Surgical stapler with expandable jaw

Information

  • Patent Grant
  • 10888326
  • Patent Number
    10,888,326
  • Date Filed
    Thursday, October 19, 2017
    6 years ago
  • Date Issued
    Tuesday, January 12, 2021
    3 years ago
Abstract
Jaw assemblies for a surgical stapler are provided. The jaw assemblies comprise a first jaw having a first clamping surface and a plurality of staples disposed therein and second jaw assembly having a second clamping surface. The jaw assemblies can be actuated from a closed configuration in which the first clamping surface contacts or is adjacent to the second clamping surface to an open configuration in which the second jaw is pivoted away from the first jaw to a stapling position in which the second clamping surface is parallel to the first clamping surface and spaced apart from the first clamping surface. A pivoting link or sliding pivot joint can couple the second jaw to the first jaw to facilitate motion between the closed position, the open position, and the stapling position.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The present application relates generally to surgical occlusion instruments and, more particularly, to surgical staplers.


Description of the Related Art

Surgical staplers are used to approximate or clamp tissue and to staple the clamped tissue together. As such, surgical staplers have mechanisms to ensure that tissue is properly positioned and captured and to drive staples through the tissue. As a result, this has produced, for example, multiple triggers and handles in conjunction with complex mechanisms to provide proper stapling of the clamped tissue. With these complex mechanisms, surgical staplers can have increased manufacturing burdens, as well as potential sources for device failure and confusion for the user. Thus, reliable stapling of clamped tissue without complex mechanisms is desired.


SUMMARY OF THE INVENTION

In certain embodiments, a surgical stapler is provided herein. The surgical stapler comprises an elongate shaft, a handle assembly, an actuation mechanism, and a jaw assembly. The elongate shaft has a proximal end and a distal end and defines a longitudinal axis between the proximal end and the distal end. The handle assembly is disposed at the proximal end of the elongate shaft. The actuation mechanism is actuatable by the handle assembly. The actuation mechanism comprises an actuation beam extending through at least a portion of the elongate shaft. The jaw assembly is disposed at the distal end of the elongate shaft. The jaw assembly comprises a first jaw, a second jaw, and a plurality of staples positioned in the first jaw. The first jaw defines a first clamping surface. The second jaw defines a second clamping surface. The jaw assembly is actuatable by longitudinal movement of the actuation beam between a closed position in which the first clamping surface contacts the second clamping surface, an open position in which the second clamping surface extends at an angle transverse to the first clamping surface, and a stapling position in which the first clamping surface extends parallel to the second clamping surface and is spaced apart from the second clamping surface.


In certain embodiments, a surgical stapler is provided herein. The surgical stapler comprises an elongate shaft, a handle assembly, an actuation mechanism, and a jaw assembly. The elongate shaft has a proximal end and a distal end and defines a longitudinal axis between the proximal end and the distal end. The handle assembly is disposed at the proximal end of the elongate shaft. The actuation mechanism is actuatable by the handle assembly. The actuation mechanism comprises an actuation member extending through at least a portion of the elongate shaft. The actuation member comprises a first guide and a second guide thereon. The jaw assembly is disposed at the distal end of the elongate shaft. The jaw assembly comprises a first jaw, a link, and a second jaw. The first jaw extends distally from the distal end of the elongate shaft. The first jaw comprises a first guide slot extending longitudinally therein. The link has a proximal end and a distal end. The link comprises a second guide slot having a ramped opening profile formed therein. The proximal end of the link is pivotably coupled to the distal end of the elongate shaft. The second jaw extends distally from the distal end of the link. The second jaw is pivotably coupled to the distal end of the link. The second jaw comprises a third guide slot extending longitudinally therein. A plurality of staples is disposed in the first jaw. The first guide is slidable in the first guide slot and the second guide is slidable in the second guide slot and the third guide slot. Translation of the second guide distally over the ramped opening profile of the second guide slot pivots the link away from the first jaw to define an open position of the jaw assembly.


In certain embodiments, a surgical stapler is provided herein. The surgical stapler comprises an elongate shaft, a handle assembly, an actuation mechanism, and a jaw assembly. The elongate shaft has a proximal end and a distal end and defines a longitudinal axis between the proximal end and the distal end. The handle assembly is disposed at the proximal end of the elongate shaft. The actuation mechanism is actuatable by the handle assembly. The actuation mechanism comprises an actuation member extending through at least a portion of the elongate shaft. The actuation member comprises a first guide and a second guide thereon. The jaw assembly is disposed at the distal end of the elongate shaft. The jaw assembly comprises a first jaw, a second jaw, and a plurality of staples. The first jaw extends distally from the distal end of the elongate shaft. The first jaw comprises a first guide slot extending longitudinally therein and a first clamping surface. The second jaw comprises a second guide slot and a second clamping surface. The second guide slot extends in the second jaw. The second guide slot has an opening segment with a ramped profile and a stapling segment extending generally longitudinally distal of the opening segment. The second jaw is slideably coupled to the distal end of the elongate shaft such that it is movable between a closed position in which the first clamping surface contacts the second clamping surface and a stapling position in which the first clamping surface is parallel to and spaced from the second clamping surface. The second jaw is pivotably coupled to the distal end of the elongate shaft such that the first jaw is pivotable from the closed position to an open position in which the second clamping surface extends at an angle transverse to the first clamping surface. The first guide is slidable in the first guide slot and the second guide is slidable in the second guide slot such that translation of the second guide distally through the open segment of the second guide slot slides and pivots the second jaw from the closed position to the open position, and translation of the second guide distally through the stapling segment positions the second jaw in the stapling position.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an embodiment of surgical stapling device with the jaws in an open configuration;



FIG. 2 is a perspective view of an embodiment of cartridge including an elongate shaft and a jaw assembly for the surgical stapling device of FIG. 1 with the jaws in a closed configuration;



FIG. 3 is a top view of an embodiment of jaw assembly for use in a surgical stapler with the jaws in a closed configuration;



FIG. 4 is a cross-sectional side view of the jaw assembly of FIG. 3;



FIG. 5 is a detailed cross-sectional side view of the jaw assembly of FIG. 3;



FIG. 6 is a detailed cross-sectional end view of the jaw assembly of FIG. 3;



FIG. 7 is a cross-sectional side view of the jaw assembly of FIG. 3 with the jaws in an open configuration;



FIG. 8 is a detailed cross-sectional side view of the jaw assembly of FIG. 3 with the jaws in the open configuration;



FIG. 9 is a cross-sectional side view of the jaw assembly of FIG. 3 with the jaws in a firing configuration;



FIG. 10 is a detailed cross-sectional side view of the jaw assembly of FIG. 3 with the jaws in the firing configuration;



FIG. 11 is a top view of an embodiment of jaw assembly for use in a surgical stapler with the jaws in a closed configuration;



