Surgical stapling and cutting instrument with articulatable end effector

Information

  • Patent Grant
  • 7810693
  • Patent Number
    7,810,693
  • Date Filed
    Wednesday, May 30, 2007
    17 years ago
  • Date Issued
    Tuesday, October 12, 2010
    13 years ago
Abstract
A surgical instrument that has an articulatable end effector. Various types of passive articulation joints are disclosed for interconnecting a proximal frame portion to the end effector to facilitate pivotal travel of the end effector relative to the proximal frame portion of the instrument.
Description
FIELD OF THE INVENTION

The present invention relates in general to endoscopic surgical instruments including, but not limited to, surgical stapler instruments that are capable of applying lines of staples to tissue while cutting the tissue between those staple lines and, more particularly, to improvements relating to articulation joints used in connection with surgical stapler instruments with articulatable end effectors.


BACKGROUND

Endoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).


Known surgical staplers include an end effector that simultaneously makes a longitudinal incision in tissue and applies lines of staples on opposing sides of the incision. The end effector includes a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument commonly includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.


Examples of surgical staplers suitable for endoscopic applications are described in U.S. Pat. No. 6,905,057 to Jeffrey S. Swayze and Frederick E. Shelton, IV, entitled Surgical Stapling Instrument Incorporating a Firing Mechanism Having a Linked Rack Transmission and U.S. Pat. No. 7,083,075 to Jeffery S. Swayze, Frederick E. Shelton, IV, Kevin Ross Doll, and Douglas B. Hoffman entitled Multi-Stroke Mechanism With Automatic End of Stroke Retractions, the disclosures of which are herein incorporated by reference in their entireties.


Depending upon the nature of the operation, it may be desirable to further adjust the positioning of the end effector of an endoscopic surgical instrument. In particular, it is often desirable to orient the end effector at an angle relative to the longitudinal axis of the shaft of the instrument. The transverse or non-axial movement of the end effector relative to the instrument shaft is often conventionally referred to as “articulation”. This articulated positioning permits the clinician to more easily engage tissue in some instances, such as behind an organ. In addition, articulated positioning advantageously allows an endoscope to be positioned behind the end effector without being blocked by the instrument shaft.


Approaches to articulating a surgical stapling and severing instrument tend to be complicated by integrating control of the articulation along with the control of closing the end effector to clamp tissue and fire the end effector (i.e., stapling and severing) within the small diameter constraints of an endoscopic instrument. Generally, the three control motions are all transferred through the shaft as longitudinal translations. For instance, U.S. Pat. No. 5,673,840 to Schulze et al., the disclosure of which is herein incorporated by reference, discloses an accordion-like articulation mechanism (“flex-neck”) that is articulated by selectively drawing back one of two connecting rods through the implement shaft, each rod offset respectively on opposite sides of the shaft centerline. The connecting rods ratchet through a series of discrete positions.


Another example of longitudinal control of an articulation mechanism is U.S. Pat. No. 5,865,361 that includes an articulation link offset from a camming pivot such that pushing or pulling longitudinal translation of the articulation link effects articulation to a respective side. Similarly, U.S. Pat. No. 5,797,537 discloses a similar rod passing through the shaft to effect articulation. Still other examples of articulatable surgical stapling devices are disclosed in U.S. Pat. Nos. 6,250,532 and 6,644,532.


Due to the types end effector firing systems commonly employed, the actuator arrangements for articulating the end effector must often generate high amounts of torque to bend the firing structure. This problem is exacerbated by the lack of available space for accommodating actuating devices that are large enough to generated those required forces.


In an effort to address such challenges, surgical instruments with “passive articulation joints” have been developed. For example, U.S. Patent Publication No. US 2007/0027469 A1 to Kevin W. Smith, Matthew A. Palmer, Korey Robert Kline and Derek Dee Deville, the disclosure of which is herein incorporated by reference, discloses a medical device that employs a passive articulation joint. When actuated, the articulation joint is released into a freely articulating state to permit free articulation of the end effector with respect to the control handle dependent upon external forces acting upon the end effector.


While the above-mentioned medical device with a passive articulation arrangement effectively addresses various challenges encountered with active articulation arrangements, there is still a need for medical devices with improved passive articulation joint arrangements.


SUMMARY

In one aspect of the invention, there is provided a surgical instrument that may include a handle portion and a proximal frame portion that is coupled to the handle portion and has a plurality of first planetary gear teeth formed thereon. The instrument may further comprise an end effector for performing a surgical operation. The end effector may have a plurality of second planetary gear teeth formed thereon. At least one pivot bar is pivotally coupled to the proximal frame portion and distal frame portion to retain the first gear teeth in permanent meshing orientation with the second gear teeth to facilitate pivotal travel of the end effector relative to the proximal frame portion.


In another general aspect of various embodiments of the present invention there is provided a surgical instrument that may include a handle portion and a proximal frame portion that is coupled to the handle portion. The instrument may further include an end effector for performing a surgical operation. At least two flexible bands are attached to the proximal frame portion and the end effector and extend therebetween such that at least one of the at least two flexible bands crosses another one of the at least two flexible bands.


In still another general aspect of various embodiments of the present invention there is provided a surgical instrument that may include a handle portion and a proximal frame portion that is coupled to the handle portion. The instrument may further include an end effector for performing a surgical operation. A series of interlocking flexible sockets are coupled to the proximal frame portion and the end effector and extend therebetween.


In another general aspect of various embodiments of the present invention there is provided a surgical instrument that may include a handle portion and a proximal frame portion that is coupled to the handle portion. The proximal frame portion may define a longitudinal axis. The instrument may further include an end effector for performing a surgical operation. At least two substantially rigid bars may be pivotally attached to the proximal frame portion and the end effector and extend therebetween such that one end of at least one of the rigid bars is attached to the proximal frame portion along the longitudinal axis.


In another general aspect of various embodiments of the present invention there is provided a surgical instrument that may include a handle portion and a proximal frame portion that is coupled to the handle portion. The proximal frame portion may define a longitudinal axis. The instrument may further include an end effector for performing a surgical operation that is coupled to the proximal frame portion by an articulation joint. The articulation joint may include first and second arcuate slots in one of the end effector and the proximal frame portion. Each arcuate slot is oriented to slidably receive therein a corresponding pin that protrudes from the other of the end effector and proximal frame portion to facilitate pivotal travel of the end effector relative to the proximal frame portion about a pivot axis that is substantially transverse to the longitudinal axis.


