Surgical stapler

Information

  • Patent Grant
  • 8267301
  • Patent Number
    8,267,301
  • Date Filed
    Monday, June 21, 2010
    14 years ago
  • Date Issued
    Tuesday, September 18, 2012
    12 years ago
Abstract
A surgical stapler comprising a handle assembly, an elongated body portion extending distally from the handle assembly, and a head portion disposed adjacent a distal portion of the elongated body portion and including an anvil assembly and a shell assembly. The anvil assembly is movable in relation to the shell assembly between spaced and approximated positions. The shell assembly includes a pusher movable distally to advance staples from the shell assembly into contact with the anvil assembly. First and second alignment pins operatively associated with the pusher have distal ends positioned distally of the pusher, the alignment pins movable between a first non-engaged position spaced from the anvil assembly and a second position in engagement with the anvil assembly.
Description
BACKGROUND

1. Technical Field


The present disclosure relates generally to a surgical stapling device for applying surgical staples to body tissue. More particularly, the present disclosure relates to a surgical stapling device suitable for performing circular anastomosis and/or treatment to internal walls of hollow tissue organs.


2. Background of Related Art


Anastomosis is the surgical joining of separate hollow organ sections. Typically, an anastomosis procedure follows surgery in which a diseased or defective section of hollow tissue is removed and the remaining end sections are to be joined. Depending on the desired anastomosis procedure, the end sections may be joined by either circular, end-to-end or side-to-side organ reconstruction methods.


In a circular anastomosis procedure, the two ends of the organ sections are joined by means of a stapling instrument which drives a circular array of staples through the end section of each organ section and simultaneously cores any tissue interior of the driven circular array of staples to free the tubular passage. Examples of instruments for performing circular anastomosis of hollow organs are described in U.S. Pat. Nos. 7,303,106, 6,053,390, 5,588,579, 5,119,983, 5,005,749, 4,646,745, 4,576,167, and 4,473,077, each of which is incorporated herein in its entirety by reference. Typically, these instruments include an elongated shaft having a handle portion at a proximal end to actuate the instrument and a staple holding component disposed at a distal end. An anvil assembly including an anvil rod with attached anvil head is mounted to the distal end of the instrument adjacent the staple holding component. Opposed end portions of tissue of the hollow organ(s) to be stapled are clamped between the anvil head and the staple holding component as these components are approximated. The clamped tissue is stapled by driving one or more staples from the staple holding component through the staple slots so that the ends of the staples pass through the tissue and are deformed by anvil pockets of the anvil head. An annular knife is concurrently advanced to core tissue with the hollow organ to free a tubular passage within the organ.


Besides anastomosis of hollow organs, surgical stapling devices for performing circular anastomosis have been used to treat internal hemorrhoids in the rectum. Hemorrhoids are masses of tissue in the anus containing enlarged blood vessels. Internal hemorrhoids are inside the anal canal; external hemorrhoids lie outside the anal canal. In hemorrhoidectomy, the hemorrhoids are removed. Stapled hemorrhoidopexy is a surgical procedure in which the stapling device is used to remove tissue just above the hemorrhoids in order to pull the hemorrhoids back up inside the rectum and reduce the symptoms. The staples interrupt the blood flow of the superior hemorrhoidal arterial branches, cutting off the blood supply to the tissue, thus causing the hemorrhoids to shrink.


During the use of a circular stapling device for hemorrhoid treatment, the anvil head and the staple holding component of the device are inserted through and into the rectum with the anvil head and the stapling holding component in an open or unapproximated position. Thereafter, a purse string suture is used to pull the internal hemorrhoidal tissue and/or mucosal tissue toward the anvil rod. Next, the anvil head and the staple holding component are approximated to clamp the hemorrhoidal tissue and/or mucosal tissue between the anvil head and the staple holding component. The stapling device is fired to remove the hemorrhoidal tissue and/or mucosal tissue and staple the cut tissue.


It would be advantageous to provide additional structure for aligning the staple slots and the anvil pockets when the staple holding component and anvil assembly are approximated.


SUMMARY

The present invention provides in one aspect a surgical stapler comprising a handle assembly, an elongated body portion extending distally from the handle assembly, and a head portion disposed adjacent a distal portion of the elongated body portion and including an anvil assembly and a shell assembly. The anvil assembly is movable in relation to the shell assembly between spaced and approximated positions. The shell assembly includes a pusher movable distally to advance staples from the shell assembly into contact with the anvil assembly. First and second alignment pins operatively associated with the pusher have distal ends positioned distally of the pusher. The alignment pins are movable between a first non-engaged position spaced from the anvil assembly and a second position in engagement with the anvil assembly.


