Surgical stapling apparatus including firing force regulation

Information

  • Patent Grant
  • 9867618
  • Patent Number
    9,867,618
  • Date Filed
    Friday, June 26, 2015
    9 years ago
  • Date Issued
    Tuesday, January 16, 2018
    6 years ago
Abstract
A surgical stapling system for treating the tissue of a patient is provided. Various embodiments of the surgical stapling system include a handle including a rotary motion generator, a shaft extending from the handle, and a disposable loading unit attachable to the shaft. The disposable loading unit includes a cartridge body including a distal end, staples removably stored in the cartridge body, and a firing system, wherein the firing system includes a cutting portion configured to cut the tissue. The surgical stapling system includes an actuation system configured to regulate a firing force applied to the firing system by the rotary motion generator.
Description
FIELD OF THE INVENTION

The present invention relates in general to endoscopic surgical instruments including, but not limited to, surgical stapler instruments that have disposable loading units that are capable of applying lines of staples to tissue while cutting the tissue between those staple lines and, more particularly, to improvements relating to such instruments and disposable loading units.


BACKGROUND

The following U.S. patent applications which are herein incorporated by reference are commonly owned by the Assignee of the present application:


(1) U.S. patent application Ser. No. 12/031,368, entitled SURGICAL STAPLING APPARATUS WITH LOAD-SENSITIVE FIRING MECHANISM, now U.S. Pat. No. 8,584,919;


(2) U.S. patent application Ser. No. 12/031,326, entitled SURGICAL STAPLING APPARATUS WITH INTERLOCKABLE FIRING SYSTEM, now U.S. Pat. No. 7,866,527;


(3) U.S. patent application Ser. No. 12/031,001, entitled ARTICULATABLE LOADING UNITS FOR SURGICAL STAPLING AND CUTTING INSTRUMENTS, now U.S. Patent Application Publication No. 2009/0206133;


(4) U.S. patent application Ser. No. 12/030,980, entitled SURGICAL STAPLING APPARATUS WITH REPROCESSIBLE HANDLE ASSEMBLY, now U.S. Pat. No. 7,819,297;


(5) U.S. patent application Ser. No. 12/031,066, entitled SURGICAL STAPLING APPARATUS WITH ARTICULATABLE COMPONENTS, now U.S. Pat. No. 7,861,906; and


(6) U.S. patent application Ser. No. 12/030,974, entitled SURGICAL STAPLING APPARATUS WITH RETRACTABLE FIRING SYSTEMS, now U.S. Pat. No. 7,819,296.


Endoscopic surgical instruments are often preferred over traditional open surgical devices since a smaller incision tends to reduce the post-operative recovery time and complications. Consequently, significant development has gone into a range of endoscopic surgical instruments that are suitable for precise placement of a distal end effector at a desired surgical site through a cannula of a trocar. These distal end effectors engage the tissue in a number of ways to achieve a diagnostic or therapeutic effect (e.g., endocutter, grasper, cutter, staplers, clip applier, access device, drug/gene therapy delivery device, and energy device using ultrasound, RF, laser, etc.).


Known surgical staplers include an end effector that simultaneously makes a longitudinal incision in tissue and applies lines of staples on opposing sides of the incision. The end effector includes a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. One of the jaw members receives a staple cartridge having at least two laterally spaced rows of staples. The other jaw member defines an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument commonly includes a plurality of reciprocating wedges which, when driven distally, pass through openings in the staple cartridge and engage drivers supporting the staples to effect the firing of the staples toward the anvil.


Different types of surgical staplers suitable for endoscopic applications are known. For example, one type of surgical stapler employs a staple cartridge. The staple cartridge typically supports a plurality of staples oriented on both sides of a longitudinally extending slot in the cartridge body that is adapted to receive a cutting member that is driven longitudinally therethrough. As the cutting member is driven through the cartridge slot, the staples are driven upward into the anvil portion of the instrument. The cutting member may be supported on a driven member that comprises a portion of the instrument apart from the cartridge. Examples of those types of devices are described in U.S. Pat. No. 6,905,057, entitled SURGICAL STAPLING INSTRUMENT INCORPORATING A FIRING MECHANISM HAVING A LINKED RACK TRANSMISSION and U.S. Pat. No. 7,083,075 entitled MULTI-STROKE MECHANISM WITH AUTOMATIC END OF STROKE RETRACTIONS, the disclosures of which are herein incorporated by reference in their entireties.


Other types of surgical stapling instruments are configured to operate with disposable loading units (DLU's) that are constructed to support a cartridge and knife assembly therein. Such devices that are designed to accommodate DLU's purport to offer the advantage of a “fresh” knife blade for each firing of the instrument. An example of such surgical stapling instrument and DLU arrangement is disclosed in U.S. Pat. No. 5,865,361, the disclosure of which is herein incorporated by reference in its entirety.


Depending upon the nature of the operation, it may be desirable to adjust the positioning of the DLU or end effector of an endoscopic surgical instrument. In particular, it is often desirable to orient the DLU or end effector at an angle relative to the longitudinal axis of the shaft of the instrument. The transverse or non-axial movement of the DLU or end effector relative to the instrument shaft is often conventionally referred to as “articulation”. This articulated positioning permits the clinician to more easily engage tissue in some instances, such as behind an organ. In addition, articulated positioning advantageously allows a DLU or an endoscope to be positioned behind the end effector without being blocked by the instrument shaft.


Approaches to articulating a surgical stapling apparatus tend to be complicated by integrating control of the articulation along with the control of closing the end effector to clamp tissue and fire the end effector (i.e., stapling and severing) within the small diameter constraints of an endoscopic instrument. Generally, the three control motions are all transferred through the shaft as longitudinal translations. For instance, U.S. Pat. No. 5,673,840, the disclosure of which is herein incorporated by reference, discloses an accordion-like articulation mechanism (“flex-neck”) that is articulated by selectively drawing back one of two connecting rods through the implement shaft, each rod offset respectively on opposite sides of the shaft centerline. The connecting rods ratchet through a series of discrete positions.