In another general aspect of various embodiments of the present invention there is provided a surgical instrument that may include a handle portion and a proximal frame portion that is coupled to the handle portion. The proximal frame portion may define a longitudinal axis. The instrument may further include an end effector for performing a surgical operation that is coupled to the proximal frame portion by an articulation joint. The articulation joint may include a concave surface defining a bowl on one of the proximal frame portion and the end effector. A convex surface may be formed on the other of the proximal frame portion and the end effector and be in confronting relationship with the concave surface to define a pivot axis extending through the convex and concave surfaces about which the end effector may pivot relative to the proximal frame portion such that the end effector can only pivot in one plane that is substantially perpendicular to the pivot axis.


These and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the description thereof.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain various principles of the present invention.



FIG. 1 is a perspective view of a surgical stapling and severing instrument of various embodiments of the present invention.



FIG. 2 is a perspective disassembled view of an elongate shaft and articulation mechanism of the surgical stapling and severing instrument of FIG. 1.



FIG. 3 is a perspective disassembled view of distal portions of an implement portion of the surgical stapling and severing instrument of FIG. 1.



FIG. 4 is a cross-sectional elevational view of an articulation joint of one embodiment of the present invention.



FIG. 5 is a perspective view of a dog bone link that may be employed with various embodiments of the present invention.



FIG. 6 is a cross-sectional elevational view of an articulation joint of another embodiment of the present invention.



FIG. 7 is a top view of the articulation joint of FIG. 6 illustrating the position of certain components in diagrammatical form.



FIG. 8 is a cross-sectional elevational view of an articulation joint of another embodiment of the present invention.



FIG. 9 is a top view of the articulation joint of FIG. 8 to illustrate the position of certain components in diagrammatical form.



FIG. 10 is a cross-sectional elevational view of an articulation joint of another embodiment of the present invention.



FIG. 11 is a top view of the articulation joint of FIG. 10 to illustrate the position of certain components in diagrammatical form.



FIG. 12 is a cross-sectional elevational view of an articulation joint of another embodiment of the present invention.



FIG. 13 is a top view of the articulation joint of FIG. 12 to illustrate the position of certain components in diagrammatical form.



FIG. 14 is a cross-sectional elevational view of an articulation joint of another embodiment of the present invention.



FIG. 15 is a top view of the articulation joint of FIG. 6 to illustrate the position of certain components in diagrammatical form.





DETAILED DESCRIPTION

Turning to the Drawings, wherein like numerals denote like components throughout the several views, FIG. 1 depicts a surgical instrument, which in the illustrative versions is more particularly a surgical stapling and severing instrument 10, capable of practicing the unique benefits of the present invention. In particular, the surgical stapling and severing instrument 10 is sized for insertion, in a nonarticulated state as depicted in FIG. 1, through a trocar cannula passageway to a surgical site in a patient (not shown) for performing a surgical procedure. An end effector, depicted in the illustrative version as a staple applying assembly 20, is distally attached to a shaft portion 16 by an articulation joint 100. After the staple applying assembly 20 has been inserted through the trocar cannula passageway, the clinician can move the staple applying assembly 20 to a desired articulated orientation by “passively” bringing the staple applying assembly 20 into contact with the organ or other portion of the body or another medical instrument to apply an external force to the staple applying instrument 20 to cause it to articulate as will be discussed in further detail below. Such an angled position may have advantages in approaching tissue from a desired angle for severing and stapling, approaching tissue otherwise obstructed by other organs and tissue, and/or allowing an endoscope to be positioned behind and aligned with the staple applying assembly 20 for confirming placement.


The surgical and stapling and severing instrument 10 may include a handle portion 22 proximally connected to the implement portion 12 for providing positioning, articulation, closure and firing motions thereto. The handle portion 22 may include a pistol grip 24 toward which a closure trigger 26 is pivotally and proximally drawn by the clinician to cause clamping, or closing, of the staple applying assembly 20. A firing trigger 28 may be positioned further outboard of the closure trigger 26 and is capable of being pivotally drawn by the clinician to cause the stapling and severing of tissue clamped in the staple applying assembly 20. Thereafter, a closure release button 30 is depressed to release the clamped closure trigger 26, and thus the severed and stapled ends of the clamped tissue. The handle portion 22 also includes a rotation knob 32 coupled for movement with the elongate shaft 16 to rotate the shaft 16 and the articulated staple applying assembly 20 about the longitudinal axis of the shaft 16. The handle portion 22 also includes a firing retraction handle 34 to assist in retracting a firing mechanism (not depicted in FIG. 1) should binding occur, so that opening of the staple applying assembly 20 may occur thereafter.


It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping a handle of an instrument. Thus, the surgical stapling assembly 20 is distal with respect to the more proximal handle portion 22. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical” and “horizontal” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.


An illustrative multi-stroke handle portion 22 for the surgical stapling and severing instrument 10 of FIGS. 1-2 is described in greater detail in the following co-pending and commonly-owned U.S. patent applications, the disclosures of which are herein incorporated by reference, with additional features and variations as described herein:


(1) U.S. Patent Publication No. US 2006/0289602A1 to Kenneth S. Wales and Eugene L. Timperman, entitled “Surgical Instrument With Articulating Shaft With Double Pivot Closure And Single Pivot Frame Portion;


(2) U.S. Patent Publication No. US 2006/0190029A1 to Kenneth S. Wales, entitled “Surgical Instrument With Laterally Moved Shaft Actuator Coupled to Pivoting Articulation Joint;


(3) U.S. Patent Publication No. US 2006/0190031 A1 to Kenneth S. Wales and Cad P. Boudreaux, entitled “Surgical Instrument With Articulating Shaft With Rigid Firing Bar Supports”; and.


(4) U.S. Publication No. 20050070958 A1 to Swayze and Shelton IV, entitled “Surgical Stapling Instrument Incorporating a Multistroke Firing Position Indicator and Retraction Mechanism”.


While a multi-stroke handle portion 22 advantageously supports applications with high firing forces over a long distance, applications consistent with the present invention may incorporate a single firing stroke, such as described in co-pending and commonly owned U.S. Pat. No. 7,000,818, entitled “Surgical Stapling Instrument Having Separate Distinct Closing and Firing Systems” to Frederick E. Shelton IV, Michael E. Setser, and Brian J. Hemmelgarn, the disclosure of which is hereby incorporated by reference in its entirety.


