Surgical staples and end effectors for deploying the same

Information

  • Patent Grant
  • 12029418
  • Patent Number
    12,029,418
  • Date Filed
    Tuesday, September 20, 2022
    a year ago
  • Date Issued
    Tuesday, July 9, 2024
    2 months ago
Abstract
An end effector includes an anvil and a cartridge assembly having a plurality of surgical staples disposed in a cavity defined therein. The cartridge assembly may include a movable driver or sled configured to deploy the surgical staple from the cavity into tissue. The surgical staple may include a linear leg and an arcuate leg extending therefrom. The linear leg may include a protruding portion to provide pressure to tissue captured by the surgical staple. A three-dimensional and/or self-supporting surgical staple may interlock its two legs upon deployment thereof.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to formable surgical fasteners and, more particularly, to surgical staples for use in surgical staplers having an end effector including a cartridge assembly for deploying the surgical staples and an anvil for forming the surgical staples. The present disclosure also relates to cartridge assemblies configured to carry and deploy the surgical staples and anvil assemblies for forming the surgical staples.


2. Background of Related Art

Many varieties of surgical fastening apparatus are known in the art, some of which are specifically adapted for use in various surgical procedures including, but not limited to, end-to-end anastomosis, open gastrointestinal anastomosis, endoscopic gastrointestinal anastomosis, and transverse anastomosis. Suitable examples of apparatus which may be used during the course of these procedures can be seen in U.S. Pat. Nos. 5,915,616; 6,202,914; 5,865,361; and 5,964,394, each of which is hereby incorporated by reference herein in its entirety.


In general, a surgical fastening apparatus will include an anvil that is approximated relative to a fastener cartridge during use. The anvil includes depressions that are aligned with, and/or are in registration with slots defined in the cartridge, through which the fasteners will emerge, to effectuate formation. The fastener cartridge typically has one or more rows of fasteners disposed laterally or radially of a longitudinal slot that is configured to accommodate a knife, or other such cutting element, such that tissue can be simultaneously cut and joined together. Depending upon the particular surgical fastening apparatus, the rows of fasteners may be arranged in a linear or non-linear, e.g. circular, semi-circular, or otherwise arcuate configuration.


Various types of surgical fasteners are well known in the art, including but not limited to unitary fasteners and two-part fasteners. Unitary fasteners generally include a pair of legs adapted to penetrate tissue and are connected by a backspan from which they extend. The staples are formed into a closed configuration, such as a “B” shaped configuration. Typically, the two-part fastener includes legs that are barbed and connected by a backspan. The legs are engaged and locked into a separate retainer piece that is usually located in the anvil. In use, the two-part fastener is pressed into the tissue so that the barbs penetrate the tissue and emerge from the other side where they are then locked into the retainer piece. The retainer piece prevents the two-part fastener from dislodging from the tissue. The two-part fasteners are not intended to be unlocked or removable. The fasteners are generally made of a bioabsorbable material.


During each of the aforementioned surgical procedures, the tissue is initially gripped or clamped between the anvil and cartridge such that individual fasteners can be ejected from the cartridge, through the slots, and forced through the clamped tissue. Thereafter, the fasteners are formed by driving them into the depressions formed in the anvil.


Laparoscopic Endo GIA™ reloads or cartridge assemblies are usually 12 mm in diameter. Some cartridge assemblies used to staple relatively thick tissue are 15 mm in diameter. “B” staples use linear pushers to keep the staples constrained within a pocket of a cartridge assembly during their deployment. “B” staples are guided from all sides to ensure acceptable forming. Traditional staple-pusher-sled configurations, however, are too big to fit a 5 mm diameter stapler.


Accordingly, there is a growing need to make staplers having cartridge assemblies that are smaller than 12 mm in diameter, with 5 mm cartridge assemblies being the most desirable. There is also a growing need for surgical staples that occupy less space within a cartridge assembly prior to deployment. Pediatric, thoracic and hepato-biliary and pancreatic surgeons could benefit from such devices. Further, it would simplify port management if a cartridge assembly could fit into a 12 mm port. Smaller cartridge assemblies will also enable new multi-firing staplers, which may be capable of being reloaded inside of body cavities.


It would therefore be desirable to provide a staple configuration for a staple designed to penetrate tissue and contact an anvil pocket on the opposing side of tissue, which, in cooperation with conventional cartridge and anvil technology, minimizes staple size and therefore cartridge assembly size.


SUMMARY

In accordance with one aspect of the present disclosure, a surgical staple is provided for use in a surgical stapler. The surgical stapler has an end effector with opposing jaws. An anvil is located on one jaw and a cartridge is located on an opposing jaw. The jaws are movable between spaced apart and approximated positions. The anvil has anvil pockets against which the staples are formed as at least one leg of each staple is urged into contact with the anvil. The surgical staple may include a linear leg and an arcuate leg extending therefrom. The linear leg may include a protruding portion to provide pressure to tissue captured by the surgical staple.


In accordance with another aspect of the present disclosure, a self-supporting surgical staple is provided. The self-supporting surgical staple can be directly driven and formed without the need for any additional supporting components. The self-supporting surgical staple is dimensioned such that it can be constrained within a pocket or cavity of a cartridge assembly while permitting only one degree of freedom, along which the surgical staple will be formed. The self-supporting surgical staple may include a first, linear leg extending at an angle relative to a second leg. The self-supporting surgical staple may further include a connector extending at an angle relative to the first and second legs configured for abutting engagement with a driver, sled, or wedge of a cartridge assembly.


Surgical staples of the present disclosure allow for the use of smaller diameter laparoscopic staplers. The surgical staples can be made from titanium or stainless steel and can be fabricated from sheet metal or wire. In some embodiments, a bump in the surgical staples helps to hold the surgical staples securely in a pocket of a cartridge assembly. It is contemplated that a backspan of the surgical staples can have a short spike to stabilize the surgical staples against tissue. In some embodiments, the surgical staples can include a bump to achieve even tissue compression. In embodiments, the surgical staples may be partially coined to achieve a desired stiffness and decrease the size of an entry wound during insertion into tissue.


In accordance with another aspect of the present disclosure, an end effector of a surgical stapler is provided. The end effector includes a cartridge assembly and an anvil. The cartridge assembly may have a plurality of surgical staples disposed in a cavity defined therein. The cartridge assembly may include a movable pusher bar and/or sled configured to deploy the surgical staple from the cavity into tissue. The pusher bar at least partially secures a surgical staple in the cavity of the cartridge assembly. Upon engagement of the sled with the pusher bar, the pusher bar rotates within the cavity about an axis to deploy the surgical staple from the cavity into engagement with the anvil and tissue.


In some aspects of the present disclosure, a cartridge assembly includes a locking shelf to prevent a pusher bar from being ejected from the cartridge assembly.


In other embodiments, the cartridge assembly does not include a pusher bar such that the sled directly engages a surgical staple to deploy the surgical staple from the cavity into engagement with the anvil and tissue.


In another embodiment of the present disclosure, an anvil is provided that includes two anvil pockets disposed in perpendicular relation to one another.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are described herein with reference to the drawings, wherein:



FIG. 1 is a perspective view of a surgical stapler in accordance with an embodiment of the present disclosure;



FIG. 2 is a perspective view of a surgical staple in an unformed configuration in accordance with an embodiment of the present disclosure;



FIG. 3 is a perspective view of the surgical staple shown in FIG. 2 in a formed configuration;



FIG. 4 is a perspective, cutaway view of a cartridge assembly, in accordance with an embodiment of the present disclosure, with the surgical staple shown in FIG. 2 disposed therein;



FIG. 5 is a cutaway view of a cavity defined in the cartridge assembly shown in FIG. 4;



FIG. 6 is a perspective view of a pusher bar of the cartridge assembly shown in FIG. 4;



FIG. 7 is a perspective, cutaway view of an end effector including an anvil and the cartridge assembly shown in FIG. 4 deploying the surgical staple shown in FIG. 2;



FIG. 8 is a perspective, cutaway view of the end effector shown in FIG. 7 after having formed the surgical staple shown in FIG. 2;



FIG. 9 is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;



FIG. 10 is a perspective view of the surgical staple shown in FIG. 9 in a formed configuration;



FIG. 11 is a perspective view of a surgical staple in accordance with another embodiment of the present disclosure;



FIG. 12 is a perspective view of a surgical staple in accordance with another embodiment of the present disclosure;



FIG. 13 is a top view of the surgical staple shown in FIG. 12;



FIG. 14 is a perspective, cutaway view of an end effector, in accordance with an embodiment of the present disclosure, including a cartridge assembly and an anvil having the surgical staple shown in FIG. 12 disposed therein in an unformed position;



FIG. 15 is a perspective, cutaway view of the cartridge assembly shown in FIG. 14 after having formed the surgical staple shown in FIG. 12;



FIG. 16 is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;



FIG. 17 is a perspective view of the surgical staple shown in FIG. 16 in a formed configuration;



FIG. 18A is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;



FIG. 18B is a perspective view of the surgical staple shown in FIG. 18A in a formed configuration;