FIG. 12 is a side view of the jaw assembly of FIG. 11;



FIG. 13 is a cross-sectional side view of the jaw assembly FIG. 11;



FIG. 14 is a side view of the jaw assembly of FIG. 11 with the jaws in an open configuration;



FIG. 15 is a cross-sectional side view of the jaw assembly of FIG. 11 with the jaws in the open configuration;



FIG. 16 is a side view of the jaw assembly of FIG. 11 with the jaws in a firing configuration;



FIG. 17 is a cross-sectional side view of the jaw assembly of FIG. 11 with the jaws in a firing configuration;



FIG. 18 is a top view of an embodiment of jaw assembly for use in a surgical stapler with the jaws in a closed configuration;



FIG. 19 is a side view of the jaw assembly of FIG. 18;



FIG. 20 is a cross-sectional side view of the jaw assembly of FIG. 18;



FIG. 21 is a side view of the jaw assembly of FIG. 18 with the jaws in an open configuration;



FIG. 22 is a cross-sectional side view of the jaw assembly FIG. 18 with the jaws in the open configuration;



FIG. 23 is a side view of the jaw assembly of FIG. 18 with the jaws in a firing configuration;



FIG. 24 is a cross-sectional side view of the jaw assembly of FIG. 18 with the jaws in the firing configuration;



FIG. 25 is a top view of an embodiment of jaw assembly for use in the surgical stapler with the jaws in a closed configuration;



FIG. 26 is a side view of the jaw assembly of FIG. 25;



FIG. 27 is a side cross-sectional view of the jaw assembly of FIG. 25;



FIG. 28 is a side view of the jaw assembly of FIG. 25 with the jaws in an open configuration;



FIG. 29 is a side cross-sectional view the jaw assembly FIG. 25 with the jaws in the open configuration;



FIG. 30 is a side view of the jaw assembly of FIG. 25 with the jaws in a firing configuration;



FIG. 31 is a cross-sectional side view of the jaw assembly of FIG. 25 with the jaws in the firing configuration;



FIG. 32 is a top view of an embodiment of jaw assembly for use in a surgical stapler with jaws in a closed configuration;



FIG. 33 is a side view of the jaw assembly of FIG. 32;



FIG. 34 is a cross-sectional side view of the jaw assembly of FIG. 32;



FIG. 35 is a side view of the jaw assembly of FIG. 32 with the jaws in an open configuration;



FIG. 36 is a cross-sectional side view of the jaw assembly of FIG. 32 with the jaws in the open configuration;



FIG. 37 is a side view of the jaw assembly of FIG. 32 with the jaws in a firing configuration;



FIG. 38 is a cross-sectional side view of the jaw assembly of FIG. 32 with the jaws in the firing configuration;





DETAILED DESCRIPTION OF THE INVENTION

With reference to FIGS. 1-2, an embodiment of surgical stapling device is illustrated. The illustrated embodiment of surgical stapler 10 comprises an elongate shaft 20, a jaw assembly 30, and a handle assembly 40. FIG. 1 illustrates the surgical stapler 10 with the jaw assembly 30 in an open configuration. FIG. 2 illustrates a removable cartridge of the surgical stapler 10 with a jaw assembly 30 in a closed configuration.


With continued reference to FIGS. 1 and 2, the illustrated embodiment of surgical stapler 10 can be sized and configured for use in laparoscopic surgical procedures. For example, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be introduced into a surgical field through an access port or trocar cannula. In some embodiments, the elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a relatively small working channel diameter, such as, for example, less than 8 mm. In other embodiments, elongate shaft 20 and jaw assembly 30 can be sized and configured to be inserted through a trocar cannula having a larger working channel diameter, such as, for example, 10 mm, 11 mm, 12 mm, or 15 mm. In other embodiments, it is contemplated that certain aspects of the surgical staplers described herein can be incorporated into a surgical stapling device for use in open surgical procedures.


With continued reference to FIGS. 1 and 2, as illustrated, the elongate shaft 20 comprises a generally tubular member. The elongate shaft 20 extends from a proximal end 22 to a distal end 24. Elongate shaft 20 defines a central longitudinal axis, L, of the surgical stapler 10 extending between the proximal end 22 and the distal end 24.


With continued reference to FIGS. 1 and 2, in the illustrated embodiment, the jaw assembly 30 is coupled to the elongate shaft 20 at the distal end 24 of the elongate shaft 20. The jaw assembly 30 comprises a first jaw 32 and a second jaw 34 pivotally coupled to the first jaw 32. In the illustrated embodiment, the first jaw 32 is fixed to the distal end 24 of elongate shaft 20 such that it extends distally along the central longitudinal axis, L and remains stationary with respect to the elongate shaft 20. In other embodiments, it is contemplated that the jaw assembly 30 is articulable with respect to the elongate shaft 20. In an initial configuration, the first jaw 32 includes a plurality of staples 36 disposed therein. In some embodiments, staples can be initially positioned in the second jaw 34.


With continued reference to FIGS. 1 and 2, in the illustrated embodiment, the jaw assembly 30 can be actuated from an open configuration (FIG. 1) to a closed configuration (FIG. 2) to a stapling configuration by an actuation member or beam that is longitudinally slidable within the elongate shaft. In an initial position, the beam can be positioned at the distal end 24 of the elongate shaft 20. With the beam in the initial position, the second jaw 34 is pivoted away from the first jaw 32 such that the jaw assembly 30 is in the open configuration. The actuation beam engages the second jaw 34 upon translation of the actuation member or beam distally along the longitudinal axis L. Translation of the actuation beam distally from the initial position a first distance can actuate the jaw assembly from the open configuration to the closed configuration. With the jaw assembly 30 in the closed configuration, the actuation beam can be returned proximally the first distance to return the jaw assembly 30 to the open configuration. A distal end of the actuation beam can advance a staple slider configured to deploy staples from the first jaw 32 such that further translation of the actuation beam distally past the first distance deploys the plurality of staples 36 from the first jaw 32.


With continued reference to FIGS. 1 and 2, in the illustrated embodiment, the handle assembly is coupled to the elongate shaft 20 at the proximal end 22 of the elongate shaft 20. As illustrated, the handle assembly 40 has a pistol grip configuration with a housing defining a stationary handle 42 and a movable handle 44 or trigger pivotably coupled to the stationary handle 42. It is contemplated that in other embodiments, surgical stapler devices including aspects described herein can have handle assemblies with other configurations such as, for example, scissors-grip configurations, or in-line configurations. As further described in greater detail below, the handle assembly 40 houses an actuation mechanism configured to selectively advance an actuation shaft responsive to movement of the movable handle 44.


