Surgical stapling apparatus including buttress attachment via tabs

Information

  • Patent Grant
  • 9237893
  • Patent Number
    9,237,893
  • Date Filed
    Monday, March 2, 2015
    9 years ago
  • Date Issued
    Tuesday, January 19, 2016
    8 years ago
Abstract
An apparatus for joining two hollow organ sections with an annular array of surgical staples includes a staple cartridge component, an anvil component, a buttress component and a fastening member. The staple cartridge component includes a plurality of surgical staples arranged in an annular array. The anvil component is movable relative to the staple cartridge component between spaced apart and approximated positions to adjustably clamp the organ sections between the staple cartridge and anvil components. The buttress component is configured and dimensioned to be positioned on a distal surface of the staple cartridge component. In particular, the buttress component includes a buttress member and a plurality of circumferentially arranged tabs extending proximally from the buttress member. The fastening member is configured and dimensioned to engage the plurality of circumferentially arranged tabs to securely position the buttress component on the staple cartridge component.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to a surgical instrument for applying surgical fasteners or staples to body tissue, and more particularly, to a surgical buttress for use with an end-to-end anastomosis stapling apparatus.


2. Background of Related Art


Anastomosis is a surgical joining of separate hollow organ sections. Typically, an anastomosis procedure follows surgery in which a diseased or defective section of hollow tissue is removed and the remaining end sections are joined. Depending on the desired anastomosis procedure, the end sections may be joined by either circular, end-to-end or side-to-side organ reconstruction methods.


In a circular anastomosis procedure, the two ends of the organ sections are joined by means of a stapling instrument, which drives a circular array of staples through the end section of each organ section and simultaneously cores any tissue interior of the driven circular array of staples to free the tubular passage. Typically, these instruments include an elongated shaft having a handle portion at a proximal end to actuate the instrument and a staple holding component disposed at a distal end. An anvil assembly including an anvil shaft with attached anvil head is mounted to the distal end adjacent the staple holding component. Opposed end sections of the organ to be stapled are clamped between the anvil head and the staple holding component. The clamped tissue is stapled by driving a plurality of staples from the staple holding component so that the ends of the staples pass through the tissue and are deformed by the anvil head.


In use, one end section of the organ is secured about the anvil assembly and the other end section of the organ is held in place adjacent the staple holding component. The shaft of the anvil assembly is removably connected to the instrument. Once the anvil shaft is secured to the instrument, the anvil is drawn into close approximation to the staple holding component. The instrument is then fired to cause the staples to pass through tissue of both sections of the organ and deform against the anvil. During the firing step, a circular knife is advanced to cut tissue inside the staple line, thereby establishing a passage between the two sections of the organ. After firing, the instrument is typically removed by withdrawing the anvil through the staple line, after which the surgeon will carefully inspect the surgical site to ensure a proper anastomosis has been achieved.


While circular staplers are helpful in a number of surgical procedures, problems such as anastomotic leak, tear of tissue during stapler extraction, bleeding, and other complications may arise. In order to remedy such problems, buttress or reinforcing materials have been utilized. However, due to the inherent difficulty in positioning and securing such materials with the instrument, there is a continuing need for buttress material and buttress material and instrument combinations that can be safely and effectively positioned within staple cartridge and/or anvil.


SUMMARY

In accordance with an embodiment of the present disclosure, there is provided an apparatus for joining two hollow organ sections with an annular array of surgical staples. The apparatus includes a staple cartridge component, an anvil component, a buttress component, and a fastening member. The staple cartridge component includes a plurality of surgical staples arranged in an annular array. The anvil component is movable relative to the staple cartridge component between spaced apart and approximated positions to adjustably clamp the organ sections between the staple cartridge and anvil components. The buttress component is configured and dimensioned to be positioned on a distal surface of the staple cartridge component. The buttress component includes a buttress member and a plurality of circumferentially arranged tabs extending proximally from the buttress member. The fastening member is configured and dimensioned to engage the plurality of circumferentially arranged tabs to securely position the buttress component on the staple cartridge component.


In an embodiment, the buttress member may have an annular configuration. In particular, the buttress member may be concentrically disposed in a juxtaposed relation with the plurality of surgical staples. The fastening member may be an annular ring configured and dimensioned to apply inward force to the plurality of circumferentially arranged tabs against an outer wall of the staple cartridge component. In addition, the fastening member may be a suture tied around the plurality of circumferentially arranged tabs against an outer wall of the staple cartridge component.


In another embodiment, the outer wall of the staple cartridge component may define a circumferential groove configured and adapted to receive a portion of the plurality of circumferentially arranged tabs. The fastening member may be in registration with the circumferential groove.


The apparatus may further include a knife member concentrically arranged in the staple cartridge component and with the buttress member. The knife member may be movable relative to the staple cartridge component. In particular, the buttress member may be configured to be disposed radially outward of knife member.


The plurality of circumferentially arranged tabs may each define a line of weakening adjacent the buttress member to enable detachment of the buttress member from the plurality of tabs. The buttress component may be configured such that the plurality of circumferentially arranged tabs engage an inner wall of the staple cartridge component.


In accordance with another embodiment of the present disclosure, there is provided an apparatus for joining two hollow organ sections with an annular array of surgical staples. The apparatus includes a staple cartridge component, an anvil component, a buttress component, and a fastening member. The staple cartridge component includes a plurality of surgical staples in an annular array. The anvil component is movable relative to the staple cartridge component between spaced apart and approximated positions to adjustably clamp the organ sections between the staple cartridge and anvil components. The buttress component is configured and dimensioned to be positioned on a distal surface of the staple cartridge component. In particular, the buttress component includes a buttress member and an outer rim extending proximally from the buttress member. The outer rim is configured and adapted to engage an outer wall of the staple cartridge component. The fastening member is tied around the outer rim of the buttress component to secure the outer rim against the outer wall of the staple cartridge component.


In an embodiment, the outer rim may include a plurality of circumferentially arranged loops configured and adapted to receive the fastening member therethrough. Alternatively, the outer rim may define a plurality of circumferentially arranged apertures dimensioned to receive the fastening member therethrough. Furthermore, each aperture may include an adhesive to secure the fastening member therein. The outer rim may define a circumferential line of weakening adjacent the buttress member to enable detachment of the buttress member from the outer rim.


