Not Applicable.
Not Applicable.
The invention disclosed broadly relates to the field of medical devices, and more particularly relates to the field of devices for automating the process of removing surgical staple's.
The use of surgical staples in the medical industry for closing wounds or incisions in the skin of a patient has grown over the last decade due to its advantages over thread sutures. One of the main advantages of surgical staples over thread sutures is the reduced amount of time required for surgical staples to be implanted. In cases where large incisions are made, the use of surgical staples can, for example, reduce the length of time required for the suturing process and thus the length of time the patient must be maintained under anesthesia.
Conventional surgical staples comprise an elongated crown and an L-shaped portion on each end of the crown, wherein when implanted in a patient, the crown is located on the exterior of the skin of the patient and the L-shaped portions are bent in a downward direction so that the ends of the L-shaped portions are opposed, thereby incising and gripping the skin. The aforementioned conventional surgical staple may be removed from the skin of a patient by bending the staple crown into a U-shaped configuration. This causes the L-shaped legs of the staple to shift upwardly and outwardly so that they may be lifted away from the patient's skin.
A conventional surgical staple remover 1, shown in
One of the disadvantages of a conventional surgical staple remover is that it does not adequately deal with the final disposition of the surgical staple being removed. It is common to have surgical staples jump into the air or fall away during removal. Personnel must then go about finding and disposing of the removed surgical staple and sterilizing anything the staple came into contact with. It is unsanitary to allow removed surgical staples to come into contact with individuals or things since implanted surgical staples have resided within a human's body and may contain biologically hazardous residue that could contaminate individuals and locations. Further, the process of cleaning up after the conventional removal of surgical staples is time consuming and expensive since proper decontamination and sterilization procedures, employing the use of costly protective equipment and cleaning materials, must be undertaken. Further, during an operation on a patient, it is imperative that all removed staples are accounted for, lest the removed staple falls into an open incision unnoticed.
Another disadvantage of a conventional surgical staple remover is that it requires that each removed surgical staple is immediately disposed of. That is, the doctor or technician must remove a surgical staple, place it in a receptacle, and then return to the wound to remove the next surgical staple. This is problematic as it requires that the doctor or technician temporarily lose sight of the wound while he disposes of the removed surgical staple.
Therefore, a need exists to overcome the problems the prior art as discussed above, and particularly for a more effective and efficient surgical staple remover, as well as a more sanitary and easy-to-operate surgical staple remover.
Briefly, according to an embodiment of the present invention, a surgical staple remover apparatus is disclosed. The surgical staple remover apparatus comprises:
(a) a first elongated element having a handle on one end and a downward facing protrusion on the other end;
(b) a second elongated element having a handle on one end and an upwards sloped planar element on the other end, wherein the first and second elongated elements are pivotally connected such that moving the handles into close proximity results in moving the protrusion and planar element into close proximity and such that moving the handles apart results in separating the protrusion and planar element;
(c) a cutout located at a midpoint of a tip of the upwards sloped planar element, such that moving the handles into close proximity results in moving the protrusion into the cutout of the planar element, wherein placing the planar element under a surgical staple and moving the handles into close proximity, results in the protrusion pressing against a crown of the surgical staple, thereby deforming the surgical staple so as to remove it;
(d) a housing running a length of the second elongated element, beginning substantially at the upwards sloped planar element and including an opening facing the planar element; and
(e) a spring loaded element located within the housing and having a hook on a distal end, wherein when the handles are separated, the spring loaded element is laterally compressed and extends out of the housing so as to grip a removed surgical staple, and wherein when the handles are moved into close proximity, the spring loaded element is at rest and contracts into the housing with the removed surgical staple.
The foregoing and other features and advantages of the present invention will be apparent from the following more particular description of the preferred embodiments of the invention, as illustrated in the accompanying drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features and also the advantages of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
The present invention solves problems with the prior art by providing a simple and easy-to-use surgical staple remover that automatically captures removed surgical staples. The apparatus of the present invention improves upon the prior art by definitively dealing with the final disposition of each surgical staple being removed. The present invention eliminates the possibility of having surgical staples jump into the air or fall away during removal. The present invention further eliminates the necessity for personnel to find and dispose of the removed surgical staple and sterilize anything the staple came into contact with. This eradicates the potential for removed surgical staples to come into contact with, and contaminating, individuals or things. Further, the present invention eliminates the need to clean up after the conventional removal of surgical staples, thereby saving time and expense. Also, the present invention allows a doctor or technician to undergo the process of removing multiple surgical staples without losing sight of the wound during the process.