In some embodiments, the surgical stapler 10 can include the plurality of staples 36 positioned in a disposable cartridge while the handle assembly 40 is configured to be reused with multiple staple cartridges. In the illustrated embodiment, the elongate shaft 20 and jaw assembly 30 define a disposable cartridge that is removably couplable to the handle assembly 40. Accordingly, in the illustrated embodiment the handle assembly 40 includes a coupler 46 at the distal end thereof. The coupler 46 is adapted to engage the elongate shaft 20 of the surgical stapler 10 The coupler 46 can a bayonet connection having an outer connector that can removably couple to handle assembly 42 the elongate shaft 20, and an inner connector that can removably couple the actuation shaft of the handle assembly 42 to the actuation member of the elongate shaft 20. Accordingly, the surgical stapler 10 can be configured such that the handle assembly 40 can be reused with multiple disposable cartridges during a surgical procedure. It is contemplated that in other embodiments, the handle assembly and some portion of the elongate shaft can be reusable while a remainder of the elongate shaft in the jaw assembly define a disposable cartridge. In certain other embodiments, the handle assembly and the elongate shaft can be reusable while the jaw assembly defines a disposable cartridge. In still other embodiments, a jaw insert housing a plurality of staples can define a disposable cartridge while the remainder of the surgical stapler is reusable.


As discussed above, surgical staplers 10 described herein can be sized and configured for insertion into a surgical site through a relatively small diameter trocar cannula such as a so-called 5 mm trocar cannula having a working channel inner diameter smaller than about 8 mm. Desirably, jaw assemblies configured for insertion through a 5 mm trocar cannula efficiently employ the relatively limited working space to position both jaws, a plurality of staples, and staple firing elements. In a jaw assembly for a typical laparoscopic surgical stapler, with the jaw assembly in a closed or firing configuration, the first jaw is spaced apart from the second jaw by a gap to accommodate tissue clamped therebetween when the stapler is in use. However, in a jaw assembly configured for insertion through 5 mm trocar cannula, this spacing of the first jaw from the second jaw in the closed position can undesirably be wasted working space. Accordingly, it can be desirable to configure operation of a jaw assembly configured for insertion through a 5 mm trocar cannula such that the gap that would otherwise be wasted working space is repurposed to enhance stapling performance. For example, in a jaw assembly configured to eliminate the gap, the otherwise wasted working space can be repurposed to provide larger staples or more robust staple driving hardware. In various embodiments, jaw assemblies are provided herein that reduce or eliminate the gap between the first jaw and the second jaw in a closed configuration such that the working space of a relatively small diameter surgical stapler can be maximized.


With reference to FIGS. 3-10, an embodiment of jaw assembly 130 is illustrated. FIG. 3 illustrates a top view of the jaw assembly 130 with the jaws in a closed configuration, and FIGS. 4-6 illustrate cross-sectional views of the jaw assembly 130 in the closed configuration. In the illustrated embodiment, the jaw assembly 130 comprises a first jaw 102 having a first clamping surface 104, a second jaw 106 having a second clamping surface 108, and a link 112. The first jaw 102 extends distally from the distal end 24 of the elongate shaft 20 (FIGS. 1-2) and is fixed to the elongate shaft 20. The second jaw 106 is pivotably coupled to the first jaw 102. In the illustrated embodiment, the second jaw 106 is pivotably coupled to the distal end 24 of the elongate shaft 20 by the link 112. For example, the link 112 can extend from a proximal end, which is pivotably coupled to the distal end 24 of the elongate shaft 20, such as with a pinned connection to a distal end, which is pivotably coupled to the second jaw 106, such as with a pinned connection.


An actuation mechanism is operably coupled to the handle assembly 40 and actuatable by the movable trigger 44 to actuate the jaw assembly 130 in an open/closed mode, in a firing mode, and in a reverse mode. The jaws 102, 106 of the jaw assembly 130 are thus actuatable between a closed configuration in which the first clamping surface 104 of the first jaw 102 is in contact with or is immediately adjacent to the second clamping surface 108 of the second jaw 106, an open configuration in which the second clamping surface 108 extends at an angle transverse to the longitudinal axis L away from the first clamping surface 104, and a stapling or firing configuration in which the second clamping surface 108 is substantially parallel to the first clamping surface 104 and is spaced therefrom. With the jaws in the stapling or firing configuration, a plurality of staples can be deployed from the first jaw 102 through tissue positioned between the first and second jaws 102, 106 and formed against the second clamping surface 108 of the second jaw 106. In some embodiments, the actuation mechanism includes an actuation member such as an actuation beam 150 that is longitudinally slidable in the elongate shaft 20. The actuation beam 150 can include a first guide 114 and a second guide 116 formed thereon.


With reference to FIG. 6, in some embodiments, a distal end of the actuation beam 150 comprises an ‘I-beam’ cross sectional profile with the first and second guides 114, 116 being defined by the horizontal segments of the ‘I,’ and the vertical segment of the ‘I’ comprising the actuation beam 150. In other embodiments, the actuation member or beam can have another guide configuration. For example, the guides can comprise posts, tabs, or other projections extending from the actuation member.


With reference to FIGS. 4-5, the first jaw 102 can comprise a first guide slot 118 configured to receive the first guide 114 of the actuation beam 150 in sliding engagement. As illustrated, the first guide slot 118 can extend generally longitudinally distally from the distal end 24 of the elongate shaft 20.


With continued reference to FIGS. 4-5, in the illustrated embodiment, the link 112 can comprise a second guide slot 120 formed therein. The second guide slot 120 can extend from a proximal end to a distal end of the link 112 and can include an initial closed segment at the proximal end of the link 112, an opening segment distal the closed segment, and a firing transition segment at the distal end of the link 112.


With reference to FIGS. 4-8, the open segment has a curved or angular profile oriented such that distal sliding of the second guide 116 through the second guide slot 120 distal of the initial closed segment pivots the link 112 (and the second jaw 106 pivotably coupled thereto) away from the first jaw 102 to actuate the jaw assembly 130 from an initial closed position in which the jaw assembly has a relatively low diameter for insertion into a surgical port to an open position for receiving tissue between the first and second jaws 102, 106. In some embodiments, the link 112 can be biased away from the first jaw 102. For example, as illustrated, the jaw assembly 130 can comprise at least one spring 160 biasing the link 112 away from the first jaw 102. This bias can tend to engage the second guide 116 with the opening segment of the second guide slot 120 and position the second jaw 106 in the open position (FIGS. 7-8).


With reference to FIGS. 9-10, once tissue has been positioned between the first jaw 102 and the second jaw 106 in the open configuration at a desired stapling position, the actuation member 150 can be further advanced distally to position the jaws 102, 106 of the jaw assembly 130 in a stapling or firing configuration. Further distal movement of the actuation beam 150 advances the second guide 116 over the firing transition segment of the second guide slot 120 of the link 112 to pivot the second jaw to a position spaced apart from the first jaw a predetermined distance. The predetermined distance can be selected based on a desired tissue type for stapling in a procedure or a given staple geometry. Further distal movement of the actuation member 150 causes the second guide 116 to be received in a third guide slot 122 disposed in the second jaw 106. The third guide slot 122 can include a chamfer, radiused edge, or another transition feature to facilitate the translation of the second guide 116 distally from the second guide slot 120 to the third guide slot 122. Movement of the second guide 116 over the transition feature can further pivot the second jaw 106 such that the second clamping surface 108 is parallel to the first clamping surface 104.