FIG. 19A is a side view of the surgical staple shown in FIG. 18A in the unformed configuration;



FIG. 19B is a side view of the surgical staple shown in FIG. 18A in the formed configuration;



FIG. 20A is a top view of the surgical staple shown in FIG. 18A in the unformed configuration;



FIG. 20B is a top view of the surgical staple shown in FIG. 18A in the formed configuration;



FIG. 21 is a perspective view of a cartridge assembly and anvil of an end effector, in accordance with an embodiment of the present disclosure, having the surgical staple shown in FIG. 18A disposed therein;



FIG. 22 is a side view of the cartridge assembly shown in FIG. 21 and a driver deploying the surgical staple shown in FIG. 18A;



FIG. 23 is a top view of the cartridge assembly and surgical staple shown in FIG. 22;



FIG. 24 is a perspective view of the anvil assembly shown in FIG. 21;



FIG. 25A is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;



FIG. 25B is a perspective view of the surgical staple shown in FIG. 25A in a formed configuration;



FIG. 26A is a perspective view of a surgical staple in an unformed configuration in accordance with another embodiment of the present disclosure;



FIG. 26B is a perspective view of the surgical staple shown in FIG. 26A in a formed configuration; and



FIG. 27 is a top view of an anvil having two anvil pockets in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Embodiments of the presently disclosed surgical staples and end effectors will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.


With reference to FIG. 1, a surgical fastener applying apparatus 10 according to an embodiment of the present disclosure will be discussed. Surgical fastener applying apparatus 10 is used to sequentially apply a plurality of surgical fasteners to tissue, and may be of the re-usable or disposable variety. Surgical fastener applying apparatus 10 includes a handle 12, an elongated shaft 14 extending distally therefrom, and an end effector 120 coupled to a distal end 18 of the elongated shaft 14. Actuation of the handle 12 advances a drive rod distally to operate the end effector 120. However, other handles may be used, such as, for example, motor-driven, hydraulic, ratcheting, etc. In general, end effector 120 is adapted to clamp, sequentially fasten together, and sever adjacent tissue segments along a cut-line. Accordingly, end effector 120 includes a pair of opposed jaws 121, 123 pivotally coupled with respect to one another and respectively including a surgical fastener cartridge assembly 122 and an anvil 124.


In operation, surgical fastener applying apparatus 10 is fired similarly to and in accordance with other known surgical stapling instruments. For a detailed discussion of the approximation and firing of surgical stapling instrument 10, reference is made to commonly assigned U.S. Pat. No. 5,865,361, the entire contents of which have already been incorporated herein by reference. The handle 12 includes a housing 16, which includes stationary handle member 17. A movable trigger 19 is pivotably supported within the housing 16 and is biased away from the stationary handle member 17. Movement of the movable trigger 19 in the direction of the stationary handle member 17 imparts a driving force to an actuation shaft within the housing 16 causing it to advance linearly in a distal direction. The staple cartridge assembly 122 and anvil 124 are moved closer relative to each other and a force is transmitted to the ejectors or pushers positioned adjacent to surgical fasteners disposed within slots of the staple cartridge assembly 122 thereby ejecting the surgical fasteners and driving the surgical fasteners against a staple forming surface of the anvil 124.


Referring specifically to FIGS. 2 and 3, a new surgical staple 100 is provided, which is configured for disposal in a cartridge assembly, such as, for example, cartridge assembly 122 described with reference to FIG. 1. Surgical staple 100 includes a first leg, such as, for example, a backspan 102, and a second leg 104 extending therefrom. Backspan 102 and second leg 104 are substantially coplanar with one another. Backspan 102 has a first linear portion 106 and a second linear portion 108 separated by a protrusion or bump 110. Protrusion or bump 110 has a triangular configuration. Protrusion or bump 110 applies pressure to tissue captured by surgical staple 100. In some embodiments, protrusion or bump 110 may be variously configured, such as, for example, oval, oblong, squared, circular, and/or polygonal.


Second leg 104 has an arcuate configuration and extends between a first end 112 and a second end 114. Second leg 104 may have varying cross section configurations and curvatures between first and second ends 112, 114 to help achieve an optimal shape after deployment. In some embodiments, second leg 104 has a uniform cross section configuration and curvature between first and second ends 112, 114. First end 112 of second leg 104 extends from first linear portion 106 of backspan 102 at an angle such that surgical staple 100 has a generally V-shaped configuration, as shown in FIG. 2. Second end 114 of second leg 104 has a slanted or tapered tip 119 designed and adapted to penetrate tissue. Upon deployment of surgical staple 100, second linear portion 108 of backspan 102 and second end 114 of second leg 104 are brought closer together such that surgical staple 100 takes on a generally D-shaped configuration, as shown in FIG. 3.


Surgical staple 100 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 100 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.


With reference to FIGS. 4-8, end effector 120 is provided, and is configured for connection to a distal end of a surgical stapler, such as, for example, surgical fastener applying apparatus 10. End effector 120 includes a cartridge assembly 122 configured to hold or store a plurality of surgical staples, such as, for example, surgical staples 100, and an anvil 124 pivotally attached to cartridge assembly 122 configured to deform surgical staple 100 upon actuation of end effector 120.


Cartridge assembly 122 includes an inner surface 126 defining a cavity or pocket 128 for receipt of surgical staple 100 and a staple guiding member, such as, for example, a staple pusher bar 130. Inner surface 126 includes a first hub 132 and a second hub (not shown) oriented towards one another defining a rotation axis “X1-X1” therebetween. Each hub 132 has a counterbore including a semicircular flat-bottomed hole 134 (FIG. 5) and a smaller hole 136 formed therein configured for rotatable receipt of pusher bar 130.


Inner surface 126 further includes a curved portion 138 configured for receipt of second leg 104 of surgical staple 100 such that second leg 104 is translatable relative to and along curved portion 138 of inner surface 126. A shelf or ledge 140 overlaps curved portion 138 of inner surface 126 to define an opening 142 for second end 114 of second leg 104 to pass through during deployment of surgical staple 100 from cavity 128. Shelf or ledge 140 also provides a stop for pusher bar 130, as described in further detail herein below.


Pusher bar 130 is rotatably disposed in cavity 128. Pusher bar 130 has a first side 150, a second side 152, a top surface 154 and a bottom surface 156 and extends between a first end 158 and a second end 160. First end 158 of pusher bar 130 includes a first disc 162 extending from first side 150 of pusher bar 130 configured for disposal in flat-bottomed hole 134 of hub 132 of cartridge assembly 122. Disc 162 further includes a post 164 extending therefrom having a flattened tip. Post 164 is configured for receipt or disposal in hole 136 of hub 132 of cartridge assembly 122. First end 158 further includes a second disc 172, similar to first disc 162, extending from second side 152 of pusher bar 130 configured for disposal in the flat-bottomed hole of the second hub (not shown) of cartridge assembly 122. Disc 172 further includes a post 174, similar to post 164, having a flattened tip. Post 174 is configured for receipt or disposal in the hole of the second hub (not shown) of cartridge assembly 122.


Posts 164, 174 are oriented in opposite directions relative to one another and provide pusher bar 130 with the ability to rotate within cavity 128 of cartridge assembly 122. It is contemplated that, due to the shape and restrictive features of cavity 128, pusher bar 130 is resisted and/or prevented from rotating in any direction other than counter-clockwise from its starting, vertical orientation within cavity 128, as shown in FIG. 4.


Top surface 154 of pusher bar 130 has a planar portion 176 extending between first and second ends 158, 160 configured for abutment with backspan 102 of surgical staple 100, as shown in FIG. 4. Planar portion 176 includes a bump or protrusion 178 disposed at first end 158 of pusher bar 130 configured for engagement with second linear portion 108 of backspan 102 of surgical staple 100. Pusher bar 130 also includes a stepped surface or raised portion 180 extending from top surface 154 and between first and second ends 158, 160. Surgical staple 100 is received between raised portion 180 and inner surface 126 such that surgical staple 100 is resisted and/or prevented from moving laterally. In this way, when surgical staple 100 is disposed within cavity 128, surgical staple 100 is secured between planar portion 176, raised portion or stepped surface 180, bump or protrusion 178, and inner surface 126 of cartridge assembly 122 to provide guidance for surgical staple 100 during deployment thereof. Pusher bar 130 further includes a shelf or ledge 182 that engages shelf or ledge 140 upon deployment of surgical staple 100 so as to prevent second end 160 of pusher bar 130 from exiting cavity 128.


In assembly, pusher bar 130 is inserted vertically downward into cavity 128 until posts 164, 174 engage first and second hubs 132 in a snap-fit connection. In some embodiments, pusher bar 130 can be inserted from a bottom side of cartridge assembly 122 vertically upward into cavity 128.