Preferably, the anvil assembly includes an anvil head having a first opening to receive the first alignment pin and a second opening to receive the second alignment pin. Preferably, the first and second alignment pins are frictionally received in the first and second openings, respectively. The anvil assembly can include an anvil shaft extending proximally of the anvil head and being removably mounted to an anvil retainer of the stapler.


In a preferred embodiment, advancement of the staple pusher advances the alignment pins to the second position as the first and second alignment pins are advanced through openings in the staple guide. The surgical stapler can include a plurality of staples arranged in an annular row with the alignment pins positioned radially inwardly of the annular row of staples. The alignment pins can also be positioned radially outwardly of a knife of the stapler.


In some embodiments the anvil head has a number of openings exceeding the number of alignment pins for selective engagement of the alignment pins with the respective number of openings.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the presently disclosed device are described herein with reference to the drawings, wherein:



FIG. 1 is a side view of the stapler of the present disclosure incorporating the alignment pins of the present disclosure;



FIG. 1A is a close up perspective view of the shell assembly of the stapler of FIG. 1 with the anvil assembly in the approximated position;



FIG. 2 is an exploded view showing the anvil head, alignment pins and an end portion of the shell assembly of FIG. 1;



FIG. 2A is a side view of the anvil assembly of FIG. 1;



FIG. 2B is an exploded view of the shell assembly of FIG. 1;



FIG. 3 is an enlarged perspective view of the end portion of the shell assembly with alignment pins;



FIG. 4 is a cross-sectional view taken along lines 4-4 of FIG. 1A showing the stapler in the approximated unfired position; and



FIG. 5 is a cross-sectional view similar to FIG. 4 showing the end portion of the stapler in the fired position.





DETAILED DESCRIPTION OF EMBODIMENTS

The presently disclosed surgical stapler will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. Throughout this description, the term “proximal” will refer to the portion of the stapler closer to the operator and the term “distal” will refer to the portion of the instrument further from the operator. The presently disclosed stapler is particularly suited for surgical procedures for the treatment of colon prolapse and hemorrhoids.



FIG. 1 illustrates the presently disclosed hemorrhoid stapler 10. Briefly, surgical stapler 10 includes a handle assembly 12, a central body portion 14 and a distal head portion 16. Head portion 16 includes an anvil assembly 18 and a shell assembly 20.


Handle assembly 12 includes a stationary handle 22, a firing trigger 24, an approximation knob 26, an indicator assembly 28, and a lockout mechanism 30. Approximation knob 26 functions to retract and advance a drive screw 32 to advance or retract anvil assembly 18 in relation to shell assembly 20. Firing trigger 24 functions to advance a pusher link 34 to eject staples from shell assembly 20. Each of the components of handle assembly 12 identified above are as described in U.S. Pat. No. 7,303,106 (“'106 patent”), the entire contents of which are incorporated herein by reference. Accordingly, these components and assemblies will not be described in detail herein.


Referring to FIG. 2A, anvil assembly 18 includes an anvil shaft 64 and an anvil head 66. (The anvil shaft has been removed from FIGS. 2, 4 and 5 for clarity.) Anvil shaft or center rod 64 includes a tapered blunt end 64a. End portion 64b is dimensioned to receive a central hub portion 70 of anvil head 66. End 64b of shaft 64 and hub portion 70 of anvil head 66 each define a throughbore dimensioned to receive a pin, screw, rivet or the like 72 for fixedly securing anvil head 66 to anvil shaft 64. The anvil head can be fixedly (non-rotatably) mounted to the anvil shaft or alternatively the anvil head can be mounted for tilted movement with respect to the anvil shaft as described for example in U.S. Pat. Nos. 6,053,390, 6,957,758, 7,168,604, 7,431,191 and U.S. Publication No. 2008-0230581. The entire contents of each of these patents/applications are incorporated herein by reference.