As illustrated, the third guide slot 122 extends generally longitudinally along the second jaw 106 generally parallel to the second clamping surface 108 such that further distal advancement of the second guide 116 within the third guide slot 122 maintains the parallel orientation of the first and second clamping surfaces 104, 108 in the firing configuration. In other embodiments, it is contemplated that the third guide slot can extend along a curvilinear path or a path extending transversely to the second clamping surface 108 to generate a clamping force between the first and second clamping surfaces 104, 108 as the actuation member 150 is advanced distally.


With reference to FIGS. 9-10, in some embodiments, a distal end of the actuation member 150 can engage a staple driver. As the actuation member 150 is advanced distally with the jaws 102, 106 of the jaw assembly 130 in the firing position, the staple driver can deploy staples from the first jaw 102. The staple driver can include a cutting blade configured to cut tissue between rows of staples deployed by the jaw assembly.


With reference to FIGS. 11-17, another embodiment of jaw assembly 230 for use with a surgical stapler 10 is illustrated. In the illustrated embodiment, the jaw assembly 230 comprises a first jaw 202 having a first clamping surface 204 and comprising a first guide slot 218, a link 212 comprising a second guide slot 220, and a second jaw 206 having a second clamping surface 208 and comprising a third guide slot 222. An actuation member 250 or beam comprising a first guide 214 and a second guide 216 can actuate the jaw assembly 230 from the closed configuration (FIGS. 11-13), to the open configuration (FIGS. 14-15) to the firing or stapling configuration (FIGS. 16-17) in a sequence of operation substantially as described above with respect to the jaw assembly 130 of FIGS. 3-10.


With reference to FIG. 14, unlike the jaw assembly 130 of FIGS. 3-10, the second jaw 206 of the jaw assembly 230 is directly biased away from the first jaw 202. For example, in the illustrated embodiment a spring 260 is coupled to the first jaw 202 and the second jaw 206 to bias the second jaw 206 away from the first jaw. Additionally, the jaw assembly 230 includes a pivotal stop 231 preventing excess pivoting of the second jaw 206 relative to the first jaw 202. In the illustrated embodiment, the second jaw 206 can comprise an extension such as an arm that extends proximally past the pivotal coupling of the second jaw 206 to the link 212. The extension can be sized and configured to engage the first jaw 202 when the jaw assembly 230 is positioned in the open configuration to interfere with further pivoting of the second jaw 206 away from the first jaw 202.


With reference to FIGS. 18-24, an embodiment of jaw assembly 330 for use with a surgical stapler 10 having a sliding pivot point is illustrated. In the illustrated embodiment, the jaw assembly 330 comprises a first jaw 302 having a first clamping surface 304 and comprising a first guide slot 318 and a second jaw 306 having a second clamping surface 308 and comprising a second guide slot 320. An actuation member 350 or beam comprising a first guide 314 and a second guide 316 can actuate the jaw assembly 330 from the closed configuration (FIGS. 18-20), to the open configuration (FIGS. 21-22) to the firing or stapling configuration (FIGS. 23-24) in a sequence of operation similar to those described above with respect to the jaw assemblies 130, 230.


With reference to FIGS. 20-23, in the illustrated embodiment of jaw assembly 330, the second jaw 306 is coupled to the first jaw 302 without an intercoupled link 112, 212 therebetween. Rather, the jaw assembly 330 includes a sliding pivot joint 312 that allows the second jaw 306 to pivot about a point that is translatable with respect to the first jaw 302. For example, the sliding pivot joint 312 can comprise a pivoting pin disposed in a slot formed in the first jaw 302.


With continued reference to FIGS. 20-23, the second guide slot 320 disposed in the second jaw 306 can comprise an opening segment adjacent a proximal end of the second guide slot and a firing transition segment distal the opening segment. Distal movement of the actuation member 350 distally advances the second guide 316 along the opening segment of the second guide slot 320 to slide the second jaw 306 away from the first jaw 302 and pivot the second jaw 306 into the open configuration (FIGS. 21-22). Further distal movement of the actuation member distally advances the second guide 316 past the firing transition segment and into a firing segment extending generally longitudinally along the second jaw 306 to position the jaw assembly 330 in a firing configuration (FIGS. 23-24).


With reference to FIG. 25-31, an embodiment of jaw assembly 430 with a slotted actuator for use in a surgical stapler 10 is illustrated. In the illustrated embodiment, the jaw assembly 430 comprises a first jaw 402 having a first clamping surface 404 and comprising a first guide slot 418, a link 412, and a second jaw 406 having a second clamping surface 408 and comprising a second guide slot 420. An actuation member 450 or beam comprising a first guide 414 and a second guide 416 can actuate the jaw assembly 430 from the closed configuration (FIGS. 25-27), to the open configuration (FIGS. 28-29) to the firing or stapling configuration (FIGS. 30-31) in a sequence of operation similar to those described above with respect to the jaw assemblies 130, 230.


With reference to FIGS. 27-29, the link 412 can include a third guide 426 thereon, such as one or more pins, tabs, or posts extending therefrom. The actuation member 450 can include a third guide slot 424 formed therein. The third guide 426 of the link 412 can be slideably engaged in the third guide slot 424. The third guide slot 424 can comprise an opening segment and a firing transition segment which extend transverse to the longitudinal axis. When the actuation member 450 is advanced distally from an initial position, the third guide 426 of the link 412 passes through the opening segment such that the link 412 is pivoted away from the first jaw 402 (FIGS. 28-29). Continued translation of the actuation member 450 advances the third guide 426 of the link 412 past the firing transition segment of the third guide slot 424 to position the second jaw 406 in the firing position (FIGS. 30-31).


With reference to FIGS. 32-38, another embodiment of jaw assembly 530 for use with a surgical stapler 10 is illustrated. In the illustrated embodiment, the jaw assembly 530 comprises a first jaw 502 having a first clamping surface 504 and comprising a first guide slot 518, a link 512 comprising a second guide slot 520, and a second jaw 506 having a second clamping surface 508 and comprising a third guide slot 522. An actuation member 550 or beam comprising a first guide 514 and a second guide 516 can actuate the jaw assembly 530 from the closed configuration (FIGS. 32-34), to the open configuration (FIGS. 35-36) to the firing or stapling configuration (FIGS. 37-38) in a sequence of operation similar to those described above with respect to the jaw assemblies 130, 230, 430.