In FIGS. 2 and 3, the implement portion 12 may advantageously incorporate the multiple actuation motions of longitudinal rotation, articulation, closure and firing within a small diameter suitable for endoscopic and laparoscopic procedures. The staple applying assembly 20 (“end effector”) has a pair of pivotally opposed jaws, depicted as an elongate channel 40 with a pivotally attached anvil 42 (FIGS. 1 and 3). Closure and clamping of the anvil 42 to the elongate channel 40 is achieved by longitudinally supporting the elongate channel 40 with a frame assembly 44 (FIG. 2) rotatingly attached to the handle portion 22 over which a double pivot closure sleeve assembly 46 longitudinally moves to impart closing and opening motions respectively to the anvil 42, even with the staple applying assembly 20 articulated.


With particular reference to FIG. 2, the frame assembly 44 may include a single pivot frame portion 48 whose proximal end is engaged to the rotation knob 32, with a right half shell 50 thereon shown in FIG. 2. It should be appreciated that a proximal end of the closure sleeve assembly 46, specifically of closure straight tube 52, encompasses the proximal end of the frame portion 48, passing further internally to the handle portion 22 to engage closure components (not shown) that longitudinally translate the closure sleeve assembly 46. A circular lip 54 at the proximal end of the closure straight tube 52 provides a rotating engagement to such components. Engaging components of the rotation knob 32 pass through a longitudinal slot 56 on a proximal portion of the straight closure tube 52 to engage an aperture 58 proximally positioned on the frame portion 48. The longitudinal slot 56 is of sufficient length to allow the closure longitudinal translation of the closure sleeve assembly 46 at various rotational angles set by the rotation knob 32 to the closure sleeve assembly 46 and the frame portion 48.


The elongate shaft 16 supports the firing motion by receiving a firing rod 60 that rotatingly engages firing components of the handle portion 22 (not shown). The firing rod 60 enters a proximal opening 62 along the longitudinal centerline of the frame portion 48. The distal portion of the frame portion 48 includes a firing bar slot 64 along its bottom that communicates with the proximal opening 62. A firing bar 66 longitudinally translates in the firing bar slot 64 and includes an upwardly projecting proximal pin 68 that engages a distal end 70 of the firing rod 60.


With particular reference to FIG. 3, the articulation joint 100 may include a distal closure tube segment 116 that may be constructed as shown for enhanced manufacturability and may include a short closure tube 146 that is attached to an articulating attachment collar 148 that may include proximally projecting pivot tabs 126, 128. Similarly, the straight closure tube 52 may be assembled from a long closure tube segment 150 that attaches to an aft attachment collar 152 that may include the distally projecting pivot tabs 119, 120. The horseshoe aperture 118 in the short tube 146 is designed to engages an upwardly projecting anvil feature 154 that is slightly proximal to lateral pivot pins 156 that engage pivot recesses 158 inside of the elongate channel 40. See FIG. 3.


In various embodiments, the firing bar 66 may distally terminate in an E-beam 165 that includes upper guide pins 166 that enter an anvil slot 168 in the anvil 42 to verify and assist in maintaining the anvil 42 in a closed state during staple formation and severing. See FIG. 3. Spacing between the elongate channel 40 and anvil 42 may be further maintained by the E-beam 165 by having middle pins 170 slide along the top surface of the elongate channel 40 while a bottom foot 172 opposingly slides along the undersurface of the elongate channel 40, guided by a longitudinal opening 174 in the elongate channel 40. A distally presented cutting surface 176 of the E-beam 165, which is between the upper guide pins 166 and middle pin 170, severs clamped tissue while the E-beam actuates a replaceable staple cartridge 178 by distally moving a wedge sled 180 that causes staple drivers 182 to cam upwardly driving staples 184 out of upwardly open staple holes 186 in a staple cartridge body 188, forming against a staple forming undersurface 190 of the anvil 42. A staple cartridge tray 192 encompasses from the bottom the other components of the staple cartridge 178 to hold them in place. The staple cartridge tray 192 includes a rearwardly open slot 194 that overlies the longitudinal opening 174 in the elongate channel 40, thus the middle pins 170 pass inside of the staple cartridge tray 192. One form of a and end effector or staple applying assembly that may be employed is described in greater detail in co-pending and commonly-owned U.S. Patent Publication No. 20070084897 A1, entitled “Articulating Surgical Stapling Instrument Incorporating a Two-Piece E-Beam Firing Mechanism” to Frederick E. Shelton IV, et al., the disclosure of which is hereby incorporated by reference in its entirety.


With reference to FIGS. 2-4, the articulation joint 100 may advantageously incorporate the double pivot closure sleeve assembly 46 described above. One exemplary arrangement of these mechanisms and their operation will now be described in further detail. In various embodiments, for example, the distal end 49 of the proximal frame portion 48 may be provided with a downwardly facing concave lower surface 200 that is adapted to receive a correspondingly shaped convex surface 204 on the distal frame member 114. Those of ordinary skill in the art will appreciate that, in an alternative embodiment, the concave surface may be provided on the distal frame member 114 and the convex surface may be formed on the proximal frame portion 48 without departing from the spirit and scope of the present invention.


Such joint arrangement 100 facilitates pivotal travel of the distal frame member 114 relative to the proximal frame portion 48 around a pivot axis, generally referenced as axis A-A in FIG. 4 such that the distal frame member 114 (and staple applying assembly 20) is generally pivotable about axis A-A in a plane “P-P” in which the proximal frame portion 48 also lies. As shown in FIG. 4, axis A-A is substantially perpendicular to a plane P-P. Stated another way, such arrangement of concave and convex surfaces 200, 204 restricts rotation of the distal frame member 114 about pivot axis A-A relative to the proximal frame portion 48 within a common plane of rotation P-P. Thus, this joint arrangement does not enable the distal frame member 114 to pivot in a plane that is substantially different from a plane in which the proximal frame portion 48 lies. Such arrangement does, however, afford relatively easy pivoting and rotation of the staple applying assembly 20. When the closure sleeve assembly 46 is moved distally to pivot anvil 42 closed, the closure tube 52 moves distally about proximal frame portion 48 and the articulated distal closure tube segment 116 moves distally along the articulated distal frame member 114 as urged by pivot links 134, 140. Dual pivoting pins 136, 138 and 142, 144 on links 134, 140, respectively, facilitate engagement with closure tube 52 and articulated distal closure tube segment 116 as they are urged towards the distal closure position when the device is articulated (not shown).