Anvil shaft 64 includes a stepped surface or ring 74 between end 64a and end 64b which is configured to engage retention surfaces of flexible arms of anvil retainer 36 to releasably secure anvil shaft 64 to anvil retainer 36. Anvil retainer 36 has a bore to receive the anvil shaft 64. Anvil shaft 64 also includes over-molded splines 76. Alternatively, the splines can be machined onto the anvil shaft. The splines 76 align the anvil shaft 64 with respect to the anvil retainer 36 of the instrument to thereby align anvil assembly 18 with shell assembly 20 to ensure the staples are properly aligned with the anvil pockets. A series of longitudinally spaced suture holes 78a, 78b, 78c are formed at a distal region of the anvil shaft 64. Each of the suture holes 78 provides for a purse-string attachment location. As shown, three holes are provided, although a fewer or greater number of holes is also contemplated. The holes are configured to receive a purse-string suture therethrough. The series of holes 78 enables the user to decide the amount of tissue desired for purse stringing, e.g. hole 78a would enable additional tissue to be taken and presented for stapling. That is, holes 78 are longitudinally spaced along anvil shaft 64 such that the amount of tissue drawn into the shell assembly 20 can be controlled by properly selecting the hole 78 to which the purse string suture is inserted. Vent holes 69 of anvil head 66 are illustrated in FIG. 1A. The anvil head 66 also includes openings 67 for receipt of alignment pins discussed in detail below.


An orientation groove or grooves 84 (FIG. 2A) is provided in anvil shaft 64 beneath splines 76. Orientation groove(s) 84 functions to effect proper alignment of splines 76 about shaft 64 to facilitate proper alignment of anvil assembly 18 and shell assembly 20 when anvil assembly 18 is retracted towards shell assembly 20.


Anvil head 66 defines an outer annular recess which supports an anvil plate 90 and an inner annular recess which supports a cut ring 94. Anvil plate 90 has a plurality of anvil pockets 91 arranged in an annular array for deforming the staples are. Cutting ring 94 is an annular member that is positioned within an inner annular recess 95 formed in anvil head 66. The cutting ring 94 includes respective proximal and distal ends 98A, 98B (FIG. 5), and defines an inner proximally facing annular shoulder 98C, as well as an outer proximally facing annular surface 98D. The inner annular shoulder 98C and the annular surface 98D of the cutting ring 94 are configured and dimensioned for engagement with the anvil head 66 such that the cutting ring is retained within the recess 95. Anvil head 66 includes an inner wall with an outwardly extending finger 71A that is configured and dimensioned for engagement with the inner annular shoulder 98C, and an outer wall with an inwardly extending finger (not shown) that is configured and dimensioned for engagement with the outer annular surface 98D. During use of the stapling device 10, upon firing, the cutting ring 94 is penetrated by the annular knife 102. Anvil head 66 has a bulbous, smoothly contoured member 96 defining its distal face. Bulbous member 96 facilitates insertion of anvil head 66 through a purse-string suture.


Referring to FIGS. 1, 2B and 4, shell assembly 20 is secured to the distal end of central body portion 14 in a manner substantially similar to that described in the '106 patent incorporated herein by reference. Shell assembly 20 includes a shell or housing 198, a pusher back 100 positioned within housing 198, a cylindrical knife 102, and a staple guide 104. Staple guide 104 houses one or more annular rows of staples 150.


Shell 198 includes an outer housing portion 196 and an inner guide portion 108 having grooves for mating with splines 76 on the anvil shaft 64. Outer housing portion 196 defines a throughbore 192 having a distal cylindrical section 114, a central conical section 116 and a proximal smaller diameter cylindrical section 118. A plurality of openings 120 are formed in conical section 116, dimensioned to permit fluid and tissue passage during operation of stapler 10. A pair of diametrically opposed flexible engagement members 117 are formed on proximal cylindrical section 118 of shell 198 for reception in openings formed on a distal end body portion 14 to secure shell 198 to body portion 14.


Pusher back 100 includes a central throughbore 120 which is slidably positioned about inner guide portion 108 of shell 98. Pusher back 100 includes a distal cylindrical section 127 which is slidably positioned within distal cylindrical section 114 of shell 198, a central conical section 125 and a proximal smaller diameter cylindrical section 129. The proximal end of pusher back 100 includes members 132 which are configured to lockingly engage with pusher link 34 of stapler 10 as described in the '106 patent incorporated by reference herein. Pusher back 100 also defines a receptacle for receiving excised tissue.


Referring to FIG. 1, a rigid bushing 140 is supported in the proximal end of inner guide portion 108 of shell 198. Bushing 140 defines a throughbore dimensioned to slidably receive anvil retainer 36 and anvil shaft 64 of anvil assembly 18.


