. When the authentication key 19400 is in the actuation position, a proximal end 19440 that may have action cam surface(s) 19442 thereon protrudes out of the key housing 19450.
As can be seen in
In use, the retainer 19400 is installed on the staple cartridge 4200 to form a cartridge assembly 19600 that can be seated in a surgical stapling device of the various types disclosed herein. As can be seen in
As was discussed above, the surgical staple cartridge 4200 comprises a sled or camming member 4230 that is configured to be axially advanced through the cartridge body 4202 during a staple firing stroke. In a “new”, “fresh” or “unfired” surgical staple cartridge, the sled 4230 is in its proximal-most, “unfired” position. The sled 4230 comprises a central body portion 4231 that coincides with a longitudinal slot 4206 in the cartridge body 4202. The sled 4230 further comprises a plurality of wedges or cam members 4232 that are configured to drivingly engage the corresponding lines of staple drivers in the cartridge body 4202. During the staple firing stroke, the firing member of a surgical stapling device abuts the central body portion 4231 of the sled 4230 and pushes the sled 4230 distally into camming contact with the staple drivers thereby sequentially driving the staple drivers upward toward the anvil as the sled 4230 is driven from its unfired position to its distal-most, fully fired position within the cartridge body 4202.
As can be seen in
When the first and second authentication key portions 20440, 20450 are axially aligned in an actuation position, the first authentication ramp portion 20444 and the second authentication ramp portion 20454 cooperate to form an authentication key ramp assembly 20700 that is configured to defeat a lockout of an associated surgical stapling device in the various manners described herein. In at least one arrangement, the first authentication key portion 20440 further comprises first sled engagement features 20446 that are configured to engage the central body portion 4231 of the sled 4230 when the retainer 20400 is attached to the staple cartridge 4200 and the sled 4230 is in the unfired position. Similarly, the second authentication key portion 20450 further comprises second sled engagement features 20456 that are configured to engage the central body portion 4231 of the sled 4230 when the retainer 20400 is attached to the staple cartridge 4200 and the sled 4230 is in the unfired position. In one arrangement, one or more biasing members (not shown) are supported in the retainer body 20402 to bias the first and second authentication key portions 20440, 20450 out of the actuation position unless the first and second sled engagement features 20446, 20456 are in engagement with the central body portion 4231 of an unfired sled 4230 in the staple cartridge 4200 to which the retainer 20400 is attached. Stated another way, the first and second authentication key portions 20440, 20450 are axially misaligned such that the first and second ramp portions 20444, 20454 are misaligned and do not form the authentication key ramp assembly 20700. See
In use, the retainer 20400 is aligned above the unfired staple cartridge 4200 such that the first and second sled engagement features 20446, 20456 are aligned with the longitudinal slot 4206 in the staple cartridge 4200. The retainer 20400 is thereafter pressed onto the staple cartridge 4200 in the manners described herein to form a cartridge assembly 20800. As the retainer 20400 is attached to the staple cartridge 4200, the first and second sled engagement features 20446, 20456 engage the central body portion 4231 of the unfired sled 4230 and move the first and second authentication key portions 20440, 20450 into the actuated position. When the cartridge assembly 20800 has been seated in a frame of a surgical staple cartridge that the retainer 20400 is associated with, the authentication key ramp assembly 20700 defeats the lockout of the surgical stapling device in the various manners disclosed herein. Once the retainer 20400 is removed from the staple cartridge 4200, the first and second sled engagement features 20446, 20456 disengage the central body portion 4231 of the sled 4230 and the first and second authentication key portions 20440, 20450 are moved to a misaligned position.
As can be seen in
Prior to installation on the staple cartridge 4200, the authentication key assembly 21430 is axially moved into the actuation position wherein the proximal end portion 21440 is in position to defeat, unlock or unlatch the lockout of the surgical stapling device in which the cartridge assembly is seated. This may be done by the manufacturer who installs the retainer assembly 21400 onto the staple cartridge. The retainer assembly 21400 is then pressed onto or otherwise removably attached to the staple cartridge in the various manners disclosed herein. The end user may then seat the cartridge assembly into a frame of a surgical stapling device such that the proximal end 21440 of the authentication key assembly 21430 defeats, unlocks, unlatches a lockout of the surgical stapling device in the various manner s disclosed herein. Thereafter, the user may then remove the retainer assembly 21400 from the staple cartridge by pulling on the removal feature 21436 and axially pulling the retainer assembly 21400 in a distal direction. In addition to detaching the retainer assembly 21400 from the staple cartridge 4200, such action retracts the authentication key assembly 21430 to a retracted position wherein the authentication key assembly 21430 is unable to defeat a lockout if the retainer 21400 were to be reattached to another staple cartridge and reseated into a stapling device.
In at least one arrangement, the removal feature comprises a hole 21438 through which an adjustable wire tie, sometimes referred to as a “zip-tie” may be inserted through and thereafter pulled on. In addition or in an alternative arrangement, a zip-tie may be threaded between one of the retention tabs and the cartridge body to enable a pulling force to be applied thereto. Also, in at least one example, the manufacturer of the retainer assembly 21400 initially sets the authentication key assembly 21430 in the actuation position. The series of locking teeth 21434 and the pawl teeth 21405 are “one-way” teeth and only permit the authentication key assembly 21430 to be retracted in the distal direction to the retracted position. The teeth 21434, 21405 do not permit the authentication key assembly 21430 to be moved proximally from the retracted position to the actuation position. The series of teeth may also be referred to as a “one-way latch”. Once the authentication key assembly 21430 is in the retracted position, it cannot be used to defeat a lockout of a surgical stapling device. Thus, the retainer assembly 21400 is configured to only be used a single time.
The retainer 22400 may comprise additional lateral retention features in the form of lateral retention members 22480 and 22484 that extend downward from each lateral side of the retainer 22400 and are distal to the lateral retainer lug assemblies 22410. Each lateral retention member 22480 comprises a latch end 22482 configured to engage a corresponding portion of the staple cartridge 4200. Each lateral retention member 22484 includes an angled end portion 22486 that is configured to engage a corresponding side of the staple cartridge 4200. The retainer 22400 further comprises an angled nose portion 22420 and distal latch tab 22422.
As can be seen in
In the illustrated example, the right and left retention tabs 22490R, 22490L are molded with a significantly strong angled bias into the first state which prevents their insertion into a longitudinal slot 4206 of the staple cartridge 4200 unless they are sufficiently straightened to the second state during the assembly process. In at least one instance, the retainer system 22000 comprises a retainer tool 22800 that is configured to be used to straighten the right and left retention tabs 22490R, 22490L (or move the right and left retention tabs 22490R, 22490L from the first state to the second state) during the attachment of the retainer 22400 to the staple cartridge 4200. In one form, the retainer tool 22800 comprises an elongated body 22802 that comprises a top portion 22810 and two downwardly depending sidewalls 22820. The sidewalls 22820 are spaced from each other to accommodate the staple cartridge deck 4204 therebetween. See
Referring now to
Once the retainer 22400 has been attached to the staple cartridge 4200 to form a cartridge assembly 22500, the cartridge assembly 22500 may then be inserted into the frame of a surgical stapling device in the various manners disclosed herein. The retainer 22400 further comprises an authentication key 22430 that is configured to defeat a lockout in the surgical stapling device into which the cartridge assembly 22500 is seated. As the cartridge assembly 22500 is seated into the frame, the angled surfaces 22417 on the catch features 22416 of the retention arms 22412, as well as the angled surface 22483 on each lateral retention member 22482 contact sidewalls of the frame which serve to bias the catch features 22416, 22482 laterally outward out of engagement with the ledge 4205 on the cartridge body 4202. Likewise when the catch features 22492R, 22492L on the right and left retention tabs 22490R, 22490L contact the corresponding sidewalls of a slot in the frame of the surgical stapling device, the catch features 22492R, 22492L are biased out of engagement with the cartridge pan 4220. The retainer 22400 may then be removed by applying a prying motion to the distal latch tab 22422 and pulling the retainer 22400 upward off of the staple cartridge 4200. In at least some arrangements, the left and right retention tabs 22490R, 22490L, as well as the retention arms 22412, are sufficiently rigid such that when the retainer 22400 has not been attached to the cartridge, it may be very difficult if not impossible to install the retainer 22400 on a staple cartridge 4200 without using the retainer tool 22800. In such instances, the retainer may practically comprise a single-use retainer.
To install the retainer 22400 onto the staple cartridge 4200, the straightening arms 22810R′, 22810L′ are inserted into the corresponding holes 22407 in the top portion 22403 of the retainer 22400 and into engagement with the corresponding left and right retention tabs 22490R, 22490L. The straightening arms 22810R′ engage the corresponding right retention tabs 22490R and bias them into a relatively straight insertion position wherein they are insertable into the slot 4206 in the staple cartridge 4200. Likewise the straightening arms 22810L′ engage the corresponding left retention tabs 22490L and bias them into a relatively straight insertion position in which they are insertable into the slot 4206 in the staple cartridge 4200. Once the retainer tool 22800′ has been inserted into the retainer 22400, the retainer may then be pressed onto the staple cartridge 4200. Thereafter the tool 22800′ may be removed from the retainer by pulling it in an upward direction off of the retainer 22400 to thereby permit the catch features on the left and right retention tabs 22490L, 22490R to engage the edges of the slot 4221 in the cartridge pan 4220.
In the illustrated arrangement, the retainer 24400 further includes a retainer detachment member 24430 that is attached to a proximal end 22416 of the top portion 24410 by a living hinge 24432. An authentication key 24440 is formed on the retainer detachment member 24430 and is configured to defeat a lockout 6300 of a surgical stapling device 6002 or other lockouts of other surgical stapling devices disclosed herein. The retainer detachment member 24430 further comprises at least one ejector post or one-way tab feature 24434 that protrudes from a bottom surface of the retainer actuator 24430. In at least one arrangement, an ejector post or one-way tab feature 24434 is formed adjacent each lateral side of the retainer actuator 24430. Each ejector post or one-way tab feature 24434 corresponds with a hole 24418 in the retainer top portion 24410.
The retainer 22400 may be installed onto the staple cartridge 4200 with the retainer detachment member 24430 in a first unactuated position. The retainer 24400 is installed by hooking the nose pocket 24414 over the nose 4203 of the staple cartridge 4200 and pressing the top portion 24410 downward onto a deck surface 4204 of the staple cartridge 4200 until the lateral retention features 24420 retainingly engage the ledges 4205 of the cartridge body 4202. The retainer 24400 and the staple cartridge 4200 now form a cartridge assembly 24500. The cartridge assembly 24500 may then be inserted into the frame 6010 of the surgical stapling device 6002 such that the authentication key 24440 of the retainer engages the actuator cam arm 6322 of the first lockout arm 6310 in the surgical stapling device 6002 to defeat the lockout 6300 while the retainer detachment member 24430 is in the first unactuated position.
The retainer 25400 is attached to a staple cartridge 4200 in the various manners disclosed herein to form a cartridge assembly. The cartridge assembly is then seated in a frame of a surgical stapling device such that the authentication key 25430 of the retainer 25400 defeats a lockout thereof in any of the various manners disclosed herein. The retainer 25400 is then detached from the staple cartridge 4200 and the stapling device is used to fire the staples in the staple cartridge 4200. Once the staple cartridge has been fired, the user may employ the cartridge removal features 25600 to remove the spent staple cartridge 4200S from the frame 25010 of the stapling device. As can be seen in
As shown in
As can be seen in
Still referring to
To ensure that the cartridge configurations of the types disclosed herein that have authentication keys integrally formed thereon as well as those cartridge assemblies that have a retainer attached thereto that includes an authentication key feature thereon, are properly aligned with the various lockout components in a stapling device, various stapling device embodiments may be equipped with alignment features to aid in the proper mating of the cartridge or cartridge assembly to the device. For example,
The device 6002A further includes a firing member 4050 that is configured to be distally advanced along a cartridge axis CA between a starting position and an ending position with a staple cartridge 28200 in the various manners disclosed herein. As can be see in
As can be seen in
In the illustrated arrangement, the authentication key 31270 comprises an authentication ramp 31274 that comprises a first angled camming surface 31276 and a second camming surface 31278.
In one arrangement, the tab portion 31272 is fabricated from material that prevents the authentication key 31270 from being returned to an operable or functional first state when in the second state thus making the staple cartridge 31200 a single-use cartridge. In other arrangements, however, once the cartridge has been fired and removed from the frame 6010, the tab portion 31272 may be fabricated from a resilient material that allows the tab portion to return the authentication key 31270 to a functional first state. In other arrangements, the tab portion 31272 may be molded to or otherwise attached to a retainer body of the various types disclosed herein. In such arrangements, the tab portion may be configured to be permanently deformed into the second state or it may be configured to return to a functional first state after use. In still other arrangements, initial operation of the firing member 4050 may cause the first lockout arm 6310A to start to pivot laterally to a point wherein the firing member action causes the authentication key to rotate from the first state to the second state. In the illustrated example, the authentication key 31270 is formed on a right side of a longitudinal slot 31206 in the cartridge body 31202. In alternative arrangements, the authentication key 31270 is formed on a left side of the longitudinal slot 31206 when the first lockout arm is positioned on that side of the surgical stapling device. Also, depending upon an amount of space available in particular surgical stapling devices, other arrangements of the staple cartridge 31200 comprise authentication keys 31270 that are formed on both sides of the slot 31206 making the cartridge functional for both forms of surgical stapling devices.
In the illustrated example, the authentication key 32270 is formed on a right side of the cartridge pan 32220. In alternative arrangements, the authentication key 32270 is formed on a left side of the cartridge pan 32220 when the first lockout arm is positioned on that side of the surgical stapling device. Also, depending upon an amount of space available in particular surgical stapling devices, other arrangements of the staple cartridge 32200 comprise authentication keys 32270 that are formed on both sides of the cartridge pan 32220 making the cartridge functional for both forms of surgical stapling devices.
As can be seen in
As can be seen in
As can be seen in
As can be seen in
As can be seen in
As can be seen in
As can be seen in
In the arrangement depicted in
In use, the retainer 5400′ may be attached to an unfired staple cartridge 4200 in the above described manner to form a cartridge assembly 5500′. Thereafter, the deactivator element 41100 may be installed on the retainer 5400′ as was described above. The cartridge assembly 5500′ with the deactivator element 41100 attached is then inserted into the frame 7010. As the cartridge assembly 5500′ is initially inserted into the frame 7010, the authentication ramp 41132 initially contacts an upstanding actuator cam arm 7322 that is formed on a distal end 7320 of the first lockout arm 7310. See
In alternative arrangements, the deactivator element 41100 may directly attached to the staple cartridge 4200 as opposed to the retainer 5400′. In such instances, the deactivator element 41100 may not have the step 41103 formed therein and the element locator or detent 5409′ may be formed on the cartridge deck surface 4204. In other arrangements, however, the deactivator element 41100 may have locator features/tabs, holes, detents thereon that interface with other portions of the staple cartridge 4200, such as the longitudinal slot 4206, cartridge body 4202, cartridge pan 4220, etc.
The right body portion 42224 comprises a pair of right longitudinal cam slots 42240 and the left body portion 42230 comprises a pair of left longitudinal cam slots 42242. The right longitudinal cam slots 42240 extend from the proximal end 42204 to the distal end portion and are configured to accommodate corresponding right wedges or cam members 42440 that are formed on a sled 42430 that is slidably supported within the staple cartridge 42200. Similarly, the left longitudinal cam slots 42242 extend from the proximal end 42204 to the distal end portion and are configured to accommodate corresponding left wedges or cam members 42442 on the sled 42430. The right cam members 42440 and the left cam members 42442 are configured to drivingly engage corresponding lines of staple drivers (not shown) in the cartridge body 42202. The sled 42430 further comprises a central body portion 42432 that may include an unlocking ledge (not shown) that is configured to be engaged by an unlocking feature that is formed on the firing member 4050 in the above described manners to defeat a second lockout in the surgical stapling device 6002A.
In the illustrated arrangement, the longitudinal slot and each of the longitudinal cam slots are open in a bottom portion 42221 of the cartridge body 42202 to form a sled opening 42223 into which the sled 42430 may be inserted. A cartridge pan 42250 is attached to the cartridge body to facilitate installation of staple drivers and staples (not shown) into staple pockets formed in the cartridge body 42202 and prevent the staples and staple drivers from falling out of the staple pockets through the open bottom of the cartridge body 42202 thereafter. The cartridge pan 42250 further comprises a notch 42252 in a distal end portion thereof to facilitate installation of the sled 42430 into the bottom of the staple cartridge 42200. As can be further seen in
The authentication key assembly 42260 protrudes proximally from the right body portion 42224 of the cartridge body 42202. In the illustrated arrangement, the authentication key assembly 42260 is integrally formed with the proximal end 42204 of the cartridge body 42202. The authentication key assembly 42260 comprises a top portion 42280 that cantilevers out from the proximal end 42204 of the cartridge body 42202 in a proximal direction. The top portion 42280 comprises a top surface 42282 that is coplanar with a cartridge deck surface 42205 defined on the cartridge body 42202. In addition, the top portion 42280 has a side surface 42284 that is coplanar with the right slot wall 42226. The authentication key 42260 further comprises a bottom portion 42261 that extends downwardly from the top portion 42280 to define an authentication ramp 42262. As can be seen in
Turning to
Various aspects of the subject matter described herein are set out in the following examples.
Example 1—A staple cartridge comprising a deformable authentication key movable between a first state and a second state. The authentication key is configured to operably engage a lockout of a surgical stapling device when the staple cartridge is inserted into the surgical stapling device in an initial insertion position and the authentication key is in the first state. The authentication key is deformed into the second state and moves the lockout from a locked position to an unlocked position when the staple cartridge is longitudinally moved from the initial insertion position to a final insertion position within the surgical stapling device.
Example 2—The staple cartridge of Example 1, further comprising a cartridge body, wherein the authentication key protrudes from the cartridge body.
Example 3—The staple cartridge of Example 2, wherein the authentication key comprises an authentication ramp, and wherein the authentication ramp is coupled to the cartridge body by a deformable tab.
Example 4—The staple cartridge of Example 3, wherein the authentication ramp comprises a ramp tip configured to engage the lockout when the staple cartridge is in the initial insertion position, a first angled cam surface extending from the ramp tip, and a second cam surface.
Example 5—The staple cartridge of Example 4, wherein the first angled cam surface operably engages the lockout as the authentication key is moved from the first state to the second state and biases the lockout laterally toward the unlocked position.
Example 6—The staple cartridge of Example 1, wherein the staple cartridge comprises a cartridge body and a cartridge pan coupled to the cartridge body. The authentication key comprises a portion of the cartridge pan.
Example 7—The staple cartridge of Examples 1, 2, 3, 4, 5, or 6, wherein the authentication key rotates between the first state and the second state.
Example 8—The staple cartridge of Examples 1, 2, 3, 4, 5, 6, or 7, wherein the surgical stapling device further comprises a firing member that is movable between a starting position and an ending position during a staple firing stroke, and wherein the authentication key is positioned in a path of the firing member when the staple cartridge is in the initial insertion position and the authentication key is in the first state.
Example 9—A staple cartridge assembly configured to be seated in a surgical stapling device comprising a lockout for preventing operation of the surgical stapling device. The staple cartridge assembly comprises a movable authentication key. The authentication key is movable from a first state to a second state upon contact with a portion of the surgical stapling device when the staple cartridge assembly is seated in the surgical stapling device. The authentication key moves the lockout from a locked position to an unlocked position when the movable authentication key moves from the first state to the second state.
Example 10—The staple cartridge assembly of Example 9, further comprising a staple cartridge comprising a cartridge body, wherein the authentication key comprises a portion of the cartridge body.
Example 11—The staple cartridge assembly of Examples 9 or 10, wherein the authentication key is rotatable between the first state and the second state.
Example 12—The staple cartridge assembly of Examples 9, 10, or 11, wherein the authentication key is permanently deformed when in the second state.
Example 13—The staple cartridge assembly of Examples 9, 10, 11, or 12, further comprising a staple cartridge and a retainer removably coupled to the staple cartridge. The authentication key is formed on the retainer.
Example 14—The staple cartridge assembly of Example 13, wherein the retainer comprises an actuator configured to move the authentication key from the first state to the second state.
Example 15—The staple cartridge assembly of Examples 9, 10, 11, 12, 13, or 14, further comprising a releasable latch for retaining the authentication key in the first state.