Another example of longitudinal control of an articulation mechanism is U.S. Pat. No. 5,865,361 that includes an articulation link offset from a camming pivot such that pushing or pulling longitudinal translation of the articulation link effects articulation to a respective side. Similarly, U.S. Pat. No. 5,797,537 discloses a similar rod passing through the shaft to effect articulation. Still other examples of articulatable surgical stapling devices are disclosed in U.S. Pat. Nos. 6,250,532 and 6,644,532.


Due to the types firing systems commonly employed in connection with DLU's, the actuator arrangements for articulating the DLU must often generate high amounts of torque to bend the firing structure. This problem is exacerbated by the lack of available space for accommodating actuating devices that are large enough to generate those required forces. In addition, prior articulation arrangements required the clinician to use two hands to articulate the device.


Thus, there is a need for a surgical cutting and stapling instrument that is configured to accommodate DLU's and has improved articulation capabilities including the ability to articulate the instrument using one hand.


SUMMARY

In various embodiments, there is provided a surgical stapling system for treating the tissue of a patient that may have a handle comprising a rotary motion generator, a shaft extending from the handle, and a disposable loading unit attachable to the shaft. The disposable loading unit may comprise a cartridge body including a distal end, staples removably stored in the cartridge body, and a firing system movable toward the distal end, wherein the firing system may be configured to fire the staples from the cartridge body to staple the tissue. The firing system may comprise a cutting portion configured to cut the tissue. The surgical stapling system may comprise an actuation system configured to regulate a firing force applied to the firing system by the rotary motion generator, wherein the actuation system is configured to modify the application of the firing force to the firing system when a load resulting from firing the staples and cutting the tissue exceeds a predetermined magnitude. The actuation system may be configured to disengage the rotary motion generator from the firing system when the firing force exceeds the predetermined magnitude. The surgical stapling system may further comprise a retraction system configured to retract the firing system after the rotary motion generator has been disengaged from the firing system. The rotary motion generator may be rendered ineffective when the load exceeds the predetermined magnitude.


In other embodiments, there is provided a surgical stapling system for treating the tissue of a patient which may include a handle, a shaft extending from the handle, and a disposable loading unit attachable to the shaft. The disposable loading unit may comprise a cartridge body including a distal end, staples removably stored in the cartridge body, and a firing system movable toward the distal end. The firing system may be configured to fire the staples from the cartridge body to staple the tissue. The firing system may comprise a cutting portion configured to cut the tissue. The surgical stapling system may comprise an actuation system configured to apply a firing force to the firing system to move the firing system toward the distal end, wherein the actuation system is configured to stop the application of the firing force to the firing system when a load resulting from firing the staples and cutting the tissue exceeds a predetermined magnitude.


In other embodiments, there is provided a surgical stapling system for treating the tissue of a patient which may include a handle, a shaft extending from the handle, and a stapling assembly attachable to the shaft. The stapling assembly may comprise a cartridge body including a distal end, staples removably stored in the cartridge body, and a firing system movable toward the distal end. The firing system may be configured to fire the staples from the cartridge body to staple the tissue. The firing system may comprise a cutting portion configured to cut the tissue. The surgical stapling system may comprise an actuation system configured to apply a firing force to the firing system to move the firing system toward the distal end, wherein the actuation system is configured to stop the application of the firing force to the firing system when a load resulting from firing the staples and cutting the tissue reaches a predetermined magnitude.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of various embodiments of the invention given above, and the detailed description of the embodiments given below, serve to explain various principles of the present invention.



FIG. 1 is a perspective view of a reusable surgical stapling apparatus of various embodiments of the present invention with an articulatable disposable loading unit coupled thereto.



FIG. 2 is a perspective view of a reusable surgical stapling apparatus of various embodiments of the present invention with a non-articulatable disposable loading unit coupled thereto.



FIG. 3 is a partial exploded perspective view of a quick disconnect fastener embodiment of the present invention.



FIG. 4 is an exploded assembly view of a reusable surgical stapling apparatus of various embodiments of the present invention.



FIG. 5 is another exploded assembly view of the reusable surgical stapling apparatus of FIG. 4.



FIG. 6 is an exploded assembly view of a portion of a handle assembly of the reusable surgical stapling apparatus embodiment of FIGS. 4 and 5.



FIG. 7 is a partial right side perspective view of a firing assembly embodiment of the present invention.



FIG. 8 is a partial left side perspective view of the firing assembly embodiment of FIG. 7.



FIG. 9 is a left side view of the firing assembly embodiment of FIGS. 7 and 8.



FIG. 10 is an exploded assembly view of a control rod assembly embodiment of various embodiments of the present invention.



FIG. 11 is an exploded assembly view of a rotation knob assembly and articulation mechanism embodiment of the present invention.



FIG. 12 is a perspective view of a contaminated reusable surgical stapling apparatus of FIGS. 1 and 2 with the disposable loading unit detached therefrom.



FIG. 13 is a perspective view of the contaminated reusable surgical stapling apparatus of FIG. 12 with the control rod extended out of the distal end of the elongated body.



FIG. 14 is a diagrammatic representation of a collection of actions of a cleaning method embodiment of the present invention.



FIG. 15 is a perspective view depicting the submersion of the extended control rod into a cleaning solution.



FIG. 16 is another diagrammatic representation of a collection of other actions of a cleaning method embodiment of the present invention.



FIG. 17 is a perspective view depicting the submersion of various components of an embodiment of the present invention in a cleaning solution.



FIG. 18 is a side view of a firing assembly embodiment of various embodiments of the present invention.



FIG. 19 is a diagrammatic representation of a collection of actions of a reassembly method embodiment of the present invention.



FIG. 20 is an exploded view depicting use of an assembly tray of an embodiment of the present invention.



FIG. 21 is a perspective view of another surgical stapling apparatus of an embodiment of the present invention attached to a non-articulatable disposable loading unit.



FIG. 22 is an exploded assembly view of a handle assembly of the surgical stapling apparatus depicted in FIG. 21.