The distal end of pusher back 100 includes a pusher 126 (FIG. 2B). Pusher 126 includes a multiplicity of distally extending fingers 128 dimensioned to be slidably received within slots 105 formed in staple guide 104 to eject staples 150 therefrom. Cylindrical knife 102 is retained within the central throughbore 120 of pusher back 100 to fixedly secure knife 102 in relation to pusher 126. Knife 102 may be retained within pusher back 100 using adhesives, crimping, pins, friction, etc. The distal end of knife 102 includes a circular cutting edge.


The rigid bushing 140 is supported in the proximal end of inner guide portion 108 of shell 198. Bushing 140 defines a throughbore dimensioned to slidably receive anvil retainer 36 and anvil shaft 64 of anvil assembly 18. Anvil retainer 36 is connected to drive screw 32 by connector 38 as a proximal end of connector 38 is connected to a distal end of drive screw 32 via pin 60. Bushing 140 provides lateral support for flexible arms 48 of anvil retainer 36 when the anvil assembly 18 has been approximated to prevent disengagement of anvil assembly 18 from anvil retainer 36. In the unapproximated position, flexible arms 48 of anvil shaft 64 are positioned externally of bushing 140 to permit removal of anvil assembly 18 from anvil retainer 36.


As discussed above, stapler 10 is particularly suitable for use in surgical procedures for treating hemorrhoids. During such a procedure, an access port can be inserted into the anus to facilitate access to the hemorrhoids. Next, a purse string suture (not shown) is placed into, above or in the vicinity of the hemorrhoids and the anvil assembly 18 is inserted through the access port into the anus and rectum. Bulbous member 96 of anvil head 66 functions to allow smooth passage of anvil assembly 18 past the purse string suture. Anvil assembly 18 and shell assembly 20 are approximated via knob 26 to draw the hemorrhoids into shell assembly 20.


When surgical stapler 10 is fully approximated (FIGS. 1A and 4), firing trigger 24 can be actuated or fired in a manner described in the '106 patent 10 to staple, sever and allow removal of a portion of the hemorrhoids. Thereafter, stapler 10 is removed from the body with the excised tissue contained within the receptacle of pusher back 100 within shell assembly 20.


Shell assembly 20 has a plurality of projections shown in the form of alignment pins 171 engagable with alignment openings 67 in the anvil assembly (see e.g. FIGS. 2 and 4). More specifically, the pins 171 extend distally from pusher back 100 and extend through openings 109 in the staple guide 104, functioning as described below to help align the anvil head 66 and shell assembly 20 and to limit axial movement of the anvil head 66, especially in the instance where a relatively long anvil shaft is provided such as in certain hemorrhoid staplers. The alignment pins 171 can be attached to the pusher back 100 via interference ribs press fit into holes into pusher back 100 or by other methods such as screw threads. It should be appreciated that the alignment pins (projections) can also be utilized on other circular staplers in addition to stapler 10. The pins 171 can have tapered ends 173 as shown. Alternately they can have planar ends or other configurations.


The pins function to limit movement of the anvil head 166 with respect to the shell assembly 120. In one embodiment, the pins 171 have an outer dimension substantially equal to the inner diameter of the alignment openings 67 of the anvil assembly to frictionally fit within the alignment openings 67 with sufficient force for retention, while not inhibiting re-approximation of the anvil assembly. In other embodiments, the pins can have a smaller outer dimension in relation to the inner diameter of the alignment openings to thereby more loosely be seated in the alignment openings, while still functioning to limit axial movement and rotational movement of the anvil head. The pins 171 are preferably outboard (radially outward) of the circular knife 102 of the stapler 10 and inboard (radially inward) of the staples 150. Pins 171 are shown spaced approximately 180 degrees apart. Two or more pins substantially equally radially spaced or spaced at varying intervals can be provided. Although the pins 171 are shown for use with an anvil shaft having through holes 175 for a purse string suture, the pins can be used with staplers having other anvil shafts. Also, the alignment pins 171 can be used with non-pivoting anvils as well as pivotally mounted anvils which move from non-tilted to tilted operative positions, such as those disclosed in the U.S. patents/publication listed above.


The anvil head 66 is shown with a plurality of openings 67 to receive alignment pins 171. The openings are positioned radially inward of the annular array of staple forming (anvil) pockets. At minimum, the number of anvil openings 67 is equal to the number of alignment pins 171. However, it is also contemplated, as shown in the illustrated embodiment, that there are more anvil openings 67 than alignment pins. For example, in the illustrated embodiment, two alignment pins 171 are provided while eight anvil openings 67 are provided. In this manner, the alignment pins 171 can align with two of the respective anvil openings 67 at various orientations of the anvil head 66 with respect to the shell assembly 20.


