Surgical stapler adapter with flexible cable assembly, flexible fingers, and contact clips

Information

  • Patent Grant
  • 12029422
  • Patent Number
    12,029,422
  • Date Filed
    Tuesday, June 28, 2022
    2 years ago
  • Date Issued
    Tuesday, July 9, 2024
    4 months ago
Abstract
A surgical device includes a handle assembly including a controller and a first electrical connector. The surgical device also includes an adapter assembly having: a tubular housing having a proximal end portion configured to couple to the handle assembly, and a distal end portion; a second electrical connector disposed at the proximal end portion and configured to couple to the first electrical connector; an electrical contact assembly disposed at the distal end portion; and a wire harness disposed within the tubular housing and interconnecting the second electrical connector and the electrical contact assembly. The surgical device also includes a surgical end effector configured to couple to the distal end portion of the adapter assembly, the surgical end effector includes an electrical contact configured to couple to the electrical contact assembly.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical devices. More specifically, the present disclosure relates to adapter assemblies for use with surgical stapler devices having electrical contacts that clip onto flexible fingers of a flexible cable.


2. Background of Related Art

Surgical fastener devices for applying fasteners or staples to tissue are well known. These fastener devices include single use devices which are preloaded with one or more staples and are disposable after a single use. Multiple use devices are also available and are preloaded with a plurality of staples. Multiple use devices may include a handle assembly that is electromechanically, e.g., powered, or manually actuated. These devices may be used with single use loading units (SULU) or multiple use loading units (MULU). The loading units include a body and an end effector, and are attached to the handle assembly, either directly or via an adapter assembly couplable to the handle assembly.


A number of surgical device manufacturers have developed product lines with proprietary powered drive systems for operating and/or manipulating the surgical device. The powered handle assembly and the loading unit may be electrically interconnected. Accordingly, the adapter assemblies include electrical components, such as cables, switches, circuit boards, and the like. Thus, there is a need for electrical connectors suitable for use with the adapter assemblies that can withstand mechanical stresses encountered during use.


SUMMARY

According to one embodiment of the present disclosure, a surgical device is disclosed. The surgical device includes a handle assembly including a controller and a first electrical connector. The surgical device also includes an adapter assembly having: a tubular housing having a proximal end portion configured to couple to the handle assembly, and a distal end portion; a second electrical connector disposed at the proximal end portion and configured to couple to the first electrical connector; an electrical contact assembly disposed at the distal end portion; and a wire harness disposed within the tubular housing and interconnecting the second electrical connector and the electrical contact assembly. The surgical device also includes a surgical end effector configured to couple to the distal end portion of the adapter assembly, the surgical end effector includes an electrical contact configured to couple to the electrical contact assembly.


According to another embodiment of the present disclosure, a surgical device adapter assembly is disclosed. The surgical device adapter assembly includes: a tubular housing having a proximal end portion configured to couple to a handle assembly, and a distal end portion configured to couple to a surgical end effector; an electrical connector disposed at the proximal end portion; an electrical contact assembly disposed at the distal end portion; and a wire harness disposed within the tubular housing and interconnecting the electrical connector and the electrical contact assembly.


According to one aspect of any of the above embodiments, the wiring harness is a flexible cable. The adapter assembly may further include a switch actuated in response to the surgical end effector being coupled to the adapter assembly. The flexible cable may be coupled to the switch and include a flexible finger coupled to the electrical contact assembly.


According to one aspect of any of the above embodiments, the adapter assembly may include a rotatable lock member. The electrical contact assembly may include a housing having a cantilevered tongue configured to attach the electrical contact assembly to the rotatable lock member.


According to a further aspect of any of the above embodiments, the electrical contact assembly may also include a contact clip secured in a depression formed on the housing. The flexible finger may be electrically coupled to the contact clip, which may include a contact portion and an attachment portion that is configured to engage the electrical contact. The attachment portion may be folded over to secure the flexible finger to the contact clip. The flexible finger may include an exposed portion of a conductive layer that is soldered to the contact clip.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view of a handheld surgical device, an adapter assembly, an end effector according to an embodiment of the present disclosure;



FIG. 2 is a perspective view illustrating a connection of the adapter assembly and the handle assembly of FIG. 1 according to an embodiment of the present disclosure;



FIG. 3 is perspective view of internal components of the handle assembly according to an embodiment of the present disclosure;



FIG. 4 is cross-sectional view of the adapter assembly taken along a section plane “4-4” of FIG. 1 according to an embodiment of the present disclosure;



FIG. 5 is cross-sectional view of the adapter assembly taken along a section plane “5-5” of FIG. 1 according to an embodiment of the present disclosure;



FIG. 6 is a perspective view, with parts separated, of the surgical loading unit of FIG. 1;



FIG. 7 is a perspective view of the adapter assembly and the loading unit illustrating an activation mechanism according to the present disclosure;