In accordance with still another embodiment of the present disclosure, there is provided an apparatus for joining two hollow organ sections with an annular array of surgical staples. The apparatus includes a staple cartridge component, an anvil component, a knife member and a buttress component. The staple cartridge component includes a plurality of surgical staples in an annular array. The anvil component defines a plurality of staple pockets for forming the surgical staples. The anvil component is movable relative to the staple cartridge component between spaced apart and approximated positions to adjustably clamp the organ sections between the staple cartridge and anvil components. The knife member is concentrically arranged in the staple cartridge component. The knife member is movable relative to the staple cartridge component. The buttress component includes a buttress member concentrically aligned with the plurality of surgical staples and a plurality of circumferentially arranged tabs extending proximally from the buttress member. The plurality of tabs and the staple cartridge component have corresponding attaching members for securing the plurality of tabs to the staple cartridge component.


In an embodiment, the attaching members may be hook and loop fasteners. In particular, the staple cartridge component may have the hook and loop fasteners on the outer wall thereof and the plurality of tabs may have the corresponding hook and loop fasteners on an inner surface of thereof. Alternatively, the staple cartridge component may have the hook and loop fasteners on an inner wall thereof and the plurality of tabs may have the corresponding hook and loop fasteners on an outer surface of thereof.


In accordance with yet another embodiment of the present disclosure, there is provided an apparatus for joining two hollow organ sections with an annular array of surgical staples. The apparatus includes a staple cartridge component, an anvil component, a knife member and a first buttress component. The staple cartridge component includes a plurality of surgical staples in an annular array. The anvil component includes an anvil member defining a plurality of staple pockets for forming the surgical staples and a shaft extending distally from the anvil member. The anvil component is movable relative to the staple cartridge component between spaced apart and approximated positions to adjustably clamp the organ sections between the staple cartridge and anvil components. The knife member is concentrically arranged in the staple cartridge component. The knife member is movable relative to the staple cartridge component. The first buttress component includes a buttress member concentrically aligned with the anvil component and a rim extending distally from the buttress member. The first buttress component encloses the plurality of staple pockets defined in the anvil member.


The apparatus may further include a fastening member securing the first buttress component to the shaft of the anvil component. In particular, the fastening member may include a plurality of barbs. The rim of the first buttress component may be an outer rim that engages an outer surface of the anvil member. In addition, the first buttress component may further include an inner rim extending distally from the buttress member. The inner rim may be configured and dimensioned to engage the shaft of the anvil component.


In an embodiment, the apparatus may further include a second buttress component concentrically aligned with the staple cartridge component. The second buttress component may include a buttress member and a plurality of circumferentially arranged tabs extending proximally from the buttress member. The plurality of tabs may engage an outer wall of the staple cartridge component. In particular, the plurality of tabs and the outer wall of the staple cartridge component may include corresponding hook and loop fasteners to secure the second buttress component to the staple cartridge component.


Each tab may include a line of weakening adjacent the buttress member for detachment of the buttress member from the plurality of tabs. The buttress component may be configured such that the plurality of tabs engage an inner wall of the staple cartridge component. The plurality of tabs and the inner wall of the staple cartridge component may include corresponding hook and loop fasteners to secure the second buttress component to the staple cartridge component.


The apparatus may further include a fastening member configured and dimensioned to engage the plurality of circumferentially arranged tabs to securely position the second buttress component on the staple cartridge component. The fastening member may be an annular ring configured and dimensioned to apply inward force to the plurality of circumferentially arranged tabs against an outer wall of the staple cartridge component. Alternatively, the fastening member may be a suture tied around the plurality of circumferentially arranged tabs against an outer wall of the staple cartridge component.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments of the present disclosure are described hereinbelow with reference to the drawings, wherein:



FIG. 1 is a perspective view of an annular surgical stapling apparatus configured for use with a surgical buttress assembly in accordance with an embodiment of the present disclosure;



FIG. 2 is a perspective view of a head portion of the surgical stapling apparatus of FIG. 1 illustrating a surgical buttress assembly mounted on a distal portion of a staple cartridge assembly;



FIG. 3 is an exploded, perspective view, with parts separated, of the head portion of FIG. 2;



FIG. 4 is an enlarged, cross-sectional view of the area of detail indicated in FIG. 2;



FIG. 5 is a perspective view of a head portion of a surgical stapling apparatus including a surgical buttress assembly in accordance with another embodiment of the present disclosure;



FIG. 6 is an exploded, perspective view, with parts separated, of the head portion of FIG. 5;



FIG. 7 is an enlarged, cross-sectional view of the area of detail indicated in FIG. 5;



FIG. 8 is a perspective view of the annular surgical apparatus of FIG. 1 illustrating insertion of the apparatus through two hollow organ sections;



FIG. 9 is an enlarged, partial longitudinal, cross-sectional view of the head portion of the apparatus of FIG. 8;



FIG. 10 is an enlarged, partial longitudinal, cross-sectional view of the head portion of the apparatus of FIG. 8, illustrating stapling and cutting of the two hollow organ sections;



FIG. 11 is a perspective view of a head portion of a surgical stapling apparatus including a surgical buttress assembly in accordance with still another embodiment of the present disclosure;



FIG. 12 is an exploded, perspective view, with parts separated, of the head portion of FIG. 11;



FIG. 13 is an enlarged, cross-sectional view of the area of detail indicated in FIG. 11;



FIG. 14 is a perspective view of a head portion of a surgical stapling apparatus including a surgical buttress assembly in accordance with still another embodiment of the present disclosure;



FIG. 15 is an exploded, perspective view, with parts separated, of the head portion of FIG. 14;



FIG. 16 is an enlarged, cross-sectional view of the area of detail indicated in FIG. 14;



FIG. 17 is a perspective view of a head portion of a surgical stapling apparatus including a surgical buttress assembly in accordance with still yet another embodiment of the present disclosure;



FIG. 18 is an exploded, perspective view, with parts separated, of the head portion of FIG. 17;



FIG. 19 is an enlarged, cross-sectional view of the area of detail indicated in FIG. 17;



FIG. 20 is a perspective view of a head portion of a surgical stapling apparatus including a surgical buttress assembly in accordance with still yet another embodiment of the present disclosure;



FIG. 21 is an exploded, perspective view, with parts separated, of the head portion of FIG. 20;



FIG. 22 is an enlarged, cross-sectional view of the area of detail indicated in FIG. 20;