In various embodiments, a dog bone link 160 may be employed and configured to provide support to the firing bar 66 which may be of flexible construction. The frame portion 48 may also include a frame knife slot (not shown) that runs along the bottom of frame portion 48 and a distal knife slot (not shown) that runs along the bottom of the distal frame member 114 for the sliding reception of the firing bar 66 (not shown) therein. The dog bone link 160 may be rotatably connected on proximal pin end 157 and movably connected on distal pin end 159 and include left and right lateral guides 1818, 1820, defining therebetween a guidance slot 1822 for sliding passage of a firing bar 66 (FIG. 5). Thus, to bridge the gap between frame portion 48 and the distal frame member 114, the fixed wall pivoting dog bone link 160 is pivotally attached to frame portion 48 and slidingly attached to distal frame member 114. Proximal pin 157 of the pivoting dog bone 160 is pivotally received in a bore 1824 in frame portion 48 enabling pivotal dog bone 160 to pivot therein. A distal pin 159 extends from pivotal dog bone 160 and is slidingly received in a slot 1826 in distal frame member 114. Articulation of staple applying assembly 20 to an angle of such as 45 degrees from the longitudinal axis pivots pivoting dog bone 160 in bore 1824 at its proximal pin 157, and distal pin 157 slides in slot 1826 at its distal end 1814 to bend firing bar 66 to two spaced apart angles that are half of the angle of the staple applying assembly 20.


The distal frame member 114 can pivot relative to the proximal frame portion 48 about pivot axis A-A by virtue of the concave and convex surface arrangement. Those of ordinary skill in the art will understand that in various embodiments the friction between the surfaces 200 and 204 will serve to retain the distal frame member 114 (and the staple applying assembly 20) in the articulated position relative to the proximal frame portion 48 and additional clamping arrangements may be used to apply clamping forces thereto to retain those components in the desired articulated position. The end effector may be articulated by applying an articulation force thereto by bringing the end effector into contact with a portion of the patient's body or with another instrument which may also be inserted into the patient's body.



FIGS. 6 and 7 illustrate another articulation joint 300 that may be employed in connection with various embodiments of the present invention. This embodiment may be substantially identical in construction to the above-described embodiment, except for the following differences. For example, in this embodiment, the proximal end 115 of the distal frame member 114 may have two arcuate slots 310, 312 formed therein for receiving corresponding pins 320, 322 formed on the distal end 49 of the proximal frame portion 48. Thus, the distal frame member 114 is constrained to pivot relative to the frame portion 48 by the travel of the pins 320, 322 in their respective slots 310, 312 about pivot axis B-B that extends through the center 311 between the arcuate slots 310, 312. Pivot axis B-B may be substantially perpendicular to the longitudinal axis L-L of the proximal frame portion 48. This joint arrangement may also serve to restrict the pivotal travel of the distal frame member 114 about the pivot axis B-B such that the distal frame member 114 is substantially retained in the common plane of rotation P-P with the proximal frame portion 48. Those of ordinary skill in the art will appreciate that in alternative embodiments, the arcuate slots 310, 312 may be provided in the distal end 49 of the proximal frame portion 48 and the pins 320, 322 may be provided in the distal frame member 114 without departing from the spirit and scope of the present invention. In still other embodiments, the distal frame member 114 and the proximal frame portion 48 may each have one arcuate slot and one pin wherein the pin is oriented to be slidably received in the slot in the other part.


Also in these embodiments, to bridge the gap between frame portion 48 and the distal frame member 114, the fixed wall pivoting dog bone link 160 may pivotally attached to frame portion 48 and slidingly attached to distal frame member 114. Proximal pin 157 of the pivoting dog bone 160 is pivotally received in a bore 1824 in frame portion 48 enabling pivotal dog bone 160 to pivot therein. A distal pin 159 extends from pivotal dog bone 160 and is slidingly received in a slot 1826 in distal frame 114. Articulation of staple applying assembly 20 to an angle of such as 45 degrees from the longitudinal axis pivots pivoting dog bone 160 in bore 1824 at its proximal pin 157, and distal pin 157 slides in slot 1826 at its distal end 1814 to bend firing bar 66 to two spaced apart angles that are half of the angle of the staple applying assembly 20. In various embodiments, a bellows-like sleeve or cover 350 made from an elastomeric or polymeric material may be positioned over the shaft to at the location of the articulation joint to prevent debris and fluids from entering the joint. See FIG. 6. The end effector may be articulated by applying an articulation force thereto by bringing the end effector into contact with a portion of the patient's body or with another instrument which may also be inserted into the patient's body.



FIGS. 8 and 9 illustrate another articulation joint 400 that may be employed in connection with various embodiments of the present invention. This embodiment may be substantially identical in construction to the above-described embodiments, except for the following differences. For example, this embodiment may employ a pair of substantially rigid linkage bars 410, 420 to pivotally interconnect the distal frame member 114 and the frame portion 48. As can be seen in FIG. 8, for example, the lower linkage bar 410 may have a distal pin portion 414 protruding from a distal end 412 thereof that is constructed to be received in a first hole 260 in the distal frame member 114. Distal frame member 114 may also be provided with an undercut portion 262 to accommodate the pivotal travel of the distal end 412 of the lower linkage bar 410 therein about a first pivot axis C-C defined by the distal pin 414 and hole 262. As can also be seen in FIG. 8, the proximal end 416 of the lower linkage bar 410 may have a proximal pin 418 protruding therefrom that is constructed to be received within a hole 264 in the distal end 49 of the frame portion 48. The proximal pin 418 and hole 264 also serve to define a second pivot axis D-D.


As indicated above, this embodiment may further comprise an upper linkage bar 420 that has a distal end 422 and a proximal end 426. A distal pin 424 protrudes from the distal end 422 and is constructed to be received in a second hole 266 in the distal frame member 114. The pin 424 and the hole 266 serve to define a third pivot axis E-E. A proximal pin 428 protrudes from the proximal end 426 of the upper linkage bar 420 and is constructed to be received in a second hole 268 in the distal end 49 of the frame portion 48. The proximal pin 428 and hole 268 serve to define a fourth pivot axis F-F. As can be seen in FIG. 8, the first axis C-C, the second axis D-D, the third axis E-E, and the fourth axis F-F may all be substantially transverse and perpendicular to the longitudinal axis L-L of the proximal frame portion 48. As can also be seen in FIG. 9, at least one of the pins 424, 428 lie along longitudinal axis L-L.