FIG. 23 is an exploded assembly view of another disposable loading unit sensing mechanism embodiment of various embodiments of the present invention.



FIG. 24 is an exploded assembly view of another rotation knob assembly and articulation mechanism embodiment of the present invention.



FIG. 25 is an exploded assembly view of a firing release trigger assembly of an embodiment of the present invention.



FIG. 26 is a partial assembly view of the firing release trigger assembly depicted in FIG. 25.



FIG. 27 is an assembly view of a handle assembly embodiment of the present invention.



FIG. 28 is another assembly view of a handle assembly embodiment of the present invention with the movable handle thereof pulled against the stationary handle portion to close the anvil on the disposable loading unit.



FIG. 29 is another assembly view of a handle assembly embodiment of the present invention with the movable handle returned to a starting position after the anvil has been closed.



FIG. 30 is another assembly view of a handle assembly embodiment of the present invention prior to activating the firing release trigger.



FIG. 31 is another assembly view of a handle assembly embodiment of the present invention with the firing release trigger activated.



FIG. 32 is another assembly view of a handle assembly embodiment of the present invention with the firing release trigger activated and the movable handle starting to be actuated.



FIG. 33 another assembly view of a handle assembly embodiment of the present invention with the firing release trigger activated with the movable handle thereof pulled against the stationary handle portion.



FIG. 34 is a partial assembly view of another firing release trigger embodiment of the present invention.



FIG. 35 is a perspective view of another surgical stapling apparatus embodiment of the present invention.



FIG. 36 is a partial exploded assembly view of a portion of the handle assembly and rotatable shroud of the surgical stapling apparatus of FIG. 35.



FIG. 37 is a perspective view of a portion of the surgical stapling apparatus embodiment of FIGS. 35 and 36 with a portion of the handle housing removed to show the various components therein in the rotation mode.



FIG. 38 is a side view of the portion of the surgical stapling apparatus embodiment depicted in FIG. 36 with the selector switch thereof in a distal unlocked position.



FIG. 39 is an enlarged view of the bolt disengaged from the rotation lock ring when the apparatus is in the rotation mode.



FIG. 40 is a cross-sectional view of the surgical stapling apparatus taken along line 40-40 in FIG. 38.



FIG. 41 is a partial top view of the surgical stapling apparatus of FIGS. 35-40 with the grip portion shown in cross-section.



FIG. 42 is a perspective view of a portion of the surgical stapling apparatus embodiment of FIGS. 35-41 with a portion of the handle housing removed to show the various components therein in the articulation mode.



FIG. 43 is a side view of the portion of the surgical stapling apparatus embodiment depicted in FIG. 36 with the selector switch thereof in a proximal locked position.



FIG. 44 is an enlarged view of the bolt engaging the rotation lock ring to lock the apparatus in the articulation mode.



FIG. 45 is a partial cross-sectional view of the surgical stapling apparatus of FIG. 43 taken along line 45-45 in FIG. 43.



FIG. 46 is a partial cross-sectional view of a handle assembly of a surgical stapling apparatus of the present invention employing an alternate translation member.



FIG. 47 is a perspective view of another surgical stapling apparatus embodiment of the present invention.



FIG. 48 is an enlarged perspective view of the handle assembly portion of the surgical stapling instrument of FIG. 47 with a portion of the handle housing removed for clarity.



FIG. 49 is partial side view of the handle assembly depicted in FIG. 49 with a portion of the handle housing removed for clarity.



FIG. 50 is a partial top view of the handle assembly depicted in FIG. 49 with some components shown in cross-section and with the articulation system thereof in a locked position.



FIG. 51 is a partial top view of the handle assembly depicted in FIGS. 49 and 50 with some components shown in cross-section and with the articulation system thereof in an unlocked position.



FIG. 52 is a perspective view of another surgical stapling apparatus embodiment of the present invention.



FIG. 53 is a perspective assembly view of the handle assembly portion of the surgical stapling apparatus of FIG. 52 with a portion of the handle housing removed and the sensor cylinder omitted for clarity.



FIG. 54 is a left-side perspective assembly view of a portion of the handle assembly of the surgical stapling apparatus of FIGS. 52 and 53 with the housing removed for clarity.



FIG. 55 is a right-side perspective assembly view of a portion of the handle assembly of the surgical stapling apparatus of FIGS. 52-54 with the housing removed for clarity.



FIG. 56 is a side view of a portion of the articulation system, gear and articulation selector switch embodiments with the articulation switch in a neutral position.



FIG. 57 is another side view of the articulation system, gear and articulation selector switch embodiments with the articulation switch in the left articulation position.



FIG. 58 is another side view of the articulation system and gear and articulation selector switch embodiments with the articulation switch in the right articulation position.



FIG. 59 is a bottom view of the gear selector switch, drive gear assembly, articulation transfer gear train and actuation bar of an embodiment of the present invention with the selector gear selector switch in the articulation position.



FIG. 60 is a bottom view of the gear selector switch, drive gear assembly, articulation transfer gear train and actuation bar of an embodiment of the present invention with the selector gear selector switch in the firing position.



FIG. 61 is an enlarged view of the gear selector switch embodiment in the articulation position.



FIG. 62 is a cross-sectional view of the gear selector switch embodiment in the firing position.



FIG. 63 is an end view of a various components of the surgical stapling apparatus in an articulation mode.



FIG. 64 is another end view of the components depicted in FIG. 63 in a firing mode.



FIG. 65 is a partial cross-sectional perspective view of an alternative articulation mechanism embodiment of the present invention.



FIG. 66 is a partial top cross-sectional view of the articulation mechanism of FIG. 65.



FIG. 67 illustrates a position of the cam disc and articulation pin of the articulation mechanism embodiment of FIGS. 65 and 66 in a left articulated position.



FIG. 68 illustrates a position of the cam disc and articulation pin of the articulation mechanism embodiment of FIGS. 65 and 66 in a straight (non-articulated) position.



FIG. 69 illustrates a position of the cam disc and articulation pin of the articulation mechanism embodiment of FIGS. 65 and 66 in a right articulated position.