FIG. 23 is a perspective view of a head portion of a surgical stapling apparatus including a surgical buttress assembly in accordance with still another embodiment of the present disclosure, illustrating an anvil assembly and the surgical buttress assembly detached from the surgical stapling apparatus;



FIG. 24 is a perspective view of the anvil assembly and the surgical buttress assembly of FIG. 23 securely positioned on the anvil assembly;



FIG. 25 is an exploded, perspective view, with parts separated, of a head assembly of a surgical stapling apparatus including a surgical buttress assembly in accordance with still yet another embodiment of the present disclosure; and



FIG. 26 is a perspective view of an anvil assembly and the surgical buttress assembly of FIG. 25 securely positioned on the anvil assembly.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the present disclosure will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “distal,” as is conventional, will refer to that portion of the instrument, apparatus, device or component thereof which is farther from the user while, the term “proximal,” will refer to that portion of the instrument, apparatus, device or component thereof which is closer to the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


With reference to FIG. 1, a surgical stapling apparatus 10 for performing circular anastomosis of hollow organs is shown. Surgical stapling apparatus 10 drives a circular array of staples 7 (FIG. 9) through the end sections of each organ and simultaneously fires a cylindrical knife 76 (FIG. 9) to cores any tissue radially inward of the driven circular array of staples 7 to free the tubular passage, and thereby joining two ends of the organ. Surgical stapling apparatus 10 includes a handle assembly 20 having a pair of pivotable actuating handle members 22 and an advancing means 24 including a rotatable grip member 26, an elongate body portion 30 extending distally from handle assembly 20, and a head portion 50 including an anvil assembly 60, a staple cartridge assembly 70, and a surgical buttress assembly 100 in accordance with an embodiment of the present disclosure.


The components of surgical apparatus 10 are generally formed from thermoplastics including polycarbonates, and metals including stainless steel and aluminum. The particular material selected to form a particular component will depend upon the strength requirements of the particular component. Staples 7 are of a conventional type and include a backspan having a pair of legs extending from the backspan. The legs terminate in tissue penetrating tips.


Handle assembly 20 can be actuated to approximate anvil assembly 60 relative to staple cartridge assembly 70 and to apply a pair of annular arrays of staples 7 through tissue. In order to properly position tissue in head portion 50, rotatable grip member 26 may be rotated to move anvil assembly 60 axially relative to staple cartridge assembly 70 between a spaced apart position and an approximated position in which anvil assembly 60 is positioned adjacent staple cartridge assembly 70 to clamp tissue therebetween. Handle members 22 may be squeezed to fire staples 7 through tissue to join two segments “T1,” “T2” (FIG. 9) of tubular tissues together, as will be discussed in detail below.


Elongate body portion 30 is constructed to have a slightly curved/bent shape along its length. However, elongate body portion 30 may also be straight, as well as flexible to bend to any configuration. The length, shape and/or the diameter of elongate body portion 30 may be varied to suit a particular surgical procedure.


With reference to FIGS. 2-4, head portion 50 includes anvil assembly 60, staple cartridge assembly 70 and surgical buttress assembly 100 detachably secured with staple cartridge assembly 70. Staple cartridge assembly 70 may be fixedly connected to a distal end portion of elongate body portion 30 or may be configured to concentrically fit within the distal end portion of elongate body portion 30. In particular, staple cartridge assembly 70 defines a pair of annular arrays of staple receiving slots 72 having a staple 7 disposed in each one of staple receiving slots 72 and a circumferentially arranged groove 71 (FIG. 4) such as, e.g., a countersink, in an outer wall 79 thereof.


In addition, staple cartridge assembly 70 includes cylindrical knife 76 concentrically arranged with the pair of annular arrays of staples 7 and a plurality of staple pushers 9 (FIG. 9) each disposed in respective staple receiving slot 72 to eject the respective staple 7 through slot 72. In use, staples 7 travel through slots 72 and tissue toward anvil assembly 60 for formation thereof.


With brief reference to FIG. 9, cylindrical knife 76 includes a distal rim 79 defining a knife blade adapted to cut tissue. Upon actuation of handle members 22, cylindrical knife 76 is moved distally to cut tissue, and the plurality of pushers 9 are moved distally to eject staples 7 disposed in staple receiving slots 72 therethrough, toward anvil assembly 60.


With particular reference back to FIG. 3, positioned distally of staple cartridge assembly 70 is anvil assembly 60 including an anvil member 62 and a shaft 64 extending proximally from anvil member 62. Anvil member 62 includes a plurality of pockets (not shown) for receiving and forming staples 7. Shaft 64 is configured to be detachably received in approximation shaft 75 disposed in elongate body portion 30. Approximation shaft 75 is operatively coupled with rotatable grip member 26 of handle assembly 20, whereby rotation of rotatable grip member 26 moves approximation shaft 75 axially. Such axial movement of approximation shaft 75 is imparted to anvil assembly 60 detachably coupled with approximation shaft 75. In this manner, anvil assembly 60 is movable axially relative to staple cartridge assembly 70 between a spaced apart position and an approximated position in which anvil assembly 60 is positioned adjacent staple cartridge assembly 70 to adjustably clamp tissue between anvil assembly 60 and staple cartridge assembly 70.


Examples of instruments for performing circular anastomosis of hollow organs are described in U.S. Pat. Nos. 6,053,390, 5,588,579, 5,119,983, 5,005,749, 4,646,745, 4,576,167, and 4,473,077, each of which is hereby incorporated herein in its entirety by reference.


With continued reference to FIGS. 3 and 4, surgical buttress assembly 100 includes a buttress component 110 and a fastening member in the form of an annular ring 130 configured and dimensioned to secure buttress component 110 on staple cartridge assembly 70. Buttress component 110 is provided to reinforce and seal staple lines applied to tissue by surgical stapling apparatus 10.


Buttress component 110 includes a buttress member 112 having an annular profile configured to be concentrically aligned with staple cartridge assembly 70 and a plurality of circumferentially arranged tabs 120 extending proximally from buttress member 112. In use, buttress member 112 is mounted on a distal surface 74 of staple cartridge assembly 70. The annular profile of buttress member 112 is configured and dimensioned to be flush with an outer peripheral edge of staple cartridge assembly 70 when mounted on staple cartridge assembly 70. Moreover, buttress member 112 is superposed with the pair of annular arrays of staple receiving slots 72. In this manner, when staples 7 are ejected through the pair of annular arrays of staple receiving slots 72, the legs of each staple 7 penetrate through buttress member 112 and the backspan of staple 7 is secured or abuts against a proximal surface of buttress member 112.