FIG. 8 is a side view of a wiring harness according to an embodiment of the present disclosure;



FIG. 9 is a perspective view, with parts separated, of a flexible finger of the wiring harness of FIG. 8 according to an embodiment of the present disclosure;



FIG. 10 is a perspective view of internal components of the adapter assembly according to an embodiment of the present disclosure;



FIG. 11 is a perspective view of a distal end portion of the adapter assembly according to an embodiment of the present disclosure;



FIG. 12 is a perspective view of the distal end portion of the adapter assembly with flexible fingers coupled to electrical contacts according to an embodiment of the present disclosure;



FIG. 13 is a perspective view of the flexible fingers of FIG. 12 coupled to electrical contacts attached to a rotatable lock member according to an embodiment of the present disclosure;



FIG. 14 is a perspective view of the flexible fingers coupled to electrical contacts according to an embodiment of the present disclosure;



FIG. 15 is a top view of a contact clip according to an embodiment of the present disclosure;



FIG. 16 is a perspective view of the contact clip of FIG. 15;



FIG. 17 is a top view of a contact clip according to another embodiment of the present disclosure;



FIG. 18 is a perspective view of the contact clip of FIG. 17; and



FIG. 19 is a perspective view of a contact clip according to a further embodiment of the present disclosure.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse or any other care provider and may include support personnel. Throughout this description, the term “proximal” will refer to the portion of the device or component thereof that is closer to the clinician and the term “distal” will refer to the portion of the device or component thereof that is farther from the clinician. Additionally, in the drawings and in the description that follows, terms such as front, rear, upper, lower, top, bottom, and similar directional terms are used simply for convenience of description and are not intended to limit the disclosure. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


The present disclosure provides an adapter assembly including a flexible cable running longitudinally within the adapter assembly. The adapter assembly interconnects a handle assembly and a loading unit. The cable transfers electrical signals from a rotating ring, which engages a loading unit, to the handle assembly. The flexible cable avoids using stranded wires to transfer signals from the rotating ring to the flexible cable by using the wires with fingers incorporated directly into a distal end of the flexible cable. The flexible fingers are soldered to contact clips of the electrical contact assemblies which are attached to the rotating ring. The contact clips conduct signals from the loading unit. The contact clips have features which clip onto the flexible fingers to relieve stress from the solder joints themselves. In particular, coupling flexible fingers of the flexible cable to the electrical contact assemblies, which are in turn coupled to the rotatable lock member imparts physical strain onto the electrical connection between the flexible fingers and the electrical contact assemblies. The present disclosure, which relies on soldering and securing the flexible fingers directly to the respective electrical contact clips, mitigates the mechanical stress imparted on the flexible fingers and the electrical contact clips due to rotation of the rotatable lock member, which prevents the flexible fingers from detaching from the electrical contact assemblies.


Use of a single flexible cable also reduces the number of parts used in the adapter assembly by obviating the need for additional wires. Using wire connectors also requires cutting wires to length and stripping to a predetermined length. Soldering the wires and creating service loops to relieve stress from the solder joints is also a labor-intensive process. The flexible fingers eliminate the need for the cutting/stripping process and providing slack loops. Manufacturing the flexible fingers to the proper length is more repeatable and easier to control than cutting and stripping the wires. The assembly of the distal electronics system is also more repeatable with the flexible fingers. The flexible cable may be printed in a flat state and formed into the desired configuration during the assembly process. Dimensions of the flexible cable may also easily be adjusted and reprinted for optimization.


With reference to FIG. 1, a powered surgical device 10 includes a handle assembly 20, which is configured for selective connection with an adapter assembly 30, which in turn, is configured for selective connection with a loading unit 40 having an end effector 44. Although generally referred to as being a powered surgical device, it is contemplated that the surgical device 10 may be manually actuated and may include various configurations.


The handle assembly 20 includes a handle housing 22 having a lower housing portion 24, an intermediate housing portion 26 extending from and/or supported on a portion of the lower housing portion 24, and an upper housing portion 28 extending from and/or supported on a portion of the intermediate housing portion 26. As shown in FIG. 2, a distal portion of the upper housing portion 28 defines a nose or connecting portion 28a that is configured to accept a proximal end portion 30b of the adapter assembly 30.


With reference to FIG. 2, the connecting portion 28a of the upper housing portion 28 includes an electrical receptacle 29 having a plurality of electrical contacts 31, which are in electrical communication with electronic (e.g., main controller 38) and electrical components (e.g., power source 37) of the handle assembly 20 (FIG. 3). The adapter assembly 30 includes a counterpart electrical connector 32 that is configured to engage the electrical receptacle 29. The electrical connector 32 also includes a plurality of electrical contacts 34 that engage and electrically connect to their counterpart electrical contacts 31.