In use, upon firing of the stapler 10, the pusher back 100 is advanced distally to advance the staple pusher 126 with fingers 128 into contact with the staples 150 positioned within slots 105 in the staple guide 104. As the pusher 126 is advanced distally, alignment pins 171, operatively associated with the pusher 126 via their attachment thereto, are likewise moved distally. The alignment pins 171 move distally from a retracted, non-engaged position shown in FIG. 4 where they are retracted within the shell assembly to an advanced position protruding beyond the shall assembly and into engagement with the anvil openings 67 of the anvil head 66.


It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical stapler comprising; a handle assembly;an elongated body portion extending distally from the handle assembly; anda head portion disposed adjacent a distal portion of the elongated body portion and including an anvil assembly and a shell assembly, the shell assembly including an annular array of staples, the anvil assembly having an annular array of pockets to deform the staples and being movable in relation to the shell assembly between spaced and approximated positions, the shell assembly including a staple pusher movable distally to advance the staples from the shell assembly into contact with the anvil assembly, first and second alignment pins operatively associated with the pusher and having distal ends positioned distally of the pusher, the alignment pins movable between a first non-engaged position spaced from the anvil assembly and a second position in engagement with the anvil assembly.
  • 2. The surgical stapler as recited in claim 1, wherein the anvil assembly includes an anvil head, the anvil head having a first opening to receive the first alignment pin and a second opening to receive the second alignment pin.
  • 3. The surgical stapler of claim 2, wherein the first and second alignment pins are frictionally received in the first and second openings, respectively.
  • 4. The surgical stapler of claim 2, wherein the first and second alignment pins are attached to the pusher by screw threads.
  • 5. The surgical stapler of claim 2, wherein the first and second alignment pins have a substantially planar end.
  • 6. The surgical stapler of claim 2, wherein the first and second alignment pins have a tapered end.
  • 7. The surgical stapler of claim 1, wherein the anvil assembly includes an anvil shaft extending proximally of the anvil head, the anvil shaft being removably mounted to an anvil retainer of the stapler.
  • 8. The surgical stapler of claim 1, wherein advancement of the staple pusher advances the alignment pins to the second position.
  • 9. The surgical stapler of claim 1, wherein the first and second pins are spaced about 180 degrees apart.
  • 10. The surgical stapler of claim 1, wherein the first and second pins are substantially equidistantly radially spaced.
  • 11. The surgical stapler of claim 1, wherein the anvil head has a number of openings, the number of openings exceeding the number of alignment pins for selective engagement of the first alignment pin with one of the openings and the second alignment pin with another of the openings, depending on an orientation of the anvil head.
  • 12. The surgical stapler of claim 1, wherein the anvil assembly includes an anvil head and an anvil rod connected to the anvil head, the anvil rod having a plurality of splines machined onto the anvil rod.
  • 13. The surgical stapler of claim 1, wherein the anvil assembly includes an anvil head and an anvil rod connected to the anvil head, the anvil rod having a plurality of splines overmolded onto the anvil rod.
  • 14. The surgical stapler of claim 1, further comprising a staple guide containing the staples, wherein the first and second alignment pins are advanced through openings in the staple guide.
  • 15. The surgical stapler of claim 1, wherein the alignment pins are positioned radially inwardly of the annular array of staples.
  • 16. The surgical stapler of claim 15, wherein the stapler includes an annular knife, the alignment pins positioned radially outwardly of the knife.
  • 17. The surgical stapler of claim 16, wherein the anvil assembly includes an anvil head having a first opening dimensioned to receive the first alignment pin and a second opening dimensioned to receive the second alignment pin, the first and second openings being positioned radially inwardly of the annular array of pockets.
  • 18. The surgical stapler of claim 17, wherein the anvil head includes third and fourth openings each dimensioned to receive one of the alignment pins, the first alignment pin engageable with one of the openings and a second alignment pin engageable with another of the openings depending on the orientation of the anvil head with respect to the shell assembly.
Parent Case Info

This application claims priority from provisional application Ser. No. 61/235,131, filed Aug. 19, 2009, the entire contents of which are incorporated herein by reference.