Cartridge assembly 122 further includes a driver or sled 184 translatably disposed therein. Driver or sled 184 may include a wedge 186 at a distal end of an arm 188. An upper surface 190 of wedge 186 may taper downwardly to a curved drop off 192. Drop off 192 is configured to engage bottom surface 156 of pusher bar 130 during actuation of end effector 120. In embodiments, cartridge assembly 122 includes a plurality of drivers or sleds 184 configured to engage a plurality of pusher bars 130 in successive order.


In operation, with tissue disposed between cartridge assembly 122 and anvil 124 of end effector 120, end effector 120 is actuated to pivot cartridge assembly 122 and/or anvil 124 toward the other. Driver or sled 184 translates, in a direction shown by arrow “A” in FIG. 7, and engages wedge 186 with second end 160 of bottom surface 156 of pusher bar 130. Pusher bar 130 rotates about first axis “X1-X1,” in a direction shown by arrow “B” in FIG. 7, from the starting, vertical position shown in FIG. 4, to a finished, horizontal position shown in FIG. 8. The rotation of pusher bar 130 causes surgical staple 100 to rotate within cavity 128 relative to and along curved portion 138, such that second leg 104 of surgical staple 100 exits cavity 128 of cartridge assembly 122 and penetrates tissue. Continued rotation of pusher bar 130 and, in turn, rotation of surgical staple 100, engages second leg 104 with an anvil pocket 125 of anvil 124 so as to deform or bend second leg 104 of surgical staple 100 about first linear portion 106 of backspan 102. Deformation of surgical staple 100 ceases upon an engagement of shelf or ledge 182 of pusher bar 130 with shelf or ledge 140 of cartridge assembly 122, as shown in FIG. 8. After surgical staple 100 is formed, surgical staple 100 takes on a generally D-shaped configuration, as shown in FIG. 8, to capture tissue between backspan 102 and second leg 104.


In one embodiment, as shown in FIGS. 9 and 10, a surgical staple 200, similar to surgical staple 100 described above with regard to FIGS. 2-8, is provided. Surgical staple 200, like surgical staple 100, is designed and adapted for use in cartridge assembly 122 of end effector 120 described above. Surgical staple 200 includes a first leg, such as, for example, a backspan 202, and a second leg 204 extending therefrom. Backspan 202 and second leg 204 are coplanar with one another. Backspan 202 has a linear configuration and extends between a first end 206 and a second end 208. Second end 208 of backspan 202 has a bump or short leg 218 extending at an angle therefrom. Bump or short leg 218 helps to stabilize surgical staple 200 in tissue.


Second leg 204 has an arcuate configuration and extends between a first end 212 and a second end 214. Second leg 204 may have a varying cross section configuration and curvature between first and second ends 212, 214 to help achieve an optimal shape after deployment. In some embodiments, second leg 204 may have a uniform cross section and curvature between first and second ends 212, 214. First end 212 of second leg 204 extends from first end 206 of backspan 202 at an angle, such that surgical staple 200 has a generally V-shaped configuration prior to deformation, as shown in FIG. 9. Second end 214 of second leg 204 has a slanted or tapered point 219 designed and adapted to penetrate tissue. Second leg 204 is longer than backspan 202.


In operation, upon deployment of surgical staple 200, second end 208 of backspan 202 and second end 214 of second leg 204 are brought closer together such that surgical staple 200 takes on a generally D-shaped configuration. In the formed configuration, as shown in FIG. 10, a curved inner surface 221 of second end 214 of second leg 204 overlaps and abuts a curved outer surface 220 of short leg 218 of backspan 202 to capture tissue therebetween. In the formed configuration, short leg 218 of backspan 202 and second end 214 of second leg 204 are oriented in opposing directions.


Surgical staple 200 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 200 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.


In one embodiment, as shown in FIG. 11, a surgical staple 300, similar to surgical staple 100 described above with regard to FIGS. 2-8, is provided. Surgical staple 300 is fabricated from metallic wire, such as, for example, titanium or stainless steel wire. In embodiments, surgical staple 300 is fabricated from sheet metal. Surgical staple 300 includes a first leg, such as, for example, a backspan 302, and a second leg 304 extending therefrom. Backspan 302 includes a protrusion or bump 310 extending therefrom. Backspan 302 may be flattened, coined, or have an increased thickness to increase a stiffness of backspan 302.


Second leg 304 has a varying cross section and curvature between a first end 312 and a second end 314 to help achieve an optimal shape after deployment. Specifically, first end 312 of second leg 304, similar to backspan 302, may be flattened, coined, or have an increased thickness to increase its stiffness relative to the remainder of second leg 304. Second end 314 of second leg 304 has a uniform rounded cross section configuration such that second end 314 is more pliable and, in turn, more prone to bending or deforming under compressive forces compared to the flattened or coined portions of first and second legs 302, 304. Accordingly, surgical staple 300 may have a higher likelihood of bending at an interface 315 between first and second ends 312, 314 of second leg 304 than along other portions of surgical staple 300.


With reference to FIGS. 12-15, a 3-dimensional surgical staple 400, in accordance with another embodiment of the present disclosure, is provided. Surgical staple 400 is designed and adapted to be deployed directly by a driver or sled 484 without using a pusher bar, as described herein below.


Referring specifically to FIGS. 12 and 13, surgical staple 400 includes a first leg, such as, for example, a backspan 402, and a second leg 404 extending therefrom. At least a portion of backspan 402 is non-coplanar with second leg 404 of surgical staple 400. Backspan 402 includes a main body 403 extending between a first end 406 and a second end 408 having a triangular bump or protrusion 410 disposed therebetween. Protrusion or bump 410 provides pressure to tissue captured by surgical staple 400. First end 406 of main body 403 is attached to a side surface 411 of a first end 412 of second leg 404 at an angled orientation relative thereto such that main body 403 of backspan 402 is offset from or disposed in a different plane than second leg 404. Second end 408 of main body 403 of backspan 402 has an extension or short leg 418 extending perpendicularly and upwardly therefrom in parallel alignment with second leg 404. Short leg 418 is offset from main body 403 of backspan 402 and coplanar with second leg 404. Having main body 403 of backspan 402 offset from second leg 404 and short leg 418 allows surgical staple 400 to be translated through a cartridge assembly 422 towards an anvil 424 along backspan 402 while second leg 404 and short leg 418 are guided through cartridge assembly 412, as described in greater detail below.


Second leg 404 has an arcuate configuration and extends upwardly from main body 403 of backspan 402. Second leg 404 may have a varying cross section configuration and curvature between first and second ends 412, 414 to help achieve an optimal shape after deployment. In some embodiments, second leg 404 has a uniform cross section configuration and curvature between first and second ends 412, 414. Second end 414 of second leg 404 has a slanted or tapered tip 419 designed and adapted to penetrate tissue. Upon deployment of surgical staple 400, short leg 418 of backspan 402 and second end 414 of second leg 404 are brought closer together, such that surgical staple 400 may take on a generally D-shaped configuration.


Surgical staple 400 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 400 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.


With reference to FIGS. 14 and 15, an end effector 420 of a surgical stapler is provided. End effector 420 includes a cartridge assembly 422 configured to hold or store a plurality of surgical staples, such as, for example, surgical staples 400, and an anvil 424 configured to deform surgical staple 400 upon actuation of end effector 420.


Cartridge assembly 422 includes an inner surface 426 defining a cavity or pocket 428 configured for receipt of a surgical staple, such as, for example, surgical staple 400. Inner surface 426 includes a curved portion 438 configured for receipt of second leg 404 of surgical staple 400 such that second leg 404 is translatable along and relative to curved portion 438 of inner surface 426. Inner surface 426 further includes a planar portion 442 in juxtaposed relation to curved portion 438 configured for receipt of backspan 402 of surgical staple 400. A pair of oppositely oriented shelves or ledges 440 overlap cavity 428 to define openings 444 configured to capture first end 412 of second leg 404 and short leg 418 of backspan 402 therein during deployment of surgical staple 400 from cavity 428.


Cartridge assembly 422 further includes a driver or sled 484 translatably disposed therein. Driver or sled 484 includes an arm 486 and a wedge 488 at a distal end thereof. An upper surface 490 of wedge 488 is substantially planar and tapers downwardly to a pointed distal tip. Upper surface 490 is configured to engage an underside of main body 403 of backspan 402 during actuation of end effector 420. In embodiments, cartridge assembly 422 includes a plurality of drivers or sleds 484 configured to engage a plurality of surgical staples 400 in successive order.


In operation, with tissue disposed between cartridge assembly 422 and anvil 424 of end effector 420, end effector 420 is actuated to pivot or translate cartridge assembly 422 and/or anvil 424 toward the other. Driver or sled 484 is translated, in a direction shown by arrow “C” in FIG. 14, into engagement with an underside of backspan 402 of surgical staple 400. As driver or sled 484 is further translated, an upwardly oriented force is acted on surgical staple 400 as a result of the tapered configuration of upper surface 490 of wedge 488. Surgical staple 400 is guided through cavity 428 by inner surface 426 and shelves or ledges 440. Continued translation of driver or sled 484 and, in turn, movement of surgical staple 400 through cavity 428 of cartridge assembly 422, engages second leg 404 with an anvil pocket 425 of anvil 424 so as to deform or bend second leg 404 about first end 406 of backspan 402. Deformation of surgical staple 400 ceases upon the abutment of upper surface 490 of arm 486 of driver or sled 484 with shelves or ledges 440 of cartridge assembly 422, as shown in FIG. 15. In a deployed position, as shown in FIG. 15, backspan 402 of surgical staple 400 is in parallel alignment with shelves or ledges 440 of cartridge assembly 422. After surgical staple 400 is formed, surgical staple 400 takes on a generally D-shaped configuration to capture tissue between backspan 402 and second leg 404.