With reference to FIG. 3, the handle assembly 20 includes one or more motors 36 which are coupled to a power source 37. The handle assembly 20 also includes a main controller 38 for operating the motors 36 and other electronic components of the handle assembly 20, the adapter assembly 30, and the loading unit 40. The motors 36 are coupled to corresponding drive shafts 39 (FIG. 2), which are configured to engage sockets 33 on the proximal end portion 30b, such that rotation of the drive shafts 39 is imparted on the sockets 33.


With reference to FIGS. 4 and 5, the adapter assembly 30 includes a tubular housing 30a that extends between a proximal end portion 30b that is configured for operable connection to the connecting portion 28a of the handle assembly 20 and an opposite, distal end portion 30c that is configured for operable connection to the loading unit 40. The adapter assembly 30 includes actuation assemblies 35 each of which is coupled to one of the sockets 33. The actuation assemblies 35 are configured to transfer rotational motion of the sockets 33 into linear motion and/or rotational motion, such that the adapter assembly 30 is configured to convert a rotational motion provided by the handle assembly 20 into axial translation for rotating the adapter assembly 30 about a longitudinal axis X-X, articulate the loading unit 40, clamp tissue, eject fasteners, and cut fastened tissue.


With reference to FIGS. 1 and 6, an embodiment of the loading unit 40 is shown. The loading unit 40 includes a proximal body portion 42 and a surgical end effector 44. Proximal body portion 42 is releasably attached to the distal end portion 30c of adapter assembly 30, and end effector 44 is pivotally attached to a distal end of proximal body portion 42. End effector 44 includes an anvil assembly 46 and a cartridge assembly 48. Cartridge assembly 48 is pivotal in relation to anvil assembly 46 and is movable between an open or unclamped position and a closed or clamped position. Proximal body portion 42 includes a drive assembly 50 and an articulation link 52.


Drive assembly 50 includes a flexible drive beam 54 having a distal end portion 54a and a proximal engagement section 54b. The distal end portion 54a includes an I-beam 55 having a knife 55a. The I-beam 55 is configured to travel through the anvil assembly 46 and the cartridge assembly 48, thereby pushing the anvil assembly 46 toward the cartridge assembly 48 to clamp tissue. The proximal engagement section 54b includes diametrically opposed inwardly extending fingers 54c that engage a drive member 56 (FIG. 5) to fixedly secure drive member 56 to the proximal end of drive beam 54. Drive member 56 is actuated by one of the actuation assemblies 35 of adapter assembly 30.


Cartridge assembly 48 of end effector 44 includes a staple cartridge 58 removably supported in a carrier 60. Staple cartridge 58 defines a central longitudinal slot 58a, and a plurality of linear rows of staple retention slots 58b positioned on each side of the central longitudinal slot 58a. Each of the staple retention slots 58b receives a single staple 62 and a portion of a staple pusher 64. During operation of the surgical device 10, drive assembly 50 abuts an actuation sled 66 and pushes actuation sled 66 through the staple cartridge 58. As the actuation sled 66 moves through staple cartridge 58, cam wedges of the actuation sled 66 sequentially engage staple pushers 64 to move staple pushers 64 vertically within staple retention slots 58b and sequentially eject a single staple 62 therefrom for formation against an anvil plate 46a of anvil assembly 46.


Proximal body portion 42 of surgical loading unit 40 includes an articulation link 52 having a hooked proximal end portion 52a which extends from a proximal end of surgical loading unit 40 which engages an opposing articulation link (not shown) coupled to another one of the actuation assemblies 35 of the adapter assembly 30. Articulation link 52 has a distal end portion 52b pivotably secured to end effector 44.


With reference to FIG. 7, the adapter assembly 30 includes an activation mechanism 70, which provides positive feedback to the handle assembly 20 that the loading unit 40 has been properly mounted to the adapter assembly 30, and in conjunction with memory or circuit components disposed within the loading unit 40, provides information to the clinician regarding various parameters of the loading unit 40 (e.g., staple size). The activation mechanism 70 also permits repetitive mounting of multiple loading units 40 without experiencing any degradation of its mechanical and/or electrical components within the adapter assembly 30 thereby enhancing usability and ensuring proper functioning of the adapter assembly 30 over an extended number of uses.


The activation mechanism 70 includes a switch 72, which is actuated in response to insertion of the loading unit 40 into a distal end portion 30c of the adapter assembly 30. The activation mechanism 70 is described in greater detail in a U.S. Patent Application Publication No. 2017/0128067, entitled “Surgical Device,” the entire disclosure of which is incorporated by reference herein.


With reference to FIGS. 8 and 9, a wiring harness 74 connects the switch 72 and electrical contact assemblies 80 and 81 with the electrical connector 32. The wiring harness 74 may be a flexible cable having one or more conductive layer(s) 75 disposed on a first flexible dielectric substrate 77 and a second flexible dielectric substrate 79, which enclose the conductive layer(s) 75. The dielectric substrates 77 and 79 may be formed from any suitable flexible dielectric material including, but not limited to, polyester, polyimide, polyethylene naphthalate, polyetherimide, fluropolymers, polyether ether ketone, and combinations thereof. The conductive layer 75 may include a plurality of traces and may be formed from any conductive material, such as copper, or various alloys, and may be applied to the dielectric substrate using any subtractive (e.g., etching) or additive (e.g., screen printing) technique for forming conductive layers on a flexible dielectric substrate.