FIG. 70 is a cross-sectional plan view of a portion of another articulation mechanism embodiment of the present invention.



FIG. 71 is a partial cross-sectional view of a portion of the articulation mechanism embodiment of FIG. 70.



FIG. 72 is a side view of another articulation mechanism embodiment of the present invention with some of the components thereof shown in cross-section.



FIG. 73 is a cross-sectional view of the articulation mechanism embodiment of FIG. 72 taken along line 73-73 in FIG. 72.



FIG. 74 is a side view of another articulation mechanism embodiment of the present invention with some of the components thereof shown in cross-section.



FIG. 75 is a perspective view of an outer articulation ring embodiment of the articulation mechanism of FIG. 74.



FIG. 76 is a left side perspective view of another surgical stapling apparatus embodiment of the present invention.



FIG. 77 is a right side perspective view of the surgical stapling apparatus embodiment depicted in FIG. 76.



FIG. 78 is an exploded assembly view of the right housing segment of the handle assembly with the removable cover detached from the housing segment.



FIG. 79 is another view of the right housing segment of the handle assembly with the removable cover detached from the housing segment.



FIG. 80 is a right side view of the handle assembly of the surgical stapling apparatus depicted in FIGS. 76-78.



FIG. 81 is a cross-sectional view of the housing assembly taken along line 81-81 in FIG. 80.



FIG. 82 is a cross-sectional view of the housing assembly taken along line 82-82 in FIG. 80.



FIG. 83 is a cross-sectional view of a portion of the housing assembly and cocking knob taken along line 83-83 in FIG. 80.



FIG. 84 is a right side view of the handle assembly of the surgical stapling apparatus depicted in FIGS. 76-83 with the removable cover removed to show the retract knob and the cocking knob in the “pre-fired” position.



FIG. 85 is another right side view of the handle assembly of FIG. 84 with the cocking knob in a cocked position.



FIG. 86 is another right side view of the handle assembly of FIGS. 84 and 85 showing the position of the retract knob and the cocking knob prior to reaching the fully fired position.



FIG. 87 is a partial cross-sectional view of the handle assembly and cocking knob with the cocking knob biased in a clockwise direction to release the lock member.



FIG. 88 is another partial cross-sectional view of the handle assembly, cocking knob and retract knob wherein the retract knob has released the lock member to permit the actuation shaft to be automatically retracted.



FIG. 89 is a partial perspective view of a portion of a disposable loading unit of various embodiments of the present invention.



FIG. 90 is a perspective view of a pawl embodiment of various embodiments of the present invention.



FIG. 91 is a perspective view of another pawl embodiment of various embodiments of the present invention.



FIG. 92 is a bottom perspective view of an actuation shaft embodiment of various embodiments of the present invention.



FIG. 93 is a bottom perspective view of another actuation shaft embodiment of various embodiments of the present invention.



FIG. 93A is a side view of a portion of a firing system embodiment of the present invention used in connection with a surgical stapling instrument of the type disclosed in U.S. patent application Ser. No. 11/821,277, now U.S. Pat. No. 7,753,245, with the tooth in driving engagement with the firing member.



FIG. 93B is another side view of the firing system embodiment of FIG. 93A with the tooth in the disengaged position.



FIG. 94 is a perspective view of a surgical stapling apparatus and a disposable loading unit embodiment of the present invention.



FIG. 95 is a perspective view of the disposable loading unit embodiment depicted in FIG. 94.



FIG. 96 is an exploded assembly view of the disposable loading unit embodiment of FIG. 95.



FIG. 97 is a perspective view of the disposable loading unit of FIGS. 95 and 96 being articulated with a pair of surgical graspers.



FIG. 98 is a perspective view of another disposable loading unit embodiment of the present invention.



FIG. 99 is an exploded assembly view of the disposable loading unit embodiment of FIG. 98.



FIG. 100 is a perspective view of the disposable loading unit of FIGS. 98 and 99 being articulated with a pair of surgical graspers.



FIG. 101 is a perspective view of the disposable loading unit of FIGS. 98-100 illustrating passive articulation travel and active articulation travel thereof.



FIG. 102 is a perspective view of another disposable loading unit embodiment of the present invention.



FIG. 103 is an exploded assembly view of the disposable loading unit embodiment of FIG. 102.



FIG. 104 is an exploded assembly view of another disposable loading unit sensing mechanism and control rod assembly embodiment of various embodiments of the present invention.



FIG. 105 is a perspective view of another disposable loading unit embodiment of the present invention illustrating passive articulation travel and active articulation travel thereof.



FIG. 106 is an exploded assembly view of the disposable loading unit of FIG. 105.



FIG. 107 is a proximal end view of the disposable loading unit of FIGS. 105 and 106 taken in the direction represented by arrows 107-107 in FIG. 105.



FIG. 108 is a perspective view of another surgical stapling apparatus embodiment of the present invention.



FIG. 109 is an exploded assembly view of an articulation system embodiment of the present invention employed in the surgical stapling apparatus of FIG. 108.



FIG. 110 is an exploded assembly view of portions of the intermediate articulation joint of the articulation system of FIG. 109.



FIG. 111 is a perspective of the surgical stapling apparatus of FIG. 108 employed in an open surgical application.



FIG. 112 is a perspective view of another surgical stapling apparatus embodiment of the present invention employed in connection with a conventional trocar to perform an endoscopic surgical procedure.



FIG. 113 is a perspective view of another articulation system embodiment of the present invention.



FIG. 114 is a partial exploded assembly view of the articulation system of FIG. 113.



FIG. 115 is a side assembly view of the articulation system of FIGS. 113 and 114.



FIG. 116 is a perspective view of another articulation system embodiment of the present invention.



FIG. 117 is a perspective view of another articulation system embodiment of the present invention.



FIG. 118 is an exploded assembly view of the articulation system of FIG. 117.



FIG. 119 is a side assembly view of a portion of the articulation system of FIGS. 117 and 118 with some components thereof shown in cross-section for clarity.