Finally, the present invention provides a surgical staple remover with a minimal number of component parts, thereby reducing the potential for failure or malfunction of the device. Also, the minimal number of component parts allows for quick and inexpensive fabrication of the surgical staple remover, thereby meeting the economic requirements for a disposable surgical staple remover.
The apparatus 20 may include a first elongated element 24 having a handle 23 on one end and a downward facing protrusion 27 on the other end. The element 24 may also include an additional finger rest 22 adjacent to the handle 23, which may comprise an oval shaped element for accommodating an individual's fingers. The downward facing protrusion 27 may comprise a curved element that protrudes downwards from one end of the first elongated element 24, the tip of which includes a footprint for placement on top of a crown of a surgical staple. Note that elongated element 24 may comprise two substantially right angles—one located distally from the handle 23 and the other located near the juncture of the elements 24 and 25.
The apparatus 20 may further include a second elongated element 25 having a handle 21 on one end and an upwards sloped planar element 28 on the other end, wherein the first and second elongated elements 24, 25 are pivotally connected at pivot point 31 such that moving the handles 21, 23 into close proximity results in moving the protrusion 27 and planar element 28 into close proximity and such that separating the handles results in separating the protrusion and planar element. The upwards sloped planar element 28 may comprise a triangular shaped element (see
The apparatus 20 may further include a housing 26 having an interior volume and running a length of the second elongated element 25, beginning at the upwards sloped planar element 28 and including an opening 30 facing the planar element 28, such that surgical staples removed with the apparatus are drawn into the housing 26. The housing 26 may comprise an elongated rectangular box running a length of the second elongated element 25. The housing 26 may also include a flange 35 that runs along a top length of the housing 26, and wherein the pivot point 31 is located in the flange. The flange 35 may comprise two parallel flanges that are in close proximity but having a gap between them, and wherein a portion of the second elongated element 24 is located within the gap when the handles 21, 23 are in close proximity (see
The spring loaded element 51 may comprise a strip of a shape memory alloy that includes one or more bends 53, such that lateral compression of the spring loaded element 51 causes it to extend. Also note the hook 52 may comprise a dual pronged hook.
The perspective view of
The process of utilizing the surgical staple remover apparatus 20 according to one embodiment of the present invention will now be described with reference to
In the open position of
Although specific embodiments of the invention have been disclosed, those having ordinary skill in the art will understand that changes can be made to the specific embodiments without departing from the spirit and scope of the invention. The scope of the invention is not to be restricted, therefore, to the specific embodiments. Furthermore, it is intended that the appended claims cover any and all such applications, modifications, and embodiments within the scope of the present invention.
This patent application claims priority to provisional patent application No. 61/312,327, filed on Mar. 10, 2010 and entitled “Surgical Staple Remover.” The subject matter of provisional patent application No. 61/312,327 is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1948096 | Cavanagh | Feb 1934 | A |
4026520 | Rothfuss et al. | May 1977 | A |
4073179 | Hickey et al. | Feb 1978 | A |
D271742 | Li et al. | Dec 1983 | S |
4487394 | Rothfuss et al. | Dec 1984 | A |
4515348 | Blake | May 1985 | A |
D280019 | Meyer et al. | Aug 1985 | S |
D281624 | Babini | Dec 1985 | S |
D283048 | Sharkany | Mar 1986 | S |
D287279 | Lazickas | Dec 1986 | S |
4685460 | Thornton | Aug 1987 | A |
4805876 | Blake et al. | Feb 1989 | A |
D302466 | Porat et al. | Jul 1989 | S |
D308807 | Yu | Jun 1990 | S |
5236435 | Sewell, Jr. | Aug 1993 | A |
5364406 | Sewell, Jr. | Nov 1994 | A |
5451231 | Rabenau et al. | Sep 1995 | A |
5938178 | Oh | Aug 1999 | A |
5957430 | Olson | Sep 1999 | A |
6105936 | Malek | Aug 2000 | A |
D438965 | Porat | Mar 2001 | S |
6391035 | Appleby et al. | May 2002 | B1 |
6513788 | Ashe | Feb 2003 | B1 |
6641114 | Davis | Nov 2003 | B1 |
7048255 | Buch et al. | May 2006 | B2 |
7090198 | Gurmu | Aug 2006 | B1 |
7131977 | Fowler | Nov 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20110224694 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61312327 | Mar 2010 | US |