The wiring harness 74 may include any number of segments 74a, 74b, 74c to allow for routing through the adapter assembly 30. As shown in FIGS. 10 and 11, the segment 74b is approximately perpendicular with respect to the segments 74b and 74c, allowing for the wiring harness 74 to be wrapped around and within various components of the distal end portion 30c of the adapter assembly 30.


With reference to FIG. 8, the wiring harness 74 includes a proximal connector portion 76, which is coupled to the electrical connector 32. The wiring harness 74 also includes a distal connector portion 78, which is coupled to the switch 72 and a pair of electrical contact assemblies 80 and 81 (FIGS. 12-14).


With reference to FIG. 7, the loading unit 40 includes a pair of electrical contacts 41, which are configured to engage the pair of electrical contact assemblies 80 and 81 disposed within the distal end portion 30c of the adapter assembly 30 when the loading unit 40 is inserted into the adapter assembly 30. The pair of electrical contacts 41 are coupled to a storage device 43 disposed within the loading unit 40. The storage device 43 may be encrypted and may store information pertaining to the loading unit 40 such as, usage count, sterilization cycles, staple size, jaw size, etc. The storage device 43 may be any suitable non-volatile memory, such as flash memory.


With reference to FIGS. 10-13, the electrical contact assemblies 80 and 81 are disposed at a distal end portion 88 of a rotatable lock member 90, which is configured to rotate about a longitudinal axis defined “X-X” between locked and unlocked positions in response to rotation of the loading unit 40. More specifically, after insertion of the loading unit 40 into the adapter assembly 30, the loading unit 40 is rotated therein to secure the loading unit 40. Accordingly, the rotatable lock member 90 rotates with the loading unit 40 while the electrical contact assemblies 80 and 81 of the rotatable lock member 90 maintain electrical connectivity with the pair of electrical contacts 41 of the loading unit 40.


As shown in FIGS. 13 and 14, the distal connector portion 78 includes a switch portion 82 coupled to the switch 72, and a pair of fingers 84 and 86 (each of which is coupled to corresponding electrical contact assemblies 80 and 81, respectively). With reference to FIG. 9, only finger 84 is shown for brevity although each of the fingers 84 and 86 is the same or substantially identical. The finger 84 includes a contact portion 85 with a distal portion of the second flexible dielectric substrate 79 being removed to expose the conductive layer 75.


With reference to FIG. 14, each of the electrical contact assemblies 80 and 81 are the same or substantially identical. Accordingly, only the structure and components of the electrical contact assembly 80 are described below for the sake of brevity. The electrical contact assembly 80 includes a clip-on housing 92 configured to clip or snap on to a ring portion 94 (FIG. 13) of the rotatable lock member 90. The clip-on housing 92 may be formed from any suitable high strength tensile material, such as metals and/or thermoplastics. The clip-on housing 92 includes a cantilevered tongue 95 on a first surface 93 thereof and which cantilevered tongue 95 extends from a proximal end portion 96 of the clip-on housing 92. The clip-on housing 92 also includes a lip 98 disposed at a distal end portion 97 thereof, which lip 98 extends toward the first surface 93. The cantilevered tongue 95 is separated from the lip 98 by a predetermine distance “d” which is substantially (e.g., about ±2%) the width of the ring portion 94, such that the clip-on housing 92 can be frictionally secured thereto.


The clip-on housing 92 also includes a slit 100, which transitions into a depression 102 formed on a second surface 104 thereof. The clip-on housing 92 houses a contact clip 108 or 110, each of which is coupled to the contact portion 85 of the fingers 84 and 86. The depression 102 is formed between two opposing walls 105a and 105b and extends from the distal end portion 97 of clip-on housing 92 until reaching a shelf 106. The depression 102 is unobstructed at its distal end allowing for the electrical contacts 41 to slide over an outer surface thereof and in particular the contact clip 108 or 110.