With reference to FIGS. 16 and 17, another embodiment of a 3-dimensional surgical staple designated as 500 is provided, similar to surgical staple 400 described above with regard to FIGS. 12-15. Surgical staple 500 is designed and adapted to be deployed directly by a driver or sled without using a pusher bar, similar to surgical staple 400 described above. Surgical staple 500 includes a first leg, such as, for example, a backspan 502, and a second leg 504 extending therefrom. At least a portion of backspan 502 is non-coplanar with second leg 504. Backspan 502 includes a main body 503 extending between a first end 506 and a second end 508. First end 506 of main body 503 is attached to a first end 512 of second leg 504. Backspan 502 includes an extension or short leg 518 extending upwardly from second end 508 of main body 503. Short leg 518 is offset from main body 503 of backspan 502.


Second leg 504 of surgical staple 500 has an arcuate configuration and extends between a first end 512 and a second end 514. Second leg 504 may have a varying cross section configuration and curvature between first and second ends 512, 514 to help achieve an optimal shape after deployment. In some embodiments, second leg 504 has a uniform cross section configuration and curvature between first and second ends 512, 514. First end 512 of second leg 504 extends from first end 506 of main body 403 of backspan 502 at an angle such that surgical staple 500 has a generally V-shaped configuration, as shown in FIG. 16. Second end 514 of second leg 504 has a slanted or tapered tip 519 designed and adapted to penetrate tissue. Upon deployment of surgical staple 500, short leg 518 of backspan 502 and second end 514 of second leg 504 are brought closer together such that surgical staple 500 takes on a generally D-shaped configuration, as shown in FIG. 17. In the formed configuration, second end 514 of second leg 504 is in a side-by-side orientation with short leg 518 of backspan 502 to capture tissue therebetween.


Surgical staple 500 further includes a lateral extension or hook 520 connected to at least one of first end 506 of backspan 502 and first end 512 of second leg 504. Hook 520 is configured for translatable receipt in a track formed in a cartridge assembly. At least a portion of hook 520 and short leg 518 are co-planar with one another.


Surgical staple 500 can be fabricated from various materials, such as, for example, titanium or stainless steel in the form of sheet metal or wire. In some embodiments, surgical staple 500 or portions thereof are electro-polished to eliminate sharp or rough edges that may otherwise cut, irritate or sever tissue.


With reference to FIGS. 18A-24, a self-supporting, self-locking surgical staple 600, in accordance with another embodiment of the present disclosure, is provided. Surgical staple 600 is designed and adapted to be self-supporting within its respective pocket or channel 628 of a cartridge assembly 622, as described in further detail below. Surgical staple 600 is also designed and adapted to self-lock or have its legs interlock upon deployment to provide more reliable tissue compression and hemostasis of said tissue.


Surgical staple 600 includes a first leg, such as, for example, a backspan 602, and a second leg 604. Backspan 602 has a plurality of bends along its length forming a plurality of segments along its length. A first segment 603 is connected to and extends perpendicularly from a first end 612 of second leg 604. First segment 603 interconnects backspan 602 with second leg 604. A second segment 605 extends upwardly at an angle, for example, substantially 90 degrees, relative to first segment 603. The angle at which second segment 605 extends from first segment 603 is relatively small to minimize any loss of driving force of surgical staple 600 through cartridge assembly 622 due to friction and to minimize the need to increase a thickness of an interface between first and second segments 603, 605 to prevent deformation at the interface. Second segment 605 is configured for abutting engagement with a driver or wedge 684 to translate surgical staple 600 through cartridge assembly 622 and into tissue. Second segment 605 interconnects first segment 603 with a third segment 607 of surgical staple 600.


Third segment 607 is connected to second segment 605 at an obtuse angle. Backspan 602 includes a squared or hooked portion 609 connected to third segment 607. Squared or hooked portion 609 defines a notch 611 configured for disposal of a second end 614 of second leg 604. Squared or hooked portion 609 is designed and adapted to retain or lock second end 614 of second leg 604 in notch 611 in a formed configuration of surgical staple 600. Backspan 602 further includes an extension or short leg 618 extending transversely and downwardly therefrom, such that short leg 618 runs parallel with second leg 604, as shown in FIG. 19A. Short leg 618 further has a pointed tip 619 configured for penetrating tissue.


Second leg 604 has a linear configuration and a circular, uniform cross section configuration. In some embodiments, second leg 604 is variously configured and has various cross section configurations, such as, for example, those alternatives described herein above. Second leg 604 extends between a first end 612 and a second end 614. As mentioned above, first end 612 is connected to first segment 603 of backspan 602. Second end 614 has a pointed end 616 configured for penetrating tissue.


In use, surgical staple 600 is shaped or bent to change surgical staple 600 from a starting, unformed configuration, as shown in FIGS. 18A, 19A, and 20A, to a finished, formed configuration, as shown in FIGS. 18B, 19B, and 20B. To change surgical staple 600 from the unformed configuration to the formed configuration, surgical staple 600 is brought into engagement with an anvil 624 that directs a compressive force upon second leg 604 of surgical staple 600. Second end 614 of second leg 604 is bent or curved relative to first end 612 of second leg 604 until second end 614 of second leg 604 is received within notch 611 of backspan 602 and in abutment with squared or hooked portion 609 of backspan 602, such that backspan 602 and second leg 604 are interlocked with one another. In the formed configuration, as shown in FIGS. 18B, 19B and 20B, second end 614 of second leg 604 and short leg 618 of backspan 602 are oriented in opposing directions to better capture tissue therebetween.


With reference to FIGS. 21-24, an end effector 620 of a surgical stapler is provided. End effector 620 includes a cartridge assembly 622 configured to hold or store a plurality of surgical staples, such as, for example, surgical staples 600, and an anvil 624 pivotally or translatably attached to cartridge assembly 622 and configured to deform surgical staple 600 upon actuation of end effector 620.


Cartridge assembly 622 includes a pocket or channel 628 adapted and designed for receipt of a surgical staple, such as, for example, surgical staple 600. Pocket or channel 628 is shaped and dimensioned to closely surround surgical staple 600 so as to resist and/or prevent movement of surgical staple 600 in all directions except along an axis “X2-X2.” In this way, surgical staple 600 is supported within pocket or channel 628, as shown in FIG. 23, without a need for any additional restrictive components, such as, for example, a pusher bar 130. Pocket or channel 628 extends transversely between a top end 630 and a bottom surface 632 of cartridge assembly 622. For example, pocket or channel 628 can extend at an acute angle relative to both top end 630 and bottom surface 632 of cartridge assembly 622.


Cartridge assembly 622 further includes a driver or wedge 684. Driver or wedge 684 has a planar driving surface 686. Driver or wedge 684 is translatably disposed in an elongate channel 634 defined in cartridge assembly 622. Elongate channel 634 overlaps pocket or channel 628. Driving surface 686 of driver or wedge 684 abuts second segment 605 of surgical staple 600 and is disposed at an angle with respect to second leg 604 of surgical staple 600. In embodiments, cartridge assembly 622 includes a plurality of drivers or wedges 684 configured to engage a plurality of surgical staples 600 in successive order.


In operation, with tissue disposed between cartridge assembly 622 and anvil 624 of end effector 620, end effector 620 is actuated to pivot or translate cartridge assembly 622 and/or anvil 624 toward the other. Driver or wedge 684 is translated, in a direction shown by arrow “D” in FIG. 22, into engagement with second segment 605 of backspan 602 of surgical staple 600. As driver or wedge 684 is further translated, a force is acted on surgical staple 600, in a direction along axis “X2-X2,” to translate surgical staple 600 through pocket or channel 628. Continued translation of driver or wedge 684 and, in turn, movement of surgical staple 600 through pocket or channel 628 of cartridge assembly 622, engages second leg 604 with an anvil pocket 625 of anvil 624 so as to deform or bend second end 614 of second leg 604 about first end 612 of second leg 604. After surgical staple 600 is formed, second end 614 of second leg 604 interlocks with squared or hooked portion 609 of backspan 602, as shown in FIGS. 18B, 19B, and 20B, to capture tissue between backspan 602 and second leg 604.


In one embodiment, as shown in FIGS. 25A and 25B, a surgical staple 700 is provided, similar to surgical staple 600 described above with regard to FIGS. 18A-24. Surgical staple 700, like surgical staple 600, is designed and adapted to be self-supporting within its respective pocket or channel of a cartridge assembly. Surgical staple 700 is also designed and adapted to self-lock or have its legs interlock upon deployment to provide more reliable tissue compression and hemostasis of said tissue.


