This disclosure relates to surgical stapling apparatus, devices and/or systems for performing surgical procedures and methods of use thereof.
Surgical stapling apparatus that clamp, cut and/or staple tissue are well known in the art. Such surgical stapling apparatus include end effectors having two elongated jaw members used to capture or clamp tissue. One of the two jaw members usually carries a staple cartridge that houses a plurality of staples positioned in rows, while the other of the two jaw members has an anvil for forming the staples as the staples are driven from the staple cartridge. For instance, in linear surgical stapling apparatus, a stapling operation is effectuated by a cam bar, a drive sled or other similar mechanism having a cam member that travels longitudinally through channels defined in the staple cartridge and acts upon staple pushers in the channels to sequentially eject linear rows of staples from the staple cartridge. A knife is movably positioned between the linear rows of staples such that when the surgical stapling apparatus is positioned about tissue and actuated, the tissue is joined and/or simultaneously or nearly simultaneously cut.
According to one aspect of the disclosure, an end effector for a surgical stapling apparatus includes a cartridge assembly and an anvil assembly. The cartridge assembly supports a plurality of staples. Each staple of the plurality of staples includes a backspan, a first leg, and a second leg. The first and second legs extend from the backspan. The anvil assembly is coupled to the cartridge assembly. The anvil assembly includes an anvil having opposed side surfaces. The anvil defines a knife slot and a plurality of biased staple-forming pockets disposed between the opposed side surfaces of the anvil. Each biased staple-forming pocket of the plurality of biased staple-forming pockets is positioned to form the first and second legs of a respective staple of the plurality of staples on one side of the backspan of the respective staple. The one side of the backspan is positioned toward the knife slot of the anvil relative to the opposed side surfaces of the anvil.
In some embodiments, the plurality of biased staple-forming pockets may be arranged in one or more linear rows. The linear rows may include an inner row and an outer row. The inner and outer rows may be longitudinally offset from one another.
In embodiments, the end effector may include a dissecting tip that extends distally from the anvil.
In various embodiments, each biased staple-forming pocket of the plurality of biased staple-forming pockets may include a first staple-leg forming cavity and a second staple-leg forming cavity. Each of the first and second staple-leg forming cavities may include a guide portion and a spine portion. The guide portion may be configured to funnel one of the first or second legs of one of the staples of the plurality of staples toward the spine portion. The first and second staple-leg forming cavities may be separated by a central bridge portion. The central bridge portion may ascend from a bottom surface of the first and second staple-leg forming cavities. Each biased staple-forming pocket may include an end wall that extends linearly along the first and second staple-leg forming cavities and the central bridge portion on a medial side toward the knife slot. The anvil may define a longitudinal axis that extends along a length of the anvil. The end wall may be parallel to the longitudinal axis of the anvil.
According to another aspect of the disclosure, a surgical stapling apparatus includes a housing assembly and a shaft assembly operatively coupled to the housing assembly and supporting an end effector. The end effector includes a staple cartridge and an anvil. The staple cartridge supports a plurality of staples. Each staple of the plurality of staples includes a backspan, a first leg, and a second leg. The first and second legs extend from the backspan. The anvil has opposed side surfaces and defines a knife slot and a plurality of biased staple-forming pockets positioned adjacent to the knife slot. The knife slot and the plurality of biased staple- forming pockets are disposed between the opposed side surfaces of the anvil. Each biased staple- forming pocket of the plurality of biased staple-forming pockets is configured to form the first and second legs of a respective staple of the plurality of staples on one side of the backspan of the respective staple. The one side of the backspan is positioned toward the knife slot of the anvil relative to the opposed side surfaces of the anvil.
In some embodiments, the plurality of biased staple-forming pockets is arranged in linear rows on opposite sides of the knife slot. The linear rows may include an inner row and an outer row on each of the opposite sides of the knife slot.
In certain embodiments, the surgical stapling apparatus may further include a dissecting tip that extends distally from the anvil.
In various embodiments, each biased staple-forming pocket of the plurality of biased staple-forming pockets may include a first staple-leg forming cavity and a second staple-leg forming cavity. The first and second staple-leg forming cavities may be separated by a central bridge portion. Each biased staple-forming pocket may include an end wall disposed in parallel relation to the knife slot.
According to still another aspect of the disclosure, a method of forming staples includes firing staples supported in a staple cartridge into an anvil operatively coupled to the staple cartridge. The method further involves forming the staples in biased staple-forming pockets defined in the anvil such that both legs of each formed staple are positioned on one side of a backspan of the respective staple, the one side of the backspan being positioned toward a longitudinal axis of the anvil.
In aspects, forming the staples may include forming the staples in linear rows on both sides of a knife slot defined in the anvil.
In some aspects, forming the staples may include forming the staples in longitudinally offset linear rows.
Other aspects, features, and advantages will be apparent from the description, the drawings, and the claims that follow.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiment(s) given below, serve to explain the principles of the disclosure, wherein:
Embodiments of the presently disclosed surgical stapling apparatus are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As commonly known, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Additionally, the term “proximal” refers to the portion of structure that is closer to the clinician and the term “distal” refers to the portion of structure that is farther from the clinician. In addition, directional terms such as front, rear, upper, lower, top, bottom, and the like are used simply for convenience of description and are not intended to limit the disclosure attached hereto.
As used herein, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about +or — 10 degrees from true parallel and true perpendicular.