US Referenced Citations (375)
Number Name Date Kind
3193165 Akhalaya et al. Jul 1965 A
3388847 Kasulin et al. Jun 1968 A
3552626 Astafiev Jan 1971 A
3606888 Wilkinson Sep 1971 A
3638652 Kelley Feb 1972 A
3771526 Rudie Nov 1973 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4289133 Rothfuss Sep 1981 A
4304236 Conta et al. Dec 1981 A
4319576 Rothfuss Mar 1982 A
4350160 Kolesov et al. Sep 1982 A
4351466 Noiles Sep 1982 A
4379457 Gravener et al. Apr 1983 A
4473077 Noiles et al. Sep 1984 A
4476863 Kanshin et al. Oct 1984 A
4485817 Swiggett Dec 1984 A
4488523 Shichman Dec 1984 A
4505272 Utyamyshev et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4520817 Green Jun 1985 A
4550870 Krumme et al. Nov 1985 A
4573468 Conta et al. Mar 1986 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4603693 Conta et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4610383 Rothfuss et al. Sep 1986 A
4646745 Noiles Mar 1987 A
4665917 Clanton et al. May 1987 A
4667673 Li May 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4708141 Inoue et al. Nov 1987 A
4717063 Ebihara Jan 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4776506 Green Oct 1988 A
4817847 Redtenbacher et al. Apr 1989 A
4873977 Avant et al. Oct 1989 A
4893622 Green et al. Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4907591 Vasconcellos et al. Mar 1990 A
4917114 Green et al. Apr 1990 A
4957499 Lipatov et al. Sep 1990 A
4962877 Hervas Oct 1990 A
5005749 Aranyi Apr 1991 A
5042707 Taheri Aug 1991 A
5047039 Avant et al. Sep 1991 A
5104025 Main et al. Apr 1992 A
5119983 Green et al. Jun 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158222 Green et al. Oct 1992 A
5188638 Tzakis Feb 1993 A
5193731 Aranyi Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5221036 Takase Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5253793 Green et al. Oct 1993 A
5261920 Main et al. Nov 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
5275322 Brinkerhoff et al. Jan 1994 A
5282810 Allen et al. Feb 1994 A
5285944 Green et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5292053 Bilotti et al. Mar 1994 A
5309927 Welch May 1994 A
5312024 Grant et al. May 1994 A
5314435 Green et al. May 1994 A
5314436 Wilk May 1994 A
5330486 Wilk Jul 1994 A
5333773 Main et al. Aug 1994 A
5344059 Green et al. Sep 1994 A
5346115 Perouse et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350104 Main et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5360154 Green Nov 1994 A
5368215 Green et al. Nov 1994 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5403333 Kaster et al. Apr 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5425738 Gustafson et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5437684 Calabrese et al. Aug 1995 A
5439156 Grant et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5447514 Gerry et al. Sep 1995 A
5454825 Van Leeuwen et al. Oct 1995 A
5464415 Chen Nov 1995 A
5470006 Rodak Nov 1995 A
5474223 Viola et al. Dec 1995 A
5497934 Brady et al. Mar 1996 A
5503635 Sauer et al. Apr 1996 A
5522534 Viola et al. Jun 1996 A
5533661 Main et al. Jul 1996 A
5588579 Schnut et al. Dec 1996 A
5609285 Grant et al. Mar 1997 A
5626591 Kockerling et al. May 1997 A
5632433 Grant et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5641111 Ahrens et al. Jun 1997 A
5658300 Bito et al. Aug 1997 A
5669918 Balazs et al. Sep 1997 A
5685474 Seeber Nov 1997 A
5709335 Heck Jan 1998 A
5715987 Kelley et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5720755 Dakov Feb 1998 A
5732872 Bolduc et al. Mar 1998 A
5749896 Cook May 1998 A
5758814 Gallagher et al. Jun 1998 A
5794834 Hamblin et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5833698 Hinchliffe et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855312 Toledano Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5881943 Heck et al. Mar 1999 A
5915616 Viola et al. Jun 1999 A
5947363 Bolduc et al. Sep 1999 A
5951576 Wakabayashi Sep 1999 A
5957363 Heck Sep 1999 A
5993468 Rygaard Nov 1999 A
6024748 Manzo et al. Feb 2000 A