Also in this embodiment, to bridge the gap between frame portion 48 and the distal frame member 114, the fixed wall pivoting dog bone link 160 may pivotally attached to frame portion 48 and slidingly attached to frame member 114. Proximal pin 157 of the pivoting dog bone 160 is pivotally received in a bore 1824 in frame portion 48 enabling pivotal dog bone 160 to pivot therein. A distal pin 159 extends from pivotal dog bone 160 and is slidingly received in a slot 1826 in distal frame 114. As can be seen in FIG. 8, the lower linkage bar 410 lies along a lower plane G-G and the upper linkage bar 420 lies along an upper plane H-H that is not coplanar with the lower plane G-G. Such arrangement enables the linkage bars 410, 420 to pivot to an axially aligned position wherein the shaft 16 can be inserted through a trocar passage (FIG. 1) and other non-axially aligned articulated positions (FIG. 9). In various embodiments, a bellows-like sleeve 450 made from an elastomeric or polymeric material may be positioned over the shaft to at the location of the articulation joint 400 to prevent debris and fluids from entering the joint. See FIG. 9. The end effector may be articulated by applying an articulation force thereto by bringing the end effector into contact with a portion of the patient's body or with another instrument which may also be inserted into the patient's body.



FIGS. 10 and 11 illustrate another articulation joint 500 that may be employed in connection with various embodiments of the present invention. This embodiment may be substantially identical in construction to the above-described embodiments, except for the following differences. For example, this embodiment may employ a series 510 of flexible interlocking sockets 512 for pivotally and rotatably interconnecting the distal frame member 114 and the frame portion 48. As can be seen in FIG. 10, for example, a proximal end of the series of flexible interlocking sockets may be attached to the distal end 49 of the frame portion 48. A distal end 514 of the series 510 may be attached to the proximal end 115 of the frame member 114. A tension cable 520 may be employed such that it extends from the handle portion (not shown) through the proximal closure tube segment 150 and is coupled to the frame member 114. When tension is applied to the cable 520, the sockets 512 interlock to retain the sockets 512 in the substantially locked position. To reposition the staple applying assembly 20, tension is relaxed on the cable 520 to thereby permit the application of an external force to the staple applying assembly 20 to enable it to be articulated and/or rotated to a desired orientation. Once the staple applying assembly 20 has been positioned in the desired orientation, tension is reapplied to the cable 520 to retain the interlocking sockets 512 in position.


Also in this embodiment, to bridge the gap between frame portion 48 and the distal frame member 114, the fixed wall pivoting dog bone link 160 may pivotally attached to frame portion 48 and slidingly attached to frame member 114. Proximal pin 157 of the pivoting dog bone 160 is pivotally received in a bore 1824 in frame portion 48 enabling pivotal dog bone 160 to pivot therein. A distal pin 159 extends from pivotal dog bone 160 and is slidingly received in a slot 1826 in distal frame 114. In various embodiments, a bellows-like sleeve 550 made from an elastomeric or polymeric material may be positioned over the shaft to at the location of the articulation joint to prevent debris and fluids from entering the joint. See FIG. 10. The end effector may be articulated by applying an articulation force thereto by bringing the end effector into contact with a portion of the patient's body or with another instrument which may also be inserted into the patient's body.



FIGS. 12 and 13 illustrate another articulation joint 600 that may be employed in connection with various embodiments of the present invention. This embodiment may be substantially identical in construction to the above-described embodiments, except for the following differences. For example, in this embodiment, a first series of planetary-like gear teeth 610 may be formed on at least a portion of the circumference of the proximal end 115 of the frame member 114. Likewise a second series of planetary-like gear teeth 620 are formed on at least a portion of the circumference of the distal end 49 of the frame portion 48. The gear teeth 610 are retained in permanent meshing engagement with gear teeth 620 by a pivot bar 630 that pivotally interconnects the proximal end 115 of the frame member 114 with the distal end 49 of the frame portion 48. As can be seen in FIG. 12, a distal pin portion 634 protrudes from a distal end 632 of the pivot bar 630 and is constructed to be rotatably received in a hole 260 formed in the underside of the frame member 114. The frame member 114 may also have an undercut area 262 formed therein to accommodate the pivotal travel of the pivot bar 630. Likewise, a proximal end 636 of the pivot bar 630 has a proximal pin portion 638 that protrudes therefrom and is sized to be rotatably received in a hole 640 in the frame portion 48. An undercut area 642 may also be provided in the distal end 49 of the frame portion 48 to accommodate the pivotal travel of the pivot bar 630.


Also in this embodiment, to bridge the gap between frame portion 48 and the distal frame member 114, the fixed wall pivoting dog bone link 160 may pivotally attached to frame portion 48 and slidingly attached to frame member 114. Proximal pin 157 of the pivoting dog bone 160 is pivotally received in a bore 1824 in frame portion 48 enabling pivotal dog bone 160 to pivot therein. A distal pin 159 extends from pivotal dog bone 160 and is slidingly received in a slot 1826 in distal frame 114. In various embodiments, a bellows-like sleeve 650 made from an elastomeric or polymeric material may be positioned over the shaft to at the location of the articulation joint to prevent debris and fluids from entering the joint. See FIG. 12.



FIGS. 14 and 15 illustrate another articulation joint 700 that may be employed in connection with various embodiments of the present invention. This embodiment may be substantially identical in construction to the above-described embodiments, except for the following differences. For example, in this embodiment, the distal end 49 of the frame portion 48 is formed as a protrusion 710 extending in a distal direction. In various embodiments, the distal protrusion 710 has a first lateral side 712 and a second lateral side 714. Similarly, the proximal end 115 of the distal frame member 114 is also formed as a protrusion 720 that extends in the proximal direction in confronting relationship relative to the distal protrusion 710. The proximal protrusion 720 has a primary lateral side 722 that corresponds to the first lateral side 712 of the distally extending protrusion 710. The proximally extending protrusion 720 further has a secondary lateral side 724 that corresponds to the second lateral side 714 of the distally extending protrusion 710.