In addition, cylindrical knife 76 is disposed radially inward of annular array of staple receiving slots 72 and of buttress member 112 that is in a superposed relation with the annular array of staple receiving slots 72 so as to not extend across a knife path of cylindrical knife 76. In this manner, upon actuation of handle members 22, the entire buttress member 112 is stapled to tissue to reinforce said tissue, and severing of buttress member 112 by cylindrical knife 76 is eliminated.


A fastening member is configured and dimensioned to engage the plurality of circumferentially arranged tabs to securely position the buttress component on the staple cartridge component of the stapling apparatus. For example, the plurality of circumferentially arranged tabs 120 that extend proximally from buttress member 112 are positionable on distal surface 74 of cartridge assembly 70. See FIG. 3. More particularly, a proximal end of each tab 120 extends proximal of a groove 71 circumferentially defined in outer wall 79 of cartridge assembly 70. See FIG. 4.


The fastening member may be provided in the form of an annular ring 130, which is secured around circumferentially arranged tabs 120, such that annular ring 130 applies a radially inward force against tabs 120 disposed across groove 71. In this manner, annular ring 130 overlies groove 71 and is substantially flush with portions of buttress member 112 and/or tabs 120 that are disposed on or against outer wall 79 of staple cartridge assembly 70. Such configuration enables buttress member 112 to be securely positioned in place with respect to staple cartridge assembly 70.


Annular ring 130 may include and is not limited to a resilient band. For example, a piece of spring metal, which may be circular in shape, or a length of suture material, or similar straps, bands, cables, or other members may be used.


Buttress component 110 is monolithically formed as a single construct. However, each tab 120 may include a break, perforations, or a line of weakening adjacent buttress member 112, whereby buttress member 112 that is stapled to tissue may be severed or detached from the plurality of tabs 120. In this manner, tabs 120 may at least partially be retained in groove 71 by annular ring 130 and later removed from the surgical site along with surgical stapling apparatus 10.


Buttress member 112 is fabricated from a biocompatible material which is bio-absorbable or non-absorbable, as well as natural or synthetic materials. It should be understood that any combination of natural, synthetic, bio-absorbable, and non-bioabsorbable materials may be used to form buttress member 112.


In addition, buttress member 112 may be porous, non-porous, or combinations thereof. It is also envisioned that buttress member 112 described herein may contain a plurality of layers in which any combination of non-porous and porous layers may be configured. For example, buttress member 112 may be formed to include multiple non-porous layers and porous layers that are stacked in an alternating manner. In another example, buttress member 112 may be formed in a “sandwich-like” manner wherein the outer layers of buttress member 112 include porous layers and the inner layers are non-porous layers. Examples of multi-layered buttress members are disclosed in U.S. Patent Application Publication No. 2009/0001122, filed on Jun. 27, 2007, entitled “Buttress and Surgical Stapling Apparatus,” the entire disclosure of which is incorporated by reference therein.


In particular, the use of non-porous layers in buttress member 112 may enhance the ability of buttress member 112 to resist tears and perforations during the manufacturing, shipping, handling, and stapling processes. In addition, the use of a non-porous layer in the surgical buttress may also retard or inhibit tissue ingrowth from surrounding tissues, and thereby acting as an adhesion barrier and inhibiting the formation of unwanted scar tissue.


In addition, at least one bioactive agent may be combined with buttress member 112. The agent may be disposed on a surface of the surgical buttress and/or impregnated therein. In these embodiments, buttress member 112 can also serve as a vehicle for delivery of the bioactive agent. The term “bioactive agent,” as used herein, is used in its broadest sense and includes any substance or mixture of substances that have clinical use.


With reference now to FIGS. 5-7, it is further contemplated that a surgical buttress assembly 200 may include buttress component 110 and a fastening member in the form of a suture 230. In contrast to surgical buttress assembly 100, suture 230 may be utilized to securely position buttress component 110 on a distal surface 274 of a staple cartridge assembly 270. As described hereinabove, a proximal end of each tab 120 extends across a groove 271 (FIG. 7) defined in an outer wall 279 of cartridge assembly 270 when buttress member 112 is positioned on distal surface 274 of staple cartridge assembly 270.


In use, suture 230 is wrapped around circumferentially arranged tabs 120, such that suture 230 applies radially inward force against portions of tabs 120 disposed at least partially across groove 271. In particular, staple cartridge assembly 270 defines groove 271 having an arcuate, transverse, cross-sectional profile to better accommodate suture 230 that overlies groove 271, as shown in FIG. 7. Such configuration enables buttress component 110 to be securely positioned in place with respect to staple cartridge assembly 270.


With reference to FIGS. 8-10, surgical stapling apparatus 10 is shown in use in an anastomosis procedure to effect joining of, for example, two opposing intestinal sections. The anastomosis procedure is typically performed using minimally invasive surgical techniques including laparoscopic means and instrumentation. Initially, a diseased intestinal section is removed. Thereafter, anvil assembly 60 is inserted to the operative site either through a surgical incision or transanally and is positioned within the intestinal section “T1.” Elongate body portion 30 of surgical stapling apparatus 10, including staple cartridge assembly 70, is inserted transanally into the other intestinal section “T2.” The intestinal sections “T1,” “T2” are then temporarily secured about their respective components (e.g., shaft 64 of anvil assembly 60 and the distal end of elongate body portion 30) by conventional means such as a purse string suture “P” (see FIG. 9).


Thereafter, the clinician maneuvers anvil assembly 60 until the proximal end of shaft 64 is inserted into and attached/connected to the distal end of approximation shaft 75 disposed in elongate body portion 30 of surgical stapling apparatus 10. Shaft 64 engages approximation shaft 75 to be operable as a unitary construct. Anvil assembly 60 and elongate body portion 30 are then approximated to approximate the intestinal sections “T1,” T2.” Surgical stapling apparatus 10 is then fired causing the plurality of staple pushers 9 each disposed in respective staple receiving slot 72 to eject the respective staple 7 through slot 72. Staples 7 travel through intestinal sections “T1,” T2,” as well as buttress member 112, toward anvil assembly 60, thereby effecting stapling of intestinal sections “T1,” T2” to one another, while cylindrical knife 76 cuts a portion of tissue disposed radially inward of cylindrical knife 76 to complete the anastomosis. At this time, tabs 120 remain attached to buttress member 112 stapled to the intestinal sections “T1,” T2” and are secured with staple cartridge assembly 70 by annular ring 130. Upon removal of surgical stapling apparatus 10 from the surgical site, the break or the line of weakening adjacent buttress member 112 facilitates detachment of tabs 120 from buttress member 112 stapled to intestinal sections “T1,” T2.”