Example 16—The staple cartridge assembly of Example 13, further comprising a releasable latch in the retainer for retaining the authentication key in the first state.
Example 17—A surgical stapling assembly comprising a surgical stapling device comprising a first jaw, a second jaw, a firing member, and a lockout. The second jaw is supported relative to the first jaw. The second jaw is movable relative to the first jaw between an open position and a closed position. The firing member is movable between a starting position and an ending position during a staple firing stroke. The lockout is movable between a locked position wherein the lockout prevents operation of the surgical stapling device and an unlocked position wherein the surgical stapling device is operable. The surgical stapling assembly further comprises a staple cartridge assembly configured to be seated in the first jaw. The staple cartridge assembly comprises a movable authentication key. The authentication key is movable from a first state to a second state upon contact with a portion of the surgical stapling device when the staple cartridge assembly is seated in the surgical stapling device. The authentication key moves the lockout from the locked position to the unlocked position when the authentication key moves from the first state to the second state.
Example 18—The surgical stapling assembly of Example 17, wherein the authentication key is positioned in a path of the firing member when the authentication key is in the first state and the surgical stapling assembly is initially positioned in the first jaw.
Example 19—The surgical stapling assembly of Examples 17 or 18, wherein the second jaw moves the authentication key from the first state to the second state when the second jaw is moved from the open position to the closed position.
Example 20—The surgical stapling assembly of Examples 17 or 18, wherein the firing member moves the authentication key from the first state to the second state when the firing member is moved from the starting position toward the ending position.
Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail.
The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
The entire disclosures of:
U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, now U.S. Pat. No. 7,845,537;
U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
U.S. patent application Ser. No. 12/235,972, entitled MOTORIZED SURGICAL INSTRUMENT, now U.S. Pat. No. 9,050,083.
U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;
U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009, now U.S. Pat. No. 8,220,688;
U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;
U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012, now U.S. Pat. No. 9,101,358;
U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481;
U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;
U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.
Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one ore more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.
While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/866,208, entitled STAPLE CARTRIDGES WITH FEATURES FOR DEFEATING LOCKOUTS IN SURGICAL STAPLING DEVICES, filed Jun. 25, 2019, of U.S. Provisional Patent Application Ser. No. 62/807,310, entitled METHODS FOR CONTROLLING A POWERED SURGICAL STAPLER THAT HAS SEPARATE ROTARY CLOSURE AND FIRING SYSTEMS, filed Feb. 19, 2019, of U.S. Provisional Patent Application Ser. No. 62/807,319, entitled SURGICAL STAPLING DEVICES WITH IMPROVED LOCKOUT SYSTEMS, filed Feb. 19, 2019, and of U.S. Provisional Patent Application Ser. No. 62/807,309, entitled SURGICAL STAPLING DEVICES WITH IMPROVED ROTARY DRIVEN CLOSURE SYSTEMS, filed Feb. 19, 2019, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1853416 | Hall | Apr 1932 | A |
2222125 | Stehlik | Nov 1940 | A |
3082426 | Miles | Mar 1963 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3584628 | Green | Jun 1971 | A |
3626457 | Duerr et al. | Dec 1971 | A |
3633584 | Farrell | Jan 1972 | A |
3759017 | Young | Sep 1973 | A |
3863118 | Lander et al. | Jan 1975 | A |
3898545 | Coppa et al. | Aug 1975 | A |
3912121 | Steffen | Oct 1975 | A |
3915271 | Harper | Oct 1975 | A |
3932812 | Milligan | Jan 1976 | A |
4041362 | Ichiyanagi | Aug 1977 | A |
4052649 | Greenwell et al. | Oct 1977 | A |
4087730 | Goles | May 1978 | A |
4157859 | Terry | Jun 1979 | A |
4171700 | Farin | Oct 1979 | A |
4202722 | Paquin | May 1980 | A |
4412539 | Jarvik | Nov 1983 | A |
4448193 | Ivanov | May 1984 | A |
4523695 | Braun et al. | Jun 1985 | A |
4608160 | Zoch | Aug 1986 | A |
4614366 | North et al. | Sep 1986 | A |
4633874 | Chow et al. | Jan 1987 | A |
4701193 | Robertson et al. | Oct 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4788977 | Farin et al. | Dec 1988 | A |
4849752 | Bryant | Jul 1989 | A |
D303787 | Messenger et al. | Oct 1989 | S |
4892244 | Fox | Jan 1990 | A |
4976173 | Yang | Dec 1990 | A |
5010341 | Huntley et al. | Apr 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5042460 | Sakurai et al. | Aug 1991 | A |
5047043 | Kubota et al. | Sep 1991 | A |
5084057 | Green et al. | Jan 1992 | A |
5100402 | Fan | Mar 1992 | A |
D327061 | Soren et al. | Jun 1992 | S |
5129570 | Schulze et al. | Jul 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5158585 | Saho et al. | Oct 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5189277 | Boisvert et al. | Feb 1993 | A |
5197962 | Sansom et al. | Mar 1993 | A |
5204669 | Dorfe et al. | Apr 1993 | A |
5242474 | Herbst et al. | Sep 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5275323 | Schulze | Jan 1994 | A |
5318516 | Cosmescu | Jun 1994 | A |
5318563 | Malis et al. | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5342349 | Kaufman | Aug 1994 | A |
5364003 | Williamson, IV | Nov 1994 | A |
5383880 | Hooven | Jan 1995 | A |
5385544 | Edwards et al. | Jan 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403327 | Thornton et al. | Apr 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5439468 | Schulze et al. | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5485947 | Olson et al. | Jan 1996 | A |
5496315 | Weaver et al. | Mar 1996 | A |
5496317 | Goble et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5531743 | Nettekoven et al. | Jul 1996 | A |
5545148 | Wurster | Aug 1996 | A |
5552685 | Young et al. | Sep 1996 | A |
5560372 | Cory | Oct 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5610379 | Muz et al. | Mar 1997 | A |
5610811 | Honda | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
D379346 | Mieki | May 1997 | S |
5626587 | Bishop et al. | May 1997 | A |
5643291 | Pier et al. | Jul 1997 | A |
5654750 | Weil et al. | Aug 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5675227 | Roos et al. | Oct 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5693052 | Weaver | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5697926 | Weaver | Dec 1997 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5724468 | Leone et al. | Mar 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5746209 | Yost et al. | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5766186 | Faraz et al. | Jun 1998 | A |
5769791 | Benaron et al. | Jun 1998 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
D399561 | Ellingson | Oct 1998 | S |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5836849 | Mathiak et al. | Nov 1998 | A |
5836869 | Kudo et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5846237 | Nettekoven | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5873873 | Smith et al. | Feb 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5893849 | Weaver | Apr 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5942333 | Arnett et al. | Aug 1999 | A |
5947996 | Logeman | Sep 1999 | A |
5968032 | Sleister | Oct 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6030437 | Gourrier et al. | Feb 2000 | A |
6036637 | Kudo | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6039735 | Greep | Mar 2000 | A |
6059799 | Aranyi et al. | May 2000 | A |
6066137 | Greep | May 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6102907 | Smethers et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113598 | Baker | Sep 2000 | A |
6126592 | Proch et al. | Oct 2000 | A |
6126658 | Baker | Oct 2000 | A |
6131789 | Schulze et al. | Oct 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6214000 | Fleenor et al. | Apr 2001 | B1 |
6258105 | Hart et al. | Jul 2001 | B1 |
6269411 | Reasoner | Jul 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6283960 | Ashley | Sep 2001 | B1 |
6301495 | Gueziec et al. | Oct 2001 | B1 |
6302881 | Farin | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6341164 | Dilkie et al. | Jan 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6423057 | He et al. | Jul 2002 | B1 |
6434416 | Mizoguchi et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6451015 | Rittman, III et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6457625 | Tormala et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6466817 | Kaula et al. | Oct 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6524307 | Palmerton et al. | Feb 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6569109 | Sakurai et al. | May 2003 | B2 |
6582424 | Fleenor et al. | Jun 2003 | B2 |
6584358 | Carter et al. | Jun 2003 | B2 |
6585791 | Garito et al. | Jul 2003 | B1 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6618626 | West, Jr. et al. | Sep 2003 | B2 |
6633234 | Wiener et al. | Oct 2003 | B2 |
6648223 | Boukhny et al. | Nov 2003 | B2 |
6678552 | Pearlman | Jan 2004 | B2 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6685704 | Greep | Feb 2004 | B2 |
6699187 | Webb et al. | Mar 2004 | B2 |
6731514 | Evans | May 2004 | B2 |
6742895 | Robin | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6778846 | Martinez et al. | Aug 2004 | B1 |
6781683 | Kacyra et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6783525 | Greep et al. | Aug 2004 | B2 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6824539 | Novak | Nov 2004 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6849074 | Chen et al. | Feb 2005 | B2 |
6852219 | Hammond | Feb 2005 | B2 |
6863650 | Irion | Mar 2005 | B1 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869435 | Blake, III | Mar 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6913471 | Smith | Jul 2005 | B2 |
6937892 | Leyde et al. | Aug 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6951559 | Greep | Oct 2005 | B1 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7030146 | Baynes et al. | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7041941 | Fanes, Jr. et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044911 | Drinan et al. | May 2006 | B2 |
7044949 | Orszulak et al. | May 2006 | B2 |
7048775 | Jornitz et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7073765 | Newkirk | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7081096 | Brister et al. | Jul 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7103688 | Strong | Sep 2006 | B2 |
7104949 | Anderson et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7121460 | Parsons et al. | Oct 2006 | B1 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7164940 | Hareyama et al. | Jan 2007 | B2 |
7169145 | Isaacson et al. | Jan 2007 | B2 |
7177533 | McFarlin et al. | Feb 2007 | B2 |
7182775 | de Guillebon et al. | Feb 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7217269 | El-Galley et al. | May 2007 | B2 |
7230529 | Ketcherside, Jr. et al. | Jun 2007 | B2 |
7232447 | Gellman et al. | Jun 2007 | B2 |
7236817 | Papas et al. | Jun 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7252664 | Nasab et al. | Aug 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7294106 | Birkenbach et al. | Nov 2007 | B2 |
7294116 | Ellman et al. | Nov 2007 | B1 |
7296724 | Green et al. | Nov 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7343565 | Ying et al. | Mar 2008 | B2 |
7344532 | Goble et al. | Mar 2008 | B2 |
7353068 | Tanaka et al. | Apr 2008 | B2 |
7362228 | Nycz et al. | Apr 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7383088 | Spinelli et al. | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7408439 | Wang et al. | Aug 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7423972 | Shaham et al. | Sep 2008 | B2 |
D579876 | Novotney et al. | Nov 2008 | S |
7457804 | Uber, III et al. | Nov 2008 | B2 |
D583328 | Chiang | Dec 2008 | S |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7496418 | Kim et al. | Feb 2009 | B2 |
D589447 | Sasada et al. | Mar 2009 | S |
7515961 | Germanson et al. | Apr 2009 | B2 |
7518502 | Austin et al. | Apr 2009 | B2 |
7554343 | Bromfield | Jun 2009 | B2 |
7563259 | Takahashi | Jul 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7597731 | Palmerton et al. | Oct 2009 | B2 |
7617137 | Kreiner et al. | Nov 2009 | B2 |
7621192 | Conti et al. | Nov 2009 | B2 |
7621898 | Lalomia et al. | Nov 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7637907 | Blaha | Dec 2009 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7667592 | Ohyama et al. | Feb 2010 | B2 |
7667839 | Bates | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7720306 | Gardiner et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7736357 | Lee, Jr. et al. | Jun 2010 | B2 |
7742176 | Braunecker et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7757028 | Druke et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766905 | Paterson et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7771429 | Ballard et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7782789 | Stultz et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7818041 | Kim et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833219 | Tashiro et al. | Nov 2010 | B2 |
7836085 | Petakov et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837680 | Isaacson et al. | Nov 2010 | B2 |
7841980 | Minosawa et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
D631252 | Leslie | Jan 2011 | S |
7862560 | Marion | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7865236 | Cory et al. | Jan 2011 | B2 |
7884735 | Newkirk | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7892337 | Palmerton et al. | Feb 2011 | B2 |
7907166 | Lamprecht et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7920706 | Asokan et al. | Apr 2011 | B2 |
7927014 | Dehler | Apr 2011 | B2 |
7932826 | Fritchie et al. | Apr 2011 | B2 |
7942300 | Rethy et al. | May 2011 | B2 |
7945065 | Menzl et al. | May 2011 | B2 |
7945342 | Tsai et al. | May 2011 | B2 |
7951148 | McClurken | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7955322 | Devengenzo et al. | Jun 2011 | B2 |
7956620 | Gilbert | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7966269 | Bauer et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7976553 | Shelton, IV et al. | Jul 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7982776 | Dunki-Jacobs et al. | Jul 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7993140 | Sakezles | Aug 2011 | B2 |
7995045 | Dunki-Jacobs | Aug 2011 | B2 |
8005947 | Morris et al. | Aug 2011 | B2 |
8007494 | Taylor et al. | Aug 2011 | B1 |
8007513 | Nalagatla et al. | Aug 2011 | B2 |
8010180 | Quaid et al. | Aug 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8015976 | Shah | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8019094 | Hsieh et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8027710 | Dannan | Sep 2011 | B1 |
8035685 | Jensen | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8043560 | Okumoto et al. | Oct 2011 | B2 |
8054184 | Cline et al. | Nov 2011 | B2 |
8054752 | Druke et al. | Nov 2011 | B2 |
8062306 | Nobis et al. | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8118206 | Zand et al. | Feb 2012 | B2 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8123764 | Meade et al. | Feb 2012 | B2 |
D655678 | Kobayashi et al. | Mar 2012 | S |
8128625 | Odom | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
D657368 | Magee et al. | Apr 2012 | S |
8147486 | Honour et al. | Apr 2012 | B2 |
8155479 | Hoffman et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8160098 | Yan et al. | Apr 2012 | B1 |
8160690 | Wilfley et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8170396 | Kuspa et al. | May 2012 | B2 |
8172836 | Ward | May 2012 | B2 |
8181839 | Beetel | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8206345 | Abboud et al. | Jun 2012 | B2 |
8208707 | Mendonca et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8214007 | Baker et al. | Jul 2012 | B2 |
8216849 | Petty | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8225643 | Abboud et al. | Jul 2012 | B2 |