6050472 Shibata Apr 2000 A
6053390 Green et al. Apr 2000 A
6068636 Chen May 2000 A
6083241 Longo et al. Jul 2000 A
6102271 Longo et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6176413 Heck et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6203553 Robertson et al. Mar 2001 B1
6209773 Bolduc et al. Apr 2001 B1
6241140 Adams et al. Jun 2001 B1
6253984 Heck et al. Jul 2001 B1
6258107 Balázs et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6269997 Balázs et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6387105 Gifford, III et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6402008 Lucas Jun 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6450390 Heck et al. Sep 2002 B2
6478210 Adams et al. Nov 2002 B2
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6494877 Odell et al. Dec 2002 B2
6503259 Huxel et al. Jan 2003 B2
6517566 Hovland et al. Feb 2003 B1
6520398 Nicolo Feb 2003 B2
6533157 Whitman Mar 2003 B1
6551334 Blatter et al. Apr 2003 B2
6578751 Hartwick Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6592596 Geitz Jul 2003 B1
6601749 Sullivan et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605098 Nobis et al. Aug 2003 B2
6626921 Blatter et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6631837 Heck Oct 2003 B1
6632227 Adams Oct 2003 B2
6632237 Ben-David et al. Oct 2003 B2
6652542 Blatter et al. Nov 2003 B2
6659327 Heck et al. Dec 2003 B2
6676671 Robertson et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6685079 Sharma et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716222 McAlister et al. Apr 2004 B2
6716233 Whitman Apr 2004 B1
6726697 Nicholas et al. Apr 2004 B2
6742692 Hartwick Jun 2004 B2
6743244 Blatter et al. Jun 2004 B2
6763993 Bolduc et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6820791 Adams Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6852122 Rush Feb 2005 B2
6866178 Adams et al. Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6884250 Monassevitch et al. Apr 2005 B2
6905504 Vargas Jun 2005 B1
6938814 Sharma et al. Sep 2005 B2
6942675 Vargas Sep 2005 B1
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6957758 Aranyi Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981941 Whitman et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
7059331 Adams et al. Jun 2006 B2
7059510 Orban, III Jun 2006 B2
7080769 Vresh et al. Jul 2006 B2
7086267 Dworak et al. Aug 2006 B2
7114642 Whitman Oct 2006 B2
7118528 Piskun Oct 2006 B1
7122044 Bolduc et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7168604 Milliman et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7195142 Orban, III Mar 2007 B2
7207168 Doepker et al. Apr 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
RE39841 Bilotti et al. Sep 2007 E
7303106 Milliman et al. Dec 2007 B2
7309341 Ortiz et al. Dec 2007 B2
7322994 Nicholas et al. Jan 2008 B2
7325713 Aranyi Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335212 Edoga et al. Feb 2008 B2
7364060 Milliman Apr 2008 B2
7398908 Holsten et al. Jul 2008 B2
7399305 Csiky et al. Jul 2008 B2
7401722 Hur Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7422137 Manzo Sep 2008 B2
7422138 Bilotti et al. Sep 2008 B2
7431191 Milliman Oct 2008 B2
7438718 Milliman et al. Oct 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7494038 Milliman Feb 2009 B2
7506791 Omaits et al. Mar 2009 B2
7516877 Aranyi Apr 2009 B2
7527185 Harari et al. May 2009 B2
7537602 Whitman May 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7556186 Milliman Jul 2009 B2
7559451 Sharma et al. Jul 2009 B2
7588174 Holsten et al. Sep 2009 B2
7600663 Green Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7635385 Milliman et al. Dec 2009 B2
7909223 Cole et al. Mar 2011 B2
8002795 Beetel Aug 2011 B2
20010000903 Heck et al. May 2001 A1
20010010320 Bolduc et al. Aug 2001 A1
20010054636 Nicolo Dec 2001 A1
20020020732 Adams et al. Feb 2002 A1
20020047036 Sullivan et al. Apr 2002 A1
20020063143 Adams et al. May 2002 A1
20020185516 Heck et al. Dec 2002 A1
20020185517 Vresh et al. Dec 2002 A1