In this embodiment, the flexible joint 700 may further include a first flexible band 730 that has a proximal end 732 attached to the first lateral side 712 of the distally extending protrusion 710 and a distal end 734 attached to the secondary lateral side 724 of the proximally extending protrusion 720. This embodiment may further include a second flexible band 740 that has a proximal end 742 attached to the second lateral side 714 of the distally extending protrusion 710 and a distal end 744 that is attached to the primary lateral side 722 of the proximally extending protrusion 720. In various embodiments the first flexible band 730 and second flexible band 740 may be fabricated from spring steel or other suitable flexible materials and be attached to the protrusions 710, 720, respectively, by suitable fastener arrangements such as screws, adhesive, etc. As can be seen in FIG. 14, the first flexible band has a first notch 736 therein and the second flexible band 740 has a second notch 746 therein to enable the bands 730, 740 to be arranged as shown in FIG. 15.


Also in this embodiment, to bridge the gap between frame portion 48 and the distal frame member 114, the fixed wall pivoting dog bone link 160 may pivotally attached to frame portion 48 and slidingly attached to frame member 114. Proximal pin 157 of the pivoting dog bone 160 is pivotally received in a bore 1824 in frame portion 48 enabling pivotal dog bone 160 to pivot therein. A distal pin 159 extends from pivotal dog bone 160 and is slidingly received in a slot 1826 in distal frame 114. In various embodiments, a bellows-like sleeve 750 made from an elastomeric or polymeric material may be positioned over the shaft to at the location of the articulation joint to prevent debris and fluids from entering the joint. See FIG. 14. The end effector may be articulated by applying an articulation force thereto by bringing the end effector into contact with a portion of the patient's body or with another instrument which may also be inserted into the patient's body.


While several embodiments of the invention have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosed invention as defined by the appended claims.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the invention described herein will be processed before surgery. First a new or used instrument is obtained and, if necessary, cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or higher energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


The invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. The embodiments are therefore to be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such equivalents, variations and changes which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.