8225979 | Farascioni et al. | Jul 2012 | B2 |
8229549 | Whitman et al. | Jul 2012 | B2 |
8239066 | Jennings et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8255045 | Gharib et al. | Aug 2012 | B2 |
D667838 | Magee et al. | Sep 2012 | S |
8257387 | Cunningham | Sep 2012 | B2 |
8260016 | Maeda et al. | Sep 2012 | B2 |
8262560 | Whitman | Sep 2012 | B2 |
8292639 | Achammer et al. | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8321581 | Katis et al. | Nov 2012 | B2 |
8328065 | Shah | Dec 2012 | B2 |
8335590 | Costa et al. | Dec 2012 | B2 |
D675164 | Kobayashi et al. | Jan 2013 | S |
8343065 | Bartol et al. | Jan 2013 | B2 |
8346392 | Walser et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8364222 | Cook et al. | Jan 2013 | B2 |
D676392 | Gassauer | Feb 2013 | S |
8365975 | Manoux et al. | Feb 2013 | B1 |
D678196 | Miyauchi et al. | Mar 2013 | S |
D678304 | Yakoub et al. | Mar 2013 | S |
8388652 | Viola | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8397972 | Kostrzewski | Mar 2013 | B2 |
8398541 | DiMaio et al. | Mar 2013 | B2 |
8403944 | Pain et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403946 | Whitfield et al. | Mar 2013 | B2 |
8406859 | Zuzak et al. | Mar 2013 | B2 |
8411034 | Boillot et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8422035 | Hinderling et al. | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8429153 | Birdwell et al. | Apr 2013 | B2 |
8439910 | Greep et al. | May 2013 | B2 |
8444663 | Houser et al. | May 2013 | B2 |
8452615 | Abri | May 2013 | B2 |
8454506 | Rothman et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8468030 | Stroup et al. | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8472630 | Konrad et al. | Jun 2013 | B2 |
D687146 | Juzkiw et al. | Jul 2013 | S |
8476227 | Kaplan et al. | Jul 2013 | B2 |
8489235 | Moll et al. | Jul 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8500728 | Newton et al. | Aug 2013 | B2 |
8500756 | Papa et al. | Aug 2013 | B2 |
8503759 | Greer et al. | Aug 2013 | B2 |
8505801 | Ehrenfels et al. | Aug 2013 | B2 |
8506478 | Mizuyoshi | Aug 2013 | B2 |
8512325 | Mathonnet | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8515520 | Brunnett et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8521331 | Itkowitz | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8540709 | Allen | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8554697 | Claus et al. | Oct 2013 | B2 |
8560047 | Haider et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8566115 | Moore | Oct 2013 | B2 |
8567393 | Hickle et al. | Oct 2013 | B2 |
8571598 | Valavi | Oct 2013 | B2 |
8573459 | Smith et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8574229 | Eder et al. | Nov 2013 | B2 |
8585631 | Dacquay | Nov 2013 | B2 |
8585694 | Amoah et al. | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
8595607 | Nekoomaram et al. | Nov 2013 | B2 |
8596513 | Olson et al. | Dec 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8604709 | Jalbout et al. | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8620055 | Barratt et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8627483 | Rachlin et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8628545 | Cabrera et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8636190 | Zemlok et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8641621 | Razzaque et al. | Feb 2014 | B2 |
8652086 | Gerg et al. | Feb 2014 | B2 |
8652121 | Quick et al. | Feb 2014 | B2 |
8652128 | Ward | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8666544 | Moll et al. | Mar 2014 | B2 |
8679114 | Chapman et al. | Mar 2014 | B2 |
8682049 | Zhao et al. | Mar 2014 | B2 |
8682489 | Itkowitz et al. | Mar 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8688188 | Heller et al. | Apr 2014 | B2 |
8690864 | Hoarau | Apr 2014 | B2 |
8701962 | Kostrzewski | Apr 2014 | B2 |
D704839 | Juzkiw et al. | May 2014 | S |
8719061 | Birchall | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8740840 | Foley et al. | Jun 2014 | B2 |
8740866 | Reasoner et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8761717 | Buchheit | Jun 2014 | B1 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8768251 | Claus et al. | Jul 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8775196 | Simpson et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8790253 | Sunagawa et al. | Jul 2014 | B2 |
8794497 | Man | Aug 2014 | B2 |
8795001 | Lam et al. | Aug 2014 | B1 |
8799008 | Johnson et al. | Aug 2014 | B2 |
8799009 | Mellin et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801703 | Gregg et al. | Aug 2014 | B2 |
8814996 | Giurgiutiu et al. | Aug 2014 | B2 |
8818556 | Sanchez et al. | Aug 2014 | B2 |
8819581 | Nakamura et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820608 | Miyamoto | Sep 2014 | B2 |
8827134 | Viola et al. | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
D716333 | Chotin et al. | Oct 2014 | S |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852174 | Burbank | Oct 2014 | B2 |
8875973 | Whitman | Nov 2014 | B2 |
8876857 | Burbank | Nov 2014 | B2 |
8882662 | Charles | Nov 2014 | B2 |
8886790 | Harrang et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8899479 | Cappuzzo et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8912746 | Reid et al. | Dec 2014 | B2 |
8914098 | Brennan et al. | Dec 2014 | B2 |
8917513 | Hazzard | Dec 2014 | B1 |
8918207 | Prisco | Dec 2014 | B2 |
8920186 | Shishikura | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8920433 | Barrier et al. | Dec 2014 | B2 |
8930203 | Kiaie et al. | Jan 2015 | B2 |
8930214 | Woolford | Jan 2015 | B2 |
8931679 | Kostrzewski | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8956581 | Rosenbaum et al. | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8962062 | Podhajsky et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8967455 | Zhou | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968296 | McPherson | Mar 2015 | B2 |
8968309 | Roy et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968358 | Reschke | Mar 2015 | B2 |
8974429 | Gordon et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986288 | Konishi | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992565 | Brisson et al. | Mar 2015 | B2 |
8998797 | Omori | Apr 2015 | B2 |
9002518 | Manzo et al. | Apr 2015 | B2 |
9010611 | Ross et al. | Apr 2015 | B2 |
9011366 | Dean et al. | Apr 2015 | B2 |
9011427 | Price et al. | Apr 2015 | B2 |
9016539 | Kostrzewski et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9020240 | Pettersson et al. | Apr 2015 | B2 |
D729267 | Yoo et al. | May 2015 | S |
9023032 | Robinson | May 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9027431 | Tang et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9035568 | Ganton et al. | May 2015 | B2 |
9038882 | Racenet et al. | May 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044244 | Ludwin et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050063 | Roe et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050120 | Swarup et al. | Jun 2015 | B2 |
9052809 | Vesto | Jun 2015 | B2 |
9055035 | Porsch et al. | Jun 2015 | B2 |
9055870 | Meador et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9066650 | Sekiguchi | Jun 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9078727 | Miller | Jul 2015 | B2 |
9084606 | Greep | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9099863 | Smith et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101359 | Smith et al. | Aug 2015 | B2 |
9101374 | Hoch et al. | Aug 2015 | B1 |
9106270 | Puterbaugh et al. | Aug 2015 | B2 |
9107573 | Birnkrant | Aug 2015 | B2 |
9107662 | Kostrzewski | Aug 2015 | B2 |
9107684 | Ma | Aug 2015 | B2 |
9107688 | Kimball et al. | Aug 2015 | B2 |
9107689 | Robertson et al. | Aug 2015 | B2 |
9107694 | Hendriks et al. | Aug 2015 | B2 |
9111548 | Nandy et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9114494 | Mah | Aug 2015 | B1 |
9116597 | Gulasky | Aug 2015 | B1 |
9119617 | Souls et al. | Sep 2015 | B2 |
9119655 | Bowling et al. | Sep 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9123155 | Cunningham et al. | Sep 2015 | B2 |
9125644 | Lane et al. | Sep 2015 | B2 |
9129054 | Nawana et al. | Sep 2015 | B2 |
9137254 | Bilbrey et al. | Sep 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9149322 | Knowlton | Oct 2015 | B2 |
9155503 | Cadwell | Oct 2015 | B2 |
9160853 | Daddi et al. | Oct 2015 | B1 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168091 | Janssen et al. | Oct 2015 | B2 |
9168104 | Dein | Oct 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9183723 | Sherman et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9192375 | Skinlo et al. | Nov 2015 | B2 |
9192447 | Choi et al. | Nov 2015 | B2 |
9192707 | Gerber et al. | Nov 2015 | B2 |
9198711 | Joseph | Dec 2015 | B2 |
9202078 | Abuelsaad et al. | Dec 2015 | B2 |
9204830 | Zand et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204995 | Scheller et al. | Dec 2015 | B2 |
9211120 | Scheib et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9218053 | Komuro et al. | Dec 2015 | B2 |
9220502 | Zemlok et al. | Dec 2015 | B2 |
9226689 | Jacobsen et al. | Jan 2016 | B2 |
9226751 | Shelton, IV et al. | Jan 2016 | B2 |
9226766 | Aldridge et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9226791 | McCarthy et al. | Jan 2016 | B2 |
9232883 | Ozawa et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9241728 | Price et al. | Jan 2016 | B2 |
9241730 | Babaev | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9247996 | Merana et al. | Feb 2016 | B1 |
9250172 | Harris et al. | Feb 2016 | B2 |
9255907 | Heanue et al. | Feb 2016 | B2 |
9265429 | St. Pierre et al. | Feb 2016 | B2 |
9265585 | Wingardner et al. | Feb 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9277956 | Zhang | Mar 2016 | B2 |
9277961 | Panescu et al. | Mar 2016 | B2 |
9277969 | Brannan et al. | Mar 2016 | B2 |
9280884 | Schultz et al. | Mar 2016 | B1 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9289211 | Williams et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9301691 | Hufnagel et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9301810 | Amiri et al. | Apr 2016 | B2 |
9302213 | Manahan et al. | Apr 2016 | B2 |
9307894 | von Grunberg et al. | Apr 2016 | B2 |
9307914 | Fahey | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9314308 | Parihar et al. | Apr 2016 | B2 |
9320563 | Brustad et al. | Apr 2016 | B2 |
9325732 | Stickle et al. | Apr 2016 | B1 |
9326767 | Koch et al. | May 2016 | B2 |
9326770 | Shelton, IV et al. | May 2016 | B2 |
9331422 | Nazzaro et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9333042 | Diolaiti et al. | May 2016 | B2 |
9336385 | Spencer et al. | May 2016 | B1 |
9341704 | Picard et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345490 | Ippisch | May 2016 | B2 |
9345546 | Toth et al. | May 2016 | B2 |
9345900 | Wu et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9358003 | Hall et al. | Jun 2016 | B2 |
9358685 | Meier et al. | Jun 2016 | B2 |
9360449 | Duric | Jun 2016 | B2 |
9364231 | Wenchell | Jun 2016 | B2 |
9364249 | Kimball et al. | Jun 2016 | B2 |
9364294 | Razzaque et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9375282 | Nau, Jr. et al. | Jun 2016 | B2 |
9375539 | Stearns et al. | Jun 2016 | B2 |
9381003 | Todor et al. | Jul 2016 | B2 |
9381058 | Houser et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9387295 | Mastri et al. | Jul 2016 | B1 |
9393017 | Flanagan et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
9398905 | Martin | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402629 | Ehrenfels et al. | Aug 2016 | B2 |
9414776 | Sillay et al. | Aug 2016 | B2 |
9414940 | Stein et al. | Aug 2016 | B2 |
9419018 | Sasagawa et al. | Aug 2016 | B2 |
9421014 | Ingmanson et al. | Aug 2016 | B2 |
9433470 | Choi | Sep 2016 | B2 |
9439622 | Case et al. | Sep 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9439736 | Olson | Sep 2016 | B2 |
9445764 | Gross et al. | Sep 2016 | B2 |
9445813 | Shelton, IV et al. | Sep 2016 | B2 |
9450701 | Do et al. | Sep 2016 | B2 |
9451949 | Gorek et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
9463022 | Swayze et al. | Oct 2016 | B2 |
9463646 | Payne et al. | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9474565 | Shikhman et al. | Oct 2016 | B2 |
D772252 | Myers et al. | Nov 2016 | S |
9480492 | Aranyi et al. | Nov 2016 | B2 |
9485475 | Speier et al. | Nov 2016 | B2 |
9486271 | Dunning | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492237 | Kang et al. | Nov 2016 | B2 |
9493807 | Little et al. | Nov 2016 | B2 |
9498182 | Case et al. | Nov 2016 | B2 |
9498215 | Duque et al. | Nov 2016 | B2 |
9498231 | Haider et al. | Nov 2016 | B2 |
9516239 | Blanquart et al. | Dec 2016 | B2 |
9519753 | Gerdeman et al. | Dec 2016 | B1 |
9522003 | Weir et al. | Dec 2016 | B2 |
9526407 | Hoeg et al. | Dec 2016 | B2 |
9526499 | Kostrzewski et al. | Dec 2016 | B2 |
9526587 | Zhao et al. | Dec 2016 | B2 |
9532827 | Morgan et al. | Jan 2017 | B2 |
9532845 | Dossett et al. | Jan 2017 | B1 |
9539007 | Dhakad et al. | Jan 2017 | B2 |
9539020 | Conlon et al. | Jan 2017 | B2 |
9542481 | Halter et al. | Jan 2017 | B2 |
9546662 | Shener-Irmakoglu et al. | Jan 2017 | B2 |
9549781 | He et al. | Jan 2017 | B2 |
9554692 | Levy | Jan 2017 | B2 |
9554794 | Baber et al. | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9561045 | Hinman et al. | Feb 2017 | B2 |
9561082 | Yen et al. | Feb 2017 | B2 |
9561982 | Enicks et al. | Feb 2017 | B2 |
9566708 | Kurnianto | Feb 2017 | B2 |
9572592 | Price et al. | Feb 2017 | B2 |
9579503 | McKinney et al. | Feb 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9592095 | Panescu et al. | Mar 2017 | B2 |
9597081 | Swayze et al. | Mar 2017 | B2 |
9600031 | Kaneko et al. | Mar 2017 | B2 |
9600138 | Thomas et al. | Mar 2017 | B2 |
9603024 | Wang et al. | Mar 2017 | B2 |
9603277 | Morgan et al. | Mar 2017 | B2 |
D783675 | Yagisawa et al. | Apr 2017 | S |
D784270 | Bhattacharya | Apr 2017 | S |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9610412 | Zemlok et al. | Apr 2017 | B2 |
9615877 | Tyrrell et al. | Apr 2017 | B2 |
9622684 | Wybo | Apr 2017 | B2 |
9622808 | Beller et al. | Apr 2017 | B2 |
9628501 | Datta Ray et al. | Apr 2017 | B2 |
9629560 | Joseph | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629628 | Aranyi | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9630318 | Ibarz Gabardos et al. | Apr 2017 | B2 |
9636188 | Gattani et al. | May 2017 | B2 |
9636239 | Durand et al. | May 2017 | B2 |
9636825 | Penn et al. | May 2017 | B2 |
9641596 | Unagami et al. | May 2017 | B2 |
9641815 | Richardson et al. | May 2017 | B2 |
9642620 | Baxter, III et al. | May 2017 | B2 |
9643022 | Mashiach et al. | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649126 | Robertson et al. | May 2017 | B2 |
9649169 | Cinquin et al. | May 2017 | B2 |
9652655 | Satish et al. | May 2017 | B2 |
9655616 | Aranyi | May 2017 | B2 |
9656092 | Golden | May 2017 | B2 |
9662116 | Smith et al. | May 2017 | B2 |
9662177 | Weir et al. | May 2017 | B2 |
9668729 | Wiliams et al. | Jun 2017 | B2 |
9668732 | Patel et al. | Jun 2017 | B2 |
9668765 | Grace et al. | Jun 2017 | B2 |
9671860 | Ogawa et al. | Jun 2017 | B2 |
9675264 | Acquista et al. | Jun 2017 | B2 |
9675354 | Weir et al. | Jun 2017 | B2 |
9681870 | Baxter, III et al. | Jun 2017 | B2 |
9686306 | Chizeck et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9690362 | Leimbach et al. | Jun 2017 | B2 |
9700292 | Nawana et al. | Jul 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700312 | Kostrzewski et al. | Jul 2017 | B2 |
9706993 | Hessler et al. | Jul 2017 | B2 |
9710214 | Lin et al. | Jul 2017 | B2 |
9710644 | Reybok et al. | Jul 2017 | B2 |
9713424 | Spaide | Jul 2017 | B2 |
9713503 | Goldschmidt | Jul 2017 | B2 |
9717141 | Tegg | Jul 2017 | B1 |
9717498 | Aranyi et al. | Aug 2017 | B2 |
9717525 | Ahluwalia et al. | Aug 2017 | B2 |
9717548 | Couture | Aug 2017 | B2 |
9724094 | Baber et al. | Aug 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9733663 | Leimbach et al. | Aug 2017 | B2 |
9737301 | Baber et al. | Aug 2017 | B2 |
9737310 | Whitfield et al. | Aug 2017 | B2 |
9737335 | Butler et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9740826 | Raghavan et al. | Aug 2017 | B2 |
9743016 | Nestares et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9743946 | Faller et al. | Aug 2017 | B2 |
9743947 | Price et al. | Aug 2017 | B2 |
9750499 | Leimbach et al. | Sep 2017 | B2 |
9750500 | Malkowski | Sep 2017 | B2 |
9750522 | Scheib et al. | Sep 2017 | B2 |