With reference now to FIGS. 11-13, a buttress assembly 300 in accordance with another embodiment of the present disclosure is shown. A fastening member is in the form of a suture 330. In particular, buttress component 310 includes a buttress member 312 configured and dimensioned to be positioned on a distal surface 374 of staple cartridge assembly 370 and a rim 320 extending proximally from an outer radial edge of buttress member 312. Rim 320 engages an outer wall 379 of staple cartridge assembly 370, whereby buttress component 310 encloses distal surface 374 of staple cartridge assembly 370. A cylindrical knife 376 is disposed radially inward of buttress member 312, whereby under such a configuration severing of buttress member 312 by cylindrical knife 376 is eliminated.


Rim 320 includes a plurality of circumferentially arranged loops 315. Each loop 315 is configured and dimensioned to accommodate a suture 330 therethrough. Suture 330 is wrapped and tied around rim 320 through the plurality of loops 315 against outer wall 379 of staple cartridge assembly 370 to secure buttress component 310 on staple cartridge assembly 370. In addition, rim 320 includes a circumferentially defined break, plurality of perforations or line of weakening 316 adjacent buttress member 312, whereby buttress member 312 that is stapled to tissue may be detached from rim 320. In this manner, rim 320 that is detached from buttress member 312 remains secured to outer wall 379 of staple cartridge assembly 370 by suture 330 and is removed from the surgical site along with staple cartridge assembly 370. Alternatively, each loop 315 may be created by defining a pair of substantially adjacent slits in rim 320.


With reference to FIGS. 14-16, a buttress assembly 400 in accordance with another embodiment of the present disclosure is shown. Buttress assembly 400 includes a buttress component 410 and a fastening member in the form of a suture 430. In particular, buttress component 410 includes a buttress member 412 configured and dimensioned to be positioned on a distal surface 474 of staple cartridge assembly 470 and a rim 420 extending proximally from an outer radial edge of buttress member 412. Rim 420 engages an outer wall 479 of staple cartridge assembly 470, whereby buttress component 410 encloses distal surface 474 of staple cartridge assembly 470.


In contrast to rim 320, rim 420 includes a plurality of circumferentially arranged apertures, holes or bores 415. Each bore 315 is configured and dimensioned to receive suture 430 therethrough. Suture 430 is looped and tied around rim 420 through the plurality of bores 415 to secure buttress component 410 on staple cartridge assembly 470. In addition, rim 420 includes a break 416 circumferentially defined adjacent buttress member 412, whereby buttress member 412 that is stapled to tissue may be detached from rim 420. In this manner, rim 420 that is detached from buttress member 412 is secured to outer wall 479 of staple cartridge assembly 470 and is removed from the surgical site along with staple cartridge assembly 470.


It is further contemplated that each bore 415 may include an adhesive or a gel such as, e.g., hydrogel, to improve securement of suture 430 in bore 415. In addition, it is also envisioned that suture 430 may include a plurality of, e.g., unidirectional, barbs, to improve securement of suture 430 in bores 415. Examples of barbed sutures are disclosed in U.S. patent application Ser. No. 12/361,962, filed Jan. 29, 2009, the entire content of which is incorporated herein by reference. A compound barbed suture is available commercially as V-LOC™ from Tyco Healthcare Group, LLP (dba Covidien AG, Mansfield, Mass.).


With reference to FIGS. 17-19, a buttress assembly 600 in accordance with another embodiment of the present disclosure is shown. Buttress assembly 600 includes a buttress member 610 and a plurality of circumferentially arranged tabs 620 extending proximally from an outer radial edge of buttress member 610. Each tab 620 includes an attaching member 630a on an inner wall or surface 625 thereof.


Furthermore, outer wall 679 of staple cartridge assembly 670 includes a plurality of circumferentially arranged attaching members 630b corresponding to attaching members 630a on tabs 620. Attaching members 630a, 630b may include, for example, a refastenable tape or a hook and loop fastener. Alternatively, tabs 620 may include a double-sided adhesive tape to detachably position buttress assembly 600 to staple cartridge assembly 670.


In addition, it is also envisioned that each tabs 620 may include a break, perforations or a line of weakening 616, whereby buttress member 610 that is stapled to tissue may be severed or detached from tabs 620. In this manner, tabs 620 may be secured with staple cartridge assembly 670 by attaching members 630a, 630b and removed from the surgical site along with staple cartridge assembly 670.


With reference now to FIGS. 20-22, it is also contemplated that a buttress assembly 700 may include a buttress member 710 and a plurality of circumferentially arranged tabs 720 extending proximally from an inner radial edge of buttress member 710 that engage an inner wall 777 of staple cartridge assembly 770. In particular, each tab 720 includes an attaching member 730a on an outer wall thereof. Furthermore, inner wall 777 of staple cartridge assembly 770 includes a plurality of circumferentially arranged attaching members 730b corresponding to attaching members 730a on tabs 720. Attaching members 730a, 730b may include, for example, a refastenable tape or a hook and loop fastener.


Under such a configuration, cylindrical knife 776 is positioned radially inward of attaching members 730b circumferentially arranged on inner wall 777 of staple cartridge assembly 770 and positioned radially outward of attaching members 730a on respective outer wall of each tab 720. Under such a configuration, cylindrical knife 776 travels between attaching members 730a, 730b and severs tabs 720 from buttress member 710. In addition, tabs 720 may include a break, perforations, or a line of weakening 716 to facilitate severing of tabs 720 from buttress member 710. In this manner, buttress member 710 that is stapled to tissue may be detached from tabs 720.