As shown in FIGS. 15 and 16, the contact clip 108 may be formed from a conductive material, such as copper, and may have a planar shape. The contact clip 108 includes a contact portion 112 and an attachment portion 114. The contact portion 112 is configured to slide into the slit 100 and over the depression 102, thereby providing an electrical contact for the electrical contact 41. The contact portion 112 may include one or more protrusions 102a, which secure the contact portion 112 between the walls 105a and 105b. The attachment portion 114 is parallel to the contact portion 112 and is connected thereto by a segment 113 which is perpendicular to the contact portion and the attachment portion 114. Since the contact clip 108 is formed from a metal, the attachment portion 114 may be bent to secure the finger 84 as shown in FIG. 16. In particular, the contact portion 85 of the finger 84 may be electrically coupled to the contact portion 112 of the contact clip 108 via soldering or any other suitable methods. The finger 84 is secured by bending the attachment portion 114 about the finger 84 thereby securing it to the contact clip 108. The finger 84 is placed on the segment 113, namely, parallel thereto, and perpendicular to the contact portion 112. Thereafter, the attachment portion 114 is wrapped once or more about the finger 84, such that the finger 84 is disposed between two layers of the attachment portion 114. The attachment portion 114 may be wrapped about its backside.


With reference to FIGS. 17 and 18, the contact clip 110 is substantially similar to the contact clip 108 and only the differences therebetween are described below. The contact clip 110 also includes a contact portion 122, however, an attachment portion 124 is coupled directly to the contact portion 112 and is perpendicular thereto. The finger 86 is placed on the contact portion 122, namely, parallel thereto, and the attachment portion 124 is wrapped once or more about the finger 86, such that the finger 86 is disposed between two layers of the attachment portion 124. The attachment portion 124 may be wrapped about the backside of the contact portion 122. The contact portion 85 of the finger 86 is also electrically coupled to the contact portion 122 of the contact clip 110 via soldering or any other suitable methods.


With reference to FIG. 19, a contact clip 130 is substantially similar to the contact clips 108 and 110 and only the differences therebetween are described below. The contact clip 130 includes a contact portion 132 and an attachment portion 134, which extends directly from the contact portion 132 and is parallel thereto. The attachment portion 134 includes a pair of opposing fingers 135a and 135b, which are configured to be wrapped about the contact portion 132. The finger 84 or 86 is placed across the contact portion 132, namely, perpendicular thereto, and the attachment portion 134 is bent onto the contact portion 132. Thereafter, the fingers 135a and 135b are bent about a backside of the contact portion 132.


It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims
  • 1. A surgical device comprising: a handle assembly including a controller;a tubular housing having a proximal end portion coupled to the handle assembly, and a distal end portion, the tubular housing including: a rotatable lock member disposed at the distal end portion;an electrical contact assembly including a clip-on housing configured to attach the electrical contact assembly to the rotatable lock member; anda wiring harness disposed within the tubular housing coupled to the electrical contact assembly; anda surgical end effector configured to couple to the rotatable lock member, the surgical end effector including an electrical contact configured to couple to the electrical contact assembly.
  • 2. The surgical device according to claim 1, wherein the wiring harness is a flexible cable.
  • 3. The surgical device according to claim 2, wherein the tubular housing further includes a switch actuated in response to the surgical end effector being coupled to the tubular housing.
  • 4. The surgical device according to claim 3, wherein the flexible cable is coupled to the switch and includes a flexible finger coupled to the electrical contact assembly.
  • 5. The surgical device according to claim 4, wherein the electrical contact assembly includes a contact clip secured in a depression formed on the clip-on housing.
  • 6. The surgical device according to claim 5, wherein the flexible finger is electrically coupled to the contact clip.
  • 7. The surgical device according to claim 6, wherein the contact clip includes a contact portion and an attachment portion.
  • 8. The surgical device according to claim 7, wherein the contact portion is configured to engage the electrical contact.
  • 9. The surgical device according to claim 8, wherein the attachment portion is folded over to secure the flexible finger to the contact clip.
  • 10. The surgical device according to claim 9, wherein the flexible finger includes an exposed portion of a conductive layer that is soldered to the contact clip.
  • 11. The surgical device according to claim 1, wherein the clip-on housing includes a cantilevered tongue.
  • 12. The surgical device according to claim 1, wherein the clip-on housing is configured to frictionally engage a ring portion of the rotatable lock member to attach the electrical contact assembly to the rotatable lock member.
  • 13. A surgical device adapter assembly comprising: a tubular housing having a proximal end portion configured to couple to a handle assembly, and a distal end portion configured to couple to a surgical end effector;a rotatable lock member configured to engage the surgical end effector;an electrical contact assembly disposed at the distal end portion, the electrical contact assembly including a clip-on housing configured to attach the electrical contact assembly to the rotatable lock member; anda wiring harness disposed within the tubular housing and coupled to the electrical contact assembly.
  • 14. The surgical device adapter assembly according to claim 13, wherein the wiring harness is a flexible cable.
  • 15. The surgical device adapter assembly according to claim 14, wherein the flexible cable includes a flexible finger coupled to the electrical contact assembly.
  • 16. The surgical device adapter assembly according to claim 15, wherein the electrical contact assembly includes a contact clip secured in a depression formed on the clip-on housing and the flexible finger is electrically coupled to the contact clip.
  • 17. The surgical device adapter assembly according to claim 16, wherein the contact clip includes a contact portion and an attachment portion, the contact portion configured to engage an electrical contact of a surgical end effector, and the attachment portion folded over to secure the flexible finger to the contact clip.
  • 18. The surgical device adapter assembly according to claim 17, wherein the flexible finger includes an exposed portion of a conductive layer that is soldered to the contact clip.
  • 19. The surgical device adapter assembly according to claim 13, wherein the clip-on housing includes a cantilevered tongue.
  • 20. The surgical device adapter assembly according to claim 13, wherein the clip-on housing is configured to frictionally engage a ring portion of the rotatable lock member to attach the electrical contact assembly to the rotatable lock member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/670,611, filed on Oct. 31, 2019, now U.S. Pat. No. 11,369,372, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/772,281, filed Nov. 28, 2018. The entire disclosure of each of these applications are incorporated by reference herein.