9750523 | Tsubuku | Sep 2017 | B2 |
9750563 | Shikhman et al. | Sep 2017 | B2 |
9753135 | Bosch | Sep 2017 | B2 |
9753568 | McMillen | Sep 2017 | B2 |
9757126 | Cappola | Sep 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757152 | Ogilvie et al. | Sep 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9764164 | Wiener et al. | Sep 2017 | B2 |
9770541 | Carr et al. | Sep 2017 | B2 |
9777913 | Talbert et al. | Oct 2017 | B2 |
9782164 | Mumaw et al. | Oct 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9782212 | Wham et al. | Oct 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788835 | Morgan et al. | Oct 2017 | B2 |
9788836 | Overmyer et al. | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9788902 | Inoue et al. | Oct 2017 | B2 |
9788907 | Alvi et al. | Oct 2017 | B1 |
9795436 | Yates et al. | Oct 2017 | B2 |
9797486 | Zergiebel et al. | Oct 2017 | B2 |
9801531 | Morita et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9801627 | Harris et al. | Oct 2017 | B2 |
9801679 | Trees et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9804618 | Leimbach et al. | Oct 2017 | B2 |
9805472 | Chou et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808245 | Richard et al. | Nov 2017 | B2 |
9808246 | Shelton, IV et al. | Nov 2017 | B2 |
9808248 | Hoffman | Nov 2017 | B2 |
9808249 | Shelton, IV | Nov 2017 | B2 |
9814457 | Martin et al. | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814462 | Woodard, Jr. et al. | Nov 2017 | B2 |
9814463 | Williams | Nov 2017 | B2 |
9820699 | Bingley et al. | Nov 2017 | B2 |
9820738 | Lytle, IV et al. | Nov 2017 | B2 |
9820741 | Kostrzewski | Nov 2017 | B2 |
9826976 | Parihar et al. | Nov 2017 | B2 |
9826977 | Leimbach et al. | Nov 2017 | B2 |
9827054 | Richmond et al. | Nov 2017 | B2 |
9827059 | Robinson et al. | Nov 2017 | B2 |
9830424 | Dixon et al. | Nov 2017 | B2 |
9833241 | Huitema et al. | Dec 2017 | B2 |
9833254 | Barral et al. | Dec 2017 | B1 |
9839419 | Deck et al. | Dec 2017 | B2 |
9839424 | Zergiebel et al. | Dec 2017 | B2 |
9839428 | Baxter, III et al. | Dec 2017 | B2 |
9839467 | Harper et al. | Dec 2017 | B2 |
9839470 | Gilbert et al. | Dec 2017 | B2 |
9839487 | Dachs, II | Dec 2017 | B2 |
9844321 | Ekvall et al. | Dec 2017 | B1 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844369 | Huitema et al. | Dec 2017 | B2 |
9844374 | Lytle, IV et al. | Dec 2017 | B2 |
9844375 | Overmyer et al. | Dec 2017 | B2 |
9844376 | Baxter, III et al. | Dec 2017 | B2 |
9844379 | Shelton, IV et al. | Dec 2017 | B2 |
9848058 | Johnson et al. | Dec 2017 | B2 |
9848877 | Shelton, IV et al. | Dec 2017 | B2 |
9861354 | Saliman et al. | Jan 2018 | B2 |
9861363 | Chen et al. | Jan 2018 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9864839 | Baym et al. | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9867651 | Wham | Jan 2018 | B2 |
9867670 | Brannan et al. | Jan 2018 | B2 |
9867914 | Bonano et al. | Jan 2018 | B2 |
9872609 | Levy | Jan 2018 | B2 |
9872683 | Hopkins et al. | Jan 2018 | B2 |
9877718 | Weir et al. | Jan 2018 | B2 |
9877721 | Schellin et al. | Jan 2018 | B2 |
9883860 | Leimbach | Feb 2018 | B2 |
9888864 | Rondon et al. | Feb 2018 | B2 |
9888914 | Martin et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888921 | Williams et al. | Feb 2018 | B2 |
9888975 | Auld | Feb 2018 | B2 |
9895148 | Shelton, IV et al. | Feb 2018 | B2 |
9900787 | Ou | Feb 2018 | B2 |
9901342 | Shelton, IV et al. | Feb 2018 | B2 |
9901406 | State et al. | Feb 2018 | B2 |
9905000 | Chou et al. | Feb 2018 | B2 |
9907196 | Susini et al. | Feb 2018 | B2 |
9907550 | Sniffin et al. | Mar 2018 | B2 |
9913642 | Leimbach et al. | Mar 2018 | B2 |
9913645 | Zerkle et al. | Mar 2018 | B2 |
9918326 | Gilson et al. | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9918778 | Walberg et al. | Mar 2018 | B2 |
9918788 | Paul et al. | Mar 2018 | B2 |
9922304 | DeBusk et al. | Mar 2018 | B2 |
9924941 | Burbank | Mar 2018 | B2 |
9924944 | Shelton, IV et al. | Mar 2018 | B2 |
9924961 | Shelton, IV et al. | Mar 2018 | B2 |
9931040 | Homyk et al. | Apr 2018 | B2 |
9931118 | Shelton, IV et al. | Apr 2018 | B2 |
9931124 | Gokharu | Apr 2018 | B2 |
9936863 | Tesar | Apr 2018 | B2 |
9936942 | Chin et al. | Apr 2018 | B2 |
9936955 | Miller et al. | Apr 2018 | B2 |
9936961 | Chien et al. | Apr 2018 | B2 |
9937012 | Hares et al. | Apr 2018 | B2 |
9937014 | Bowling et al. | Apr 2018 | B2 |
9937626 | Rockrohr | Apr 2018 | B2 |
9938972 | Walley | Apr 2018 | B2 |
9943230 | Kaku et al. | Apr 2018 | B2 |
9943309 | Shelton, IV et al. | Apr 2018 | B2 |
9943312 | Posada et al. | Apr 2018 | B2 |
9943377 | Yates et al. | Apr 2018 | B2 |
9943379 | Gregg, II et al. | Apr 2018 | B2 |
9943918 | Grogan et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9962157 | Sapre | May 2018 | B2 |
9968355 | Shelton, IV et al. | May 2018 | B2 |
9974595 | Anderson et al. | May 2018 | B2 |
9980140 | Spencer et al. | May 2018 | B1 |
9980769 | Trees et al. | May 2018 | B2 |
9980778 | Ohline et al. | May 2018 | B2 |
9987000 | Shelton, IV et al. | Jun 2018 | B2 |
9987068 | Anderson et al. | Jun 2018 | B2 |
9987072 | McPherson | Jun 2018 | B2 |
9990856 | Kuchenbecker et al. | Jun 2018 | B2 |
9993248 | Shelton, IV et al. | Jun 2018 | B2 |
9993258 | Shelton, IV et al. | Jun 2018 | B2 |
9993305 | Andersson | Jun 2018 | B2 |
10004491 | Martin et al. | Jun 2018 | B2 |
10004497 | Overmyer et al. | Jun 2018 | B2 |
10004500 | Shelton, IV et al. | Jun 2018 | B2 |
10004501 | Shelton, IV et al. | Jun 2018 | B2 |
10004527 | Gee et al. | Jun 2018 | B2 |
10004557 | Gross | Jun 2018 | B2 |
D822206 | Shelton, IV et al. | Jul 2018 | S |
10010322 | Shelton, IV et al. | Jul 2018 | B2 |
10010324 | Huitema et al. | Jul 2018 | B2 |
10013049 | Leimbach et al. | Jul 2018 | B2 |
10016199 | Baber et al. | Jul 2018 | B2 |
10021318 | Hugosson et al. | Jul 2018 | B2 |
10022090 | Whitman | Jul 2018 | B2 |
10022120 | Martin et al. | Jul 2018 | B2 |
10022391 | Ruderman Chen et al. | Jul 2018 | B2 |
10022568 | Messerly et al. | Jul 2018 | B2 |
10028402 | Walker | Jul 2018 | B1 |
10028744 | Shelton, IV et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
10028788 | Kang | Jul 2018 | B2 |
10034704 | Asher et al. | Jul 2018 | B2 |
10037641 | Hyde et al. | Jul 2018 | B2 |
10037715 | Toly et al. | Jul 2018 | B2 |
D826405 | Shelton, IV et al. | Aug 2018 | S |
10039564 | Hibner et al. | Aug 2018 | B2 |
10039565 | Vezzu | Aug 2018 | B2 |
10039589 | Virshek et al. | Aug 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10044791 | Kamen et al. | Aug 2018 | B2 |
10045704 | Fagin et al. | Aug 2018 | B2 |
10045776 | Shelton, IV et al. | Aug 2018 | B2 |
10045779 | Savage et al. | Aug 2018 | B2 |
10045781 | Cropper et al. | Aug 2018 | B2 |
10045782 | Murthy Aravalli | Aug 2018 | B2 |
10045813 | Mueller | Aug 2018 | B2 |
10048379 | Markendorf et al. | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10052102 | Baxter, III et al. | Aug 2018 | B2 |
10052104 | Shelton, IV et al. | Aug 2018 | B2 |
10054441 | Schorr et al. | Aug 2018 | B2 |
10058393 | Bonutti et al. | Aug 2018 | B2 |
10069633 | Gulati et al. | Sep 2018 | B2 |
10076326 | Yates et al. | Sep 2018 | B2 |
10080618 | Marshall et al. | Sep 2018 | B2 |
10084833 | McDonnell et al. | Sep 2018 | B2 |
D831209 | Huitema et al. | Oct 2018 | S |
10085748 | Morgan et al. | Oct 2018 | B2 |
10085749 | Cappola et al. | Oct 2018 | B2 |
10092355 | Hannaford et al. | Oct 2018 | B1 |
10095942 | Mentese et al. | Oct 2018 | B2 |
10097578 | Baldonado et al. | Oct 2018 | B2 |
10098527 | Weisenburgh, II et al. | Oct 2018 | B2 |
10098635 | Burbank | Oct 2018 | B2 |
10098642 | Baxter, III et al. | Oct 2018 | B2 |
10098705 | Brisson et al. | Oct 2018 | B2 |
10102926 | Leonardi | Oct 2018 | B1 |
10105140 | Malinouskas et al. | Oct 2018 | B2 |
10105142 | Baxter, III et al. | Oct 2018 | B2 |
10105470 | Reasoner et al. | Oct 2018 | B2 |
10111658 | Chowaniec et al. | Oct 2018 | B2 |
10111665 | Aranyi et al. | Oct 2018 | B2 |
10111679 | Baber et al. | Oct 2018 | B2 |
10111703 | Cosman, Jr. et al. | Oct 2018 | B2 |
D834541 | You et al. | Nov 2018 | S |
10117649 | Baxter et al. | Nov 2018 | B2 |
10117651 | Whitman et al. | Nov 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10118119 | Sappok | Nov 2018 | B2 |
10130359 | Hess et al. | Nov 2018 | B2 |
10130360 | Olson et al. | Nov 2018 | B2 |
10130361 | Yates et al. | Nov 2018 | B2 |
10130367 | Cappola et al. | Nov 2018 | B2 |
10133248 | Fitzsimmons et al. | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10136949 | Felder et al. | Nov 2018 | B2 |
10136954 | Johnson et al. | Nov 2018 | B2 |
10137245 | Melker et al. | Nov 2018 | B2 |
10143526 | Walker et al. | Dec 2018 | B2 |
10143948 | Bonitas et al. | Dec 2018 | B2 |
10147148 | Wu et al. | Dec 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10152789 | Carnes et al. | Dec 2018 | B2 |
10154841 | Weaner et al. | Dec 2018 | B2 |
10159044 | Hrabak | Dec 2018 | B2 |
10159481 | Whitman et al. | Dec 2018 | B2 |
10159483 | Beckman et al. | Dec 2018 | B2 |
10164466 | Calderoni | Dec 2018 | B2 |
10166025 | Leimbach et al. | Jan 2019 | B2 |
10166061 | Berry et al. | Jan 2019 | B2 |
10169862 | Andre et al. | Jan 2019 | B2 |
10172618 | Shelton, IV | Jan 2019 | B2 |
10172687 | Garbus et al. | Jan 2019 | B2 |
10175096 | Dickerson | Jan 2019 | B2 |
10175127 | Collins et al. | Jan 2019 | B2 |
10178992 | Wise et al. | Jan 2019 | B2 |
10179413 | Rockrohr | Jan 2019 | B2 |
10180463 | Beckman et al. | Jan 2019 | B2 |
10182814 | Okoniewski | Jan 2019 | B2 |
10182816 | Shelton, IV et al. | Jan 2019 | B2 |
10182818 | Hensel et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10189157 | Schlegel et al. | Jan 2019 | B2 |
10190888 | Hryb et al. | Jan 2019 | B2 |
10194891 | Jeong et al. | Feb 2019 | B2 |
10194907 | Marczyk et al. | Feb 2019 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10197803 | Badiali et al. | Feb 2019 | B2 |
10198965 | Hart | Feb 2019 | B2 |
10201311 | Chou et al. | Feb 2019 | B2 |
10201349 | Leimbach et al. | Feb 2019 | B2 |
10201364 | Leimbach et al. | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10205708 | Fletcher et al. | Feb 2019 | B1 |
10206605 | Shelton, IV et al. | Feb 2019 | B2 |
10206752 | Hares et al. | Feb 2019 | B2 |
10213201 | Shelton, IV et al. | Feb 2019 | B2 |
10213203 | Swayze et al. | Feb 2019 | B2 |
10213266 | Zemlok et al. | Feb 2019 | B2 |
10213268 | Dachs, II | Feb 2019 | B2 |
10219491 | Stiles, Jr. et al. | Mar 2019 | B2 |
10220522 | Rockrohr | Mar 2019 | B2 |
10222750 | Bang et al. | Mar 2019 | B2 |
10226249 | Jaworek et al. | Mar 2019 | B2 |
10226250 | Beckman et al. | Mar 2019 | B2 |
10226302 | Lacal et al. | Mar 2019 | B2 |
10231634 | Zand et al. | Mar 2019 | B2 |
10231733 | Ehrenfels et al. | Mar 2019 | B2 |
10231775 | Shelton, IV et al. | Mar 2019 | B2 |
10238413 | Hibner et al. | Mar 2019 | B2 |
10245027 | Shelton, IV et al. | Apr 2019 | B2 |
10245028 | Shelton, IV et al. | Apr 2019 | B2 |
10245029 | Hunter et al. | Apr 2019 | B2 |
10245030 | Hunter et al. | Apr 2019 | B2 |
10245033 | Overmyer et al. | Apr 2019 | B2 |
10245037 | Conklin et al. | Apr 2019 | B2 |
10245038 | Hopkins et al. | Apr 2019 | B2 |
10251661 | Collings et al. | Apr 2019 | B2 |
10251725 | Valentine et al. | Apr 2019 | B2 |
10258331 | Shelton, IV et al. | Apr 2019 | B2 |
10258359 | Kapadia | Apr 2019 | B2 |
10258362 | Conlon | Apr 2019 | B2 |
10258363 | Worrell et al. | Apr 2019 | B2 |
10258415 | Harrah et al. | Apr 2019 | B2 |
10258418 | Shelton, IV et al. | Apr 2019 | B2 |
10258425 | Mustufa et al. | Apr 2019 | B2 |
10263171 | Wiener et al. | Apr 2019 | B2 |
10265035 | Fehre et al. | Apr 2019 | B2 |
10265068 | Harris et al. | Apr 2019 | B2 |
10265072 | Shelton, IV et al. | Apr 2019 | B2 |
10265090 | Ingmanson et al. | Apr 2019 | B2 |
10265130 | Hess et al. | Apr 2019 | B2 |
10271840 | Sapre | Apr 2019 | B2 |
10271844 | Valentine et al. | Apr 2019 | B2 |
10271850 | Williams | Apr 2019 | B2 |
10271851 | Shelton, IV et al. | Apr 2019 | B2 |
D847989 | Shelton, IV et al. | May 2019 | S |
10278698 | Racenet | May 2019 | B2 |
10283220 | Azizian et al. | May 2019 | B2 |
10285694 | Viola et al. | May 2019 | B2 |
10285698 | Cappola et al. | May 2019 | B2 |
10285700 | Scheib | May 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10292704 | Harris et al. | May 2019 | B2 |
10292707 | Shelton, IV et al. | May 2019 | B2 |
10292758 | Boudreaux et al. | May 2019 | B2 |
10292769 | Yu | May 2019 | B1 |
10292771 | Wood et al. | May 2019 | B2 |
10293129 | Fox et al. | May 2019 | B2 |
10299792 | Huitema et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10305926 | Mihan et al. | May 2019 | B2 |
D850617 | Shelton, IV et al. | Jun 2019 | S |
10307159 | Harris et al. | Jun 2019 | B2 |
10307170 | Parfett et al. | Jun 2019 | B2 |
10307199 | Farritor et al. | Jun 2019 | B2 |
10311036 | Hussam et al. | Jun 2019 | B1 |
10313137 | Aarnio et al. | Jun 2019 | B2 |
10314577 | Laurent et al. | Jun 2019 | B2 |
10314582 | Shelton, IV et al. | Jun 2019 | B2 |
10321907 | Shelton, IV et al. | Jun 2019 | B2 |
10321964 | Grover et al. | Jun 2019 | B2 |
10327764 | Harris et al. | Jun 2019 | B2 |
10335147 | Rector et al. | Jul 2019 | B2 |
10335149 | Baxter, III et al. | Jul 2019 | B2 |
10335180 | Johnson et al. | Jul 2019 | B2 |
10335227 | Heard | Jul 2019 | B2 |
10339496 | Matson et al. | Jul 2019 | B2 |
10342543 | Shelton, IV et al. | Jul 2019 | B2 |
10342602 | Strobl et al. | Jul 2019 | B2 |
10342623 | Huelman et al. | Jul 2019 | B2 |
10343102 | Reasoner et al. | Jul 2019 | B2 |
10349824 | Claude et al. | Jul 2019 | B2 |
10349939 | Shelton, IV et al. | Jul 2019 | B2 |
10349941 | Marczyk et al. | Jul 2019 | B2 |
10350016 | Burbank et al. | Jul 2019 | B2 |
10357184 | Crawford et al. | Jul 2019 | B2 |
10357246 | Shelton, IV et al. | Jul 2019 | B2 |
10357247 | Shelton, IV et al. | Jul 2019 | B2 |
10362179 | Harris | Jul 2019 | B2 |
10363032 | Scheib et al. | Jul 2019 | B2 |
10363037 | Aronhalt et al. | Jul 2019 | B2 |
10368861 | Baxter, III et al. | Aug 2019 | B2 |
10368865 | Harris et al. | Aug 2019 | B2 |
10368867 | Harris et al. | Aug 2019 | B2 |
10368876 | Bhatnagar et al. | Aug 2019 | B2 |
10368894 | Madan et al. | Aug 2019 | B2 |
10368903 | Morales et al. | Aug 2019 | B2 |
10376263 | Morgan et al. | Aug 2019 | B2 |
10376305 | Yates et al. | Aug 2019 | B2 |
10376337 | Kilroy et al. | Aug 2019 | B2 |
10376338 | Taylor et al. | Aug 2019 | B2 |
10378893 | Mankovskii | Aug 2019 | B2 |
10383518 | Abu-Tarif et al. | Aug 2019 | B2 |
10383699 | Kilroy et al. | Aug 2019 | B2 |
10384021 | Koeth et al. | Aug 2019 | B2 |
10386990 | Shikhman et al. | Aug 2019 | B2 |
10390718 | Chen et al. | Aug 2019 | B2 |
10390794 | Kuroiwa et al. | Aug 2019 | B2 |
10390825 | Shelton, IV et al. | Aug 2019 | B2 |
10390831 | Holsten et al. | Aug 2019 | B2 |
10390895 | Henderson et al. | Aug 2019 | B2 |
10398348 | Osadchy et al. | Sep 2019 | B2 |
10398434 | Shelton, IV et al. | Sep 2019 | B2 |
10398517 | Eckert et al. | Sep 2019 | B2 |
10398521 | Itkowitz et al. | Sep 2019 | B2 |
10404521 | McChord et al. | Sep 2019 | B2 |
10404801 | Martch | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10405863 | Wise et al. | Sep 2019 | B2 |
10413291 | Worthington et al. | Sep 2019 | B2 |
10413293 | Shelton, IV et al. | Sep 2019 | B2 |
10413297 | Harris et al. | Sep 2019 | B2 |
10417446 | Takeyama | Sep 2019 | B2 |
10420552 | Shelton, IV et al. | Sep 2019 | B2 |
10420558 | Nalagatla et al. | Sep 2019 | B2 |
10420559 | Marczyk et al. | Sep 2019 | B2 |
10420620 | Rockrohr | Sep 2019 | B2 |
10420865 | Reasoner et al. | Sep 2019 | B2 |
10422727 | Pliskin | Sep 2019 | B2 |
10426466 | Contini et al. | Oct 2019 | B2 |
10426467 | Miller et al. | Oct 2019 | B2 |
10426468 | Contini et al. | Oct 2019 | B2 |
10426471 | Shelton, IV et al. | Oct 2019 | B2 |
10426481 | Aronhalt et al. | Oct 2019 | B2 |
10433837 | Worthington et al. | Oct 2019 | B2 |
10433844 | Shelton, IV et al. | Oct 2019 | B2 |
10433849 | Shelton, IV et al. | Oct 2019 | B2 |
10433918 | Shelton, IV et al. | Oct 2019 | B2 |
10441279 | Shelton, IV et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10448948 | Shelton, IV et al. | Oct 2019 | B2 |
10448950 | Shelton, IV et al. | Oct 2019 | B2 |
10456137 | Vendely et al. | Oct 2019 | B2 |
10456140 | Shelton, IV et al. | Oct 2019 | B2 |
10456193 | Yates et al. | Oct 2019 | B2 |
10463365 | Williams | Nov 2019 | B2 |
10463367 | Kostrzewski et al. | Nov 2019 | B2 |
10463371 | Kostrzewski | Nov 2019 | B2 |
10463436 | Jackson et al. | Nov 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10470764 | Baxter, III et al. | Nov 2019 | B2 |
10470768 | Harris et al. | Nov 2019 | B2 |