FIG. 120 is a partial perspective assembly view of various articulation bar and pin embodiments of the present invention.



FIG. 121 is a cross-sectional view of the articulation bar and pin embodiments depicted in FIG. 120.



FIG. 122 is a perspective view of another surgical stapling apparatus embodiment of the present invention employed in connection with a conventional trocar to perform an endoscopic surgical procedure.



FIG. 123 is an exploded partial assembly view of an articulation system embodiment of the surgical stapling apparatus of FIG. 122.





DETAILED DESCRIPTION

Turning to the Drawings, wherein like numerals denote like components throughout the several views, FIG. 1 depicts a reusable surgical instrument, which in the illustrative versions is more particularly a surgical stapling apparatus 10, capable of practicing the unique benefits of various embodiments of the present invention. The surgical stapling apparatus 10 may include a handle assembly 12 and an elongated body 14. FIG. 1 illustrates surgical stapling apparatus 10 with an articulatable disposable loading unit 16 coupled thereto. FIG. 2 illustrates surgical stapling apparatus 10 with a non-articulating disposable loading unit 16′ coupled thereto. The disposable loading units 16, 16′ may include a tool assembly 17 that includes a cartridge assembly 18 that houses a plurality of surgical staples therein. The tool assembly 17 may further include a staple-forming anvil 20. Such disposable loading units 16, 16′ may perform surgical procedures such as cutting tissue and applying staples on each side of the cut. Various embodiments of the present invention may be used in connection with the disposable loading units disclosed in U.S. Pat. No. 5,865,361, the disclosure of which is herein incorporated by reference.


It will be appreciated that the terms “proximal” and “distal” are used herein with reference to a clinician gripping the handle assembly of an instrument. Thus, the tool assembly 17 is distal with respect to the more proximal handle assembly 12. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, “down”, “right”, and “left” are used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and absolute.


As was discussed above, prior surgical stapling apparatuses such as those disclosed in U.S. Pat. No. 5,865,361 are ill-suited for reprocessing (i.e., re-sterilization) to enable the instruments to be reused because they are not easily disassembled. The surgical stapling apparatus 10 depicted in FIGS. 1-20 is adapted to be conveniently reprocessed and can be used in connection with articulatable disposable loading units 16 (FIG. 1) and non-articulating disposable loading units 16′ (FIG. 2) as will be discussed in further detail below. The various embodiments of the surgical stapling apparatus 10 may employ a handle assembly 12 that is constructed to facilitate cleaning and sterilization of the various components housed therein. For example, handle assembly 12 may include a stationary handle portion 22, a movable handle 24, and a barrel portion 26. A rotatable knob 28 may be mounted on the forward end of barrel portion 26 to facilitate rotation of elongated body 14 with respect to handle assembly 12 about longitudinal axis “L-L” of the stapling apparatus 10. As will be discussed in further detail below, some handle assembly embodiments may also include an articulation lever 30 that is mounted on the forward end of barrel portion 26 adjacent rotatable knob 28. Other embodiments may be designed to be used in connection with non-articulatable disposable loading units and thus the handle assembly 12 may not include such articulation components. Handle assembly 12 may further include handle housing 36, which may be formed from a first housing segment 36a and a second housing segment 36b, which, when coupled together, form handle housing 36. To facilitate easy disassembly of handle assembly 12, the housing segments 36a, 36b may be coupled together with, at east one and, preferably three quick release fasteners 400.


As shown in FIG. 3, a quick release fastener 400 may comprise a bayonet-type fastener that includes a screw head portion 402 that has a barrel or body portion 404 protruding therefrom that is sized to be received in a hole 412 in a corresponding stand off member 410 formed in the housing segment 36a. A rod or cross member 406 is mounted in the body portion 404 to form a substantially T-shaped connector portion 408 sized to be received in slot segments 414 on each side of the hole 412. The slot segments 414 are configured such that when the T-shaped connector portion 408 is inserted into the hole 412 and slot segments 414 and turned as illustrated by the arrow “T” in FIG. 3, the rod 406 releasably retains the connector portion 408 in position. In various embodiments, the body portion 404 of the quick release fastener 400 may extend through a corresponding hole in the housing segment 36b and then have the rod or cross member 406 attached thereto such that the quick release fastener 400 is non-removably coupled to the second housing segment 36b so that when the housing segment 36b is detached from the first housing segment 36a, the quick release fasteners 400 do not become lost and remain with the second housing segment 36b for cleaning/sterilization purposes.


Referring to FIGS. 4-8, a movable handle 24 may be pivotably coupled to a firing assembly 500 that may be removed from the handle housing 36 for cleaning/sterilization purposes. In various embodiments, the firing assembly 500 may comprise an internal frame assembly 510 that operably supports the movable handle 24. As can be seen in those Figures, the movable handle 24 may be pivotally attached to the internal frame assembly 510 by pivot pin 38. A biasing member 40, which may comprise a torsion spring, biases movable handle 24 away from stationary handle portion 22. See FIGS. 6-8. An actuation shaft 46 may be supported within the internal frame assembly 510 and may include a toothed rack 48. A driving pawl 42 having a rack engagement tooth 43 thereon is pivotably mounted to one end of movable handle 24 about a pivot pin 44. See FIG. 8. A biasing member 50, which may comprise a torsion spring, is positioned to urge driving pawl 42 towards toothed rack 48 of actuation shaft 46. See FIG. 7. Movable handle 24 is pivotable to move rack engagement tooth 43 of driving pawl 42 into contact with toothed rack 48 of actuation shaft 46 to advance the actuation shaft 46 linearly in the distal direction “DD”. The distal end of actuation shaft 46 may have a cavity 47 formed therein to receive the proximal end 49 of a control rod 52 (FIG. 4) such that linear advancement of actuation shaft 46 causes corresponding linear advancement of control rod 52.