Surgical staple 700 includes a first leg, such as, for example, a backspan 702, and a second leg 704. Backspan 702 has a plurality of bends along its length forming a plurality of segments along its length such that at least a portion of backspan 702 is offset from second leg 704. A first segment 703 is connected to and extends perpendicularly from a first end 712 of second leg 704. First segment 703 interconnects backspan 702 with second leg 704. A second segment 705 extends upwardly at an angle relative to first segment 703. Second segment 705 is configured for abutting engagement with a driver or wedge to translate surgical staple 700 through a cartridge assembly and into tissue. Second segment 705 interconnects first segment 703 with a third segment 707 of surgical staple 700.


Third segment 707 is connected to second segment 705 at an obtuse angle. Backspan 702 includes a squared or hooked portion 709 connected to third segment 707 to help retain surgical staple 700 in a pocket or channel of a cartridge assembly, such as, for example, a pocket or channel similar to that founding cartridge assembly 622. Backspan 702 further includes an extension or short leg 718 extending transversely and downwardly therefrom, such that short leg 718 runs parallel with second leg 704, as shown in FIG. 25A. Short leg 718 has a pointed tip 719 configured for penetrating tissue.


Second leg 704 has a linear configuration and a circular, uniform cross section configuration. Second leg 704 extends between a first end 712 and a second end 714. As mentioned above, first end 712 is connected to first segment 703 of backspan 702. Second end 714 has a pointed end 716 configured for penetrating tissue.


In use, surgical staple 700 is shaped or bent to change surgical staple 700 from a starting, unformed configuration, as shown in FIG. 25A, to a finished, formed configuration, as shown in FIG. 25B. To change surgical staple 700 from the unformed configuration to the formed configuration, surgical staple 700 is brought into engagement with an anvil that directs a compressive force upon second leg 704 of surgical staple 700. Second end 714 of second leg 704 is bent or curved relative to first end 712 of second leg 704 until second end 714 of second leg 704 is in juxtaposed relation to and abutment with short leg 718 of backspan 702. In this way, backspan 702 and second leg 704 are interlocked with one another. In the formed configuration, as shown in FIG. 25B, second end 714 of second leg 704 and short leg 718 of backspan 702 are oriented in opposing directions to better capture tissue therebetween.


In one embodiment, as shown in FIGS. 26A-27, a surgical staple 800 is provided, similar to surgical staple 700 described above with regard to FIGS. 25A and 25B. Surgical staple 800, like surgical staple 700, is designed and adapted to be self-supporting within its respective pocket or channel of a cartridge assembly. Surgical staple 800 is also designed and adapted to self-lock or have its legs interlock upon deployment to provide more reliable tissue compression and hemostasis of said tissue.


Surgical staple 800 includes a first leg, such as, for example, a backspan 802, and a second leg 804. Backspan 802 has a plurality of bends along its length forming a plurality of segments along its length such that at least a portion of backspan 802 is offset from second leg 804. A first segment 803 is connected to and extends perpendicularly from a first end 812 of second leg 804. First segment 803 interconnects backspan 802 with second leg 804. A second segment 805 extends upwardly at an angle relative to first segment 803. Second segment 805 is configured for abutting engagement with a driver or wedge to translate surgical staple 800 through a cartridge assembly and into tissue. Second segment 805 interconnects first segment 803 with a third segment 807 of surgical staple 800.


Third segment 807 is connected to second segment 805 at an obtuse angle. Backspan 802 includes a squared or hooked portion 809 connected to third segment 807 to help retain surgical staple 800 in a pocket or channel of a cartridge assembly, such as, for example, a pocket or channel similar to that found in cartridge assembly 622 described above. Backspan 802 further includes an extension or short leg 818 extending transversely and downwardly therefrom, such that short leg 818 runs substantially parallel with second leg 804, as shown in FIG. 26A. Short leg 818 has a length that is approximately half of a length of second leg 804. In some embodiments, short leg 818 has a length that is more or less than a length of second leg 804. Short leg 818 has an arcuate configuration and a uniform cross section configuration. In some embodiments, short leg 818 is variously shaped and configured, such as, for example, those alternatives described herein above. Short leg 818 also has a pointed tip 819 configured for penetrating tissue.


Second leg 804 has a linear configuration and a circular, uniform cross section configuration. Second leg 804 extends between a first end 812 and a second end 814. As mentioned above, first end 812 is connected to first segment 803 of backspan 802. Second end 814 has a pointed end 816 configured for penetrating tissue.


With reference to FIG. 27, an anvil 824 is provided to apply a compressive force on surgical staple 800. Anvil 824 includes two anvil pockets 825, 827 oriented perpendicular relative to one another so that both second leg 804 and short leg 818 can be deformed about two axes that lie in perpendicular relation to one another. Anvil pocket 825 is configured for engagement with second leg 804 and anvil pocket 827 is configured for engagement with short leg 818. Anvil pocket 825 is longer than anvil pocket 827 because second leg 804 is to be bent or curved to a substantially lesser degree than short leg 818.


In use, surgical staple 800 is shaped or bent to change surgical staple 800 from a starting, unformed configuration, as shown in FIG. 26A, to a finished, formed configuration, as shown in FIG. 26B. To change surgical staple 800 from the unformed configuration to the formed configuration, surgical staple 800 is brought into engagement with anvil 824 that directs a compressive force upon both second leg 804 and short leg 818 of backspan 802.


Second end 814 of second leg 804 is bent or curved relative to first end 812 of second leg 804 about a first axis “X3-X3” until second end 814 of second leg 804 is substantially parallel with third segment 807 and squared or hook portion 809 of backspan 802. First end 812 of second leg 814 may be fabricated from a more pliable material or have a lesser thickness than the remainder of second leg 804 so that bending of second leg 804 occurs adjacent first end 812, as shown in FIG. 26B. After second end 614 of second leg 604 is bent or curved to a position juxtaposed to short leg 818, short leg 818 contacts anvil pocket 827 of anvil 824 causing short leg 818 to bend or curve about an axis “X4-X4,” substantially perpendicular to axis “X3-X3,” about which second leg 804 is bent or curved. Short leg 818 is bent or curved around second end 814 of second leg 804 to interlock backspan 802 and second leg 804 with one another. In the formed configuration, as shown in FIG. 26B, short leg 818 takes on a U-shaped configuration.


It is contemplated that each of the surgical staples described herein may be fabricated from different materials at certain preselected areas of the surgical staples and/or may have different thicknesses or densities at certain preselected areas thereof to ensure bending or curving of the surgical staples at said preselected areas of the surgical staples. Further, it is envisioned that the various segments or components of the surgical staples disclosed herein may be monolithically formed or integrally connected with one another. It is further contemplated that the various end effectors and surgical staples described herein can be integrated with a variety of surgical staplers other than the surgical stapler shown in FIG. 1, such as, for example, a surgical stapler-cutter, a linear surgical stapler, a linear surgical stapler-cutter, a circular surgical stapler, or a circular surgical stapler-cutter.


Although specific embodiments of the present disclosure have been described above in detail, it will be understood that this description is merely for purposes of illustration. Various modifications of and equivalent structures corresponding to the disclosed aspects of the embodiments in addition to those described above may be made by those skilled in the art without departing from the spirit of the present disclosure which is defined in the following claims, the scope of which is to be accorded the broadest interpretation so as to encompass such modifications and equivalent structures.