10470791 | Houser | Nov 2019 | B2 |
10471254 | Sano et al. | Nov 2019 | B2 |
10478181 | Shelton, IV et al. | Nov 2019 | B2 |
10478185 | Nicholas | Nov 2019 | B2 |
10478189 | Bear et al. | Nov 2019 | B2 |
10478190 | Miller et al. | Nov 2019 | B2 |
10478544 | Friederichs et al. | Nov 2019 | B2 |
10485450 | Gupta et al. | Nov 2019 | B2 |
10485542 | Shelton, IV et al. | Nov 2019 | B2 |
10485543 | Shelton, IV et al. | Nov 2019 | B2 |
10492783 | Shelton, IV et al. | Dec 2019 | B2 |
10492784 | Beardsley et al. | Dec 2019 | B2 |
10492785 | Overmyer et al. | Dec 2019 | B2 |
10496788 | Amarasingham et al. | Dec 2019 | B2 |
10498269 | Zemlok et al. | Dec 2019 | B2 |
10499847 | Latimer et al. | Dec 2019 | B2 |
10499891 | Chaplin et al. | Dec 2019 | B2 |
10499914 | Huang et al. | Dec 2019 | B2 |
10499915 | Aranyi | Dec 2019 | B2 |
10499994 | Luks et al. | Dec 2019 | B2 |
10507068 | Kopp et al. | Dec 2019 | B2 |
10512413 | Schepis et al. | Dec 2019 | B2 |
10512461 | Gupta et al. | Dec 2019 | B2 |
10512499 | McHenry et al. | Dec 2019 | B2 |
10512514 | Nowlin et al. | Dec 2019 | B2 |
10517588 | Gupta et al. | Dec 2019 | B2 |
10517595 | Hunter et al. | Dec 2019 | B2 |
10517596 | Hunter et al. | Dec 2019 | B2 |
10517686 | Vokrot et al. | Dec 2019 | B2 |
10524789 | Swayze et al. | Jan 2020 | B2 |
10531579 | Hsiao et al. | Jan 2020 | B2 |
10531874 | Morgan et al. | Jan 2020 | B2 |
10531929 | Widenhouse et al. | Jan 2020 | B2 |
10532330 | Diallo et al. | Jan 2020 | B2 |
10536617 | Liang et al. | Jan 2020 | B2 |
10537324 | Shelton, IV et al. | Jan 2020 | B2 |
10537325 | Bakos et al. | Jan 2020 | B2 |
10537351 | Shelton, IV et al. | Jan 2020 | B2 |
10542978 | Chowaniec et al. | Jan 2020 | B2 |
10542979 | Shelton, IV et al. | Jan 2020 | B2 |
10542982 | Beckman et al. | Jan 2020 | B2 |
10542991 | Shelton, IV et al. | Jan 2020 | B2 |
D876466 | Kobayashi et al. | Feb 2020 | S |
10548504 | Shelton, IV et al. | Feb 2020 | B2 |
10548612 | Martinez et al. | Feb 2020 | B2 |
10548673 | Harris et al. | Feb 2020 | B2 |
10552574 | Sweeney | Feb 2020 | B2 |
10555675 | Satish et al. | Feb 2020 | B2 |
10555748 | Yates et al. | Feb 2020 | B2 |
10555750 | Conlon et al. | Feb 2020 | B2 |
10555769 | Worrell et al. | Feb 2020 | B2 |
10561422 | Schellin et al. | Feb 2020 | B2 |
10561471 | Nichogi | Feb 2020 | B2 |
10561753 | Thompson et al. | Feb 2020 | B2 |
10568625 | Harris et al. | Feb 2020 | B2 |
10568626 | Shelton, IV et al. | Feb 2020 | B2 |
10568632 | Miller et al. | Feb 2020 | B2 |
10568704 | Savall et al. | Feb 2020 | B2 |
10575868 | Hall et al. | Mar 2020 | B2 |
10582928 | Hunter et al. | Mar 2020 | B2 |
10582931 | Mujawar | Mar 2020 | B2 |
10582964 | Weinberg et al. | Mar 2020 | B2 |
10586074 | Rose et al. | Mar 2020 | B2 |
10588625 | Weaner et al. | Mar 2020 | B2 |
10588629 | Malinouskas et al. | Mar 2020 | B2 |
10588630 | Shelton, IV et al. | Mar 2020 | B2 |
10588631 | Shelton, IV et al. | Mar 2020 | B2 |
10588632 | Shelton, IV et al. | Mar 2020 | B2 |
10588711 | DiCarlo et al. | Mar 2020 | B2 |
10592067 | Merdan et al. | Mar 2020 | B2 |
10595844 | Nawana et al. | Mar 2020 | B2 |
10595882 | Parfett et al. | Mar 2020 | B2 |
10595887 | Shelton, IV et al. | Mar 2020 | B2 |
10595930 | Scheib et al. | Mar 2020 | B2 |
10595952 | Forrest et al. | Mar 2020 | B2 |
10602007 | Takano | Mar 2020 | B2 |
10602848 | Magana | Mar 2020 | B2 |
10603036 | Hunter et al. | Mar 2020 | B2 |
10603128 | Zergiebel et al. | Mar 2020 | B2 |
10610223 | Wellman et al. | Apr 2020 | B2 |
10610224 | Shelton, IV et al. | Apr 2020 | B2 |
10610286 | Wiener et al. | Apr 2020 | B2 |
10610313 | Bailey et al. | Apr 2020 | B2 |
10617412 | Shelton, IV et al. | Apr 2020 | B2 |
10617414 | Shelton, IV et al. | Apr 2020 | B2 |
10617482 | Houser et al. | Apr 2020 | B2 |
10617484 | Kilroy et al. | Apr 2020 | B2 |
10624635 | Harris et al. | Apr 2020 | B2 |
10624667 | Faller et al. | Apr 2020 | B2 |
10624691 | Wiener et al. | Apr 2020 | B2 |
10631423 | Collins et al. | Apr 2020 | B2 |
10631858 | Burbank | Apr 2020 | B2 |
10631912 | McFarlin et al. | Apr 2020 | B2 |
10631916 | Horner et al. | Apr 2020 | B2 |
10631917 | Ineson | Apr 2020 | B2 |
10631939 | Dachs, II et al. | Apr 2020 | B2 |
10639027 | Shelton, IV et al. | May 2020 | B2 |
10639034 | Harris et al. | May 2020 | B2 |
10639035 | Shelton, IV et al. | May 2020 | B2 |
10639036 | Yates et al. | May 2020 | B2 |
10639037 | Shelton, IV et al. | May 2020 | B2 |
10639039 | Vendely et al. | May 2020 | B2 |
10639098 | Cosman et al. | May 2020 | B2 |
10639111 | Kopp | May 2020 | B2 |
10639185 | Agrawal et al. | May 2020 | B2 |
10653413 | Worthington et al. | May 2020 | B2 |
10653476 | Ross | May 2020 | B2 |
10653489 | Kopp | May 2020 | B2 |
10656720 | Holz | May 2020 | B1 |
10660705 | Piron et al. | May 2020 | B2 |
10667809 | Bakos et al. | Jun 2020 | B2 |
10667810 | Shelton, IV et al. | Jun 2020 | B2 |
10667811 | Harris et al. | Jun 2020 | B2 |
10667877 | Kapadia | Jun 2020 | B2 |
10674897 | Levy | Jun 2020 | B2 |
10675021 | Harris et al. | Jun 2020 | B2 |
10675023 | Cappola | Jun 2020 | B2 |
10675024 | Shelton, IV et al. | Jun 2020 | B2 |
10675025 | Swayze et al. | Jun 2020 | B2 |
10675026 | Harris et al. | Jun 2020 | B2 |
10675035 | Zingman | Jun 2020 | B2 |
10675100 | Frushour | Jun 2020 | B2 |
10675104 | Kapadia | Jun 2020 | B2 |
10677764 | Ross et al. | Jun 2020 | B2 |
10679758 | Fox et al. | Jun 2020 | B2 |
10682136 | Harris et al. | Jun 2020 | B2 |
10682138 | Shelton, IV et al. | Jun 2020 | B2 |
10686805 | Reybok, Jr. et al. | Jun 2020 | B2 |
10687806 | Shelton, IV et al. | Jun 2020 | B2 |
10687810 | Shelton, IV et al. | Jun 2020 | B2 |
10687884 | Wiener et al. | Jun 2020 | B2 |
10687905 | Kostrzewski | Jun 2020 | B2 |
10695081 | Shelton, IV et al. | Jun 2020 | B2 |
10695134 | Barral et al. | Jun 2020 | B2 |
10702270 | Shelton, IV et al. | Jul 2020 | B2 |
10709446 | Harris et al. | Jul 2020 | B2 |
10716489 | Kalvoy et al. | Jul 2020 | B2 |
10716615 | Shelton, IV et al. | Jul 2020 | B2 |
10716639 | Kapadia et al. | Jul 2020 | B2 |
10717194 | Griffiths et al. | Jul 2020 | B2 |
10722222 | Aranyi | Jul 2020 | B2 |
10722233 | Wellman | Jul 2020 | B2 |
10722292 | Arya et al. | Jul 2020 | B2 |
D893717 | Messerly et al. | Aug 2020 | S |
10729458 | Stoddard et al. | Aug 2020 | B2 |
10729509 | Shelton, IV et al. | Aug 2020 | B2 |
10733267 | Pedersen | Aug 2020 | B2 |
10736219 | Seow et al. | Aug 2020 | B2 |
10736616 | Scheib et al. | Aug 2020 | B2 |
10736628 | Yates et al. | Aug 2020 | B2 |
10736629 | Shelton, IV et al. | Aug 2020 | B2 |
10736636 | Baxter, III et al. | Aug 2020 | B2 |
10736705 | Scheib et al. | Aug 2020 | B2 |
10743872 | Leimbach et al. | Aug 2020 | B2 |
10748115 | Laster et al. | Aug 2020 | B2 |
10751052 | Stokes et al. | Aug 2020 | B2 |
10751136 | Farritor et al. | Aug 2020 | B2 |
10751768 | Hersey et al. | Aug 2020 | B2 |
10755813 | Shelton, IV et al. | Aug 2020 | B2 |
D896379 | Shelton, IV et al. | Sep 2020 | S |
10758229 | Shelton, IV et al. | Sep 2020 | B2 |
10758230 | Shelton, IV et al. | Sep 2020 | B2 |
10758294 | Jones | Sep 2020 | B2 |
10758310 | Shelton, IV et al. | Sep 2020 | B2 |
10765376 | Brown, III et al. | Sep 2020 | B2 |
10765424 | Baxter, III et al. | Sep 2020 | B2 |
10765427 | Shelton, IV et al. | Sep 2020 | B2 |
10765470 | Yates et al. | Sep 2020 | B2 |
10772630 | Wixey | Sep 2020 | B2 |
10772651 | Shelton, IV et al. | Sep 2020 | B2 |
10772673 | Allen, IV et al. | Sep 2020 | B2 |
10772688 | Peine et al. | Sep 2020 | B2 |
10779818 | Zemlok et al. | Sep 2020 | B2 |
10779821 | Harris et al. | Sep 2020 | B2 |
10779823 | Shelton, IV et al. | Sep 2020 | B2 |
10779897 | Rockrohr | Sep 2020 | B2 |
10779900 | Pedros et al. | Sep 2020 | B2 |
10783634 | Nye et al. | Sep 2020 | B2 |
10786298 | Johnson | Sep 2020 | B2 |
10786317 | Zhou et al. | Sep 2020 | B2 |
10786327 | Anderson et al. | Sep 2020 | B2 |
10792038 | Becerra et al. | Oct 2020 | B2 |
10792118 | Prpa et al. | Oct 2020 | B2 |
10792422 | Douglas et al. | Oct 2020 | B2 |
10799304 | Kapadia et al. | Oct 2020 | B2 |
10803977 | Sanmugalingham | Oct 2020 | B2 |
10806445 | Penna et al. | Oct 2020 | B2 |
10806454 | Kopp | Oct 2020 | B2 |
10806499 | Castaneda et al. | Oct 2020 | B2 |
10806506 | Gaspredes et al. | Oct 2020 | B2 |
10806532 | Grubbs et al. | Oct 2020 | B2 |
10813638 | Shelton, IV et al. | Oct 2020 | B2 |
10813703 | Swayze et al. | Oct 2020 | B2 |
10818383 | Sharifi Sedeh et al. | Oct 2020 | B2 |
10828028 | Harris et al. | Nov 2020 | B2 |
10828030 | Weir et al. | Nov 2020 | B2 |
10835245 | Swayze et al. | Nov 2020 | B2 |
10835246 | Shelton, IV et al. | Nov 2020 | B2 |
10835247 | Shelton, IV et al. | Nov 2020 | B2 |
10842473 | Scheib et al. | Nov 2020 | B2 |
10842490 | DiNardo et al. | Nov 2020 | B2 |
10842492 | Shelton, IV et al. | Nov 2020 | B2 |
10842522 | Messerly et al. | Nov 2020 | B2 |
10842523 | Shelton, IV et al. | Nov 2020 | B2 |
10842575 | Panescu et al. | Nov 2020 | B2 |
10842897 | Schwartz et al. | Nov 2020 | B2 |
D904612 | Wynn et al. | Dec 2020 | S |
10849697 | Yates et al. | Dec 2020 | B2 |
10849700 | Kopp et al. | Dec 2020 | B2 |
10856768 | Osadchy et al. | Dec 2020 | B2 |
10856867 | Shelton, IV et al. | Dec 2020 | B2 |
10856868 | Shelton, IV et al. | Dec 2020 | B2 |
10856870 | Harris et al. | Dec 2020 | B2 |
10863984 | Shelton, IV et al. | Dec 2020 | B2 |
10864037 | Mun et al. | Dec 2020 | B2 |
10864050 | Tabandeh et al. | Dec 2020 | B2 |
10872684 | McNutt et al. | Dec 2020 | B2 |
10881399 | Shelton, IV et al. | Jan 2021 | B2 |
10881401 | Baber et al. | Jan 2021 | B2 |
10881446 | Strobl | Jan 2021 | B2 |
10881464 | Odermatt et al. | Jan 2021 | B2 |
10888321 | Shelton, IV et al. | Jan 2021 | B2 |
10888322 | Morgan et al. | Jan 2021 | B2 |
10892899 | Shelton, IV et al. | Jan 2021 | B2 |
10892995 | Shelton, IV et al. | Jan 2021 | B2 |
10893863 | Shelton, IV et al. | Jan 2021 | B2 |
10893864 | Harris et al. | Jan 2021 | B2 |
10893884 | Stoddard et al. | Jan 2021 | B2 |
10898183 | Shelton, IV et al. | Jan 2021 | B2 |
10898186 | Bakos et al. | Jan 2021 | B2 |
10898189 | McDonald, II | Jan 2021 | B2 |
10898256 | Yates et al. | Jan 2021 | B2 |
10898280 | Kopp | Jan 2021 | B2 |
10898622 | Shelton, IV et al. | Jan 2021 | B2 |
10902944 | Casey et al. | Jan 2021 | B1 |
10903685 | Yates et al. | Jan 2021 | B2 |
10905415 | DiNardo et al. | Feb 2021 | B2 |
10905418 | Shelton, IV et al. | Feb 2021 | B2 |
10905420 | Jasemian et al. | Feb 2021 | B2 |
10912559 | Harris et al. | Feb 2021 | B2 |
10912580 | Green et al. | Feb 2021 | B2 |
10912619 | Jarc et al. | Feb 2021 | B2 |
10916415 | Karancsi et al. | Feb 2021 | B2 |
10918385 | Overmyer et al. | Feb 2021 | B2 |
10930400 | Robbins et al. | Feb 2021 | B2 |
D914878 | Shelton, IV et al. | Mar 2021 | S |
10932705 | Muhsin et al. | Mar 2021 | B2 |
10932772 | Shelton, IV et al. | Mar 2021 | B2 |
10932784 | Mozdzierz et al. | Mar 2021 | B2 |
10932804 | Scheib et al. | Mar 2021 | B2 |
10932806 | Shelton, IV et al. | Mar 2021 | B2 |
10932872 | Shelton, IV et al. | Mar 2021 | B2 |
10939313 | Eom et al. | Mar 2021 | B2 |
10943454 | Shelton, IV et al. | Mar 2021 | B2 |
10944728 | Wiener et al. | Mar 2021 | B2 |
10945727 | Shelton, IV et al. | Mar 2021 | B2 |
10950982 | Regnier et al. | Mar 2021 | B2 |
10952708 | Scheib et al. | Mar 2021 | B2 |
10954935 | O'Shea et al. | Mar 2021 | B2 |
10959727 | Hunter et al. | Mar 2021 | B2 |
10959729 | Ehrenfels et al. | Mar 2021 | B2 |
10959744 | Shelton, IV et al. | Mar 2021 | B2 |
10959788 | Grover et al. | Mar 2021 | B2 |
10960150 | Zergiebel et al. | Mar 2021 | B2 |
10966791 | Harris et al. | Apr 2021 | B2 |
10966798 | Tesar et al. | Apr 2021 | B2 |
10973516 | Shelton, IV et al. | Apr 2021 | B2 |
10973517 | Wixey | Apr 2021 | B2 |
10973520 | Shelton, IV et al. | Apr 2021 | B2 |
10973682 | Vezzu et al. | Apr 2021 | B2 |
10980536 | Weaner et al. | Apr 2021 | B2 |
10980537 | Shelton, IV et al. | Apr 2021 | B2 |
10980560 | Shelton, IV et al. | Apr 2021 | B2 |
10980610 | Rosenberg et al. | Apr 2021 | B2 |
10987102 | Gonzalez et al. | Apr 2021 | B2 |
10987178 | Shelton, IV et al. | Apr 2021 | B2 |
10992698 | Patel et al. | Apr 2021 | B2 |
10993715 | Shelton, IV et al. | May 2021 | B2 |
10998098 | Greene et al. | May 2021 | B2 |
11000276 | Shelton, IV et al. | May 2021 | B2 |
11000278 | Shelton, IV et al. | May 2021 | B2 |
11007004 | Shelton, IV et al. | May 2021 | B2 |
11007022 | Shelton, IV et al. | May 2021 | B2 |
11013563 | Shelton, IV et al. | May 2021 | B2 |
11026687 | Shelton, IV et al. | Jun 2021 | B2 |
11026712 | Shelton, IV et al. | Jun 2021 | B2 |
11026713 | Stokes et al. | Jun 2021 | B2 |
11026751 | Shelton, IV et al. | Jun 2021 | B2 |
11051817 | Shelton, IV et al. | Jul 2021 | B2 |
11058501 | Tokarchuk et al. | Jul 2021 | B2 |
11071595 | Johnson et al. | Jul 2021 | B2 |
11185325 | Shelton, IV et al. | Nov 2021 | B2 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020052616 | Wiener et al. | May 2002 | A1 |
20020072746 | Lingenfelder et al. | Jun 2002 | A1 |
20020138642 | Miyazawa et al. | Sep 2002 | A1 |
20030009111 | Cory et al. | Jan 2003 | A1 |
20030018329 | Hooven | Jan 2003 | A1 |
20030046109 | Uchikubo | Mar 2003 | A1 |
20030069573 | Kadhiresan et al. | Apr 2003 | A1 |
20030093503 | Yamaki et al. | May 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030210812 | Khamene et al. | Nov 2003 | A1 |
20030223877 | Anstine et al. | Dec 2003 | A1 |
20040007608 | Ehrenfels | Jan 2004 | A1 |
20040078236 | Stoodley et al. | Apr 2004 | A1 |
20040108825 | Lee et al. | Jun 2004 | A1 |
20040199180 | Knodel et al. | Oct 2004 | A1 |
20040199659 | Ishikawa et al. | Oct 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040232195 | Shelton, IV | Nov 2004 | A1 |
20040232200 | Shelton, IV | Nov 2004 | A1 |
20040243148 | Wasielewski | Dec 2004 | A1 |
20040243435 | Williams | Dec 2004 | A1 |
20050020909 | Moctezuma de la Barrera et al. | Jan 2005 | A1 |
20050021027 | Shields et al. | Jan 2005 | A1 |
20050023324 | Doll | Feb 2005 | A1 |
20050063575 | Ma et al. | Mar 2005 | A1 |
20050065438 | Miller | Mar 2005 | A1 |
20050100867 | Hilscher et al. | May 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050149001 | Uchikubo et al. | Jul 2005 | A1 |
20050149356 | Cyr et al. | Jul 2005 | A1 |
20050165390 | Mauti et al. | Jul 2005 | A1 |
20050173490 | Shelton | Aug 2005 | A1 |
20050182655 | Merzlak et al. | Aug 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050203380 | Sauer et al. | Sep 2005 | A1 |
20050203384 | Sati et al. | Sep 2005 | A1 |
20050203504 | Wham et al. | Sep 2005 | A1 |
20050222616 | Rethy | Oct 2005 | A1 |
20050222631 | Dalal et al. | Oct 2005 | A1 |
20050228425 | Boukhny et al. | Oct 2005 | A1 |
20050236474 | Onuma et al. | Oct 2005 | A1 |
20050251233 | Kanzius | Nov 2005 | A1 |
20050277913 | McCary | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060025816 | Shelton | Feb 2006 | A1 |
20060059018 | Shiobara et al. | Mar 2006 | A1 |
20060069388 | Truckai et al. | Mar 2006 | A1 |
20060079872 | Eggleston | Apr 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060116908 | Dew et al. | Jun 2006 | A1 |
20060136622 | Rouvelin et al. | Jun 2006 | A1 |
20060184160 | Ozaki et al. | Aug 2006 | A1 |
20060241399 | Fabian | Oct 2006 | A1 |
20070010838 | Shelton et al. | Jan 2007 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070016979 | Damaj et al. | Jan 2007 | A1 |
20070027459 | Horvath et al. | Feb 2007 | A1 |
20070038080 | Salisbury et al. | Feb 2007 | A1 |
20070049947 | Menn et al. | Mar 2007 | A1 |
20070066970 | Ineson | Mar 2007 | A1 |
20070078678 | DiSilvestro et al. | Apr 2007 | A1 |
20070084896 | Doll et al. | Apr 2007 | A1 |
20070167702 | Hasser et al. | Jul 2007 | A1 |
20070168461 | Moore | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070179482 | Anderson | Aug 2007 | A1 |
20070179508 | Arndt | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070203744 | Scholl | Aug 2007 | A1 |
20070225556 | Ortiz et al. | Sep 2007 | A1 |
20070225690 | Sekiguchi et al. | Sep 2007 | A1 |
20070244478 | Bahney | Oct 2007 | A1 |
20070249990 | Cosmescu | Oct 2007 | A1 |
20070270660 | Caylor et al. | Nov 2007 | A1 |
20070282195 | Masini et al. | Dec 2007 | A1 |
20070282321 | Shah et al. | Dec 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20070293218 | Meylan et al. | Dec 2007 | A1 |
20080013460 | Allen et al. | Jan 2008 | A1 |
20080015664 | Podhajsky | Jan 2008 | A1 |
20080015912 | Rosenthal et al. | Jan 2008 | A1 |
20080033404 | Romoda et al. | Feb 2008 | A1 |
20080040151 | Moore | Feb 2008 | A1 |
20080059658 | Williams | Mar 2008 | A1 |
20080077158 | Haider et al. | Mar 2008 | A1 |
20080083414 | Messerges | Apr 2008 | A1 |
20080091071 | Kumar et al. | Apr 2008 | A1 |