The internal frame assembly 510 may further include a locking pawl 54 that has a locking protrusion 55 thereon and is pivotably coupled to the frame assembly 510 about pivot pin 57 and is biased into a cavity 512 in the actuation shaft 46 by a biasing member 56, which may comprise a torsion spring. Locking protrusion 55 of locking pawl 54 is movable into engagement with the cavity 512 to retain actuation shaft 46 in a longitudinally fixed position when no disposable loading unit has been coupled to the elongated body 14 as will be discussed in further detail below.


The internal frame assembly 510 may also operably house a retraction mechanism 58 that may comprise a right hand retractor knob 32a and a left hand retractor knob 32b that are connected to the proximal end of actuation shaft 46 by a coupling rod 60. See FIG. 6. Coupling rod 60 may include right and left engagement portions 62a and 62b for receiving retractor knobs 32a and 32b, respectively and a central portion 62C which is dimensioned and configured to translate within a pair of longitudinal slots 514 in the internal frame assembly 510 and slots 34a formed in actuation shaft 46 adjacent the proximal end thereof. The retractor knobs 32a, 32b, may each have a cavity therein to enable them to be pressed onto the corresponding engagement portions 62a, 62b, respectively. In various embodiments of the present invention, the coupling rod 60 may be configured so that when the retractor knobs 32a, 32b are removed therefrom for disassembly purposes, the coupling rod 60 remains mounted in position with the internal frame assembly 510. See FIGS. 7, 8 and 17. As shown in FIG. 6, the central portion 62C may be provided with a notch 63 that is adapted to be retainingly engaged by a retaining tab (not shown) formed on a proximal end of a retainer 520 that is slidably received in a cavity 522 in the actuation shaft 46. A retract spring 524 is attached between a cross post 526 in the actuation shaft 46 and the retainer 520 to pull the retainer 520 distally such that the retaining tab formed on the proximal end thereof retainingly engages the notch 63 in the coupling rod 60. Those of ordinary skill in the art will understand that when the retractor knobs 32a, 32b are detached from the coupling rod 60, the coupling rod 60 remains coupled to the internal frame assembly 510 by the tab on the retainer 520.


A release plate 64 may be operatively associated with actuation shaft 46 and is mounted for movement with respect thereto in response to manipulation of retractor knobs 32a, 32b. A pair of spaced apart pins 66 may extend outwardly from a lateral face of actuation shaft 46 to engage a pair of corresponding angled cam slots 68 formed in release plate 64. Upon movement of retractor knobs 32a, 32b in the proximal direction “PD”, pins 66 can release the release plate 64 downwardly with respect to actuation shaft 46 and with respect to toothed rack 48 such that the bottom portion of release plate 64 extends below toothed rack 48 to disengage rack engagement tooth 43 of driving pawl 42 from toothed rack 48. A transverse slot 70 is formed at the proximal end of release plate 64 to accommodate the central portion 62c of coupling rod 60, and elongated slots 34 (FIG. 1) are defined in the barrel section 26 of handle assembly 12 to accommodate the longitudinal translation of coupling rod 60 as retraction knobs 32a, 32b are pulled in the proximal direction “PD” to retract actuation shaft 46 and thus retract control rod 52 in the proximal direction “PD”.


In various embodiments, the internal frame assembly 510 may also operably support a firing lockout assembly 80 which may include a plunger 82 and a pivotable locking member 83. See FIGS. 7 and 8. Plunger 82 is biased to a central position by biasing springs 84 and includes annular tapered camming surfaces 85. Each end of plunger 82 extends through handle housing 36 adjacent an upper end of stationary handle portion 22. Pivotable locking member 83 may be pivotably attached at its distal end about pivot pin 86 and may include a locking gate 88 and proximal extension 90 having a slot 89 formed therein. See FIGS. 7 and 8. Pivotable locking member 83 may be biased by a spring 93 (FIG. 9) to cause the locking gate 88 attached thereto to enter into a locking detent 53 in the bottom of the actuation shaft 46 to prevent advancement of actuation shaft 46 and subsequent firing of stapling apparatus 10. Annular tapered camming surface 85 on plunger 82 is positioned to extend into tapered slot 89 in proximal extension 90. Lateral movement of plunger 82 in either direction against the bias of either spring 84 moves tapered camming surface 85 into engagement with the sidewalls of the tapered slot 89 in the proximal extension 90 to pivot pivotable locking member 83 about pivot pin 86 to move locking gate 88 out of the locking detent 53 to permit advancement of actuation shaft 46.


As can be further seen in FIGS. 6-9, a sensor link 182 may also be operably supported by the internal frame assembly 510. As can be seen in those Figures, the sensor link 182 may be slidably attached to the internal frame assembly 510 by a pin or screw 530 that extends through a slot 532 in the sensor link 182 such that the sensor link 182 may slide longitudinally relative to the internal frame assembly 510. A distal end of a spring 531 may be attached to the screw 530 and the proximal end of the spring 531 may be hooked over a hook 533 on the sensor link 182. See FIG. 6. Spring 531 serves to bias the sensor link 182 in the distal direction “DD”. The sensor link 182 may further include a proximal locking arm 535 that has an inwardly protruding proximal end 537 configured to interact with the locking pawl 54. In particular, when no disposable loading unit 16, 16′ is attached to the stapling apparatus 10, the sensor link 182 is biased distally by spring 531. When in that “unloaded” position, the proximal end 537 of the proximal locking arm 535 disengages the locking pawl 54 to retain the locking pawl 54 in the locked position wherein the locking protrusion 55 is received in cavity 512 to retain actuation shaft 46 in a longitudinally fixed position. Thus, when no disposable loading unit 16, 16′ is coupled to the surgical stapling apparatus 10, the stapling apparatus 10 cannot normally be fired.