In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
This disclosure describes surgical stapling apparatus that achieves superior hemostasis on tissues by having staple tips and legs of surgical staples formed to a single side of a backspan of the staples and positioned medially towards a knife cut. Having a plurality of staples formed on tissue in this manner effectively and hemostatically seals off the blood flow by having the staple tips positioned on a medial side of the staple relative to the anvil (e.g., toward the knife cut and away from a blood pressure side) to prevent staple tip punctures that create leak paths.
Formed surgical staples, as deposited on human vessels, tubular structures, and organ tissues by surgical stapling apparatus can influence the reduction of bleeding, oozing of blood, and air leaks by having the staples formed medially, particularly when the entire plurality of staples is formed such that the piercing tips and legs of the staples are positioned to a medial side of the staple backspan relative to the anvil to affect a vast improvement in hemostasis. To form the staples in this manner, the staple pockets of the anvil of the surgical stapling apparatus of this disclosure have a staple-forming shape designed to influence both staple legs toward the knife cut and away from a blood pressure side (e.g., in a medial direction during formation). Having anvil staple pockets that form staples on tissue in this manner provides staple formation with superior hemostasis. In particular, the disclosed anvil and/or staple pockets are configured to form the staple legs (typically in the form of a “B” or other shaped profile) to one side of the staple backspan, and more specifically, towards the medial direction closest to the staple line knife cut.
With reference to
Loading unit 100 of surgical stapling apparatus 10 is releasably secured to a distal end portion of adapter assembly 14 and includes a shaft assembly 102 that supports an end effector 104 on a distal end portion of shaft assembly 102. End effector 104 includes an anvil assembly 106 and a cartridge assembly 108 that houses a plurality of staples (not shown) in a reload or cartridge 108a thereof that may be selectively replaceable. Anvil assembly 106 includes an anvil 110 against which the plurality of staples is formed upon a firing of surgical stapling apparatus 10.
For a more detailed description of similar stapling apparatus, or components thereof, reference can be made, for example, to U.S. Pat. No. 9,713,470 to Scirica et al. and U.S. Pat. No. 8,070,033 to Milliman et al., the entire contents of each of which are incorporated herein by reference.
Turning now to
As seen in
As can be appreciated, each biased staple-forming pocket 118 in a row may be longitudinally offset a substantially equal distance from the next or adjacent biased staple-forming pocket 118 to constitute a pitch, an array, or a pattern.
As seen, for example, in
With reference to
Referring also to
In some embodiments, anvil 110 is made at least partially from a rigid material such a stainless-steel material. In some embodiments, top surface 110c of anvil 110 may have a radial surface measuring from about R.150 inches to about R.165 inches. In some embodiments, anvil 110 may have a cross-sectional height of from about 0.070 inches to about 0.080 inches as measured vertically between top and bottom surfaces 110c, 110d, for instance at point midway along a longitudinal length of anvil 110.
In various embodiments, first and second staple-leg forming cavities 118b, 118c of anvil 110 may have a depth from about 0.002 inches to about 0.020 inches.
In embodiments, the pitch, for example, between central bridge portions 118a of adjacent biased staple-forming pockets 118 or from one biased staple-forming pocket 118 to the next in a given longitudinally-extending row may be from about 0.150 inches to about 0.160 inches. In some embodiments, biased staple-forming pockets 118 in a row are longitudinally offset from an adjacent row of biased staple-forming pockets 118 at least ½ of the pitch between adjacent biased staple-forming pockets 118 in a given row.
In embodiments, a width of anvil 110 defined across the rows of biased staple-forming pockets 118 may be about 0.255 inches, and in certain embodiments, not more than 0.255 inches. In some embodiments, distance between centerlines of adjacent rows of biased staple-forming pockets 118 may be about 0.042 inches, and in certain embodiments, not more than 0.042 inches. In embodiments, the distance between a centerline of an inner row of biased staple-forming pockets 118 and a centerline of knife slot 116, which is coincident with the longitudinal axis “L-L,” may be about 0.042 inches, and in some embodiments, not more than 0.042 inches. In some embodiments, not less than 1-1/2 of biased staple-forming pockets 118 are disposed proximal to a distal end of tissue stops 112, 114 on either side of knife slot 116.
Further, although illustrated and described in connection with an endoscopic linear surgical stapling apparatus, the disclosed staple pocket arrangement may be utilized on any suitable surgical stapling apparatus such as an open surgical stapling apparatus, a transverse surgical stapling apparatus, and/or a circular stapling apparatus.
Securement of any of the components of the presently disclosed apparatus may be effectuated using known securement techniques such welding, crimping, gluing, fastening, etc.
The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the clinician and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the clinician during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of clinicians may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another clinician (or group of clinicians) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled clinician may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients. For a detailed description of exemplary medical work stations and/or components thereof, reference may be made to U.S. Patent Application Publication No. 2012/0116416, and PCT Application Publication No. WO2016/025132, the entire contents of each of which are incorporated by reference herein.
Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown or described in connection with certain embodiments may be combined with the elements and features of certain other embodiments without departing from the scope of the present disclosure, and that such modifications and variations are also included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not limited by what has been particularly shown and described.
This application is a divisional application of U.S. patent application Ser. No. 16/788,669, filed Feb. 12, 2020, which claims the benefit of U.S. Patent Application Ser. No. 62/817,854, filed on Mar. 13, 2019, the entire contents of each of which are incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62817854 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16788669 | Feb 2020 | US |
Child | 17854408 | US |