20080114212 | Messerges | May 2008 | A1 |
20080114350 | Park et al. | May 2008 | A1 |
20080129465 | Rao | Jun 2008 | A1 |
20080140090 | Aranyi et al. | Jun 2008 | A1 |
20080177258 | Govari et al. | Jul 2008 | A1 |
20080177362 | Phillips et al. | Jul 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080234708 | Houser et al. | Sep 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080272172 | Zemlok et al. | Nov 2008 | A1 |
20080281301 | DeBoer et al. | Nov 2008 | A1 |
20080281678 | Keuls et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080306759 | Ilkin et al. | Dec 2008 | A1 |
20080312953 | Claus | Dec 2008 | A1 |
20090017910 | Rofougaran et al. | Jan 2009 | A1 |
20090030437 | Houser et al. | Jan 2009 | A1 |
20090036750 | Weinstein et al. | Feb 2009 | A1 |
20090036794 | Stubhaug et al. | Feb 2009 | A1 |
20090043253 | Podaima | Feb 2009 | A1 |
20090046146 | Hoyt | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099866 | Newman | Apr 2009 | A1 |
20090114699 | Viola | May 2009 | A1 |
20090128084 | Johnson et al. | May 2009 | A1 |
20090182577 | Squilla et al. | Jul 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206144 | Doll | Aug 2009 | A1 |
20090217932 | Voegele | Sep 2009 | A1 |
20090234352 | Behnke et al. | Sep 2009 | A1 |
20090259149 | Tahara et al. | Oct 2009 | A1 |
20090259221 | Tahara et al. | Oct 2009 | A1 |
20090299214 | Wu et al. | Dec 2009 | A1 |
20090306581 | Claus | Dec 2009 | A1 |
20090307681 | Armado et al. | Dec 2009 | A1 |
20090326321 | Jacobsen et al. | Dec 2009 | A1 |
20090326336 | Lemke et al. | Dec 2009 | A1 |
20100036374 | Ward | Feb 2010 | A1 |
20100036405 | Giordano et al. | Feb 2010 | A1 |
20100038403 | D'Arcangelo | Feb 2010 | A1 |
20100057106 | Sorrentino et al. | Mar 2010 | A1 |
20100065604 | Weng | Mar 2010 | A1 |
20100069939 | Konishi | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100070417 | Flynn et al. | Mar 2010 | A1 |
20100108741 | Hessler | May 2010 | A1 |
20100120266 | Rimborg | May 2010 | A1 |
20100132334 | Duclos et al. | Jun 2010 | A1 |
20100137845 | Ramstein et al. | Jun 2010 | A1 |
20100137886 | Zergiebel et al. | Jun 2010 | A1 |
20100168561 | Anderson | Jul 2010 | A1 |
20100179831 | Brown et al. | Jul 2010 | A1 |
20100191100 | Anderson et al. | Jul 2010 | A1 |
20100193570 | Ehrenfels | Aug 2010 | A1 |
20100198200 | Horvath | Aug 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100204717 | Knodel | Aug 2010 | A1 |
20100217991 | Choi | Aug 2010 | A1 |
20100234996 | Schreiber et al. | Sep 2010 | A1 |
20100235689 | Tian et al. | Sep 2010 | A1 |
20100250571 | Pierce et al. | Sep 2010 | A1 |
20100258327 | Esenwein et al. | Oct 2010 | A1 |
20100292535 | Paskar | Nov 2010 | A1 |
20100292684 | Cybulski et al. | Nov 2010 | A1 |
20100301095 | Shelton, IV | Dec 2010 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110036890 | Ma | Feb 2011 | A1 |
20110071530 | Carson | Mar 2011 | A1 |
20110077512 | Boswell | Mar 2011 | A1 |
20110087238 | Wang et al. | Apr 2011 | A1 |
20110089220 | Ingmanson | Apr 2011 | A1 |
20110095070 | Patel | Apr 2011 | A1 |
20110105895 | Kornblau et al. | May 2011 | A1 |
20110112569 | Friedman et al. | May 2011 | A1 |
20110118708 | Burbank et al. | May 2011 | A1 |
20110118761 | Baxter, III | May 2011 | A1 |
20110119075 | Dhoble | May 2011 | A1 |
20110125149 | El-Galley et al. | May 2011 | A1 |
20110152712 | Cao et al. | Jun 2011 | A1 |
20110163147 | Laurent | Jul 2011 | A1 |
20110166883 | Palmer et al. | Jul 2011 | A1 |
20110180586 | Shah | Jul 2011 | A1 |
20110196398 | Robertson et al. | Aug 2011 | A1 |
20110237883 | Chun | Sep 2011 | A1 |
20110251612 | Faller et al. | Oct 2011 | A1 |
20110264000 | Paul et al. | Oct 2011 | A1 |
20110273465 | Konishi et al. | Nov 2011 | A1 |
20110278343 | Knodel | Nov 2011 | A1 |
20110290024 | Lefler | Dec 2011 | A1 |
20110295270 | Giordano et al. | Dec 2011 | A1 |
20110306840 | Allen et al. | Dec 2011 | A1 |
20120021684 | Schultz et al. | Jan 2012 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120029354 | Mark et al. | Feb 2012 | A1 |
20120046662 | Gilbert | Feb 2012 | A1 |
20120059684 | Hampapur et al. | Mar 2012 | A1 |
20120078247 | Worrell et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120083786 | Artale et al. | Apr 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120116394 | Timm et al. | May 2012 | A1 |
20120130217 | Kauphusman et al. | May 2012 | A1 |
20120145714 | Farascioni et al. | Jun 2012 | A1 |
20120172696 | Kallback et al. | Jul 2012 | A1 |
20120190981 | Harris et al. | Jul 2012 | A1 |
20120191091 | Allen | Jul 2012 | A1 |
20120191162 | Villa | Jul 2012 | A1 |
20120197619 | Namer Yelin et al. | Aug 2012 | A1 |
20120203785 | Awada | Aug 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120226150 | Balicki et al. | Sep 2012 | A1 |
20120234894 | Kostrzewski | Sep 2012 | A1 |
20120245958 | Lawrence et al. | Sep 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120265555 | Cappuzzo et al. | Oct 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120319859 | Taub et al. | Dec 2012 | A1 |
20130006241 | Takashino | Jan 2013 | A1 |
20130008677 | Huifu | Jan 2013 | A1 |
20130024213 | Poon | Jan 2013 | A1 |
20130046182 | Hegg et al. | Feb 2013 | A1 |
20130046279 | Niklewski et al. | Feb 2013 | A1 |
20130046295 | Kerr et al. | Feb 2013 | A1 |
20130066647 | Andrie et al. | Mar 2013 | A1 |
20130090526 | Suzuki et al. | Apr 2013 | A1 |
20130093829 | Rosenblatt et al. | Apr 2013 | A1 |
20130096597 | Anand et al. | Apr 2013 | A1 |
20130116218 | Kaplan et al. | May 2013 | A1 |
20130144284 | Behnke, II et al. | Jun 2013 | A1 |
20130146643 | Schmid | Jun 2013 | A1 |
20130153633 | Casasanta, Jr | Jun 2013 | A1 |
20130165776 | Blomqvist | Jun 2013 | A1 |
20130178853 | Hyink et al. | Jul 2013 | A1 |
20130191647 | Ferrara, Jr. et al. | Jul 2013 | A1 |
20130193188 | Shelton, IV et al. | Aug 2013 | A1 |
20130197531 | Boukhny et al. | Aug 2013 | A1 |
20130206813 | Nalagatla | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130253480 | Kimball et al. | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130267874 | Marcotte et al. | Oct 2013 | A1 |
20130268283 | Vann et al. | Oct 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130317837 | Ballantyne et al. | Nov 2013 | A1 |
20130321425 | Greene et al. | Dec 2013 | A1 |
20130325809 | Kim et al. | Dec 2013 | A1 |
20130331873 | Ross et al. | Dec 2013 | A1 |
20130331875 | Ross et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140005681 | Gee | Jan 2014 | A1 |
20140006132 | Barker | Jan 2014 | A1 |
20140009894 | Yu | Jan 2014 | A1 |
20140013565 | Macdonald et al. | Jan 2014 | A1 |
20140018788 | Engelman et al. | Jan 2014 | A1 |
20140029411 | Nayak et al. | Jan 2014 | A1 |
20140033926 | Fassel et al. | Feb 2014 | A1 |
20140035762 | Shelton, IV et al. | Feb 2014 | A1 |
20140066700 | Wilson et al. | Mar 2014 | A1 |
20140073893 | Bencini | Mar 2014 | A1 |
20140074076 | Gertner | Mar 2014 | A1 |
20140081255 | Johnson et al. | Mar 2014 | A1 |
20140081659 | Nawana et al. | Mar 2014 | A1 |
20140084949 | Smith et al. | Mar 2014 | A1 |
20140087999 | Kaplan et al. | Mar 2014 | A1 |
20140092089 | Kasuya et al. | Apr 2014 | A1 |
20140107697 | Patani et al. | Apr 2014 | A1 |
20140108035 | Akbay et al. | Apr 2014 | A1 |
20140108983 | William R. et al. | Apr 2014 | A1 |
20140121669 | Claus | May 2014 | A1 |
20140148729 | Schmitz et al. | May 2014 | A1 |
20140151430 | Scheib | Jun 2014 | A1 |
20140163359 | Sholev et al. | Jun 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140171778 | Tsusaka et al. | Jun 2014 | A1 |
20140187856 | Holoien et al. | Jul 2014 | A1 |
20140188440 | Donhowe et al. | Jul 2014 | A1 |
20140194864 | Martin et al. | Jul 2014 | A1 |
20140195052 | Tsusaka et al. | Jul 2014 | A1 |
20140204190 | Rosenblatt, III et al. | Jul 2014 | A1 |
20140224686 | Aronhalt | Aug 2014 | A1 |
20140226572 | Thota et al. | Aug 2014 | A1 |
20140243799 | Parihar | Aug 2014 | A1 |
20140243809 | Gelfand et al. | Aug 2014 | A1 |
20140243811 | Reschke et al. | Aug 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140249557 | Koch et al. | Sep 2014 | A1 |
20140252064 | Mozdzierz et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263545 | Williams | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140275760 | Lee et al. | Sep 2014 | A1 |
20140276749 | Johnson | Sep 2014 | A1 |
20140287393 | Kumar et al. | Sep 2014 | A1 |
20140291378 | Shelton, IV | Oct 2014 | A1 |
20140303660 | Boyden et al. | Oct 2014 | A1 |
20140303990 | Schoenefeld et al. | Oct 2014 | A1 |
20140337052 | Pellini et al. | Nov 2014 | A1 |
20140364691 | Krivopisk et al. | Dec 2014 | A1 |
20150006201 | Pait et al. | Jan 2015 | A1 |
20150025549 | Kilroy et al. | Jan 2015 | A1 |
20150032150 | Ishida et al. | Jan 2015 | A1 |
20150048139 | Penna | Feb 2015 | A1 |
20150051452 | Ciaccio | Feb 2015 | A1 |
20150051598 | Orszulak et al. | Feb 2015 | A1 |
20150051617 | Takemura et al. | Feb 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150057675 | Akeel et al. | Feb 2015 | A1 |
20150066000 | An et al. | Mar 2015 | A1 |
20150070187 | Wiesner et al. | Mar 2015 | A1 |
20150073400 | Sverdlik et al. | Mar 2015 | A1 |
20150077528 | Awdeh | Mar 2015 | A1 |
20150108198 | Estrella | Apr 2015 | A1 |
20150133945 | Dushyant et al. | May 2015 | A1 |
20150136833 | Shelton, IV et al. | May 2015 | A1 |
20150140982 | Postrel | May 2015 | A1 |
20150145682 | Harris | May 2015 | A1 |
20150148830 | Stulen et al. | May 2015 | A1 |
20150173673 | Toth et al. | Jun 2015 | A1 |
20150173756 | Baxter, III et al. | Jun 2015 | A1 |
20150173757 | Williams | Jun 2015 | A1 |
20150182220 | Yates et al. | Jul 2015 | A1 |
20150190133 | Penna | Jul 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150199109 | Lee | Jul 2015 | A1 |
20150202014 | Kim et al. | Jul 2015 | A1 |
20150208934 | Sztrubel et al. | Jul 2015 | A1 |
20150223868 | Brandt et al. | Aug 2015 | A1 |
20150237502 | Schmidt et al. | Aug 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150272694 | Charles | Oct 2015 | A1 |
20150282821 | Look et al. | Oct 2015 | A1 |
20150297200 | Fitzsimmons et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297228 | Huitema et al. | Oct 2015 | A1 |
20150297233 | Huitema et al. | Oct 2015 | A1 |
20150297311 | Tesar | Oct 2015 | A1 |
20150302157 | Collar et al. | Oct 2015 | A1 |
20150310174 | Coudert et al. | Oct 2015 | A1 |
20150313538 | Bechtel et al. | Nov 2015 | A1 |
20150317899 | Dumbauld et al. | Nov 2015 | A1 |
20150320423 | Aranyi | Nov 2015 | A1 |
20150324114 | Hurley et al. | Nov 2015 | A1 |
20150328474 | Flyash et al. | Nov 2015 | A1 |
20150332003 | Stamm et al. | Nov 2015 | A1 |
20150332196 | Stiller et al. | Nov 2015 | A1 |
20150335344 | Aljuri et al. | Nov 2015 | A1 |
20150374259 | Garbey et al. | Dec 2015 | A1 |
20150374373 | Rector | Dec 2015 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160001411 | Alberti | Jan 2016 | A1 |
20160015471 | Piron et al. | Jan 2016 | A1 |
20160022374 | Haider et al. | Jan 2016 | A1 |
20160034648 | Mohlenbrock et al. | Feb 2016 | A1 |
20160038253 | Piron et al. | Feb 2016 | A1 |
20160048780 | Sethumadhavan et al. | Feb 2016 | A1 |
20160058439 | Shelton, IV et al. | Mar 2016 | A1 |
20160058440 | Dinardo | Mar 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160106406 | Cabrera | Apr 2016 | A1 |
20160106516 | Mesallum | Apr 2016 | A1 |
20160106934 | Hiraga et al. | Apr 2016 | A1 |
20160121143 | Mumaw et al. | May 2016 | A1 |
20160157717 | Gaster | Jun 2016 | A1 |
20160158468 | Tang et al. | Jun 2016 | A1 |
20160166256 | Baxter, III | Jun 2016 | A1 |
20160174974 | Schmid | Jun 2016 | A1 |
20160174998 | Lal et al. | Jun 2016 | A1 |
20160180045 | Syed | Jun 2016 | A1 |
20160184054 | Lowe | Jun 2016 | A1 |
20160192927 | Kostrzewski | Jul 2016 | A1 |
20160192960 | Bueno et al. | Jul 2016 | A1 |
20160206202 | Frangioni | Jul 2016 | A1 |
20160224760 | Petak et al. | Aug 2016 | A1 |
20160225551 | Shedletsky | Aug 2016 | A1 |
20160228204 | Quaid et al. | Aug 2016 | A1 |
20160235303 | Fleming et al. | Aug 2016 | A1 |
20160242836 | Eggers et al. | Aug 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160249920 | Gupta | Sep 2016 | A1 |
20160278778 | Shelton, IV | Sep 2016 | A1 |
20160278841 | Panescu et al. | Sep 2016 | A1 |
20160287312 | Tegg et al. | Oct 2016 | A1 |
20160287316 | Worrell et al. | Oct 2016 | A1 |
20160287912 | Warnking | Oct 2016 | A1 |
20160292456 | Dubey et al. | Oct 2016 | A1 |
20160296234 | Richard | Oct 2016 | A1 |
20160296246 | Schaller | Oct 2016 | A1 |
20160302210 | Thornton et al. | Oct 2016 | A1 |
20160310055 | Zand et al. | Oct 2016 | A1 |
20160310204 | McHenry et al. | Oct 2016 | A1 |
20160314716 | Grubbs | Oct 2016 | A1 |
20160314717 | Grubbs | Oct 2016 | A1 |
20160321400 | Durrant et al. | Nov 2016 | A1 |
20160323283 | Kang et al. | Nov 2016 | A1 |
20160331460 | Cheatham, III et al. | Nov 2016 | A1 |
20160342753 | Feazell | Nov 2016 | A1 |
20160342916 | Arceneaux et al. | Nov 2016 | A1 |
20160345857 | Jensrud et al. | Dec 2016 | A1 |
20160350490 | Martinez et al. | Dec 2016 | A1 |
20160354162 | Yen et al. | Dec 2016 | A1 |
20160361070 | Ardel et al. | Dec 2016 | A1 |
20160367305 | Hareland | Dec 2016 | A1 |
20160367401 | Claus | Dec 2016 | A1 |
20160374668 | Measamer | Dec 2016 | A1 |
20160374678 | Becerra | Dec 2016 | A1 |
20160374723 | Frankhouser et al. | Dec 2016 | A1 |
20160374762 | Case et al. | Dec 2016 | A1 |
20160379504 | Bailey et al. | Dec 2016 | A1 |
20170000516 | Stulen et al. | Jan 2017 | A1 |
20170000553 | Wiener et al. | Jan 2017 | A1 |
20170027603 | Pandey | Feb 2017 | A1 |
20170042604 | McFarland et al. | Feb 2017 | A1 |
20170068792 | Reiner | Mar 2017 | A1 |
20170079530 | DiMaio et al. | Mar 2017 | A1 |
20170079730 | Azizian et al. | Mar 2017 | A1 |
20170086829 | Vendely et al. | Mar 2017 | A1 |
20170086930 | Thompson et al. | Mar 2017 | A1 |
20170105754 | Boudreaux et al. | Apr 2017 | A1 |
20170116873 | Lendvay et al. | Apr 2017 | A1 |
20170127499 | Unoson et al. | May 2017 | A1 |
20170132374 | Lee et al. | May 2017 | A1 |
20170132785 | Wshah et al. | May 2017 | A1 |
20170143284 | Sehnert et al. | May 2017 | A1 |
20170164997 | Johnson et al. | Jun 2017 | A1 |
20170165008 | Finley | Jun 2017 | A1 |
20170165012 | Chaplin et al. | Jun 2017 | A1 |
20170172550 | Mukherjee et al. | Jun 2017 | A1 |
20170172565 | Heneveld | Jun 2017 | A1 |
20170172614 | Scheib et al. | Jun 2017 | A1 |
20170173262 | Veltz | Jun 2017 | A1 |
20170177807 | Fabian | Jun 2017 | A1 |
20170196583 | Sugiyama | Jul 2017 | A1 |
20170202591 | Shelton, IV et al. | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170202607 | Shelton, IV et al. | Jul 2017 | A1 |
20170202608 | Shelton, IV et al. | Jul 2017 | A1 |
20170215944 | Keffeler | Aug 2017 | A1 |
20170224332 | Hunter et al. | Aug 2017 | A1 |
20170224334 | Worthington et al. | Aug 2017 | A1 |
20170224428 | Kopp | Aug 2017 | A1 |
20170231627 | Shelton, IV et al. | Aug 2017 | A1 |
20170231628 | Shelton, IV et al. | Aug 2017 | A1 |
20170245809 | Ma et al. | Aug 2017 | A1 |
20170245854 | Zemlok | Aug 2017 | A1 |
20170249431 | Shelton, IV et al. | Aug 2017 | A1 |
20170249432 | Grantcharov | Aug 2017 | A1 |
20170262604 | Francois | Sep 2017 | A1 |
20170265864 | Hessler et al. | Sep 2017 | A1 |
20170265943 | Sela et al. | Sep 2017 | A1 |
20170273715 | Piron et al. | Sep 2017 | A1 |
20170281171 | Shelton, IV et al. | Oct 2017 | A1 |
20170281173 | Shelton, IV et al. | Oct 2017 | A1 |
20170281186 | Shelton, IV et al. | Oct 2017 | A1 |
20170281189 | Nalagatla et al. | Oct 2017 | A1 |
20170290585 | Shelton, IV et al. | Oct 2017 | A1 |
20170296169 | Yates et al. | Oct 2017 | A1 |
20170296173 | Shelton, IV et al. | Oct 2017 | A1 |
20170296185 | Swensgard et al. | Oct 2017 | A1 |
20170296213 | Swensgard et al. | Oct 2017 | A1 |
20170303984 | Malackowski | Oct 2017 | A1 |
20170304020 | Ng et al. | Oct 2017 | A1 |
20170312456 | Phillips | Nov 2017 | A1 |
20170325813 | Aranyi et al. | Nov 2017 | A1 |
20170325876 | Nakadate et al. | Nov 2017 | A1 |
20170325878 | Messerly et al. | Nov 2017 | A1 |
20170337043 | Brincat et al. | Nov 2017 | A1 |
20170360358 | Amiot et al. | Dec 2017 | A1 |
20170360439 | Chen et al. | Dec 2017 | A1 |
20170360445 | Milliman | Dec 2017 | A1 |
20170360499 | Greep et al. | Dec 2017 | A1 |
20170367583 | Black et al. | Dec 2017 | A1 |
20170367754 | Narisawa | Dec 2017 | A1 |
20170367771 | Tako et al. | Dec 2017 | A1 |
20170367772 | Gunn et al. | Dec 2017 | A1 |
20170370710 | Chen et al. | Dec 2017 | A1 |
20180008359 | Randle | Jan 2018 | A1 |
20180011983 | Zuhars et al. | Jan 2018 | A1 |
20180042659 | Rupp et al. | Feb 2018 | A1 |
20180050196 | Pawsey et al. | Feb 2018 | A1 |