With reference to FIGS. 34-36, in the illustrated embodiment, the actuation member 550 can include a first guide 514 positioned at a distal end of a first arm or extension and a second guide positioned at a distal end of a second arm or extension. The first and second arms can be flexibly coupled to one another such that a distance between the first guide 514 and the second guide 516 can be varied. The first and second arms can be biased away from one another. Advantageously, the variable spacing of the first guide 514 and second guide 516 can allow positioning of the third guide slot 522 in a position relatively close to an outer surface opposite the second clamping surface 508 of the second jaw 506. Accordingly, additional working space in the second jaw adjacent the second clamping surface can be freed by positioning the third guide slot 522 closer to the outer surface.


Although this application discloses certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Further, the various features of these inventions can be used alone, or in combination with other features of these inventions other than as expressly described above. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of claims which follow.

Claims
  • 1. A surgical stapler comprising: an elongate shaft having a proximal end and a distal end and defining a longitudinal axis between the proximal end and the distal end;a handle assembly disposed at the proximal end of the elongate shaft;an actuation mechanism actuatable by the handle assembly, the actuation mechanism comprising an actuation beam longitudinally slidable in the elongate shaft, the actuation beam comprising a first guide and a second guide formed thereon; anda jaw assembly disposed at the distal end of the elongate shaft, the jaw assembly comprising: a first jaw defining a first clamping surface, the first jaw comprising a first guide slot extending longitudinally therein, the first guide of the actuation beam slidably positioned in the first guide slot;a second guide slot comprising an opening segment and a firing transition segment, the second guide of the actuation beam slidably positionable in the second guide slot;a second jaw defining a second clamping surface, the second jaw comprising a third guide slot extending longitudinally therein, the second guide of the actuation beam slidably positionable in the third guide slot; anda plurality of staples positioned in the first jaw,wherein the jaw assembly is actuatable by longitudinal movement of the actuation beam between a closed position in which the first clamping surface contacts the second clamping surface, an open position in which the second clamping surface extends at an angle transverse to the first clamping surface, and a stapling position in which the first clamping surface extends parallel to the second clamping surface and is spaced apart from the second clamping surface.
  • 2. The surgical stapler of claim 1, wherein the second guide slot further comprises a closed segment proximal the opening segment.
  • 3. A surgical stapler comprising: an elongate shaft having a proximal end and a distal end and defining a longitudinal axis between the proximal end and the distal end;a handle assembly disposed at the proximal end of the elongate shaft;an actuation mechanism actuatable by the handle assembly, the actuation mechanism comprising an actuation beam longitudinally slidable in the elongate shaft, the actuation beam comprising a first guide and a second guide formed thereon; anda jaw assembly disposed at the distal end of the elongate shaft, the jaw assembly comprising: a first jaw defining a first clamping surface, the first jaw comprising a first guide slot extending longitudinally therein, the first guide of the actuation beam slidably positioned in the first guide slot;a second guide slot comprising an opening segment and a firing transition segment, the second guide of the actuation beam slidably positionable in the second guide slot;a second jaw defining a second clamping surface, the second jaw comprising a third guide slot extending longitudinally therein, the second guide of the actuation beam slidably positionable in the third guide slot; anda plurality of staples positioned in the first jaw,wherein the jaw assembly further comprises a link having a proximal end and a distal end, the proximal end of the link pivotably coupled to the distal end of the elongate shaft, and the distal end of the link pivotably coupled to a proximal end of the second jaw, the second guide slot disposed in the link.
  • 4. The surgical stapler of claim 3, wherein the link is biased away from the first jaw.
  • 5. A surgical stapler comprising: an elongate shaft having a proximal end and a distal end and defining a longitudinal axis between the proximal end and the distal end;a handle assembly disposed at the proximal end of the elongate shaft;an actuation mechanism actuatable by the handle assembly, the actuation mechanism comprising an actuation beam longitudinally slidable in the elongate shaft, the actuation beam comprising a first guide and a second guide formed thereon; anda jaw assembly disposed at the distal end of the elongate shaft, the jaw assembly comprising: a first jaw defining a first clamping surface, the first jaw comprising a first guide slot extending longitudinally therein, the first guide of the actuation beam slidably positioned in the first guide slot;a second guide slot comprising an opening segment and a firing transition segment, the second guide of the actuation beam slidably positionable in the second guide slot;a second jaw defining a second clamping surface, the second jaw comprising a third guide slot extending longitudinally therein, the second guide of the actuation beam slidably positionable in the third guide slot; anda plurality of staples positioned in the first jaw,wherein the opening segment has an angular profile oriented such that distal sliding of the second guide through the second guide slot pivots the second jaw away from the first jaw to position the jaw assembly in an open position.
  • 6. The surgical stapler of claim 5, wherein further distal advancement of the actuation beam advances the second guide over the firing transition segment of the second guide slot to pivot the second jaw to a position spaced apart from the first jaw a predetermined distance.
  • 7. A surgical stapler comprising: an elongate shaft having a proximal end and a distal end and defining a longitudinal axis between the proximal end and the distal end;an actuation beam longitudinally slidable in the elongate shaft, the actuation beam comprising a first guide and a second guide formed thereon; anda jaw assembly disposed at the distal end of the elongate shaft, the jaw assembly comprising: a first jaw defining a first clamping surface, the first jaw comprising a first guide slot extending longitudinally therein;a link having a proximal end pivotably coupled to the distal end of the elongate shaft and a distal end opposite the proximal end, the link comprising a second guide slot formed therein, the second guide slot comprising an opening segment and a firing transition segment; anda second jaw defining a second clamping surface, the second jaw pivotably coupled to the distal end of the link, the second jaw comprising a third guide slot extending longitudinally therein.
  • 8. The surgical stapler of claim 7, wherein the second guide slot further comprises an initial closed segment proximal the opening segment.
  • 9. The surgical stapler of claim 7, wherein the second jaw further comprises a pivotal stop that prevents excess pivoting of the second jaw relative to the first jaw.
  • 10. The surgical stapler of claim 7, wherein the jaw assembly further comprises a spring biasing the link away from the first jaw.
  • 11. The surgical stapler of claim 7, wherein the jaw assembly further comprises a spring biasing the second jaw away from the first jaw.
  • 12. The surgical stapler of claim 7, wherein the actuation beam has a distal end and wherein the distal end of the actuation beam comprises an !-beam cross sectional profile.
  • 13. The surgical stapler of claim 7, wherein the opening segment of the second guide slot has a profile oriented such that distal sliding of the second guide distally through the opening segment pivots the link away from the first jaw.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/211,570, entitled “SURGICAL STAPLER WITH EXPANDABLE JAW,” filed Mar. 14, 2014, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/793,065, entitled “SURGICAL STAPLER WITH EXPANDABLE JAW,” filed on Mar. 15, 2013. The entireties of these prior applications are hereby incorporated herein by reference.