Claims
  • 1. A surgical staple, comprising: a backspan having a first end portion and a second end portion;a long leg extending at an angle from the first end portion of the backspan and having a first end and a pointed, second end; anda short leg extending at an angle from the second end portion of the backspan and having a pointed end, wherein the long leg is longer than the short leg and is configured to deform about a first axis, and the short leg is configured to deform about a second axis that is perpendicular to the first axis.
  • 2. The surgical staple according to claim 1, wherein the long and short legs are substantially parallel with one another.
  • 3. The surgical staple according to claim 1, wherein the short leg has a length that is approximately half of a length of the long leg.
  • 4. The surgical staple according to claim 1, wherein the backspan includes plurality of bends along a length thereof forming a plurality of segments along the length.
  • 5. The surgical staple according to claim 4, wherein at least a portion of the backspan is offset from the long and short legs.
  • 6. The surgical staple according to claim 4, wherein a first segment of the plurality of segments is connected to and extending perpendicularly from the first end of the long leg, wherein the first segment interconnects the backspan with the long leg.
  • 7. The surgical staple according to claim 6, wherein a second segment of the plurality of segments extends upwardly at an angle relative to the first segment, wherein the second segment is configured for abutting engagement with a driver of a cartridge assembly.
  • 8. The surgical staple according to claim 7, wherein a third segment of the plurality of segments is connected to the second segment at an obtuse angle.
  • 9. The surgical staple according to claim 8, wherein the plurality of segments includes a squared or hooked portion connected to the third segment.
  • 10. The surgical staple according to claim 1, wherein the short leg is arcuate along a length thereof, and the long leg is linear along a length thereof.
  • 11. The surgical staple according to claim 1, wherein the long leg is configured to be deformed to a lesser degree than the short leg.
  • 12. The surgical staple according to claim 1, wherein the pointed end of the short leg is configured to curve around the second end of the long leg upon deformation of the staple.
  • 13. A surgical staple, comprising: a backspan having a first end portion and a second end portion;a long leg extending at an angle from the first end portion of the backspan and having a first end and a pointed, second end; anda short leg extending at an angle from the second end portion of the backspan and having a pointed end, wherein the long leg is longer than the short leg and is configured to deform about a first axis, and the short leg is configured to deform about a second axis that is non-parallel to the first axis.
  • 14. The surgical staple according to claim 13, wherein the long and short legs are substantially parallel with one another.
  • 15. The surgical staple according to claim 13, wherein the short leg has a length that is approximately half of a length of the long leg.
  • 16. The surgical staple according to claim 13, wherein the backspan includes plurality of bends along a length thereof forming a plurality of segments along the length.
  • 17. The surgical staple according to claim 16, wherein at least a portion of the backspan is offset from the long and short legs.
  • 18. The surgical staple according to claim 13, wherein the long leg is configured to be deformed to a lesser degree than the short leg.
  • 19. The surgical staple according to claim 13, wherein the pointed end of the short leg is configured to curve around the second end of the long leg upon deformation of the staple.
  • 20. A method of deforming a surgical staple, comprising: deforming a long leg of the surgical staple about a first axis; anddeforming a short leg of the surgical staple about a second axis that is non-parallel to the first axis thereby curving a pointed end of the short leg around a pointed end of the long leg.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 16/803,071, filed Feb. 27, 2020, now U.S. Pat. No. 11,446,026, which is a divisional of U.S. patent application Ser. No. 15/834,485, filed on Dec. 7, 2017, now U.S. Pat. No. 10,603,034, which is a divisional of U.S. patent application Ser. No. 14/513,629, filed Oct. 14, 2014, now U.S. Pat. No. 9,867,613, which claims the benefit of and priority to U.S. Provisional Application No. 61/918,018 filed on Dec. 19, 2013, the entire contents of each of which are incorporated by reference herein.