20030019905 Adams et al. Jan 2003 A1
20030047582 Sonnenschein et al. Mar 2003 A1
20030057251 Hartwick Mar 2003 A1
20030065342 Nobis et al. Apr 2003 A1
20030073981 Whitman et al. Apr 2003 A1
20030089757 Whitman May 2003 A1
20030111507 Nunez Jun 2003 A1
20030127491 Adams et al. Jul 2003 A1
20030132267 Adams et al. Jul 2003 A1
20030144675 Nicolo Jul 2003 A1
20030178465 Bilotti et al. Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030192936 Hartwick Oct 2003 A1
20030192937 Sullivan et al. Oct 2003 A1
20030201301 Bolduc et al. Oct 2003 A1
20030218047 Sharma et al. Nov 2003 A1
20030222117 Orban, III Dec 2003 A1
20040092960 Abrams et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040118896 Sharma et al. Jun 2004 A1
20040134964 Adams et al. Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040232198 Adams et al. Nov 2004 A1
20050006433 Milliman et al. Jan 2005 A1
20050021053 Heinrich Jan 2005 A1
20050023325 Gresham et al. Feb 2005 A1
20050051597 Toledano Mar 2005 A1
20050067454 Vresh et al. Mar 2005 A1
20050087580 Orban, III Apr 2005 A1
20050107813 Gilete Garcia May 2005 A1
20050116009 Milliman Jun 2005 A1
20050125009 Perry et al. Jun 2005 A1
20050143758 Abbott et al. Jun 2005 A1
20050145674 Sonnenschein et al. Jul 2005 A1
20050145675 Hartwick et al. Jul 2005 A1
20050205639 Milliman et al. Sep 2005 A1
20060000869 Fontayne Jan 2006 A1
20060011698 Okada et al. Jan 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060047308 Ortiz et al. Mar 2006 A1
20060049231 Leiboff et al. Mar 2006 A1
20060085032 Viola Apr 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060085034 Bettuchi Apr 2006 A1
20060085035 Viola Apr 2006 A1
20060097025 Milliman et al. May 2006 A1
20060108393 Heinrich et al. May 2006 A1
20060144897 Jankowski et al. Jul 2006 A1
20060151567 Roy Jul 2006 A1
20060191975 Adams et al. Aug 2006 A1
20060201989 Ojeda Sep 2006 A1
20060201993 Hur Sep 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060255090 Milliman et al. Nov 2006 A1
20060289601 Orban, III Dec 2006 A1
20070023475 Csiky Feb 2007 A1
20070027473 Vresh et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070034666 Holsten et al. Feb 2007 A1
20070034667 Holsten et al. Feb 2007 A1
20070034668 Holsten et al. Feb 2007 A1
20070038248 Heinrch Feb 2007 A1
20070060952 Roby et al. Mar 2007 A1
20070181632 Milliman et al. Aug 2007 A1
20080054045 Milliman et al. Mar 2008 A1
20090212088 Okada et al. Aug 2009 A1
20090230170 Milliman Sep 2009 A1
20090236388 Cole et al. Sep 2009 A1
20090236389 Cole et al. Sep 2009 A1
20090236390 Cole et al. Sep 2009 A1
20090236391 Cole et al. Sep 2009 A1
20090236392 Cole et al. Sep 2009 A1
20090236394 Cole et al. Sep 2009 A1
20090236396 Cole et al. Sep 2009 A1
20090236397 Cole et al. Sep 2009 A1
20090236398 Cole et al. Sep 2009 A1
20090236400 Cole et al. Sep 2009 A1
20090236401 Cole et al. Sep 2009 A1
20090242612 Adams et al. Oct 2009 A1
20090250502 Milliman Oct 2009 A1
20090255976 Marczyk et al. Oct 2009 A1
20090302089 Harari et al. Dec 2009 A1
20090321496 Holsten et al. Dec 2009 A1
20100001036 Marczyk et al. Jan 2010 A1
20100001037 Racenet et al. Jan 2010 A1
20100019016 Edoga et al. Jan 2010 A1
20100025452 Whitman Feb 2010 A1
20100038401 Milliman et al. Feb 2010 A1
20100051668 Milliman et al. Mar 2010 A1
20100059571 Chen et al. Mar 2010 A1
20100065607 Orban, III et al. Mar 2010 A1
20100065609 Schwemberger Mar 2010 A1
20100084453 Hu Apr 2010 A1
Foreign Referenced Citations (21)
Number Date Country
908529 Aug 1972 CA
3301713 Nov 1989 DE
0152382 Aug 1985 EP
0173451 Mar 1986 EP
0190022 Aug 1986 EP
282157 Sep 1988 EP
0503689 Sep 1992 EP
0594436 Oct 1993 EP
1354560 Oct 2003 EP
2184018 May 2010 EP
2443239 Dec 1979 FR
1185292 Mar 1970 GB
2016991 Sep 1979 GB
2070499 Sep 1981 GB
1509052 Jan 1988 SU
8706448 Nov 1987 WO
8900406 Jan 1989 WO
9006085 Jun 1990 WO
0154594 Aug 2001 WO
2004032766 Apr 2004 WO
2008107918 Sep 2008 WO
Related Publications (1)
Number Date Country
20110042443 A1 Feb 2011 US
Provisional Applications (1)
Number Date Country
61235131 Aug 2009 US