US Referenced Citations (837)
Number Name Date Kind
2073960 Crosby Mar 1937 A
2140593 Pankonin Dec 1938 A
2351608 Greenwood Jun 1944 A
2487565 Leber et al. Nov 1949 A
2641154 Heller Jun 1953 A
3076373 Matthews Feb 1963 A
3077812 Dietrich Feb 1963 A
3080564 Strekopitov et al. Mar 1963 A
3203220 Kaepernik Aug 1965 A
3252643 Strekopitov et al. May 1966 A
3273562 Brown Sep 1966 A
3373646 Ehlert Mar 1968 A
3459187 Pallotta Aug 1969 A
3494533 Green et al. Feb 1970 A
3662939 Bryan May 1972 A
3675688 Bryan et al. Jul 1972 A
3692224 Astafiev et al. Sep 1972 A
4261244 Becht et al. Apr 1981 A
4281785 Brooks Aug 1981 A
4304236 Conta et al. Dec 1981 A
4312363 Rothfuss et al. Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4407286 Noiles et al. Oct 1983 A
4434796 Karapetian et al. Mar 1984 A
4442964 Becht Apr 1984 A
4454875 Pratt et al. Jun 1984 A
4522327 Korthoff et al. Jun 1985 A
4527724 Chow et al. Jul 1985 A
4589582 Bilotti May 1986 A
4591085 Di Giovanni May 1986 A
4606344 Di Giovanni Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4728020 Green et al. Mar 1988 A
4805823 Rothfuss Feb 1989 A
4892244 Fox et al. Jan 1990 A
4923350 Hinksman et al. May 1990 A
4941623 Pruitt Jul 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
5031814 Tompkins et al. Jul 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5106008 Tompkins et al. Apr 1992 A
5116349 Aranyi May 1992 A
5129570 Schulze et al. Jul 1992 A
5201746 Shichman Apr 1993 A
5221036 Takase Jun 1993 A
5236440 Hlavacek Aug 1993 A
5240163 Stein et al. Aug 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5289963 McGarry et al. Mar 1994 A
D347474 Olson May 1994 S
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350400 Esposito et al. Sep 1994 A
5360305 Kerrigan Nov 1994 A
5364002 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5381943 Allen et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5413267 Solyntjes et al. May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5439155 Viola Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5458279 Plyley Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464144 Guy et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470008 Rodak Nov 1995 A
5470009 Rodak Nov 1995 A
5472132 Savage et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5485952 Fontayne Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5507426 Young et al. Apr 1996 A
5507773 Huitema et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509920 Phillips et al. Apr 1996 A
5529235 Boiarski et al. Jun 1996 A
5547117 Hamblin et al. Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5558266 Green et al. Sep 1996 A
5562241 Knodel et al. Oct 1996 A
5562700 Huitema et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571285 Chow et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5626587 Bishop et al. May 1997 A
5630539 Plyley et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5657921 Young et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5678748 Plyley Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5704898 Kokish Jan 1998 A
5706998 Blyley et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5732871 Clark et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810240 Robertson Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5860995 Berkelaar Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5901895 Heaton et al. May 1999 A
5918791 Sorrentino et al. Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
D416089 Barton et al. Nov 1999 S
5988479 Palmer Nov 1999 A
6032849 Mastri et al. Mar 2000 A
6053390 Green et al. Apr 2000 A
6079606 Milliman et al. Jun 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
D441865 Racenet et al. May 2001 S
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264087 Whitman Jul 2001 B1
6270453 Sakai Aug 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6488196 Fenton, Jr. Dec 2002 B1
6550757 Sesek Apr 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6595509 Sesek Jul 2003 B2
6619529 Green et al. Sep 2003 B2
6644532 Green et al. Nov 2003 B2
6669073 Milliman et al. Dec 2003 B2
6716233 Whitman Apr 2004 B1
6786382 Hoffman Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6821282 Perry et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6913181 Mochizuki et al. Jul 2005 B2
6923360 Sesek et al. Aug 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7044947 de la Torre et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7097089 Marczyk Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7108472 Norris et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7213736 Wales et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7258262 Mastri et al. Aug 2007 B2
7275674 Racenet et al. Oct 2007 B2
7278562 Mastri et al. Oct 2007 B2
7290692 Marks Nov 2007 B2
7293685 Ehrenfels et al. Nov 2007 B2
7303107 Milliman et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7434715 Shelton, IV et al. Oct 2008 B2
7434716 Viola Oct 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7530484 Durrani May 2009 B1
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7690547 Racenet et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7717312 Beetel May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7721936 Shelton, IV et al. May 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857187 Milliman Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934629 Wixey et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8008598 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028885 Smith et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056789 White et al. Nov 2011 B1
8061576 Cappola Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8070036 Knodel Dec 2011 B1
8074861 Ehrenfels et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8118207 Racenet et al. Feb 2012 B2
8123100 Holsten et al. Feb 2012 B2
8127976 Scirica et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8181839 Beetel May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186556 Viola May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8256656 Milliman et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8281972 Wixey et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286846 Smith et al. Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292148 Viola Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8393513 Jankowski Mar 2013 B2
8397973 Hausen Mar 2013 B1
8403198 Sorrentino et al. Mar 2013 B2
8413868 Cappola Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8479967 Marczyk Jul 2013 B2
8496152 Viola Jul 2013 B2
8496155 Knodel Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8505799 Viola et al. Aug 2013 B2
8505801 Ehrenfels et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517240 Mata et al. Aug 2013 B1
8523043 Ullrich et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540625 Miyoshi Sep 2013 B2
8544712 Jankowski Oct 2013 B2
8556151 Viola Oct 2013 B2
8556152 Marczyk et al. Oct 2013 B2
8556153 Knodel Oct 2013 B1
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8573459 Smith et al. Nov 2013 B2
8573460 Cappola Nov 2013 B2
8573462 Smith et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573464 Nalagatla et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584921 Scirica Nov 2013 B2
8596513 Olson Dec 2013 B2
8608043 Scirica Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8627992 Edoga et al. Jan 2014 B2
8627993 Smith et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8631990 Park et al. Jan 2014 B1
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636189 Knodel et al. Jan 2014 B1