20180052971 | Hanina et al. | Feb 2018 | A1 |
20180055529 | Messerly et al. | Mar 2018 | A1 |
20180065248 | Barral et al. | Mar 2018 | A1 |
20180078170 | Panescu et al. | Mar 2018 | A1 |
20180098816 | Govari et al. | Apr 2018 | A1 |
20180108438 | Ryan et al. | Apr 2018 | A1 |
20180110523 | Shelton, IV | Apr 2018 | A1 |
20180116662 | Shelton, IV et al. | May 2018 | A1 |
20180116735 | Tierney et al. | May 2018 | A1 |
20180122506 | Grantcharov et al. | May 2018 | A1 |
20180125590 | Giordano et al. | May 2018 | A1 |
20180132895 | Silver | May 2018 | A1 |
20180144243 | Hsieh et al. | May 2018 | A1 |
20180153574 | Faller et al. | Jun 2018 | A1 |
20180153632 | Tokarchuk et al. | Jun 2018 | A1 |
20180154297 | Maletich et al. | Jun 2018 | A1 |
20180161062 | Kaga et al. | Jun 2018 | A1 |
20180161716 | Li et al. | Jun 2018 | A1 |
20180165780 | Romeo | Jun 2018 | A1 |
20180168575 | Simms et al. | Jun 2018 | A1 |
20180168577 | Aronhalt et al. | Jun 2018 | A1 |
20180168578 | Aronhalt et al. | Jun 2018 | A1 |
20180168579 | Aronhalt et al. | Jun 2018 | A1 |
20180168584 | Harris et al. | Jun 2018 | A1 |
20180168585 | Shelton, IV | Jun 2018 | A1 |
20180168590 | Overmyer et al. | Jun 2018 | A1 |
20180168592 | Overmyer et al. | Jun 2018 | A1 |
20180168597 | Fanelli et al. | Jun 2018 | A1 |
20180168598 | Shelton, IV et al. | Jun 2018 | A1 |
20180168606 | Shelton, IV et al. | Jun 2018 | A1 |
20180168608 | Shelton, IV et al. | Jun 2018 | A1 |
20180168609 | Fanelli et al. | Jun 2018 | A1 |
20180168610 | Shelton, IV et al. | Jun 2018 | A1 |
20180168614 | Shelton, IV et al. | Jun 2018 | A1 |
20180168615 | Shelton, IV et al. | Jun 2018 | A1 |
20180168618 | Scott et al. | Jun 2018 | A1 |
20180168619 | Scott et al. | Jun 2018 | A1 |
20180168621 | Shelton, IV et al. | Jun 2018 | A1 |
20180168623 | Simms et al. | Jun 2018 | A1 |
20180168625 | Posada et al. | Jun 2018 | A1 |
20180168627 | Weaner | Jun 2018 | A1 |
20180168633 | Shelton, IV et al. | Jun 2018 | A1 |
20180168641 | Harris | Jun 2018 | A1 |
20180168643 | Shelton, IV | Jun 2018 | A1 |
20180168647 | Shelton, IV et al. | Jun 2018 | A1 |
20180168648 | Shelton, IV et al. | Jun 2018 | A1 |
20180168649 | Shelton, IV et al. | Jun 2018 | A1 |
20180168650 | Shelton, IV et al. | Jun 2018 | A1 |
20180177383 | Noonan et al. | Jun 2018 | A1 |
20180182475 | Cossler et al. | Jun 2018 | A1 |
20180193579 | Hanrahan et al. | Jul 2018 | A1 |
20180206884 | Beaupre | Jul 2018 | A1 |
20180206905 | Batchelor et al. | Jul 2018 | A1 |
20180211726 | Courtemanche et al. | Jul 2018 | A1 |
20180214025 | Homyk et al. | Aug 2018 | A1 |
20180221005 | Hamel et al. | Aug 2018 | A1 |
20180221598 | Silver | Aug 2018 | A1 |
20180228557 | Darisse et al. | Aug 2018 | A1 |
20180233222 | Daley et al. | Aug 2018 | A1 |
20180235719 | Jarc | Aug 2018 | A1 |
20180235722 | Baghdadi et al. | Aug 2018 | A1 |
20180242967 | Meade | Aug 2018 | A1 |
20180247128 | Alvi et al. | Aug 2018 | A1 |
20180247711 | Terry | Aug 2018 | A1 |
20180250086 | Grubbs | Sep 2018 | A1 |
20180263699 | Murphy et al. | Sep 2018 | A1 |
20180263710 | Sakaguchi et al. | Sep 2018 | A1 |
20180268320 | Shekhar | Sep 2018 | A1 |
20180271520 | Shelton, IV | Sep 2018 | A1 |
20180271603 | Nir et al. | Sep 2018 | A1 |
20180289427 | Griffiths et al. | Oct 2018 | A1 |
20180296286 | Peine et al. | Oct 2018 | A1 |
20180303552 | Ryan et al. | Oct 2018 | A1 |
20180304471 | Tokuchi | Oct 2018 | A1 |
20180310986 | Batchelor et al. | Nov 2018 | A1 |
20180315492 | Bishop et al. | Nov 2018 | A1 |
20180333188 | Nott et al. | Nov 2018 | A1 |
20180333207 | Moctezuma De La Barrera | Nov 2018 | A1 |
20180333209 | Frushour et al. | Nov 2018 | A1 |
20180353186 | Mozdzierz et al. | Dec 2018 | A1 |
20180357383 | Allen et al. | Dec 2018 | A1 |
20180360456 | Shelton, IV et al. | Dec 2018 | A1 |
20180368930 | Esterberg et al. | Dec 2018 | A1 |
20190000478 | Messerly et al. | Jan 2019 | A1 |
20190000569 | Crawford et al. | Jan 2019 | A1 |
20190001079 | Zergiebel et al. | Jan 2019 | A1 |
20190005641 | Yamamoto | Jan 2019 | A1 |
20190006047 | Gorek et al. | Jan 2019 | A1 |
20190025040 | Andreason et al. | Jan 2019 | A1 |
20190036688 | Wasily et al. | Jan 2019 | A1 |
20190038335 | Mohr et al. | Feb 2019 | A1 |
20190038364 | Enoki | Feb 2019 | A1 |
20190046198 | Stokes et al. | Feb 2019 | A1 |
20190053801 | Wixey et al. | Feb 2019 | A1 |
20190053866 | Seow et al. | Feb 2019 | A1 |
20190069949 | Vrba et al. | Mar 2019 | A1 |
20190069964 | Hagn | Mar 2019 | A1 |
20190069966 | Petersen et al. | Mar 2019 | A1 |
20190070550 | Lalomia et al. | Mar 2019 | A1 |
20190070731 | Bowling et al. | Mar 2019 | A1 |
20190083190 | Graves et al. | Mar 2019 | A1 |
20190087544 | Peterson | Mar 2019 | A1 |
20190099221 | Schmidt et al. | Apr 2019 | A1 |
20190104919 | Shelton, IV et al. | Apr 2019 | A1 |
20190110828 | Despatie | Apr 2019 | A1 |
20190110855 | Barral et al. | Apr 2019 | A1 |
20190115108 | Hegedus et al. | Apr 2019 | A1 |
20190125320 | Shelton, IV et al. | May 2019 | A1 |
20190125321 | Shelton, IV et al. | May 2019 | A1 |
20190125324 | Scheib et al. | May 2019 | A1 |
20190125335 | Shelton, IV et al. | May 2019 | A1 |
20190125336 | Deck et al. | May 2019 | A1 |
20190125338 | Shelton, IV et al. | May 2019 | A1 |
20190125348 | Shelton, IV et al. | May 2019 | A1 |
20190125352 | Shelton, IV et al. | May 2019 | A1 |
20190125353 | Shelton, IV et al. | May 2019 | A1 |
20190125354 | Deck et al. | May 2019 | A1 |
20190125355 | Shelton, IV et al. | May 2019 | A1 |
20190125356 | Shelton, IV et al. | May 2019 | A1 |
20190125357 | Shelton, IV et al. | May 2019 | A1 |
20190125358 | Shelton, IV et al. | May 2019 | A1 |
20190125359 | Shelton, IV et al. | May 2019 | A1 |
20190125360 | Shelton, IV et al. | May 2019 | A1 |
20190125361 | Shelton, IV et al. | May 2019 | A1 |
20190125377 | Shelton, IV | May 2019 | A1 |
20190125378 | Shelton, IV et al. | May 2019 | A1 |
20190125379 | Shelton, IV et al. | May 2019 | A1 |
20190125380 | Hunter et al. | May 2019 | A1 |
20190125384 | Scheib et al. | May 2019 | A1 |
20190125387 | Parihar et al. | May 2019 | A1 |
20190125388 | Shelton, IV et al. | May 2019 | A1 |
20190125430 | Shelton, IV et al. | May 2019 | A1 |
20190125431 | Shelton, IV et al. | May 2019 | A1 |
20190125432 | Shelton, IV et al. | May 2019 | A1 |
20190125454 | Stokes et al. | May 2019 | A1 |
20190125455 | Shelton, IV et al. | May 2019 | A1 |
20190125456 | Shelton, IV et al. | May 2019 | A1 |
20190125457 | Parihar et al. | May 2019 | A1 |
20190125458 | Shelton, IV et al. | May 2019 | A1 |
20190125459 | Shelton, IV et al. | May 2019 | A1 |
20190125476 | Shelton, IV et al. | May 2019 | A1 |
20190133703 | Seow et al. | May 2019 | A1 |
20190142535 | Seow et al. | May 2019 | A1 |
20190145942 | Dutriez et al. | May 2019 | A1 |
20190150975 | Kawasaki et al. | May 2019 | A1 |
20190159778 | Shelton, IV et al. | May 2019 | A1 |
20190163875 | Allen et al. | May 2019 | A1 |
20190167296 | Tsubuku et al. | Jun 2019 | A1 |
20190192157 | Scott et al. | Jun 2019 | A1 |
20190192236 | Shelton, IV et al. | Jun 2019 | A1 |
20190200844 | Shelton, IV et al. | Jul 2019 | A1 |
20190200863 | Shelton, IV et al. | Jul 2019 | A1 |
20190200905 | Shelton, IV et al. | Jul 2019 | A1 |
20190200906 | Shelton, IV et al. | Jul 2019 | A1 |
20190200977 | Shelton, IV et al. | Jul 2019 | A1 |
20190200980 | Shelton, IV et al. | Jul 2019 | A1 |
20190200981 | Harris et al. | Jul 2019 | A1 |
20190200984 | Shelton, IV et al. | Jul 2019 | A1 |
20190200985 | Shelton, IV et al. | Jul 2019 | A1 |
20190200986 | Shelton, IV et al. | Jul 2019 | A1 |
20190200987 | Shelton, IV et al. | Jul 2019 | A1 |
20190200988 | Shelton, IV | Jul 2019 | A1 |
20190200996 | Shelton, IV et al. | Jul 2019 | A1 |
20190200997 | Shelton, IV et al. | Jul 2019 | A1 |
20190200998 | Shelton, IV et al. | Jul 2019 | A1 |
20190201020 | Shelton, IV et al. | Jul 2019 | A1 |
20190201021 | Shelton, IV et al. | Jul 2019 | A1 |
20190201023 | Shelton, IV et al. | Jul 2019 | A1 |
20190201024 | Shelton, IV et al. | Jul 2019 | A1 |
20190201025 | Shelton, IV et al. | Jul 2019 | A1 |
20190201026 | Shelton, IV et al. | Jul 2019 | A1 |
20190201027 | Shelton, IV et al. | Jul 2019 | A1 |
20190201028 | Shelton, IV et al. | Jul 2019 | A1 |
20190201029 | Shelton, IV et al. | Jul 2019 | A1 |
20190201030 | Shelton, IV et al. | Jul 2019 | A1 |
20190201033 | Yates et al. | Jul 2019 | A1 |
20190201034 | Shelton, IV | Jul 2019 | A1 |
20190201036 | Nott et al. | Jul 2019 | A1 |
20190201037 | Houser et al. | Jul 2019 | A1 |
20190201038 | Yates et al. | Jul 2019 | A1 |
20190201039 | Widenhouse et al. | Jul 2019 | A1 |
20190201040 | Messerly et al. | Jul 2019 | A1 |
20190201041 | Kimball et al. | Jul 2019 | A1 |
20190201042 | Nott et al. | Jul 2019 | A1 |
20190201043 | Shelton, IV et al. | Jul 2019 | A1 |
20190201044 | Shelton, IV et al. | Jul 2019 | A1 |
20190201045 | Yates et al. | Jul 2019 | A1 |
20190201046 | Shelton, IV et al. | Jul 2019 | A1 |
20190201047 | Yates et al. | Jul 2019 | A1 |
20190201073 | Nott et al. | Jul 2019 | A1 |
20190201074 | Yates et al. | Jul 2019 | A1 |
20190201075 | Shelton, IV et al. | Jul 2019 | A1 |
20190201077 | Yates et al. | Jul 2019 | A1 |
20190201079 | Shelton, IV et al. | Jul 2019 | A1 |
20190201080 | Messerly et al. | Jul 2019 | A1 |
20190201081 | Shelton, IV et al. | Jul 2019 | A1 |
20190201082 | Shelton, IV et al. | Jul 2019 | A1 |
20190201083 | Shelton, IV et al. | Jul 2019 | A1 |
20190201084 | Shelton, IV et al. | Jul 2019 | A1 |
20190201085 | Shelton, IV et al. | Jul 2019 | A1 |
20190201086 | Shelton, IV et al. | Jul 2019 | A1 |
20190201087 | Shelton, IV et al. | Jul 2019 | A1 |
20190201090 | Shelton, IV et al. | Jul 2019 | A1 |
20190201091 | Yates et al. | Jul 2019 | A1 |
20190201092 | Yates et al. | Jul 2019 | A1 |
20190201102 | Shelton, IV et al. | Jul 2019 | A1 |
20190201104 | Shelton, IV et al. | Jul 2019 | A1 |
20190201112 | Wiener et al. | Jul 2019 | A1 |
20190201113 | Shelton, IV et al. | Jul 2019 | A1 |
20190201114 | Shelton, IV et al. | Jul 2019 | A1 |
20190201115 | Shelton, IV et al. | Jul 2019 | A1 |
20190201116 | Shelton, IV et al. | Jul 2019 | A1 |
20190201118 | Shelton, IV et al. | Jul 2019 | A1 |
20190201120 | Shelton, IV et al. | Jul 2019 | A1 |
20190201123 | Shelton, IV et al. | Jul 2019 | A1 |
20190201124 | Shelton, IV et al. | Jul 2019 | A1 |
20190201125 | Shelton, IV et al. | Jul 2019 | A1 |
20190201126 | Shelton, IV et al. | Jul 2019 | A1 |
20190201127 | Shelton, IV et al. | Jul 2019 | A1 |
20190201128 | Yates et al. | Jul 2019 | A1 |
20190201129 | Shelton, IV et al. | Jul 2019 | A1 |
20190201130 | Shelton, IV et al. | Jul 2019 | A1 |
20190201135 | Shelton, IV et al. | Jul 2019 | A1 |
20190201136 | Shelton, IV et al. | Jul 2019 | A1 |
20190201137 | Shelton, IV et al. | Jul 2019 | A1 |
20190201138 | Yates et al. | Jul 2019 | A1 |
20190201139 | Shelton, IV et al. | Jul 2019 | A1 |
20190201140 | Yates et al. | Jul 2019 | A1 |
20190201141 | Shelton, IV et al. | Jul 2019 | A1 |
20190201142 | Shelton, IV et al. | Jul 2019 | A1 |
20190201145 | Shelton, IV et al. | Jul 2019 | A1 |
20190201146 | Shelton, IV et al. | Jul 2019 | A1 |
20190201158 | Shelton, IV et al. | Jul 2019 | A1 |
20190201159 | Shelton, IV et al. | Jul 2019 | A1 |
20190201594 | Shelton, IV et al. | Jul 2019 | A1 |
20190201597 | Shelton, IV et al. | Jul 2019 | A1 |
20190204201 | Shelton, IV et al. | Jul 2019 | A1 |
20190205001 | Messerly et al. | Jul 2019 | A1 |
20190205441 | Shelton, IV et al. | Jul 2019 | A1 |
20190205566 | Shelton, IV et al. | Jul 2019 | A1 |
20190205567 | Shelton, IV et al. | Jul 2019 | A1 |
20190206003 | Harris et al. | Jul 2019 | A1 |
20190206004 | Shelton, IV et al. | Jul 2019 | A1 |
20190206050 | Yates et al. | Jul 2019 | A1 |
20190206542 | Shelton, IV et al. | Jul 2019 | A1 |
20190206551 | Yates et al. | Jul 2019 | A1 |
20190206555 | Morgan et al. | Jul 2019 | A1 |
20190206556 | Shelton, IV et al. | Jul 2019 | A1 |
20190206561 | Shelton, IV et al. | Jul 2019 | A1 |
20190206562 | Shelton, IV et al. | Jul 2019 | A1 |
20190206563 | Shelton, IV et al. | Jul 2019 | A1 |
20190206564 | Shelton, IV et al. | Jul 2019 | A1 |
20190206565 | Shelton, IV | Jul 2019 | A1 |
20190206569 | Shelton, IV et al. | Jul 2019 | A1 |
20190206576 | Shelton, IV et al. | Jul 2019 | A1 |
20190208641 | Yates et al. | Jul 2019 | A1 |
20190224434 | Silver et al. | Jul 2019 | A1 |
20190254759 | Azizian | Aug 2019 | A1 |
20190261984 | Nelson et al. | Aug 2019 | A1 |
20190269476 | Bowling et al. | Sep 2019 | A1 |
20190272917 | Couture et al. | Sep 2019 | A1 |
20190274662 | Rockman et al. | Sep 2019 | A1 |
20190274705 | Sawhney et al. | Sep 2019 | A1 |
20190274706 | Nott et al. | Sep 2019 | A1 |
20190274707 | Sawhney et al. | Sep 2019 | A1 |
20190274708 | Boudreaux | Sep 2019 | A1 |
20190274709 | Scoggins | Sep 2019 | A1 |
20190274710 | Black | Sep 2019 | A1 |
20190274711 | Scoggins et al. | Sep 2019 | A1 |
20190274712 | Faller et al. | Sep 2019 | A1 |
20190274713 | Scoggins et al. | Sep 2019 | A1 |
20190274714 | Cut et al. | Sep 2019 | A1 |
20190274716 | Nott et al. | Sep 2019 | A1 |
20190274717 | Nott et al. | Sep 2019 | A1 |
20190274718 | Denzinger et al. | Sep 2019 | A1 |
20190274719 | Stulen | Sep 2019 | A1 |
20190274720 | Gee et al. | Sep 2019 | A1 |
20190274749 | Brady et al. | Sep 2019 | A1 |
20190274750 | Jayme et al. | Sep 2019 | A1 |
20190274752 | Denzinger et al. | Sep 2019 | A1 |
20190278262 | Taylor et al. | Sep 2019 | A1 |
20190282311 | Nowlin et al. | Sep 2019 | A1 |
20190290389 | Kopp | Sep 2019 | A1 |
20190298340 | Shelton, IV | Oct 2019 | A1 |
20190298341 | Shelton, IV et al. | Oct 2019 | A1 |
20190298342 | Shelton, IV et al. | Oct 2019 | A1 |
20190298343 | Shelton, IV et al. | Oct 2019 | A1 |
20190298346 | Shelton, IV et al. | Oct 2019 | A1 |
20190298347 | Shelton, IV et al. | Oct 2019 | A1 |
20190298350 | Shelton, IV et al. | Oct 2019 | A1 |
20190298352 | Shelton, IV et al. | Oct 2019 | A1 |
20190298353 | Shelton, IV et al. | Oct 2019 | A1 |
20190298354 | Shelton, IV et al. | Oct 2019 | A1 |
20190298355 | Shelton, IV et al. | Oct 2019 | A1 |
20190298356 | Shelton, IV et al. | Oct 2019 | A1 |
20190298357 | Shelton, IV et al. | Oct 2019 | A1 |
20190298464 | Abbott | Oct 2019 | A1 |
20190307520 | Peine et al. | Oct 2019 | A1 |
20190311802 | Kokubo et al. | Oct 2019 | A1 |
20190314015 | Shelton, IV et al. | Oct 2019 | A1 |
20190314016 | Huitema et al. | Oct 2019 | A1 |
20190314081 | Brogna | Oct 2019 | A1 |
20190321117 | Itkowitz et al. | Oct 2019 | A1 |
20190333626 | Mansi et al. | Oct 2019 | A1 |
20190343594 | Garcia Kilroy et al. | Nov 2019 | A1 |
20190374140 | Tucker et al. | Dec 2019 | A1 |
20190378610 | Barral et al. | Dec 2019 | A1 |
20200000470 | Du | Jan 2020 | A1 |
20200000509 | Hayashida et al. | Jan 2020 | A1 |
20200038120 | Ziraknejad et al. | Feb 2020 | A1 |
20200046353 | Deck | Feb 2020 | A1 |
20200054317 | Pisarnwongs et al. | Feb 2020 | A1 |
20200054320 | Harris et al. | Feb 2020 | A1 |
20200054321 | Harris et al. | Feb 2020 | A1 |
20200054322 | Harris et al. | Feb 2020 | A1 |
20200054323 | Harris et al. | Feb 2020 | A1 |
20200054326 | Harris et al. | Feb 2020 | A1 |
20200054328 | Harris et al. | Feb 2020 | A1 |
20200054330 | Harris et al. | Feb 2020 | A1 |
20200078070 | Henderson et al. | Mar 2020 | A1 |
20200078071 | Asher | Mar 2020 | A1 |
20200078076 | Henderson et al. | Mar 2020 | A1 |
20200078077 | Henderson et al. | Mar 2020 | A1 |
20200078078 | Henderson et al. | Mar 2020 | A1 |
20200078079 | Morgan et al. | Mar 2020 | A1 |
20200078080 | Henderson et al. | Mar 2020 | A1 |
20200078081 | Jayme et al. | Mar 2020 | A1 |
20200078082 | Henderson et al. | Mar 2020 | A1 |
20200078089 | Henderson et al. | Mar 2020 | A1 |
20200078096 | Barbagli et al. | Mar 2020 | A1 |
20200078106 | Henderson et al. | Mar 2020 | A1 |
20200078110 | Henderson et al. | Mar 2020 | A1 |
20200078111 | Oberkircher et al. | Mar 2020 | A1 |
20200078112 | Henderson et al. | Mar 2020 | A1 |
20200078113 | Sawhney et al. | Mar 2020 | A1 |
20200078114 | Asher et al. | Mar 2020 | A1 |
20200078115 | Asher et al. | Mar 2020 | A1 |
20200078116 | Oberkircher et al. | Mar 2020 | A1 |
20200078117 | Henderson et al. | Mar 2020 | A1 |
20200078118 | Henderson et al. | Mar 2020 | A1 |
20200078119 | Henderson et al. | Mar 2020 | A1 |
20200078120 | Aldridge et al. | Mar 2020 | A1 |
20200081585 | Petre et al. | Mar 2020 | A1 |
20200090808 | Carroll et al. | Mar 2020 | A1 |
20200100825 | Henderson et al. | Apr 2020 | A1 |
20200100830 | Henderson et al. | Apr 2020 | A1 |
20200106220 | Henderson et al. | Apr 2020 | A1 |
20200162896 | Su et al. | May 2020 | A1 |
20200168323 | Bullington et al. | May 2020 | A1 |