US Referenced Citations (488)
Number Name Date Kind
37165 Gary Dec 1862 A
3209754 Brown Oct 1965 A
3273562 Brown Sep 1966 A
3499591 Green Mar 1970 A
3528693 Pearson et al. Sep 1970 A
3744495 Johnson Jul 1973 A
3862631 Austin Jan 1975 A
3949924 Green Apr 1976 A
4060089 Noiles Nov 1977 A
4204623 Green May 1980 A
4217902 March Aug 1980 A
4263903 Griggs Apr 1981 A
4275813 Noiles Jun 1981 A
4331277 Green May 1982 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4444181 Wevers et al. Apr 1984 A
4454875 Pratt et al. Jun 1984 A
4456006 Wevers et al. Jun 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4508253 Green Apr 1985 A
4508523 Leu Apr 1985 A
4522206 Whipple et al. Jun 1985 A
4534350 Golden et al. Aug 1985 A
4535772 Sheehan Aug 1985 A
4566620 Green et al. Jan 1986 A
4570623 Ellison et al. Feb 1986 A
4606343 Conta et al. Aug 1986 A
4606344 Di Giovanni Aug 1986 A
4610383 Rothfuss et al. Sep 1986 A
4612923 Kronenthal Sep 1986 A
4612933 Brinkerhoff et al. Sep 1986 A
D286442 Korthoff et al. Oct 1986 S
4627437 Bedi et al. Dec 1986 A
4635637 Schreiber Jan 1987 A
4662371 Whipple et al. May 1987 A
4671280 Dorband et al. Jun 1987 A
4705038 Sjostrom et al. Nov 1987 A
4712550 Sinnett Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4724839 Bedi et al. Feb 1988 A
4731058 Doan Mar 1988 A
4805617 Bedi et al. Feb 1989 A
4807628 Peters et al. Feb 1989 A
4852558 Outerbridge Aug 1989 A
4913144 Del Medico Apr 1990 A
4960420 Goble et al. Oct 1990 A
4962877 Hervas Oct 1990 A
4990153 Richards Feb 1991 A
4994073 Green Feb 1991 A
4995877 Ams et al. Feb 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5089009 Green Feb 1992 A
5108422 Green et al. Apr 1992 A
5114399 Kovalcheck May 1992 A
5129570 Schulze et al. Jul 1992 A
5143453 Weynant nee Girones Sep 1992 A
5203864 Phillips Apr 1993 A
5207697 Carusillo et al. May 1993 A
5209756 Seedhom et al. May 1993 A
5246443 Mai Sep 1993 A
5258008 Wilk Nov 1993 A
5271543 Grant et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5282829 Hermes Feb 1994 A
5300081 Young et al. Apr 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5313935 Kortenbach et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5330486 Wilk Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5342376 Ruff Aug 1994 A
5350355 Sklar Sep 1994 A
5356064 Green et al. Oct 1994 A
5359993 Slater et al. Nov 1994 A
5364001 Bryan Nov 1994 A
5381943 Allen et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5391166 Eggers Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5431323 Smith et al. Jul 1995 A
5464144 Guy et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5478344 Stone et al. Dec 1995 A
5482100 Kuhar Jan 1996 A
5485947 Olson et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5497933 DeFonzo et al. Mar 1996 A
5500000 Feagin et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5507743 Edwards et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5558671 Yates Sep 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5571285 Chow et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5582611 Tsuruta et al. Dec 1996 A
5584835 Greenfield Dec 1996 A
5601224 Bishop et al. Feb 1997 A
5601558 Torrie et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609560 Ichikawa et al. Mar 1997 A
5624452 Yates Apr 1997 A
5632433 Grant et al. May 1997 A
5634926 Jobe Jun 1997 A
5642848 Ludwig et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658312 Green et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667513 Torrie et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5690675 Sawyer et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5695506 Pike et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5702447 Walch et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5713896 Nardella Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5716366 Yates Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725529 Nicholson et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728116 Rosenman Mar 1998 A
5730757 Benetti et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5755726 Pratt et al. May 1998 A
5759171 Coelho et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785713 Jobe Jul 1998 A
5788698 Savornin Aug 1998 A
5810811 Yates et al. Sep 1998 A
5823066 Huitema et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5830121 Enomoto et al. Nov 1998 A
5849023 Mericle Dec 1998 A
5849028 Chen Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5861005 Kontos Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5891156 Gessner et al. Apr 1999 A
5893813 Yamamoto Apr 1999 A
5895396 Day et al. Apr 1999 A