The sensor link 182 may further have a downwardly extending distal tab 534 formed thereon for contact with a flange 179 formed on a sensor cylinder 178. See FIGS. 4 and 5. As will be discussed in further detail below, a sensor tube 176 is oriented to interface with the sensor cylinder 178. See FIG. 10. Sensor link 182 may further have a spring arm 536 with a downwardly extending end 538 which engages a camming surface 83a on pivotable locking member 83. See FIG. 7. When a disposable loading unit 16, 16′ is coupled to the distal end of elongated body 14, the disposable loading unit 16, 16′ engages the distal end of the sensor tube 176 to drive sensor tube 176 proximally, and thereby drive sensor cylinder 178 and sensor link 182 proximally. Movement of sensor link 182 proximally causes end 538 of spring arm 536 to move proximally of camming surface 83a to allow locking member 83 to pivot under the bias of a spring 92 from a position permitting firing of stapling apparatus 10 (i.e., permit the actuation of actuation shaft 46) to a blocking position, wherein the locking gate 88 is received in the locking detent 53 in actuation shaft 46 and prevent firing of stapling apparatus 10. Sensor link 182 prevents firing when a disposable loading unit 16 is absent. Locking member 83 prevents firing when closing and opening the anvil assembly 20. Also, as the sensor link 182 is moved proximally, the proximal end 537 of the proximal locking arm 535 serves to pivot the locking pawl 54 such that the locking protrusion 55 moves out of cavity 512 to permit actuation shaft 46 to be actuated. See FIG. 8.


As shown in FIG. 4, the handle housing 36 may include an annular channel 117 configured to receive an annular rib 118 formed on the proximal end of rotation knob 28, which is preferably formed from molded half-sections 28a and 28b that may be interconnected by screws 29. Annular channel 117 and rib 118 permit relative rotation between rotation knob 28 and handle housing 36. As illustrated in FIG. 4, elongated body 14 may include an outer casing 124 that is sized to support a sensor tube 176 (shown in FIG. 10) and articulation link 123. Such assembly of components 123, 124, 176, and 52 is, at times referred to herein as a “control rod assembly 125”, and may include other components journaled on the control rod 52. The proximal end of casing 124 includes diametrically opposed openings 128, which are dimensioned to receive radial projections 132 formed on the distal end of rotation knob 28. See FIGS. 4 and 5. Projections 132 and openings 128 fixedly secure rotation knob 28 and elongated body 14 in relation to each other, both longitudinally and rotatably. Rotation of rotation knob 28 with respect to handle assembly 12 thus results in corresponding rotation of elongated body 14 about longitudinal axis L-L with respect to handle assembly 12. It will also be appreciated that because the disposable loading unit 16, 16′ is coupled to the distal end of the elongated body 14, rotation of the elongated body 14 also results in the rotation of the disposable loading unit 16, 16′.


In various embodiments, an articulation mechanism 120 may be supported on rotatable knob 28 and include an articulation lever 30 and a cam member 136. See FIG. 11. Articulation lever 30 may be pivotably mounted about pivot pin 140 which may be threadedly attached to rotation knob 28. A shifting pin 142 may be received in a socket 131 in the bottom of articulation lever 30 and extend downwardly therefrom for engagement with cam member 136. Cam member 136 may include a housing 144 that has an elongated slot 146 extending through one side thereof. A pair of camming plates 136a, 136b may be coupled to housing 144 by a pair of rivets 145 or other suitable fasteners to form a camming plate assembly 137. In other embodiments, the camming plate assembly 137 may be integrally formed with the housing 144. The camming plates 136a and 136b may have a stepped camming surface 148a, 148b, respectively that form a stepped camming surface 148. Each step of camming surface 148 corresponds to a particular degree of articulation of stapling apparatus 10. Elongated slot 146 is configured to receive shifting pin 142 protruding from articulation lever 30. Camming plate assembly 137 is attached to housing 144 in such a manner so as to form a distal stepped portion 150 and a proximal stepped portion 152. Proximal stepped portion 152 includes a recess 154.


As can be seen in FIG. 4, the articulation mechanism 120 may further include a translation member 138 that has an upstanding arm portion 540 that has a notch 542 therein that is sized to receive a tab 544 formed on the sensor cylinder 178. The distal end of translation member 138 may include an arm 546 which includes an opening 548 configured to receive a finger 164 extending from the proximal end of articulation link 123. See FIGS. 4 and 10. A pin 166 that may be constructed from a non-abrasive material, e.g., Teflon®, is secured to translation member 138 and dimensioned to be received within stepped camming surface 148. In an assembled condition, distal and proximal stepped portions 150 and 152 of cam member 136 are positioned beneath flanges 170 and 172 formed on rotation knob 28 to restrict cam member 136 to transverse movement with respect to the longitudinal axis “L-L” of stapling apparatus 10. When articulation lever 30 is pivoted about pivot pin 140, cam member 136 is moved transversely on rotation knob 28 to move stepped camming surface 148 transversely relative to pin 166, forcing pin 166 to move proximally or distally along stepped camming surface 148. Since pin 166 is fixedly attached to translation member 138, translation member 138 is moved proximally or distally to effect corresponding proximal or distal movement of the articulation link 123.


The sensor cylinder 178 may have a nub portion 544 configured to be received within recess 154 in the camming plate assembly 137. When an articulating disposable loading unit 16 is operably coupled to the distal end of elongated body 14 of stapling apparatus 10, the nub 544 moves proximally of recess 154 in cam member 136. With nub 544 positioned proximally of recess 154, cam member 136 is free to move transversely to effect articulation of stapling apparatus 10. As explained in U.S. Pat. No. 5,865,361, a non-articulating disposable loading unit 16′ does not have an extended insertion tip. As such, when a non-articulating disposable loading unit 16′ is inserted in elongated body 14, sensor cylinder 178 is not moved proximally a sufficient distance to move nub 544 from recess 154. Thus, cam member 136 is prevented from moving transversely by nub 544 which is positioned in recess 154 and articulation lever 30 is locked in its central position.