20200178760 | Kashima et al. | Jun 2020 | A1 |
20200178971 | Harris et al. | Jun 2020 | A1 |
20200193600 | Shameli et al. | Jun 2020 | A1 |
20200203004 | Shanbhag et al. | Jun 2020 | A1 |
20200214699 | Shelton, IV et al. | Jul 2020 | A1 |
20200226751 | Jin et al. | Jul 2020 | A1 |
20200237372 | Park | Jul 2020 | A1 |
20200261075 | Boudreaux et al. | Aug 2020 | A1 |
20200261076 | Boudreaux et al. | Aug 2020 | A1 |
20200261077 | Shelton, IV et al. | Aug 2020 | A1 |
20200261078 | Bakos et al. | Aug 2020 | A1 |
20200261080 | Bakos et al. | Aug 2020 | A1 |
20200261081 | Boudreaux et al. | Aug 2020 | A1 |
20200261082 | Boudreaux et al. | Aug 2020 | A1 |
20200261083 | Bakos et al. | Aug 2020 | A1 |
20200261084 | Bakos | Aug 2020 | A1 |
20200261085 | Boudreaux et al. | Aug 2020 | A1 |
20200261086 | Zeiner et al. | Aug 2020 | A1 |
20200261088 | Harris et al. | Aug 2020 | A1 |
20200261089 | Shelton, IV et al. | Aug 2020 | A1 |
20200275928 | Shelton, IV et al. | Sep 2020 | A1 |
20200275930 | Harris et al. | Sep 2020 | A1 |
20200281665 | Kopp | Sep 2020 | A1 |
20200305924 | Carroll | Oct 2020 | A1 |
20200305945 | Morgan et al. | Oct 2020 | A1 |
20200314569 | Morgan et al. | Oct 2020 | A1 |
20200348662 | Cella et al. | Nov 2020 | A1 |
20200405304 | Mozdzierz et al. | Dec 2020 | A1 |
20200405375 | Shelton, IV et al. | Dec 2020 | A1 |
20210000555 | Shelton, IV et al. | Jan 2021 | A1 |
20210007760 | Reisin | Jan 2021 | A1 |
20210015568 | Liao et al. | Jan 2021 | A1 |
20210022731 | Eisinger | Jan 2021 | A1 |
20210022738 | Weir et al. | Jan 2021 | A1 |
20210022809 | Crawford et al. | Jan 2021 | A1 |
20210059674 | Shelton, IV et al. | Mar 2021 | A1 |
20210068834 | Shelton, IV et al. | Mar 2021 | A1 |
20210076966 | Grantcharov et al. | Mar 2021 | A1 |
20210128149 | Whitfield et al. | May 2021 | A1 |
20210153889 | Nott et al. | May 2021 | A1 |
20210169516 | Houser et al. | Jun 2021 | A1 |
20210176179 | Shelton, IV | Jun 2021 | A1 |
20210177452 | Nott et al. | Jun 2021 | A1 |
20210177489 | Yates et al. | Jun 2021 | A1 |
20210186454 | Eehzadi et al. | Jun 2021 | A1 |
20210192914 | Shelton, IV et al. | Jun 2021 | A1 |
20210201646 | Shelton, IV et al. | Jul 2021 | A1 |
20210205020 | Shelton, IV et al. | Jul 2021 | A1 |
20210205021 | Shelton, IV et al. | Jul 2021 | A1 |
20210205028 | Shelton, IV et al. | Jul 2021 | A1 |
20210205029 | Wiener et al. | Jul 2021 | A1 |
20210205030 | Shelton, IV et al. | Jul 2021 | A1 |
20210205031 | Shelton, IV et al. | Jul 2021 | A1 |
20210212602 | Shelton, IV et al. | Jul 2021 | A1 |
20210212694 | Shelton, IV et al. | Jul 2021 | A1 |
20210212717 | Yates et al. | Jul 2021 | A1 |
20210212719 | Houser et al. | Jul 2021 | A1 |
20210212770 | Messerly et al. | Jul 2021 | A1 |
20210212771 | Shelton, IV et al. | Jul 2021 | A1 |
20210212774 | Shelton, IV et al. | Jul 2021 | A1 |
20210212775 | Shelton, IV et al. | Jul 2021 | A1 |
20210212782 | Shelton, IV et al. | Jul 2021 | A1 |
20210219976 | DiNardo et al. | Jul 2021 | A1 |
20210220058 | Messerly et al. | Jul 2021 | A1 |
20210240852 | Shelton, IV et al. | Aug 2021 | A1 |
20210241898 | Shelton, IV et al. | Aug 2021 | A1 |
20210249125 | Morgan et al. | Aug 2021 | A1 |
20210251487 | Shelton, IV et al. | Aug 2021 | A1 |
20210259687 | Gonzalez et al. | Aug 2021 | A1 |
20210259697 | Shelton, IV et al. | Aug 2021 | A1 |
20210259698 | Shelton, IV et al. | Aug 2021 | A1 |
20210282780 | Shelton, IV et al. | Sep 2021 | A1 |
20210282781 | Shelton, IV et al. | Sep 2021 | A1 |
20210306176 | Park et al. | Sep 2021 | A1 |
20210315579 | Shelton, IV et al. | Oct 2021 | A1 |
20210315580 | Shelton, IV et al. | Oct 2021 | A1 |
20210315581 | Shelton, IV et al. | Oct 2021 | A1 |
20210315582 | Shelton, IV et al. | Oct 2021 | A1 |
20210322014 | Shelton, IV et al. | Oct 2021 | A1 |
20210322015 | Shelton, IV et al. | Oct 2021 | A1 |
20210322017 | Shelton, IV et al. | Oct 2021 | A1 |
20210322018 | Shelton, IV et al. | Oct 2021 | A1 |
20210322019 | Shelton, IV et al. | Oct 2021 | A1 |
20210322020 | Shelton, IV et al. | Oct 2021 | A1 |
20210336939 | Wiener et al. | Oct 2021 | A1 |
20210353287 | Shelton, IV et al. | Nov 2021 | A1 |
20210353288 | Shelton, IV et al. | Nov 2021 | A1 |
20210358599 | Alvi et al. | Nov 2021 | A1 |
20210361284 | Shelton, IV et al. | Nov 2021 | A1 |
20220000484 | Shelton, IV et al. | Jan 2022 | A1 |
20220054158 | Shelton, IV et al. | Feb 2022 | A1 |
20220079591 | Bakos et al. | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
2015201140 | Mar 2015 | AU |
2795323 | May 2014 | CA |
101617950 | Jan 2010 | CN |
104490448 | Mar 2017 | CN |
206097107 | Apr 2017 | CN |
108652695 | Oct 2018 | CN |
3016131 | Oct 1981 | DE |
3824913 | Feb 1990 | DE |
4002843 | Apr 1991 | DE |
102005051367 | Apr 2007 | DE |
102016207666 | Nov 2017 | DE |
0000756 | Oct 1981 | EP |
0408160 | Jan 1991 | EP |
0473987 | Mar 1992 | EP |
0929263 | Jul 1999 | EP |
1214913 | Jun 2002 | EP |
2732772 | May 2014 | EP |
2942023 | Nov 2015 | EP |
3047806 | Jul 2016 | EP |
3056923 | Aug 2016 | EP |
3095399 | Nov 2016 | EP |
3120781 | Jan 2017 | EP |
3135225 | Mar 2017 | EP |
3141181 | Mar 2017 | EP |
2838234 | Oct 2003 | FR |
2037167 | Jul 1980 | GB |
2509523 | Jul 2014 | GB |
S5373315 | Jun 1978 | JP |
2001029353 | Feb 2001 | JP |
2007123394 | May 2007 | JP |
2010057642 | Mar 2010 | JP |
2017513561 | Jun 2017 | JP |
20140104587 | Aug 2014 | KR |
101587721 | Jan 2016 | KR |
WO-9734533 | Sep 1997 | WO |
WO-0024322 | May 2000 | WO |
WO-0108578 | Feb 2001 | WO |
WO-0112089 | Feb 2001 | WO |
WO-0120892 | Mar 2001 | WO |
WO-03079909 | Oct 2003 | WO |
WO-2007137304 | Nov 2007 | WO |
WO-2008053485 | May 2008 | WO |
WO-2008056618 | May 2008 | WO |
WO-2008069816 | Jun 2008 | WO |
WO-2008147555 | Dec 2008 | WO |
WO-2011112931 | Sep 2011 | WO |
WO-2013143573 | Oct 2013 | WO |
WO-2014031800 | Feb 2014 | WO |
WO-2014071184 | May 2014 | WO |
WO-2014134196 | Sep 2014 | WO |
WO-2015129395 | Sep 2015 | WO |
WO-2016100719 | Jun 2016 | WO |
WO-2016118752 | Jul 2016 | WO |
WO-2016206015 | Dec 2016 | WO |
WO-2017011382 | Jan 2017 | WO |
WO-2017011646 | Jan 2017 | WO |
WO-2017058617 | Apr 2017 | WO |
WO-2017058695 | Apr 2017 | WO |
WO-2017151996 | Sep 2017 | WO |
WO-2017189317 | Nov 2017 | WO |
WO-2017205308 | Nov 2017 | WO |
WO-2017210499 | Dec 2017 | WO |
WO-2017210501 | Dec 2017 | WO |
WO-2018116247 | Jun 2018 | WO |
WO-2018152141 | Aug 2018 | WO |
WO-2018176414 | Oct 2018 | WO |
Entry |
---|
US 10,504,709 B2, 12/2019, Karancsi et al. (withdrawn) |
Engel et al. “A safe robot system for craniofacial surgery”, 2013 IEEE International Conference on Robotics and Automation (ICRA); May 6-10, 2013; Karlsruhe, Germany, vol. 2, Jan. 1, 2001, pp. 2020-2024. |
Miller, et al., “Impact of Powered and Tissue-Specific Endoscopic Stapling Technology on Clinical and Economic Outcomes of Video-Assisted Thoracic Surgery Lobectomy Procedures: A Retrospective, Observational Study,” Article, Apr. 2018, pp. 707-723, vol. 35 (Issue 5), Advances in Therapy. |
Slocinski et al., “Distance measure for impedance spectra for quantified evaluations,” Lecture Notes on Impedance Spectroscopy, vol. 3, Taylor and Francis Group (Jul. 2012)—Book Not Attached. |
Zoccali, Bruno, “A Method for Approximating Component Temperatures at Altitude Conditions Based on CFD Analysis at Sea Level Conditions,” (white paper), www.tdmginc.com, Dec. 6, 2018 (9 pages). |
Flores et al., “Large-scale Offloading in the Internet of Things,” 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (Percom Workshops), IEEE, pp. 479-484, Mar. 13, 2017. |
Kalantarian et al., “Computation Offloading for Real-Time Health-Monitoring Devices,” 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EBMC), IEEE, pp. 4971-4974, Aug. 16, 2016. |
Yuyi Mao et al., “A Survey on Mobile Edge Computing: The Communication Perspective,” IEEE Communications Surveys & Tutorials, pp. 2322-2358, Jun. 13, 2017. |
Khazaei et al., “Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 3, pp. 1-9, Oct. 21, 2015. |
Benkmann et al., “Concept of iterative optimization of minimally invasive surgery,” 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE pp. 443-446, Aug. 28, 2017. |
Trautman, Peter, “Breaking the Human-Robot Deadlock: Surpassing Shared Control Performance Limits with Sparse Human-Robot Interaction,” Robotics: Science and Systems XIIII, pp. 1-10, Jul. 12, 2017. |
Miksch et al., “Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants,” Artificial Intelligence in Medicine, vol. 8, No. 6, pp. 543-576 (1996). |
Horn et al., “Effective data validation of high-frequency data: Time-point-time-interval-, and trend-based methods,” Computers in Biology and Medic, New York, NY, vol. 27, No. 5, pp. 389-409 (1997). |
Stacey et al., “Temporal abstraction in intelligent clinical data analysis: A survey,” Artificial Intelligence in Medicine, vol. 39, No. 1, pp. 1-24 (2006). |
Yang et al., “A dynamic stategy for packet scheduling and bandwidth allocation based on channel quality in IEEE 802.16e OFDMA system,” Journal of Network and Computer Applications, vol. 39, pp. 52-60, May 2, 2013. |
Hsiao-Wei Tang, “ARCM”, Video, Sep. 2012, YouTube, 5 screenshots, Retrieved from Internet: <https://www.youtube.com/watch?v=UldQaxb3fRw&feature=youtu.be>. |
Giannios, et al., “Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies,” Article, Jun. 14, 2016, pp. 1-10, Scientific Reports 6, Article No. 27910, Nature. |
Vander Heiden, et al., “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Article, May 22, 2009, pp. 1-12, vol. 324, Issue 5930, Science. |
Hirayama et al., “Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry,” Article, Jun. 2009, pp. 4918-4925, vol. 69, Issue 11, Cancer Research. |
Cengiz, et al., “A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring,” Article, Jun. 2009, pp. S11-S16, vol. 11, Supplement 1, Diabetes Technology & Therapeutics. |
Shen, et al., “An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor,” Article, Feb. 3, 2007, pp. 106-113, vol. 125, Issue 1, Sensors and Actuators B: Chemical, Science Direct. |
IEEE Std No. 177, “Standard Definitions and Methods of Measurement for Piezoelectric Vibrators,” published May 1966, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y. |
CRC Press, “The Measurement, Instrumentation and Sensors Handbook,” 1999, Section VII, Chapter 41, Peter O'Shea, “Phase Measurement,” pp. 1303-1321, ISBN 0-8493-2145-X. |
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committee, published Aug. 2003. |
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012. |
Bonaci et al., “To Make a Robot Secure: An Experimental Analysis of Cyber Security Threats Against Teleoperated Surgical Robots,” May 13, 2015. Retrieved from the Internet: URL:https://arxiv.org/pdf/1504.04339v2.pdf [retrieved on Aug. 24, 2019]. |
Homa Alemzadeh et al., “Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation,” 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), IEEE, Jun. 28, 2016, pp. 395-406. |
Harold I. Brandon and V. Leroy Young, Mar. 1997, Surgical Services Management vol. 3 No. 3. retrieved from the internet <https://www.surgimedics.com/Research%20Articles/Electrosurgical%20Plume/Characterization%20And%20Removal%20Of%20Electrosurgical%20Smoke.pdf> (Year: 1997). |
Marshall Brain, How Microcontrollers Work, 2006, retrieved from the internet <https://web.archive.org/web/20060221235221/http://electronics.howstuffworks.com/microcontroller.htm/printable> (Year: 2006). |
Staub et al., “Contour-based Surgical Instrument Tracking Supported by Kinematic Prediction,” Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sep. 1, 2010, pp. 746-752. |
Phumzile Malindi, “5. QoS in Telemedicine,” “Telemedicine,” Jun. 20, 2011, IntechOpen, pp. 119-138. |
Allan et al., “3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery,” IEEE Transactions on Medical Imaging, vol. 37, No. 5, May 1, 2018, pp. 1204-1213. |
Kassahun et al., “Surgical Robotics Beyond Enhanced Dexterity Instrumentation: A Survey of the Machine Learning Techniques and their Role in Intelligent and Autonomous Surgical Actions.” International Journal of Computer Assisted Radiology and Surgery, vol. 11, No. 4, Oct. 8, 2015, pp. 553-568. |
Weede et al. “An Intelligent and Autonomous Endoscopic Guidance System for Minimally Invasive Surgery,” 2013 IEEE International Conference on Robotics ad Automation (ICRA), May 6-10, 2013. Karlsruhe, Germany, May 1, 2011, pp. 5762-5768. |
Altenberg et al., “Genes of Glycolysis are Ubiquitously Overexpressed in 24 Cancer Classes,” Genomics, vol. 84, pp. 1014-1020 (2004). |
Jiang, '“‘Sound of Silence’: a secure indoor wireless ultrasonic communication system,” Article, 2014, pp. 46-50, Snapshots of Doctoral Research at University College Cork, School of Engineering—Electrical & Electronic Engineering, UCC, Cork, Ireland. |
Li, et al., “Short-range ultrasonic communications in air using quadrature modulation,” Journal, Oct. 30, 2009, pp. 2060-2072, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 10, IEEE. |
Salamon, “Al Detects Polyps Better Than Colonoscopists” Online Article, Jun. 3, 2018, Medscape Medical News, Digestive Disease Week (DDW) 2018: Presentation 133. |
Misawa, et al. “Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience,” Article, Jun. 2018, pp. 2027-2029, vol. 154, Issue 8, American Gastroenterolgy Association. |
Dottorato, “Analysis and Design of the Rectangular Microstrip Patch Antennas for TM0n0 operating mode,”Article, Oct. 8, 2010, pp. 1-9, Microwave Journal. |
Takahashi et al., “Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation,” Surgical Endoscopy, vol. 27, No. 8, pp. 2980-2987, Feb. 23, 2013. |
Shi et al., An intuitive control console for robotic syrgery system, 2014, IEEE, p. 404-407 (Year: 2014). |
Choi et al., A haptic augmented reality surgeon console for a laparoscopic surgery robot system, 2013, IEEE, p. 355-357 (Year: 2013). |
Xie et al., Development of stereo vision and master-slave controller for a compact surgical robot system, 2015, IEEE, p. 403-407 (Year: 2015). |
Sun et al., Innovative effector design for simulation training in robotic surgery, 2010, IEEE, p. 1735-1759 (Year: 2010). |
Anonymous, “Internet of Things Powers Connected Surgical Device Infrastructure Case Study”, Dec. 31, 2016 (Dec. 31, 2016), Retrieved from the Internet: URL:https://www.cognizant.com/services-resources/150110_IoT_connected_surgical_devices.pdf. |
Draijer, Matthijs et al., “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science, Springer-Verlag, LO, vol. 24, No. 4, Dec. 3, 2008, pp. 639-651. |
Roy D Cullum, “Handbook of Engineering Design”, ISBN: 9780408005586, Jan. 1, 1988 (Jan. 1, 1988), XP055578597, ISBN: 9780408005586, 10-20, Chapter 6, p. 138, right-hand col. paragraph 3. |
“Surgical instrumentation: the true cost of instrument trays and a potential strategy for optimization”; Mhlaba et al.; Sep. 23, 2015 (Year: 2015). |
Nabil Simaan et al., “Intelligent Surgical Robots with Situational Awareness: From Good to Great Surgeons”, DOI: 10.1115/1.2015-Sep-6 external link, Sep. 2015 (Sep. 2015), p. 3-6, Retrieved from the Internet: URL:http://memagazineselect.asmedigitalcollection.asme.org/data/journals/meena/936888/me-2015-sep6.pdf XP055530863. |
Anonymous: “Titanium Key Chain Tool 1.1, Ultralight Multipurpose Key Chain Tool, Forward Cutting Can Opener—Vargo Titanium,” vargooutdoors.com, Jul. 5, 2014 (Jul. 5, 2014), retrieved from the internet: https://vargooutdoors.com/titanium-key-chain-tool-1-1.html. |
Anonymous: “Screwdriver - Wikipedia”, en.wikipedia.org, Jun. 23, 2019, XP055725151, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Screwdriver&oldid=903111203 [retrieved on Mar. 20, 2021]. |
Nordlinger, Christopher, “The Internet of Things and the Operating Room of the Future,” May 4, 2015, https://medium.com/@chrisnordlinger/the-internet-of-things-and-the-operating-room-of-the-future-8999a143d7b1, retrieved from the internet on Apr. 27, 2021,9 pages. |
Screen captures from YouTube video clip entitled “Four ways to use the Lego Brick Separator Tool,” 2 pages, uploaded on May 29, 2014 by user “Sarah Lewis”. Retrieved from internet: https://www.youtube.com/watch?v=ucKiRD6U1LU (Year: 2014). |
Sorrells, P., “Application Note AN680. Passive RFID Basics,” retrieved from http://ww1.microchip.com/downloads/en/AppNotes/00680b.pdf on Feb. 26, 2020, Dec. 31, 1998, pp. 1-7. |
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committe, published Aug. 2003. |
Number | Date | Country | |
---|---|---|---|
20200261087 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62866208 | Jun 2019 | US | |
62807319 | Feb 2019 | US | |
62807309 | Feb 2019 | US | |
62807310 | Feb 2019 | US |