US Referenced Citations (1258)
Number Name Date Kind
3079606 Bobrov et al. Mar 1963 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3777538 Weatherly et al. Dec 1973 A
3882854 Hulka et al. May 1975 A
4027510 Hiltebrandt Jun 1977 A
4086926 Green et al. May 1978 A
4241861 Fleischer Dec 1980 A
4244372 Kapitanov et al. Jan 1981 A
4305539 Korolkov et al. Dec 1981 A
4429695 Green Feb 1984 A
4505414 Filip Mar 1985 A
4520817 Green Jun 1985 A
4589413 Malyshev et al. May 1986 A
4596351 Fedotov et al. Jun 1986 A
4602634 Barkley Jul 1986 A
4605001 Rothfuss et al. Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4633861 Chow et al. Jan 1987 A
4633874 Chow et al. Jan 1987 A
4671445 Barker et al. Jun 1987 A
4700703 Resnick et al. Oct 1987 A
4703887 Clanton et al. Nov 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4784137 Kulik et al. Nov 1988 A
4863088 Redmond et al. Sep 1989 A
4869415 Fox Sep 1989 A
4892244 Fox et al. Jan 1990 A
4955959 Tompkins et al. Sep 1990 A
4978049 Green Dec 1990 A
4991764 Mericle Feb 1991 A
5014899 Presty et al. May 1991 A
5031814 Tompkins et al. Jul 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5106008 Tompkins et al. Apr 1992 A
5111987 Moeinzadeh et al. May 1992 A
5129570 Schulze et al. Jul 1992 A
5141144 Foslien et al. Aug 1992 A
5156315 Green et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5163943 Mohiuddin et al. Nov 1992 A
5170925 Madden et al. Dec 1992 A
5171247 Hughett et al. Dec 1992 A
5173133 Morin et al. Dec 1992 A
5180092 Crainich Jan 1993 A
5188274 Moeinzadeh et al. Feb 1993 A
5220928 Oddsen et al. Jun 1993 A
5221036 Takase Jun 1993 A
5242457 Akopov et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5253793 Green et al. Oct 1993 A
5263629 Trumbull et al. Nov 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5282807 Knoepfler Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5307976 Olson et al. May 1994 A
5308576 Green et al. May 1994 A
5312023 Green et al. May 1994 A
5318221 Green et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5328077 Lou Jul 1994 A
5330486 Wilk Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5344061 Crainich Sep 1994 A
5352238 Green et al. Oct 1994 A
5356064 Green et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5364001 Bryan Nov 1994 A
5364002 Green et al. Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381943 Allen et al. Jan 1995 A
5382255 Castro et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5407293 Crainich Apr 1995 A
5413268 Green et al. May 1995 A
5415334 Williamson et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417361 Williamson, IV May 1995 A
5423471 Mastri et al. Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431323 Smith et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5441193 Gravener Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5456401 Green et al. Oct 1995 A
5464300 Crainich Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5486185 Freitas et al. Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5490856 Person et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501689 Green et al. Mar 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5529235 Boiarski et al. Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554164 Wilson et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5573169 Green et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5579107 Wright et al. Nov 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5607095 Smith et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618291 Thompson et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662259 Yoon Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5662666 Onuki et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5732806 Foshee et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5769303 Knodel et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772099 Gravener Jun 1998 A
5772673 Cuny et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5810811 Yates et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5836147 Schnipke Nov 1998 A
5862972 Green et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5871135 Williamson IV et al. Feb 1999 A
5873873 Smith et al. Feb 1999 A
5878938 Bittner et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5911352 Racenet et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5922001 Yoon Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5980510 Tsonton et al. Nov 1999 A
5988479 Palmer Nov 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6079606 Milliman et al. Jun 2000 A
6099551 Gabbay Aug 2000 A
6109500 Alli et al. Aug 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6197017 Brock et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6269977 Moore Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6315183 Piraka Nov 2001 B1
6315184 Whitman Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6391038 Vargas et al. May 2002 B2
6398797 Bombard et al. Jun 2002 B2
6436097 Nardella Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6463623 Ahn et al. Oct 2002 B2
6478804 Vargas et al. Nov 2002 B2
6488196 Fenton, Jr. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6544274 Danitz et al. Apr 2003 B2
6554844 Lee et al. Apr 2003 B2
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6592597 Grant et al. Jul 2003 B2
6594552 Nowlin et al. Jul 2003 B1
6602252 Mollenauer Aug 2003 B2
6612053 Liao Sep 2003 B2
6619529 Green et al. Sep 2003 B2
D480808 Wells et al. Oct 2003 S
6644532 Green et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6698643 Whitman Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6731473 Li et al. May 2004 B2
6755338 Hahnen et al. Jun 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6808262 Chapoy et al. Oct 2004 B2
6817509 Geiste et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6889116 Jinno May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6962594 Thevenet Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6994714 Vargas et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7213736 Wales et al. May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7287682 Ezzat et al. Oct 2007 B1
7293685 Ehrenfels et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7296772 Wang Nov 2007 B2
7300444 Nielsen et al. Nov 2007 B1
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7326232 Viola et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7367485 Shelton, IV et al. May 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7399310 Edoga et al. Jul 2008 B2
7401720 Durrani Jul 2008 B1
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438208 Larson Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7458494 Matsutani et al. Dec 2008 B2
7461767 Viola et al. Dec 2008 B2
7462185 Knodel Dec 2008 B1
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464848 Green et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473258 Clauson et al. Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7537602 Whitman May 2009 B2
7543729 Ivanko Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7543731 Green et al. Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559453 Heinrich et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7571845 Viola Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7584880 Racenet et al. Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635073 Heinrich Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7635373 Ortiz Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7648055 Marczyk Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7678121 Knodel Mar 2010 B1
7681772 Green et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7682368 Bombard et al. Mar 2010 B1
7690547 Racenet et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7699205 Ivanko Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721935 Racenet et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7740160 Viola Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753248 Viola Jul 2010 B2
7757924 Gerbi et al. Jul 2010 B2
7757925 Viola et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766924 Bombard et al. Aug 2010 B1
7766928 Ezzat et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7789283 Shah Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798385 Boyden et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815090 Marczyk Oct 2010 B2
7815091 Marczyk Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819896 Racenet Oct 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7823761 Boyden et al. Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828186 Wales Nov 2010 B2
7828187 Green et al. Nov 2010 B2
7828188 Jankowski Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7845538 Whitman Dec 2010 B2
7850703 Bombard et al. Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857184 Viola Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7861907 Green et al. Jan 2011 B2
7866524 Krehel Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866526 Green et al. Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7886952 Scirica et al. Feb 2011 B2
7891532 Mastri et al. Feb 2011 B2
7891533 Green et al. Feb 2011 B2
7891534 Wenchell et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7901416 Nolan et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7909039 Hur Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7909224 Prommersberger Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918276 Guignard et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922064 Boyden et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7926692 Racenet et al. Apr 2011 B2
7934628 Wenchell et al. May 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7942300 Rethy et al. May 2011 B2
7942303 Shah May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7950562 Beardsley et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954683 Knodel et al. Jun 2011 B1
7954684 Boudreaux Jun 2011 B2
7954685 Viola Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963431 Scirica Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7975894 Boyden et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7992758 Whitman et al. Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006887 Marczyk Aug 2011 B2
8007505 Weller et al. Aug 2011 B2
8007513 Nalagatla et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011552 Ivanko Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8015976 Shah Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8028882 Viola Oct 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8033438 Scirica Oct 2011 B2
8033440 Wenchell et al. Oct 2011 B2
8033441 Marczyk Oct 2011 B2
8033442 Racenet et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8038044 Viola Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8056791 Whitman Nov 2011 B2
8061577 Racenet et al. Nov 2011 B2
8066166 Demmy et al. Nov 2011 B2
8070033 Milliman et al. Dec 2011 B2
8070034 Knodel Dec 2011 B1
8070035 Holsten et al. Dec 2011 B2
8074858 Marczyk Dec 2011 B2
8074859 Kostrzewski Dec 2011 B2
8074862 Shah Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8091753 Viola Jan 2012 B2
8091754 Ehrenfels et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8092493 Marczyk Jan 2012 B2
8096459 Ortiz et al. Jan 2012 B2
8096460 Blier et al. Jan 2012 B2
8100309 Marczyk Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8102008 Wells Jan 2012 B2
8113406 Holsten et al. Feb 2012 B2
8113407 Holsten et al. Feb 2012 B2
8113408 Wenchell et al. Feb 2012 B2
8113409 Cohen et al. Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8123101 Racenet et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8152041 Kostrzewski Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167186 Racenet et al. May 2012 B2
8172121 Krehel May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8181837 Roy May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186557 Cohen et al. May 2012 B2
8186558 Sapienza May 2012 B2
8186559 Whitman May 2012 B1
8186560 Hess et al. May 2012 B2
8193044 Kenneth Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205619 Shah et al. Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210412 Marczyk Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8216236 Heinrich et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8225979 Farascioni et al. Jul 2012 B2
8225980 Rivera Jul 2012 B1
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8235272 Nicholas et al. Aug 2012 B2
8235273 Olson et al. Aug 2012 B2
8235274 Cappola Aug 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8240536 Marczyk Aug 2012 B2
8240537 Marczyk Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245897 Tzakis et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245931 Shigeta Aug 2012 B2
8252009 Weller et al. Aug 2012 B2
8256653 Farascioni Sep 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8261958 Knodel Sep 2012 B1
8267300 Boudreaux Sep 2012 B2
8272551 Knodel et al. Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8276594 Shah Oct 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8286847 Taylor Oct 2012 B2
8286848 Wenchell et al. Oct 2012 B2
8286850 Viola Oct 2012 B2
8292146 Holsten et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292148 Viola Oct 2012 B2
8292149 Ivanko Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292153 Jankowski Oct 2012 B2
8292154 Marczyk Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292156 Kostrzewski Oct 2012 B2
8292158 Sapienza Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8308041 Kostrzewski Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308043 Bindra et al. Nov 2012 B2
8308044 Viola Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308757 Hillstead et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328065 Shah Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8336751 Scirica Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8342380 Viola Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348124 Scirica Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357174 Roth et al. Jan 2013 B2
8360294 Scirica Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8365971 Knodel Feb 2013 B1
8365972 Aranyi et al. Feb 2013 B2