5906607 Taylor et al. May 1999 A
5911721 Nicholson et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5928222 Kleinerman Jul 1999 A
5944717 Lee et al. Aug 1999 A
5944736 Taylor et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5961521 Roger Oct 1999 A
5964394 Robertson Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5976171 Taylor Nov 1999 A
5980518 Carr et al. Nov 1999 A
5980548 Evans et al. Nov 1999 A
5991355 Dahlke Nov 1999 A
5991650 Swanson et al. Nov 1999 A
5992724 Snyder Nov 1999 A
5997552 Person et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6007550 Wang et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6013077 Harwin Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6030410 Zurbrugg Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6051007 Hogendijk et al. Apr 2000 A
6063078 Wittkampf May 2000 A
6063095 Wang et al. May 2000 A
6077246 Kullas et al. Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080150 Gough Jun 2000 A
6083242 Cook Jul 2000 A
6090123 Culp et al. Jul 2000 A
6092422 Binnig et al. Jul 2000 A
6109500 Alli et al. Aug 2000 A
6113592 Taylor Sep 2000 A
6123702 Swanson et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126058 Adams et al. Oct 2000 A
6126651 Mayer Oct 2000 A
6127811 Shenoy et al. Oct 2000 A
6132425 Gough Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6166538 D'Alfonso Dec 2000 A
6179840 Bowman Jan 2001 B1
6187009 Herzog et al. Feb 2001 B1
6187019 Stefanchik et al. Feb 2001 B1
6190401 Green et al. Feb 2001 B1
6193501 Masel et al. Feb 2001 B1
6202914 Geiste et al. Mar 2001 B1
6217573 Webster Apr 2001 B1
6228534 Takeuchi et al. May 2001 B1
6231565 Tovey et al. May 2001 B1
6236874 Devlin et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6264653 Falwell Jul 2001 B1
6281471 Smart Aug 2001 B1
6288534 Starkweather et al. Sep 2001 B1
6290701 Enayati Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6295330 Skog et al. Sep 2001 B1
6305970 Nagai et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6346104 Daly et al. Feb 2002 B2
6355066 Kim Mar 2002 B1
6364884 Bowman et al. Apr 2002 B1
6375492 Hio Apr 2002 B1
6387092 Burnside et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6402766 Bowman et al. Jun 2002 B2
H2037 Yates et al. Jul 2002 H
6412279 Coleman et al. Jul 2002 B1
6425903 Voegele Jul 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6443973 Whitman Sep 2002 B1
6447517 Bowman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6478210 Adams et al. Nov 2002 B2
6497707 Bowman et al. Dec 2002 B1
6505768 Whitman Jan 2003 B2
6515273 Ai-Ali Feb 2003 B2
6524316 Nicholson et al. Feb 2003 B1
6533157 Whitman Mar 2003 B1
6540751 Enayati Apr 2003 B2
6544273 Harari et al. Apr 2003 B1
6554852 Oberlander Apr 2003 B1
6562071 Jarvinen May 2003 B2
6578579 Burnside et al. Jun 2003 B2
6601748 Fung et al. Aug 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6616821 Broadley et al. Sep 2003 B2
6629986 Ross et al. Oct 2003 B1
6651669 Burnside Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6669705 Westhaver et al. Dec 2003 B2
6696008 Brandinger Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6736085 Esnouf May 2004 B1
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6899538 Matoba May 2005 B2
6900004 Satake May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6926636 Luper Aug 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6979328 Baerveldt et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6988649 Shelton, IV et al. Jan 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032798 Whitman et al. Apr 2006 B2
7044353 Mastri et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7122029 Koop et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7193519 Root et al. Mar 2007 B2
7217269 El-Galley et al. May 2007 B2
7220232 Suorsa et al. May 2007 B2
7240817 Higuchi Jul 2007 B2
7241270 Horzewski et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7303108 Shelton, IV Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7335169 Thompson et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481348 Marczyk Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549563 Mather et al. Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556185 Viola Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7694809 Garbini et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7753248 Viola Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7815090 Marczyk Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7845534 Viola et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7886953 Schwemberger et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7905897 Whitman et al. Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7950560 Zemlok et al. May 2011 B2