Claims
  • 1. A surgical instrument, comprising: a handle portion;a proximal frame portion coupled to said handle portion and defining a longitudinal axis;an end effector for performing a surgical operation;a lower rigid bar pivotally attached to said proximal frame portion and said end effector and extending therebetween, said lower rigid bar lying along a first plane; andan upper rigid bar lying along a second plane that is not coplanar with said first plane and being pivotally attached to said proximal frame portion and said end effector and extending therebetween such that one end of at least one said upper and lower rigid bars is attached to said proximal frame portion along said longitudinal axis.
  • 2. A surgical instrument, comprising: a handle portion;a proximal frame portion coupled to said handle portion and defining a longitudinal axis;an end effector for performing a surgical operation;an upper rigid bar having a distal end pivotally attached to said end effector for pivotal travel relative thereto about a first axis substantially transverse to said longitudinal axis and a proximal end pivotally attached to said proximal frame portion for pivotal travel relative thereto about a second axis that is substantially transverse to said longitudinal axis; anda lower rigid bar having a distal end pivotally attached to said end effector for pivotal travel relative thereto about a third axis that is substantially transverse to said longitudinal axis and a proximal end pivotally attached to said proximal frame portion for pivotal travel relative thereto about a fourth axis that is substantially transverse to said longitudinal axis.
  • 3. The surgical instrument of claim 2 wherein said proximal frame portion extends through a proximal closure tube segment operably coupled to said handle portion and wherein said surgical instrument further comprises a distal closure tube segment pivotally coupled to said proximal closure tube segment and constructed to apply closing and opening motions to said end effector.
  • 4. The surgical instrument of claim 3 further comprising a flexible cover member extending between said proximal closure tube segment and said distal closure tube segment for preventing debris from entering therebetween.
US Referenced Citations (554)
Number Name Date Kind
2853074 Olson Sep 1958 A
2959974 Emrick Nov 1960 A
3490675 Green et al. Jan 1970 A
3551987 Wilkinson Jan 1971 A
3643851 Green et al. Feb 1972 A
3662939 Bryan May 1972 A
3717294 Green Feb 1973 A
3819100 Noiles et al. Jun 1974 A
4331277 Green May 1982 A
4383634 Green May 1983 A
4396139 Hall et al. Aug 1983 A
4402445 Green Sep 1983 A
4415112 Green Nov 1983 A
4429695 Green Feb 1984 A
4475679 Fleury, Jr. Oct 1984 A
4489875 Crawford et al. Dec 1984 A
4500024 DiGiovanni et al. Feb 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4522327 Korthoff et al. Jun 1985 A
4530453 Green Jul 1985 A
4565109 Tsay Jan 1986 A
4566620 Green et al. Jan 1986 A
4573622 Green et al. Mar 1986 A
4580712 Green Apr 1986 A
4610383 Rothfuss et al. Sep 1986 A
4629107 Fedotov et al. Dec 1986 A
4655222 Florez et al. Apr 1987 A
4664305 Blake, III et al. May 1987 A
4671445 Barker et al. Jun 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4767044 Green Aug 1988 A
4805823 Rothfuss Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4821939 Green Apr 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4880015 Nierman Nov 1989 A
4941623 Pruitt Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4973274 Hirukawa Nov 1990 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5158567 Green Oct 1992 A
5209747 Knoepfler May 1993 A
5211649 Kohler et al. May 1993 A
5221036 Takase Jun 1993 A
5222975 Crainich Jun 1993 A
5258009 Conners Nov 1993 A
5271543 Grant et al. Dec 1993 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5304204 Bregen Apr 1994 A
5312024 Grant et al. May 1994 A
5318221 Green et al. Jun 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5350400 Esposito et al. Sep 1994 A
5366479 McGarry et al. Nov 1994 A
5383888 Zvenyatsky et al. Jan 1995 A
5397324 Carroll et al. Mar 1995 A
5413268 Green et al. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5425745 Green et al. Jun 1995 A
5431654 Nic Jul 1995 A
5437681 Meade et al. Aug 1995 A
5456401 Green et al. Oct 1995 A
5465894 Clark et al. Nov 1995 A
5474566 Alesi et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5482197 Green et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5497933 DeFonzo et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5514157 Nicholas et al. May 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5580067 Hamblin et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5601224 Bishop et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5628446 Geiste et al. May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5685474 Seeber Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5702408 Wales et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713505 Huitema Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5743456 Jones et al. Apr 1998 A
5752644 Bolanos et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5820009 Melling et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5855311 Hamblin et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5878937 Green et al. Mar 1999 A
5894979 Powell Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5904693 Dicesare et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5941442 Geiste et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6062360 Shields May 2000 A
6079606 Milliman et al. Jun 2000 A
6083242 Cook Jul 2000 A
6086600 Kortenbach Jul 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6109500 Alli et al. Aug 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6171330 Benchetrit Jan 2001 B1
6202914 Geiste et al. Mar 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6330965 Milliman et al. Dec 2001 B1
6387113 Hawkins et al. May 2002 B1
RE37814 Allgeyer Aug 2002 E
6436107 Wang et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6505768 Whitman Jan 2003 B2
6517565 Whitman et al. Feb 2003 B1
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6601749 Sullivan et al. Aug 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6629988 Weadock Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716233 Whitman Apr 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6773438 Knodel et al. Aug 2004 B1
6786382 Hoffman Sep 2004 B1
6805273 Bilotti et al. Oct 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6877647 Green et al. Apr 2005 B2
6905057 Swayze et al. Jun 2005 B2
6945444 Gresham et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7008435 Cummins Mar 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7108709 Cummins Sep 2006 B2
7111769 Wales et al. Sep 2006 B2
7114642 Whitman Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7210609 Leiboff et May 2007 B2
7213736 Wales et al. May 2007 B2
7220272 Weadock May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7278563 Green Oct 2007 B1
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7343920 Toby et al. Mar 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7422136 Marczyk Sep 2008 B1
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7546940 Milliman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7631793 Rethy et al. Dec 2009 B2
7665646 Prommersberger Feb 2010 B2
20010027694 Watarai Oct 2001 A1
20020117534 Green et al. Aug 2002 A1
20040006372 Racenet et al. Jan 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040094597 Whitman et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040173659 Green et al. Sep 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243176 Hahnen et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20050059997 Bauman et al. Mar 2005 A1
20050070958 Swayze et al. Mar 2005 A1
20050103819 Racenet et al. May 2005 A1
20050119669 Demmy Jun 2005 A1
20050125009 Perry et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050184121 Heinrich Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20060011699 Olson et al. Jan 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060047308 Ortiz et al. Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060060630 Shelton, IV et al. Mar 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060100643 Laufer et al. May 2006 A1
20060108393 Heinrich et al. May 2006 A1
20060151567 Roy Jul 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060190029 Wales Aug 2006 A1
20060190031 Wales et al. Aug 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20060229665 Wales et al. Oct 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060273135 Beetel Dec 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070034668 Holsten et al. Feb 2007 A1
20070045379 Shelton, IV Mar 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070102452 Shelton, IV et al. May 2007 A1
20070102453 Morgan et al. May 2007 A1
20070102472 Shelton, IV May 2007 A1