With reference to FIGS. 23 and 24, a buttress assembly 800 in accordance with another embodiment of the present disclosure is shown. In contrast to buttress assemblies 100, 200, 300, 400, 600, 700, described hereinabove, buttress assembly 800 is configured and adapted to be securely positioned with anvil assembly 60. Buttress assembly 800 includes a buttress component 810. A suture 830 is used to attach the buttress component to the stapling apparatus. Buttress component 810 includes a buttress member 812 having an annular profile configured and dimensioned to be flush with an outer peripheral edge of anvil member 62 when mounted on anvil member 62 and a rim 820 extending distally from buttress member 812. In addition, rim 820 engages an outer wall 61 of anvil member 62, whereby buttress component 810 encloses a proximal surface of anvil member 62 defining the plurality of pockets for receiving and forming staples 7. Additionally, buttress member 812 defines an aperture, hole or bore 816 configured and dimensioned to receive shaft 64 of anvil assembly 60 therethrough. Bore 816 is dimensioned to provide a friction and tight fit around shaft 64. Additionally or alternatively, a suture 830 may be further utilized to securely fasten buttress member 812 to shaft 64.


With reference to FIGS. 25 and 26, in an alternate embodiment a buttress assembly 900 includes a buttress member 912 radially extending between an outer rim 920 and an inner rim 940. In particular, outer rim 920 is configured and dimensioned to engage outer wall 61 of anvil member 62 and inner rim 940 is configured and dimensioned to provide a tight or friction fit against shaft 64 of anvil assembly 60. In this manner, radial and longitudinal movement of buttress assembly 900 with respect to anvil assembly 60 is minimized. In addition, a fastening member in the form of a suture 930 is wrapped or tied around inner rim 940 of buttress member 912 against shaft 64 of anvil assembly 60 to further secure buttress assembly 900 on anvil assembly 60.


With continued reference to FIG. 25, buttress assembly 900 may be used in conjunction with buttress assembly 100 that is positionable on distal surface 74 of staple cartridge assembly 70, as well as any one of buttress assemblies 200, 300, 400, 600, 700, described hereinabove. Buttress assembly 100 is positioned radially outward of cylindrical knife 76. As such, upon actuation of handle members 22, the entire buttress member 112 is stapled to tissue to reinforce the tissue, and severing of buttress member 112 by cylindrical knife 76 is eliminated. However, cylindrical knife 76 cores a portion of buttress member 912 along with inner rim 940 and suture 930 wrapped and tied around inner rim 940, to free such portions from a portion of buttress member 912 that is also stapled to tissue. The use and operation of assemblies 200, 300, 400, 600, 700, 800, 900 are substantially similar to the use and operation of buttress assembly 100 described hereinabove, and thus will not be described further herein.


Although the illustrative embodiments of the present disclosure have been described herein with reference to the accompanying drawings, the above description, disclosure, and figures should not be construed as limiting, but merely as exemplifications of particular embodiments. For example, buttress assembly 900 including buttress member 912 radially extending between inner rim 940 and outer rim 920 may be tailored for use on distal surface 74 of staple cartridge assembly 70. In addition, buttress assembly 900 may further utilize an annular ring 130 or suture 330 to secure outer rim 920 of buttress assembly 900 against outer wall 61 of anvil assembly 60. It is to be understood, therefore, that the disclosure is not limited to those precise embodiments, and that various other changes and modifications may be effected therein by one skilled in the art without departing from the scope or spirit of the disclosure.