8365973 White et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8381828 Whitman et al. Feb 2013 B2
8381961 Holsten et al. Feb 2013 B2
8387848 Johnson et al. Mar 2013 B2
8387849 Buesseler et al. Mar 2013 B2
8387850 Hathaway et al. Mar 2013 B2
8388652 Viola Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8397972 Kostrzewski Mar 2013 B2
8403195 Beardsley et al. Mar 2013 B2
8403196 Beardsley et al. Mar 2013 B2
8403197 Vidal et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403956 Thompson et al. Mar 2013 B1
8408439 Huang et al. Apr 2013 B2
8408440 Olson et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8413868 Cappola Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8418905 Milliman Apr 2013 B2
8418906 Farascioni et al. Apr 2013 B2
8418907 Johnson et al. Apr 2013 B2
8418908 Beardsley Apr 2013 B1
8419768 Marczyk Apr 2013 B2
8424735 Viola et al. Apr 2013 B2
8424736 Scirica et al. Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8439244 Holcomb et al. May 2013 B2
8439245 Knodel et al. May 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444037 Nicholas et al. May 2013 B2
8444038 Farascioni et al. May 2013 B2
8448832 Viola et al. May 2013 B2
8453652 Stopek Jun 2013 B2
8453905 Holcomb et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453913 Milliman Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459521 Zemlok et al. Jun 2013 B2
8459522 Marczyk Jun 2013 B2
8459523 Whitman Jun 2013 B2
8459524 Pribanic et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8469252 Holcomb et al. Jun 2013 B2
8469254 Czernik et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479967 Marczyk Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8490852 Viola Jul 2013 B2
8496152 Viola Jul 2013 B2
8496154 Marczyk et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8505799 Viola et al. Aug 2013 B2
8505802 Viola et al. Aug 2013 B2
8511575 Cok Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8523041 Ishitsuki et al. Sep 2013 B2
8523042 Masiakos et al. Sep 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8550325 Cohen et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573463 Scirica et al. Nov 2013 B2
8573465 Shelton, IV Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579177 Beetel Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8596515 Okoniewski Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608047 Holsten et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8613384 Pastorelli et al. Dec 2013 B2
8616427 Viola Dec 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8627994 Zemlok et al. Jan 2014 B2
8628544 Farascioni Jan 2014 B2
8631988 Viola Jan 2014 B2
8631989 Aranyi et al. Jan 2014 B2
8631991 Cropper et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636190 Zemlok et al. Jan 2014 B2
8636192 Farascioni et al. Jan 2014 B2
8636762 Whitman et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640940 Ohdaira Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8662371 Viola Mar 2014 B2
8668129 Olson Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8672209 Crainich Mar 2014 B2
8678263 Viola Mar 2014 B2
8678990 Wazer et al. Mar 2014 B2
8679155 Knodel et al. Mar 2014 B2
8684247 Scirica et al. Apr 2014 B2
8684249 Racenet et al. Apr 2014 B2
8690039 Beardsley et al. Apr 2014 B2
8695865 Smith et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8701961 Ivanko Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8714429 Demmy May 2014 B2
8715277 Weizman May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727200 Roy May 2014 B2
8733612 Ma May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740039 Farascioni Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8770458 Scirica Jul 2014 B2
8777082 Scirica Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789738 Knodel et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800840 Jankowski Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827134 Viola et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8870049 Amid Oct 2014 B2
9016541 Viola et al. Apr 2015 B2
9655615 Knodel et al. May 2017 B2
9867613 Marczyk et al. Jan 2018 B2
9872683 Hopkins Jan 2018 B2
10603034 Marczyk et al. Mar 2020 B2
10945727 Shelton, IV Mar 2021 B2
10966724 Shelton, IV Apr 2021 B2
11000276 Shelton, IV May 2021 B2
11000278 Shelton, IV May 2021 B2
11051812 Hopkins et al. Jul 2021 B2
11213295 Harris Jan 2022 B2
11446026 Marczyk et al. Sep 2022 B2
11826043 Shelton, IV Nov 2023 B2
20040108357 Milliman et al. Jun 2004 A1
20040199180 Knodel et al. Oct 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050006429 Wales et al. Jan 2005 A1
20050010241 Milliman et al. Jan 2005 A1
20050103819 Racenet et al. May 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20060049229 Milliman et al. Mar 2006 A1
20060180634 Shelton et al. Aug 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070073341 Smith et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070106317 Shelton et al. May 2007 A1
20070119901 Ehrenfels et al. May 2007 A1
20070145096 Viola et al. Jun 2007 A1
20070170225 Shelton et al. Jul 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080078803 Shelton et al. Apr 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080110961 Voegele et al. May 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080287987 Boyden et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090090766 Knodel Apr 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090272787 Scirica Nov 2009 A1
20090277948 Beardsley et al. Nov 2009 A1
20090277949 Viola et al. Nov 2009 A1
20090283568 Racenet et al. Nov 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100006620 Sorrentino et al. Jan 2010 A1
20100012703 Calabrese et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100127041 Morgan et al. May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100155453 Bombard et al. Jun 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100224668 Fontayne et al. Sep 2010 A1
20100249802 May et al. Sep 2010 A1
20100252611 Ezzat et al. Oct 2010 A1
20100305552 Shelton, IV et al. Dec 2010 A1
20110006099 Hall et al. Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110068148 Hall et al. Mar 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110101069 Bombard et al. May 2011 A1
20110108601 Clark May 2011 A1
20110108603 Racenet et al. May 2011 A1
20110114702 Farascioni May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110132961 Whitman et al. Jun 2011 A1
20110132964 Weisenburgh, II et al. Jun 2011 A1
20110139851 McCuen Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155781 Swensgard et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110163149 Viola Jul 2011 A1
20110192881 Balbierz et al. Aug 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110192883 Whitman et al. Aug 2011 A1
20110204119 McCuen Aug 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110288573 Yates et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110290855 Moore et al. Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295270 Giordano et al. Dec 2011 A1
20120016362 Heinrich et al. Jan 2012 A1
20120037683 Lee Feb 2012 A1
20120053406 Conlon et al. Mar 2012 A1
20120061446 Knodel et al. Mar 2012 A1
20120061450 Kostrzewski Mar 2012 A1
20120074196 Shelton, IV et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120080333 Woodard, Jr. Apr 2012 A1
20120080474 Farascioni Apr 2012 A1
20120080475 Smith et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080479 Shelton, IV Apr 2012 A1
20120080481 Widenhouse et al. Apr 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080484 Morgan et al. Apr 2012 A1
20120080485 Woodard, Jr. et al. Apr 2012 A1
20120080486 Woodard, Jr. et al. Apr 2012 A1
20120080488 Shelton, IV et al. Apr 2012 A1
20120080489 Shelton, IV et al. Apr 2012 A1
20120080490 Shelton, IV et al. Apr 2012 A1
20120080491 Shelton, IV et al. Apr 2012 A1
20120080493 Shelton, IV et al. Apr 2012 A1
20120080494 Thompson et al. Apr 2012 A1
20120080495 Holcomb et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120080499 Schall et al. Apr 2012 A1
20120080502 Morgan et al. Apr 2012 A1
20120091183 Manoux et al. Apr 2012 A1
20120100200 Belcheva et al. Apr 2012 A1
20120138659 Marczyk et al. Jun 2012 A1
20120175399 Shelton et al. Jul 2012 A1
20120181322 Whitman et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120193394 Holcomb et al. Aug 2012 A1
20120193399 Holcomb et al. Aug 2012 A1
20120199632 Spivey et al. Aug 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120223123 Baxter, III et al. Sep 2012 A1
20120228358 Zemlok et al. Sep 2012 A1
20120234893 Schuckmann et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120239009 Mollere et al. Sep 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120241496 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241497 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241498 Gonzalez et al. Sep 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120241500 Timmer et al. Sep 2012 A1
20120241501 Swayze et al. Sep 2012 A1
20120241502 Aldridge et al. Sep 2012 A1
20120241503 Baxter, III et al. Sep 2012 A1
20120241504 Soltz et al. Sep 2012 A1
20120241505 Alexander, III et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120248170 Marczyk Oct 2012 A1
20120255986 Petty et al. Oct 2012 A1
20120286021 Kostrzewski Nov 2012 A1
20120286022 Olson et al. Nov 2012 A1
20120292369 Munro, III et al. Nov 2012 A1
20120298719 Shelton, IV et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120312858 Patankar et al. Dec 2012 A1
20120312859 Gupta et al. Dec 2012 A1
20120312860 Ming et al. Dec 2012 A1
20120312861 Gurumurthy et al. Dec 2012 A1
20120318842 Anim et al. Dec 2012 A1
20120318843 Henderson et al. Dec 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20120325893 Pastorelli et al. Dec 2012 A1
20130008937 Viola Jan 2013 A1
20130012983 Kleyman Jan 2013 A1
20130015231 Kostrzewski Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037594 Dhakad et al. Feb 2013 A1
20130037595 Gupta et al. Feb 2013 A1
20130037596 Bear et al. Feb 2013 A1
20130037597 Katre et al. Feb 2013 A1
20130037598 Marczyk Feb 2013 A1
20130041406 Bear et al. Feb 2013 A1
20130048697 Shelton, IV et al. Feb 2013 A1
20130056518 Swensgard Mar 2013 A1
20130056521 Swensgard Mar 2013 A1
20130062391 Boudreaux et al. Mar 2013 A1
20130062393 Bruewer et al. Mar 2013 A1
20130062394 Smith et al. Mar 2013 A1
20130068815 Bruewer et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130068818 Kasvikis Mar 2013 A1
20130068821 Huitema et al. Mar 2013 A1
20130075443 Giordano et al. Mar 2013 A1
20130075444 Cappola et al. Mar 2013 A1
20130075445 Balek et al. Mar 2013 A1
20130075446 Wang et al. Mar 2013 A1
20130075447 Weisenburgh, II et al. Mar 2013 A1
20130075448 Schmid et al. Mar 2013 A1
20130075449 Schmid et al. Mar 2013 A1
20130075450 Schmid et al. Mar 2013 A1
20130075451 Balek et al. Mar 2013 A1
20130082086 Hueil et al. Apr 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130087600 Scirica Apr 2013 A1
20130087601 Farascioni Apr 2013 A1
20130087602 Olson et al. Apr 2013 A1
20130087603 Viola Apr 2013 A1
20130092717 Marczyk et al. Apr 2013 A1
20130098964 Smith et al. Apr 2013 A1
20130098965 Kostrzewski et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130105545 Burbank May 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105552 Weir et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112730 Whitman et al. May 2013 A1
20130112732 Aranyi et al. May 2013 A1
20130112733 Aranyi et al. May 2013 A1
20130119109 Farascioni et al. May 2013 A1
20130126581 Yates et al. May 2013 A1
20130126582 Shelton, IV et al. May 2013 A1
20130126586 Zhang et al. May 2013 A1
20130140343 Knodel Jun 2013 A1
20130144333 Viola Jun 2013 A1
20130233908 Knodel et al. Sep 2013 A1
20140263570 Hopkins et al. Sep 2014 A1
20160310134 Contini et al. Oct 2016 A1
20200046356 Baxter, III Feb 2020 A1
20220304680 Shelton, IV Sep 2022 A1
Foreign Referenced Citations (81)
Number Date Country
198654765 Sep 1986 AU
2773414 Nov 2012 CA
2744824 Apr 1978 DE
2903159 Jul 1980 DE
3114135 Oct 1982 DE
4213426 Oct 1992 DE
4300307 Jul 1994 DE
0041022 Dec 1981 EP
0136950 Apr 1985 EP
0140552 May 1985 EP
0156774 Oct 1985 EP
0213817 Mar 1987 EP
0216532 Apr 1987 EP
0220029 Apr 1987 EP
0273468 Jul 1988 EP
0324166 Jul 1989 EP
0324635 Jul 1989 EP
0324637 Jul 1989 EP
0324638 Jul 1989 EP
0365153 Apr 1990 EP
0369324 May 1990 EP
0373762 Jun 1990 EP
0380025 Aug 1990 EP
0399701 Nov 1990 EP
0449394 Oct 1991 EP
0484677 May 1992 EP
0489436 Jun 1992 EP
0503662 Sep 1992 EP
0514139 Nov 1992 EP
0536903 Apr 1993 EP
0537572 Apr 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0552050 Jul 1993 EP
0552423 Jul 1993 EP
0579038 Jan 1994 EP
0589306 Mar 1994 EP
0591946 Apr 1994 EP
0592243 Apr 1994 EP
0593920 Apr 1994 EP
0598202 May 1994 EP
0598579 May 1994 EP
0600182 Jun 1994 EP
0621006 Oct 1994 EP
0621009 Oct 1994 EP
0656188 Jun 1995 EP
0666057 Aug 1995 EP
0705571 Apr 1996 EP
0760230 Mar 1997 EP
2090253 Aug 2009 EP
2090254 Aug 2009 EP
2583630 Apr 2013 EP
2586382 May 2013 EP
391239 Oct 1908 FR
2542188 Sep 1984 FR
2660851 Oct 1991 FR
2681775 Apr 1993 FR
1352554 May 1974 GB
1452185 Oct 1976 GB
1555455 Nov 1979 GB
2048685 Dec 1980 GB
2070499 Sep 1981 GB
2141066 Dec 1984 GB
2165559 Apr 1986 GB
S51149985 Dec 1976 JP
2001087272 Apr 2001 JP
128848 Nov 1959 SU
659146 Apr 1979 SU
728848 Apr 1980 SU
980703 Dec 1982 SU
990220 Jan 1983 SU
2008302247 Jul 1983 WO
8910094 Nov 1989 WO
9210976 Jul 1992 WO
9308754 May 1993 WO
9314706 Aug 1993 WO
9728745 Aug 1997 WO
2004032760 Apr 2004 WO
2009071070 Jun 2009 WO
2013122808 Aug 2013 WO
2013151820 Oct 2013 WO
Non-Patent Literature Citations (2)
Entry
Australian Examination Report dated Jul. 24, 2018, corresponding to Australian Application No. 2014259547; 3 pages.
European Extended Search Report dated Jun. 10, 2015, corresponding to European Application No. 14199033.3; 5 pages.
Related Publications (1)
Number Date Country
20230013791 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
61918018 Dec 2013 US
Divisions (3)
Number Date Country
Parent 16803071 Feb 2020 US
Child 17948614 US
Parent 15834485 Dec 2017 US
Child 16803071 US
Parent 14513629 Oct 2014 US
Child 15834485 US