20070102473 Shelton, IV et al. May 2007 A1
20070102474 Shelton, IV et al. May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070114261 Ortiz et al. May 2007 A1
20070158385 Hueil et al. Jul 2007 A1
20070170225 Shelton, IV et al. Jul 2007 A1
20070175949 Shelton, IV et al. Aug 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20070175953 Shelton, IV et al. Aug 2007 A1
20070175955 Shelton, IV et al. Aug 2007 A1
20070175956 Swayze et al. Aug 2007 A1
20070175957 Shelton, IV et al. Aug 2007 A1
20070175958 Shelton, IV et al. Aug 2007 A1
20070175964 Shelton, IV et al. Aug 2007 A1
20070179476 Shelton, IV et al. Aug 2007 A1
20070181632 Milliman Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194080 Swayze et al. Aug 2007 A1
20070194081 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070233053 Shelton, IV et al. Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070288044 Jinno et al. Dec 2007 A1
20070295780 Shelton et al. Dec 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080029576 Shelton et al. Feb 2008 A1
20080035701 Racenet et al. Feb 2008 A1
20080041917 Racenet et al. Feb 2008 A1
20080078800 Hess et al. Apr 2008 A1
20080078801 Shelton et al. Apr 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080078803 Shelton et al. Apr 2008 A1
20080078804 Shelton et al. Apr 2008 A1
20080078806 Omaits et al. Apr 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080078808 Hess et al. Apr 2008 A1
20080082115 Morgan et al. Apr 2008 A1
20080082124 Hess et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080164296 Shelton et al. Jul 2008 A1
20080167522 Giordano et al. Jul 2008 A1
20080167644 Shelton et al. Jul 2008 A1
20080167670 Shelton et al. Jul 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080167672 Giordano et al. Jul 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080183193 Omori et al. Jul 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080210738 Shelton et al. Sep 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251568 Zemlok et al. Oct 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080296343 Schall et al. Dec 2008 A1
20080296345 Shelton, IV et al. Dec 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080296347 Shelton, IV et al. Dec 2008 A1
20080300580 Shelton, IV et al. Dec 2008 A1
20080300613 Shelton, IV et al. Dec 2008 A1
20080308601 Timm et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton, IV et al. Dec 2008 A1
20080308606 Timm et al. Dec 2008 A1
20080308607 Timm et al. Dec 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314954 Boudreaux Dec 2008 A1
20080314955 Boudreaux et al. Dec 2008 A1
20080314957 Boudreaux Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20080314961 Boudreaux et al. Dec 2008 A1
20080314962 Boudreaux Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005807 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012556 Boudreaux et al. Jan 2009 A1
20090076534 Shelton, IV et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090200355 Baxter, III et al. Aug 2009 A1
20090206123 Doll et al. Aug 2009 A1
20090206124 Hall et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206128 Hueil et al. Aug 2009 A1
20090206129 Doll et al. Aug 2009 A1
20090206130 Hall et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206132 Hueil et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206134 Swayze et al. Aug 2009 A1
20090206135 Hall et al. Aug 2009 A1
20090206136 Moore et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206138 Smith et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206140 Scheib et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090206144 Doll et al. Aug 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090255974 Viola Oct 2009 A1
20090255975 Zemlok et al. Oct 2009 A1
20090255976 Marczyk et al. Oct 2009 A1
20090255977 Zemlok Oct 2009 A1
20090255978 Viola et al. Oct 2009 A1
20090289096 Shelton, IV et al. Nov 2009 A1
20100032470 Hess et al. Feb 2010 A1
20100065605 Shelton, IV et al. Mar 2010 A1
20100065609 Schwemberger Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100072251 Baxter, III et al. Mar 2010 A1
20100072252 Baxter, III et al. Mar 2010 A1
20100072253 Baxter, III et al. Mar 2010 A1
20100072256 Baxter, III et al. Mar 2010 A1
20100076474 Yates et al. Mar 2010 A1
20100076475 Yates et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100089974 Shelton, IV Apr 2010 A1
20100096435 Fuchs et al. Apr 2010 A1
Foreign Referenced Citations (227)
Number Date Country
2458946 Mar 2003 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
273689 May 1914 DE
1775926 Jan 1972 DE
9412228 Sep 1994 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314072 Oct 2004 DE
0122046 Oct 1984 EP
0070230 Oct 1985 EP
0033548 May 1986 EP
0276104 Jul 1988 EP
0639349 Feb 1994 EP
0324636 Mar 1994 EP
0593920 Apr 1994 EP
0600182 Jun 1994 EP
0630612 Dec 1994 EP
0634144 Jan 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0511470 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0705571 Apr 1996 EP
0484677 Jun 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0578425 Sep 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0676173 Sep 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0760230 Feb 1999 EP
0537572 Jun 1999 EP
0552050 May 2000 EP
1090592 Apr 2001 EP
1256318 May 2001 EP
0908152 Jan 2002 EP
0872213 May 2002 EP
1238634 Sep 2002 EP
0656188 Jan 2003 EP
0829235 Jun 2003 EP
0813843 Oct 2003 EP
0741996 Feb 2004 EP
0705570 Apr 2004 EP
1086713 May 2004 EP
1426012 Jun 2004 EP
0888749 Sep 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
1520521 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1157666 Sep 2005 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621145 Feb 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1256317 Dec 2006 EP
1728473 Dec 2006 EP
1728475 Dec 2006 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813201 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1839596 Oct 2007 EP
1872727 Jan 2008 EP
1897502 Mar 2008 EP
1702568 Jul 2008 EP
1980213 Oct 2008 EP
1759645 Nov 2008 EP
1693008 Dec 2008 EP
1749486 Mar 2009 EP
2090256 Aug 2009 EP
1813206 Apr 2010 EP
999646 Feb 1952 FR
1112936 Mar 1956 FR
2765794 Jan 1999 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
2336214 Oct 1999 GB
6007357 Jan 1994 JP
7051273 Feb 1995 JP
8033641 Feb 1996 JP
8229050 Sep 1996 JP
2000287987 Oct 2000 JP
2001286477 Oct 2001 JP
2002369820 Dec 2002 JP
2005505322 Feb 2005 JP
2005103293 Apr 2005 JP
2187249 Aug 2002 RU
2225170 Mar 2004 RU
1377053 Feb 1988 SU
1561964 May 1990 SU
1722476 Mar 1992 SU
WO 9308755 May 1993 WO
WO 9518572 Jul 1995 WO
WO 9523557 Sep 1995 WO
WO 9529639 Nov 1995 WO
WO 9622055 Jul 1996 WO
WO 9635464 Nov 1996 WO
WO 9734533 Sep 1997 WO
WO 9739688 Oct 1997 WO
WO 9817180 Apr 1998 WO
WO 9830153 Jul 1998 WO
WO 9912483 Mar 1999 WO
WO 9915086 Apr 1999 WO
WO 9934744 Jul 1999 WO
WO 9945849 Sep 1999 WO
WO 0024322 May 2000 WO
WO 0057796 Oct 2000 WO
WO 0064365 Nov 2000 WO
WO 0072762 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0105702 Jan 2001 WO
WO 0110482 Feb 2001 WO
WO 0154594 Aug 2001 WO
WO 0162158 Aug 2001 WO
WO 0162162 Aug 2001 WO
WO 0162164 Aug 2001 WO
WO 0191646 Dec 2001 WO
WO 0207608 Jan 2002 WO
WO 0207618 Jan 2002 WO
WO 0217799 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0230297 Apr 2002 WO
WO 0232322 Apr 2002 WO
WO 0243571 Jun 2002 WO
WO 02058568 Aug 2002 WO
WO 0260328 Aug 2002 WO
WO 0267785 Sep 2002 WO
WO 02098302 Dec 2002 WO
WO 03000138 Jan 2003 WO
WO 03001329 Jan 2003 WO
WO 03013363 Feb 2003 WO
WO 03020106 Mar 2003 WO
WO 03020139 Mar 2003 WO
WO 03079909 Mar 2003 WO
WO 03030743 Apr 2003 WO
WO 03037193 May 2003 WO
WO 03047436 Jun 2003 WO
WO 03057048 Jul 2003 WO
WO 03057058 Jul 2003 WO
WO 03063694 Aug 2003 WO
WO 03077769 Sep 2003 WO
WO 03082126 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03090630 Nov 2003 WO
WO 03094743 Nov 2003 WO
WO 03094745 Nov 2003 WO
WO 03094746 Nov 2003 WO
WO 03094747 Nov 2003 WO
WO 03101313 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 03105702 Dec 2003 WO
WO 2004006980 Jan 2004 WO
WO 2004028585 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004047653 Jun 2004 WO
WO 2004049956 Jun 2004 WO
WO 2004086987 Oct 2004 WO
WO 2004096057 Nov 2004 WO
WO 2004105621 Dec 2004 WO
WO 2004112618 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2005027983 Mar 2005 WO
WO 2005037329 Apr 2005 WO
WO 2005078892 Aug 2005 WO
WO 2005096954 Oct 2005 WO
WO 2005112808 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2006044490 Apr 2006 WO
WO 2006044581 Apr 2006 WO
WO 2006044810 Apr 2006 WO
WO 2006083748 Aug 2006 WO
WO 2006115958 Nov 2006 WO
WO 2006132992 Dec 2006 WO
WO 2007002180 Jan 2007 WO
WO 2007016290 Feb 2007 WO
WO 2007018898 Feb 2007 WO
WO 2007098220 Aug 2007 WO
WO 2007121579 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2007139734 Dec 2007 WO
WO 2007142625 Dec 2007 WO
WO 2008039270 Apr 2008 WO
WO 2008045383 Apr 2008 WO
Related Publications (1)
Number Date Country
20080300579 A1 Dec 2008 US