Claims
  • 1. An apparatus for joining two hollow organ sections with an annular array of surgical staples, the apparatus comprising: a staple cartridge component including a plurality of surgical staples arranged in an annular array and a plurality of circumferentially arranged attaching members disposed on an inner wall thereof;an anvil component movable relative to the staple cartridge component between spaced apart and approximated positions to adjustably clamp the organ sections between the staple cartridge and anvil components;a buttress component configured to be positioned on a distal surface of the staple cartridge component, the buttress component including a buttress member and a plurality of circumferentially arranged tabs extending proximally from the buttress member, each tab of the plurality of circumferentially arranged tabs including an attaching member on an outer wall thereof, wherein the attaching members of the plurality of circumferentially arranged tabs of the buttress component correspond to, and are configured to engage, the plurality of circumferentially arranged attaching members of the staple cartridge component to securely position the buttress component on the staple cartridge component; anda cylindrical knife positioned radially outward of the attaching members of the plurality of circumferentially arranged tabs of the buttress component and radially inward of the plurality of circumferentially arranged attaching members of the staple cartridge assembly.
  • 2. The apparatus according to claim 1, wherein the buttress component is configured such that the plurality of circumferentially arranged tabs engage the inner wall of the staple cartridge component.
  • 3. The apparatus according to claim 1, wherein the buttress member is severably coupled to the plurality of circumferentially arranged tabs.
  • 4. The apparatus according to claim 3, wherein the cylindrical knife is configured to sever the buttress member of the buttress component from the plurality of circumferentially arranged tabs of the buttress component.
  • 5. The apparatus according to claim 3, wherein the buttress component further includes a perforation disposed between the buttress member and the plurality of circumferentially arranged tabs.
  • 6. The apparatus according to claim 1, wherein the plurality of circumferentially arranged tabs of the buttress component extend proximally along an inner circumference of the buttress member.
  • 7. An apparatus for joining two hollow organ sections, the apparatus comprising: a staple cartridge component including a plurality of surgical staples;an anvil component movable relative to the staple cartridge component between spaced apart and approximated positions;a buttress component configured to be positioned on a distal surface of the staple cartridge component, the buttress component including a buttress member and a plurality of circumferentially arranged tabs extending proximally from the buttress member, the plurality of circumferentially arranged tabs engagable with an inner wall of the staple cartridge component; anda cylindrical knife positioned radially outward of the plurality of circumferentially arranged tabs of the buttress component and radially inward of the inner wall of the staple cartridge component, the cylindrical knife configured to sever the buttress member from the plurality of circumferentially arranged tabs.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Divisional Application claiming the benefit of and priority to U.S. patent application Ser. No. 13/325,501 (now U.S. Pat. No. 8,967,448), filed on Dec. 14, 2011, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (503)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3364200 Ashton et al. Jan 1968 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3939068 Wendt et al. Feb 1976 A
3948666 Kitanishi et al. Apr 1976 A
4064062 Yurko Dec 1977 A
4166800 Fong Sep 1979 A
4282236 Broom Aug 1981 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4416698 McCorsley, III Nov 1983 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4473077 Noiles et al. Sep 1984 A
4576167 Noiles Mar 1986 A
4592354 Rothfuss Jun 1986 A
4605730 Shalaby et al. Aug 1986 A
4626253 Broadnax, Jr. Dec 1986 A
4646745 Noiles Mar 1987 A
4655221 Devereux Apr 1987 A
4665917 Clanton et al. May 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5005749 Aranyi Apr 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5057334 Vail Oct 1991 A
5065929 Schulze et al. Nov 1991 A
5119983 Green et al. Jun 1992 A
5162430 Rhee et al. Nov 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5324775 Rhee et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5410016 Hubbell et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5484913 Stilwell et al. Jan 1996 A
5503638 Cooper et al. Apr 1996 A
5514379 Weissleder et al. May 1996 A
5542594 McKean et al. Aug 1996 A
5543441 Rhee et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5550187 Rhee et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5588579 Schnut et al. Dec 1996 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5752974 Rhee et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5819350 Wang Oct 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5874500 Rhee et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6093557 Pui et al. Jul 2000 A
6099551 Gabbay Aug 2000 A
6149667 Hovland et al. Nov 2000 A
6152943 Sawhney Nov 2000 A
6155265 Hammerslag Dec 2000 A
6156677 Brown Reed et al. Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6179862 Sawhney Jan 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6309569 Farrar et al. Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6399362 Pui et al. Jun 2002 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6514534 Sawhney Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6566406 Pathak et al. May 2003 B1
6590095 Schleicher et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6627749 Kumar Sep 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6656200 Li et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673093 Sawhney Jan 2004 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6703047 Sawhney et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6746869 Pui et al. Jun 2004 B2
6764720 Pui et al. Jul 2004 B2
6773458 Brauker et al. Aug 2004 B1
6818018 Sawhney Nov 2004 B1
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6959851 Heinrich Nov 2005 B2
7009034 Pathak et al. Mar 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7279322 Pui et al. Oct 2007 B2
7307031 Carroll et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7347850 Sawhney Mar 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7498063 Pui et al. Mar 2009 B2
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7594921 Browning Sep 2009 B2
7595392 Kumar et al. Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611494 Campbell et al. Nov 2009 B2
7635073 Heinrich Dec 2009 B2
7649089 Kumar et al. Jan 2010 B2
7662801 Kumar et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7951248 Fallis et al. May 2011 B1
7967179 Olson et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8033483 Fortier et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152777 Campbell et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8245901 Stopek Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8273105 Cohen et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8721703 Fowler May 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8820606 Hodgkinson Sep 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
20020028243 Masters Mar 2002 A1
20020086990 Kumar et al. Jul 2002 A1
20020091397 Chen Jul 2002 A1
20030065345 Weadock Apr 2003 A1
20030078209 Schmidt Apr 2003 A1
20030083676 Wallace May 2003 A1
20030120284 Palacios et al. Jun 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20040107006 Francis et al. Jun 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050131225 Kumar et al. Jun 2005 A1
20050143756 Jankowski Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050154093 Kwon et al. Jul 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060008505 Brandon Jan 2006 A1
20060093672 Kumar et al. May 2006 A1
20060121266 Fandel et al. Jun 2006 A1
20060135992 Bettuchi et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060271104 Viola et al. Nov 2006 A1
20070026031 Bauman et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070054880 Saferstein et al. Mar 2007 A1
20070123839 Rousseau et al. May 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213522 Harris et al. Sep 2007 A1
20070237741 Figuly et al. Oct 2007 A1
20070237742 Figuly et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080110959 Orban et al. May 2008 A1
20080125812 Zubik et al. May 2008 A1
20080140115 Stopek Jun 2008 A1
20080161831 Bauman et al. Jul 2008 A1
20080161832 Bauman et al. Jul 2008 A1
20080164440 Maase et al. Jul 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080194805 Vignon et al. Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080214695 Pathak et al. Sep 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080230583 Heinrich Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090030452 Bauman et al. Jan 2009 A1
20090043334 Bauman et al. Feb 2009 A1
20090076510 Bell et al. Mar 2009 A1
20090076528 Sgro Mar 2009 A1
20090078739 Viola Mar 2009 A1
20090095791 Eskaros et al. Apr 2009 A1
20090095792 Bettuchi Apr 2009 A1