7955352 McEwen et al. Jun 2011 B2
8006885 Marczyk Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8038044 Viola Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8066721 Kortenbach et al. Nov 2011 B2
8074858 Marczyk Dec 2011 B2
8092493 Marczyk Jan 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8157150 Viola et al. Apr 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8210412 Marczyk Jul 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8348125 Viola et al. Jan 2013 B2
D865174 Auld Oct 2019 S
11213293 Worthington Jan 2022 B2
11369372 Chowaniec Jun 2022 B2
20020103489 Ku Aug 2002 A1
20020111641 Peterson et al. Aug 2002 A1
20020165541 Whitman Nov 2002 A1
20030090201 Peng May 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030120306 Burbank et al. Jun 2003 A1
20040232201 Wenchell et al. Nov 2004 A1
20050006429 Wales et al. Jan 2005 A1
20050010235 VanDusseldorp Jan 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050139636 Schwemberger et al. Jun 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050192609 Whitman et al. Sep 2005 A1
20050247753 Kelly et al. Nov 2005 A1
20060000867 Shelton et al. Jan 2006 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070219563 Voegele Sep 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080135600 Hiranuma et al. Jun 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20090018624 Levinson et al. Jan 2009 A1
20090090201 Viola Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20100200636 Zemlok et al. Aug 2010 A1
20100312257 Aranyi Dec 2010 A1
20100320254 Zemlok et al. Dec 2010 A1
20110034910 Ross et al. Feb 2011 A1
20110062211 Ross et al. Mar 2011 A1
20110168757 Viola et al. Jul 2011 A1
20110172681 Aranyi et al. Jul 2011 A1
20110190738 Zemlok et al. Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110301579 Marczyk et al. Dec 2011 A1
20110303735 Marczyk Dec 2011 A1
20120055972 Marczyk Mar 2012 A1
20120074197 Marczyk Mar 2012 A1
20120175400 Viola et al. Jul 2012 A1
20120193393 Viola et al. Aug 2012 A1
20120198288 Njo et al. Aug 2012 A1
20120220989 Zemlok et al. Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120241494 Marczyk Sep 2012 A1
20120277790 Zemlok et al. Nov 2012 A1
20120298718 Marczyk Nov 2012 A1
20120298720 Marczyk Nov 2012 A1
20150280384 Leimbach et al. Oct 2015 A1
20150374371 Richard et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160106424 Yates Apr 2016 A1
20160310134 Contini et al. Oct 2016 A1
20170224347 Collins et al. Aug 2017 A1
20180168592 Overmyer Jun 2018 A1
20180233850 Penna et al. Aug 2018 A1
20180303481 Shelton, IV Oct 2018 A1
20180317921 Cabrera Nov 2018 A1
20190000471 Shelton, IV Jan 2019 A1
20190015097 Williams Jan 2019 A1
Foreign Referenced Citations (33)
Number Date Country
101683284 Mar 2010 CN
102648864 Aug 2012 CN
107595341 Jan 2018 CN
0537570 Apr 1993 EP
0647431 Apr 1995 EP
0738501 Oct 1996 EP
0770354 May 1997 EP
1070487 Jan 2001 EP
1201196 May 2002 EP
1658817 May 2006 EP
1813203 Aug 2007 EP
3205289 Aug 2017 EP
3398527 Nov 2018 EP
3412225 Dec 2018 EP
3476331 May 2019 EP
3560436 Oct 2019 EP
3738501 Nov 2020 EP
2849589 Jul 2004 FR
9414129 Jun 1994 WO
9729694 Aug 1997 WO
9740760 Nov 1997 WO
9837825 Sep 1998 WO
9952489 Oct 1999 WO
0234140 May 2002 WO
03026511 Apr 2003 WO
03030743 Apr 2003 WO
2004032760 Apr 2004 WO
2007030753 Mar 2007 WO
2007114868 Oct 2007 WO
2007118179 Oct 2007 WO
2007014355 Apr 2009 WO
2009143092 Nov 2009 WO
2016171947 Oct 2016 WO
Non-Patent Literature Citations (6)
Entry
Office Action issued in corresponding Chinese Application No. 201911141302.X mailed Jul. 8, 2023, together with English language translation (14 pages).
Detemple, P., “Microtechnology in Modern Health Care”, Med Device Technol. 9(9):18-25 (1998).
Abridged Data Sheet, “DeepCover Secure Authenticator with 1-Wire SHA-256 and 512-Bit User EEPROM”, Maxim Integrated Products, Inc. pp. 1-4; 42; Dec. 2012.
Data Sheet “DS28E15-1-Sire SHA-256 Secure Authenticator with 512-Bit User EEPROM” ; IC-On-Line, Electronic Component Manufacturers, pp. 1-2; Aug. 2013.
Extended European Search Report dated Apr. 20, 2020 issued in corresponding EP Appln. No. 19211852.9.
European Examination Report issued in corresponding application EP 19 211 852.9 dated Jun. 29, 2023 (8 pages).
Related Publications (1)
Number Date Country
20220323071 A1 Oct 2022 US
Provisional Applications (1)
Number Date Country
62772281 Nov 2018 US
Continuations (1)
Number Date Country
Parent 16670611 Oct 2019 US
Child 17851594 US