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636193 Whitman et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8657174 Yates et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8672209 Crainich Mar 2014 B2
8672951 Smith et al. Mar 2014 B2
8685004 Zemlock et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740035 Mastri et al. Jun 2014 B2
8740036 Williams Jun 2014 B2
8752748 Whitman et al. Jun 2014 B2
8763876 Kostrzewski Jul 2014 B2
8770458 Scirica Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820608 Miyamoto Sep 2014 B2
8833631 Munro, III et al. Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8887979 Mastri et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8899463 Schell et al. Dec 2014 B2
8905288 Wenchell Dec 2014 B2
8920435 Smith et al. Dec 2014 B2
8925783 Zemlok et al. Jan 2015 B2
8931679 Kostrzewski Jan 2015 B2
8931683 Racenet et al. Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8967444 Beetel Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8967447 Hartoumbekis Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8973803 Hall et al. Mar 2015 B2
8979827 Cappola Mar 2015 B2
9004340 Scirica Apr 2015 B2
9010611 Ross et al. Apr 2015 B2
9016541 Viola et al. Apr 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9022271 Scirica May 2015 B2
9023014 Chowaniec et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9027818 Scirica et al. May 2015 B2
9033202 Scirica May 2015 B2
9038880 Donohoe May 2015 B1
9055943 Zemlok et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9101358 Kerr et al. Aug 2015 B2
9204876 Cappola et al. Dec 2015 B2
9237890 Kostrzewski Jan 2016 B2
9265585 Wingardner et al. Feb 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9402629 Ehrenfels et al. Aug 2016 B2
9510830 Shelton, IV et al. Dec 2016 B2
9532782 Kostrzewski Jan 2017 B2
9662108 Williams May 2017 B2
9737302 Shelton, IV et al. Aug 2017 B2
9737303 Shelton, IV et al. Aug 2017 B2
9797486 Zergiebel et al. Oct 2017 B2
20020025243 Heck Feb 2002 A1
20020029044 Monassevitch et al. Mar 2002 A1
20020062136 Hillstead May 2002 A1
20020120279 Deguillebon et al. Aug 2002 A1
20030130677 Whitman et al. Jul 2003 A1
20040006372 Racenet et al. Jan 2004 A1
20040138705 Heino et al. Jul 2004 A1
20050234478 Wixey Oct 2005 A1
20060097026 Shelton, IV May 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060235442 Huitema Oct 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070034664 Jiang Feb 2007 A1
20070039997 Mather et al. Feb 2007 A1
20070057014 Whitman et al. Mar 2007 A1
20070068990 Shelton, IV et al. Mar 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070131732 Holsten et al. Jun 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080041918 Holsten et al. Feb 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080083807 Beardsley et al. Apr 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080179375 Scirica Jul 2008 A1
20080255607 Zemlok Oct 2008 A1
20090001129 Marczyk Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090026245 Holsten et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090057369 Smith et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090277948 Beardsley et al. Nov 2009 A1
20090277949 Viola et al. Nov 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100072258 Farascioni et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100331820 Prisco et al. Dec 2010 A1
20110036892 Marczyk et al. Feb 2011 A1
20110042440 Holsten et al. Feb 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110108601 Clark et al. May 2011 A1
20110108603 Racenet et al. May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110127185 Ward Jun 2011 A1
20110139852 Zingman Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20120061446 Knodel et al. Mar 2012 A1
20120074198 Huitema et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078243 Worrell et al. Mar 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120091182 Marczyk Apr 2012 A1
20120168487 Holsten et al. Jul 2012 A1
20120193396 Zemlok et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20120325893 Pastorelli et al. Dec 2012 A1
20130001270 Kostrzewski Jan 2013 A1
20130015229 Viola Jan 2013 A1
20130015230 Wixey et al. Jan 2013 A1
20130015232 Smith et al. Jan 2013 A1
20130015233 Viola Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130048697 Shelton, IV et al. Feb 2013 A1
20130056521 Swensgard Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087603 Viola Apr 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105547 Beardsley May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105549 Holsten et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130112731 Hodgkinson May 2013 A1
20130126583 Hueil et al. May 2013 A1
20130126586 Zhang et al. May 2013 A1
20130146640 Jankowski Jun 2013 A1
20130172928 Kostrzewski Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130184718 Smith et al. Jul 2013 A1
20130186931 Beardsley Jul 2013 A1
20130186932 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130200132 Moore et al. Aug 2013 A1
20130206816 Penna Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130240604 Knodel Sep 2013 A1
20130248582 Scirica Sep 2013 A1
20130256370 Smith et al. Oct 2013 A1
20130256371 Shelton, IV Oct 2013 A1
20130270321 Marczyk Oct 2013 A1
20130270323 Marczyk Oct 2013 A1
20130284789 Smith et al. Oct 2013 A1
20130284791 Olson et al. Oct 2013 A1
20130299552 Viola Nov 2013 A1
20130306702 Viola et al. Nov 2013 A1
20130306703 Ehrenfels et al. Nov 2013 A1
20130306706 Knodel Nov 2013 A1
20130313303 Shelton, IV et al. Nov 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130327810 Swayze et al. Dec 2013 A1
20130334278 Kerr et al. Dec 2013 A1
20130334280 Krehel et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334284 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130334286 Swayze et al. Dec 2013 A1
20130334287 Shelton, IV Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20140014704 Onukuri et al. Jan 2014 A1
20140014707 Onukuri et al. Jan 2014 A1
20140021239 Kostrzewski Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140027491 Beardsley et al. Jan 2014 A1
20140027493 Jankowski Jan 2014 A1
20140042204 Beetel Feb 2014 A1
20140103092 Kostrzewski et al. Apr 2014 A1
20140103093 Koch, Jr. et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110453 Wingardner et al. Apr 2014 A1
20140131416 Whitman et al. May 2014 A1
20140135832 Park et al. May 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140151434 Shelton, IV et al. Jun 2014 A1
20140158746 Mastri et al. Jun 2014 A1
20140166727 Swayze et al. Jun 2014 A1
20140175146 Knodel Jun 2014 A1
20140175149 Smith et al. Jun 2014 A1
20140203063 Hessler et al. Jul 2014 A1
20140224856 Smith et al. Aug 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236184 Leimbach Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140239041 Zerkle et al. Aug 2014 A1
20140239044 Hoffman Aug 2014 A1
20140246474 Hall et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140260746 Sakaguchi et al. Sep 2014 A1
20140263537 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263543 Leimbach et al. Sep 2014 A1
20140263545 Williams et al. Sep 2014 A1
20140263546 Aranyi Sep 2014 A1
20140263550 Aranyi et al. Sep 2014 A1
20140263553 Leimbach et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263555 Hufnagel et al. Sep 2014 A1
20140263559 Williams et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263566 Williams et al. Sep 2014 A1
20140263567 Williams et al. Sep 2014 A1
20140263568 Williams et al. Sep 2014 A1