20090120994 Murray et al. May 2009 A1
20090134200 Tarinelli et al. May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090220560 Wan et al. Sep 2009 A1
20090263441 McKay Oct 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20090277947 Viola Nov 2009 A1
20090287230 D'Agostino et al. Nov 2009 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100065606 Stopek Mar 2010 A1
20100065607 Orban, III et al. Mar 2010 A1
20100065660 Hull et al. Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100096481 Hull et al. Apr 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100203151 Hiraoka Aug 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100243711 Olson et al. Sep 2010 A1
20100249805 Olson et al. Sep 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100282815 Bettuchi et al. Nov 2010 A1
20100331880 Stopek Dec 2010 A1
20110024476 Bettuchi et al. Feb 2011 A1
20110024481 Bettuchi et al. Feb 2011 A1
20110036894 Bettuchi Feb 2011 A1
20110042442 Viola et al. Feb 2011 A1
20110046650 Bettuchi Feb 2011 A1
20110057016 Bettuchi Mar 2011 A1
20110082427 Golzarian et al. Apr 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110089375 Chan et al. Apr 2011 A1
20110215132 Aranyi et al. Sep 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20120074199 Olson et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120083723 Vitaris et al. Apr 2012 A1
20120156289 Blaskovich et al. Jun 2012 A1
20120187179 Gleiman Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120273547 Hodgkinson et al. Nov 2012 A1
20130037596 Bear et al. Feb 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105553 (Tarinelli) Racenet et al. May 2013 A1
20130112732 Aranyi et al. May 2013 A1
20130112733 Aranyi et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130153633 Casasanta et al. Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153639 Hodgkinson et al. Jun 2013 A1
20130153640 Hodgkinson Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130181031 Olson et al. Jul 2013 A1
20130193186 (Tarinelli) Racenet et al. Aug 2013 A1
20130193190 Carter et al. Aug 2013 A1
20130193191 Stevenson et al. Aug 2013 A1
20130193192 Casasanta, Jr. et al. Aug 2013 A1
20130209659 Racenet et al. Aug 2013 A1
20130221062 Hodgkinson Aug 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130240601 Bettuchi et al. Sep 2013 A1
20130240602 Stopek Sep 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130277411 Hodgkinson et al. Oct 2013 A1
20130306707 Viola et al. Nov 2013 A1
20130310873 Stopek (nee Prommersberger) et al. Nov 2013 A1
20130327807 Olson et al. Dec 2013 A1
20140012317 Orban et al. Jan 2014 A1
20140021242 Hodgkinson et al. Jan 2014 A1
20140027490 Marczyk et al. Jan 2014 A1
20140034704 Ingmanson et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140061281 Hodgkinson Mar 2014 A1
20140084042 (Prommersberger) Stopek et al. Mar 2014 A1
20140097224 Prior Apr 2014 A1
20140117066 Aranyi et al. May 2014 A1
20140130330 Olson et al. May 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140155916 Hodgkinson et al. Jun 2014 A1
20140158742 Stopek (nee Prommersberger) et al. Jun 2014 A1
20140166721 Stevenson et al. Jun 2014 A1
20140197224 Penna Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140217147 Milliman Aug 2014 A1
20140217148 Penna Aug 2014 A1
20140239046 Milliman Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20150001276 Hodgkinson et al. Jan 2015 A1
20150041347 Hodgkinson Feb 2015 A1
20150097018 Hodgkinson Apr 2015 A1
20150115015 Prescott et al. Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150164503 Stevenson et al. Jun 2015 A1
20150164506 Carter et al. Jun 2015 A1
20150164507 Carter et al. Jun 2015 A1
20150196297 (Prommersberger) Stopek et al. Jul 2015 A1
20150209033 Hodgkinson Jul 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150209048 Carter et al. Jul 2015 A1
Foreign Referenced Citations (70)
Number Date Country
2 667 434 May 2008 CA
101310680 Nov 2008 CN
101332110 Dec 2008 CN
19924311 Nov 2000 DE
0 327 022 Aug 1989 EP
0 594 148 Apr 1994 EP
0 667 119 Aug 1995 EP
1 064 883 Jan 2001 EP
1 256 317 Nov 2002 EP
1 256 318 Nov 2002 EP
1 520 525 Apr 2005 EP
1 621 141 Feb 2006 EP
1 702 570 Sep 2006 EP
1 759 640 Mar 2007 EP
1 815 804 Aug 2007 EP
1 825 820 Aug 2007 EP
1 929 958 Jun 2008 EP
1 994 890 Nov 2008 EP
2 005 894 Dec 2008 EP
2 005 895 Dec 2008 EP
2 008 595 Dec 2008 EP
2 039 308 Mar 2009 EP
2 090 231 Aug 2009 EP
2 090 244 Aug 2009 EP
2 090 252 Aug 2009 EP
2 163 211 Mar 2010 EP
2 189 121 May 2010 EP
2 198 787 Jun 2010 EP
2 236 098 Oct 2010 EP
2 236 099 Oct 2010 EP
2 258 282 Dec 2010 EP
2 292 276 Mar 2011 EP
2 311 386 Apr 2011 EP
2 436 348 Apr 2012 EP
2 462 880 Jun 2012 EP
2 497 431 Sep 2012 EP
2 517 637 Oct 2012 EP
2 586 380 May 2013 EP
2 604 195 Jun 2013 EP
2 604 197 Jun 2013 EP
2 620 105 Jul 2013 EP
2 620 106 Jul 2013 EP
2 630 922 Aug 2013 EP
2 644 125 Oct 2013 EP
2 762 091 Aug 2014 EP
2000-166933 Jun 2000 JP
2002-202213 Jul 2002 JP
2007-124166 May 2007 JP
07124166 May 2007 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9622055 Jul 1996 WO
9701989 Jan 1997 WO
9713463 Apr 1997 WO
9817180 Apr 1998 WO
9945849 Sep 1999 WO
03082126 Oct 2003 WO
03088845 Oct 2003 WO
03094743 Nov 2003 WO
03105698 Dec 2003 WO
2005079675 Sep 2005 WO
2006023578 Mar 2006 WO
2006044490 Apr 2006 WO
2006083748 Aug 2006 WO
2007121579 Nov 2007 WO
2008057281 May 2008 WO
2008109125 Sep 2008 WO
2010075298 Jul 2010 WO
2011143183 Nov 2011 WO
2012044848 Apr 2012 WO
Non-Patent Literature Citations (75)
Entry
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and mailed Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and mailed Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and mailed Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and mailed Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and mailed Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and mailed Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and mailed Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and mailed Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and mailed Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and mailed Mar. 30, 2015; (6 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and mailed Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages.
Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages.
Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages.
Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages.
International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages.
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages.
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages.
International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and mailed on Jul. 13, 2012; 8 pages.
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages.
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages.
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and mailed May 31, 2013; 8 pages.
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and mailed May 29, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; 8 pages.
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and mailed Jun. 13, 2013; 7 pages.
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages.
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp).
International Search Report corresponding to European Application No. EP 05 02 2585.3, completed on Jan. 25, 2006 and mailed on Feb. 3, 2006; 4 pages.
International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages.
International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and mailed on Jan. 11, 2007; 10 pages.
International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and mailed on Mar. 23, 2007; 8 pages.
International Search Report corresponding to International Application No. PCT/US2007/022713, completed on Apr. 21, 2008 and mailed on May 15, 2008; 1 page.
International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and mailed on Jun. 26, 2008; 2 pages.
International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and mailed on Jul. 23, 2008; 5 pages.
International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and mailed on Mar. 24, 2010; 6 pages.
International Search Report corresponding to European Application No. EP 10 25 0639.1, completed on Jun. 17, 2010 and mailed on Jun. 28, 2010; 7 pages.
International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and mailed on Jul. 20, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and mailed on Oct. 12, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and mailed on Dec. 16, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and mailed on Feb. 15, 2011; 3 pages.
International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and mailed on Apr. 4, 2011; 4 pages.
International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and mailed on Jan. 12, 2012; 3 pages.
Extended European Search Report corresponding to EP 13 19 2123.1, completed Jan. 30, 2014 and mailed Feb. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and mailed Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and mailed Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and mailed Mar. 24, 2014; (7 pp).
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 4814.5 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015.
Related Publications (1)
Number Date Country
20150164507 A1 Jun 2015 US
Divisions (1)
Number Date Country
Parent 13325501 Dec 2011 US
Child 14635556 US