20140263569 Williams et al. Sep 2014 A1
20140263570 Hopkins et al. Sep 2014 A1
20140263571 Morgan et al. Sep 2014 A1
20140263572 Shelton, IV et al. Sep 2014 A1
20140284372 Kostrzewski Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140299649 Shelton, IV et al. Oct 2014 A1
20140305986 Hall et al. Oct 2014 A1
20140305988 Boudreaux et al. Oct 2014 A1
20140305992 Kimsey et al. Oct 2014 A1
20140305994 Parihar et al. Oct 2014 A1
20140353359 Hall et al. Dec 2014 A1
20150008248 Giordano et al. Jan 2015 A1
20150034697 Mastri et al. Feb 2015 A1
20150041518 Shelton, IV et al. Feb 2015 A1
20150053738 Morgan et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053741 Shelton, IV et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053745 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150053749 Shelton, IV et al. Feb 2015 A1
20150054753 Morgan et al. Feb 2015 A1
20150060516 Collings et al. Mar 2015 A1
20150060517 Williams Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150076206 Sapre Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083783 Shelton, IV et al. Mar 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150090764 Zemlok et al. Apr 2015 A1
20150108201 Williams Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150127046 Peterson May 2015 A1
20150129631 Beetel May 2015 A1
20150129634 Shelton, IV et al. May 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150133996 Shelton, IV et al. May 2015 A1
20150134076 Shelton, IV et al. May 2015 A1
20150144678 Hall et al. May 2015 A1
20150201935 Weisenburgh, II et al. Jul 2015 A1
20150208902 Okamoto Jul 2015 A1
20150245834 Scirica et al. Sep 2015 A1
20150272576 Cappola Oct 2015 A1
20150289873 Shelton, IV et al. Oct 2015 A1
20150297221 Kerr et al. Oct 2015 A1
20160000439 Weisenburgh, II et al. Jan 2016 A1
20160000440 Weisenburgh, II et al. Jan 2016 A1
20160058447 Posada et al. Mar 2016 A1
20160183948 Shelton, IV et al. Jun 2016 A1
20160338702 Ehrenfels et al. Nov 2016 A1
20160374672 Bear et al. Dec 2016 A1
20160374675 Shelton, IV et al. Dec 2016 A1
20170007241 Shelton, IV et al. Jan 2017 A1
20170007242 Shelton, IV et al. Jan 2017 A1
20170007243 Shelton, IV et al. Jan 2017 A1
20170007249 Shelton, IV et al. Jan 2017 A1
20170231633 Marczyk et al. Aug 2017 A1
20170245856 Baxter, III et al. Aug 2017 A1
20170245858 Williams Aug 2017 A1
20170281161 Shelton, IV et al. Oct 2017 A1
20170281165 Harris et al. Oct 2017 A1
20170281168 Shelton, IV et al. Oct 2017 A1
20170290583 Reed et al. Oct 2017 A1
Foreign Referenced Citations (26)
Number Date Country
0 251 444 Jan 1988 EP
0 492 283 Jul 1992 EP
0 514 139 Nov 1992 EP
0 536 903 Apr 1993 EP
0 596 543 May 1994 EP
1 523 944 Apr 2005 EP
1 915 953 Apr 2008 EP
1 479 348 Jul 2008 EP
2 005 902 Dec 2008 EP
2 263 568 Dec 2010 EP
2 361 562 Aug 2011 EP
2 486 859 Aug 2012 EP
2 772 192 Sep 2014 EP
2 777 530 Sep 2014 EP
2 923 661 Mar 2015 EP
2 926 742 Oct 2015 EP
3 238 639 Mar 2017 EP
2001-087272 Apr 2001 JP
2063710 Jul 1996 RU
WO 8302247 Jul 1983 WO
WO 0230296 Apr 2002 WO
WO 02096327 Dec 2002 WO
WO 2003094747 Nov 2003 WO
WO 2004032762 Apr 2004 WO
WO 2012052729 Apr 2012 WO
WO 2014139440 Sep 2014 WO
Non-Patent Literature Citations (30)
Entry
European Patent Office, European Search Report for European Application No. 07784007.2, entitled “Surgical Stapler,” dated Jun. 15, 2012, 6 pgs.
Ethicon Endo Surgery, Inc., Contour Curved Cutter Stapler, 2014, 2 pgs.
Justright Surgical, JustRight Surgery, Dec. 31, 2014, 2 pgs.
European Patent Office, the International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 5, 2014, 14 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2014/028211, entitled “Surgical Stapler with Partial Pockets,” dated Sep. 8, 2014, 17 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2014/028811, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Sep. 15, 2015, 11 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2015/0035379, titled “Surgical Stapler with Circumferential Firing”, dated Sep. 15, 2015, 22 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/050103 titled “Surgical Stapler with Self-Adjusting Staple Height” dated Feb. 17, 2016, 18 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/035379, entitled “Surgical Stapler with Circumferential Firing,” dated Dec. 22, 2016, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/050103, titled “Surgical Stapler With Self-Adjusting Staple Height,” dated Mar. 30, 2017, 12 pgs.
European Patent Office, European Search Report for European Application No. EP 14764812.5, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Apr. 6, 2017, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Jun. 28, 2017, 15 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 5, 2017, 11 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Jul. 10, 2017, 15 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Sep. 12, 2017, 22 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having a Powered Handle,” dated Sep. 13, 2017, 17 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Sep. 14, 2017, 21 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/045993 titled “Surgical Stapler Having Locking Articulation Joint”, dated Jan. 24, 2017, 20 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2016/045993, entitled “Surgical Stapler Having Locking Articulation Joint,” dated Feb. 15, 2018, 13 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 18186558.5, entitled “Surgical Stapler with Partial Pockets,” dated Oct. 10, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027142, entitled “Surgical Stapler Having Articulation Mechanism,” dated Oct. 25, 2018, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027213, entitled “Surgical Stapler Having Powered Handle,” dated Oct. 25, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability, for International Application No. PCT/US2017/027269, entitled “Reload Shaft Assembly for Surgical Stapler,” dated Oct. 25, 2018, 12 pgs.
International Searching Authority, U.S., The International Search Report and the Written Opinion of the International Searching authority for international application PCT/US2014/027768, titled “Surgical Stapler with Expandable Jaw”, dated Jul. 25, 2014.
The International Bureau of WIPO, International Preliminary Report on Patentability, dated Sep. 24, 2015, for International Application No. PCT/US2014/027768.
European Patent Office, Partial European Search Report for European Application No. EP 14762896.0, entitled “Surgical Stapler With Expandable Jaw,” dated Apr. 10, 2017, 6 pgs.
International Searching Authority/ EPO, Invitation to Pay Additional Fees and Communication Relating to the Results of the Partial International Search for PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated May 24, 2019, 19 pgs.
European Patent Office, The International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2019/019867, entitled “Surgical Stapler Having a Powered Handle,” dated Jul. 19, 2019, 24 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19150575.9, entitled “Surgical Stapler Having Actuation Mechanism with Rotatable Shaft,” dated Aug. 21, 2019, 5 pgs.
European Patent Office, Extended European Search Report for European Application No. EP 19180055.6, entitled “Surgical Stapler with Circumferential Firing,” dated Sep. 20, 2019, 8 pgs.
Related Publications (1)
Number Date Country
20180036005 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
61793065 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14211570 Mar 2014 US
Child 15788118 US