As can be seen in FIGS. 4-9, this embodiment may also include a firing lockout override assembly 600 that has an override button 601 that has an override wire 602 attached thereto. The override wire 602 may be slidably supported within wire form retention tabs 606 formed on the top surface 604 of the internal frame assembly 510. A distal end 610 of the override wire 602 is mounted in a hole 539 in the distal end of the sensor link 182. When the override button 601 is moved in the proximal direction “PD”, the override wire 602 pulls the sensor link 182 proximally which biases the locking pawl 54 out of locking engagement with the actuation shaft 46 and also causes end 538 of spring arm 536 to move proximally of camming surface 83a to allow locking member 83 to pivot under the bias of spring 92 from a position permitting firing of stapling apparatus 10 (i.e., permit the actuation of actuation shaft 46) to a blocking position, wherein the locking gate 88 is received in the locking detent 53 in actuation shaft 46 and prevents firing of stapling apparatus 10 unless the plunger 82 is depressed.


Referring to FIGS. 1, 2, 9 and 10, to use stapling apparatus 10, a disposable loading unit 16, 16′ is first secured to the distal end of elongated body 14. The stapling apparatus 10 can be used with articulatable disposable loading units 16 and non-articulatable disposable loading units 16′ that each have, for example, linear rows of staples between about 30 mm and about 60 mm. A method of coupling a disposable loading unit 16, 16′ to elongated body 14 is disclosed in U.S. Pat. No. 5,865,361. When the insertion tip of the disposable loading unit 16, 16′ engages the distal end of sensor tube 176, the disposable loading unit sensing mechanism is actuated. As the insertion tip engages and moves sensor tube 176 proximally, the sensor tube 176 effects proximal movement of sensor cylinder 178 and sensor link 182 in the proximal “PD” direction to pivot locking member 83 counter-clockwise, from a non-blocking position to a position wherein gate 88 blocks movement of actuation shaft 46.


When a disposable loading unit 16, 16′ is coupled to stapling apparatus 10, tool assembly 17 can be positioned about a target tissue. To clamp the target tissue between the staple forming anvil 20 and cartridge assembly 18, movable handle 24 is pivoted toward the stationary handle portion 22 against the bias of torsion spring 40 to move driving pawl 42 into engagement with a shoulder 322 on actuation shaft 46. Engagement between shoulder 322 and driving pawl 42 advances actuation shaft 46 distally and thus advances control rod 52 distally. Control rod 52 is connected at its distal end to the axial drive assembly in the disposable loading unit 16, 16′, including the drive beam therein, such that distal movement of control rod 52 effects distal movement of the drive beam in the distal direction to thereby cause the staple forming anvil 20 to pivot closed in the manner described in U.S. Pat. No. 5,865,361. In various embodiments, one complete stroke of movable handle 24 may advance actuation shaft 46 approximately 15 mm which may be sufficient to clamp tissue during the first stroke but not to fire staples. The actuation shaft 46 is maintained in its longitudinal position after the movable handle 24 is released by the locking gate 88 which is biased into the detent 53 in the bottom of the actuation shaft 46. Upon release of movable handle 24, drive pawl 42 moves over rack 48 as torsion spring 40 returns handle 24 to a position spaced from stationary handle 22. In this position, driving pawl 42 is urged into engagement with toothed rack 48 to further retain actuation shaft 46 in its longitudinal fixed position.


To “fire” the staples supported within the cartridge assembly 18 (i.e., drive the staples into the staple forming anvil 20), movable handle 24 is actuated again. In various embodiments, the stapling apparatus 10 may be capable of receiving disposable loading units 16, 16′ having linear rows of staples of between about 30 mm and about 60 mm. In such arrangements, the stapling apparatus 10 may be configured such that each stroke of the movable handle 24 advances actuation shaft 46 15 mm. Because one stroke is required to clamp tissue, the movable handle 24 must be actuated (n+1) strokes to fire staples, where n is the length of the linear rows of staples in the disposable loading unit attached to the stapling apparatus 10 divided by 15 mm.


Before the staples may be fired, firing lockout assembly 80 must be actuated to move locking gate 88 from its blocking position to a non-blocking position. This may be accomplished by activating plunger 82 to cause camming surface 85 to engage the sidewalls of slot 89 of locking member 83 and thereby pivot locking member 83 in the counterclockwise direction in FIG. 9. Thereafter, movable handle 24 may be actuated an appropriate number of strokes to advance actuation shaft 46, and thus control rod 52 and drive beam in the distal direction “DD” to fire the disposable loading unit 16, 16′ in a known manner. To retract actuation shaft 46 and thus control rod 52 and the drive member of the disposable loading unit 16, 16′ after firing staples, retraction knobs 32a, 32b may be pulled proximally causing pins 66 to move release plate 64 in the direction indicated by arrow “J” in FIG. 7 over teeth 49 to disengage drive pawl 42 from engagement with teeth 49 of the toothed rack 48.


Those of ordinary skill in the art will understand that the disposable loading units 16, 16′ are sterilized and packaged in sterile packaging materials prior to use. Likewise, the stapling apparatus 10 is also sterilized prior to use. After the disposable loading unit 16, 16′ is used, it is discarded. While the stapling apparatus 10 could also conceivably be re-sterilized for additional uses, those prior instruments such as those described in the aforementioned U.S. Pat. No. 5,865,361 and other known instruments adapted for use with disposable loading units are not well-suited for easy disassembly to facilitate sterilization of their various internal components. Consequently, such units are often disposed of after a single use. As will be further explained below, the stapling apparatus 10 is constructed to facilitate easy disassembly to permit the stapling apparatus 10 to be reprocessed (i.e., re-sterilized).



FIG. 12 depicts the stapling apparatus 10 after it has been used and the disposable loading unit (not shown) has been decoupled therefrom (action 700 in FIG. 14). The stippling 620, 622 represents exemplary areas of contamination on the elongated body 14 and the handle assembly 12, respectively. To begin the reprocessing of the stapling apparatus 10, the user moves the firing override button 601 proximally and holds the override button 601 in that proximal position (action 702). Such action moves the sensor link 182 proximally in the above-described manner and permits the user to actuate the actuation shaft 46. The user also moves the plunger 82 to enable the movable handle 24 to be cycled to actuate the actuation shaft 46. The user may then repeatedly cycle the movable handle 24 (represented by arrow “R” in FIG. 13) to extend the control rod 52 such that the contaminated portion 624 of the control rod 52 extends out of the casing 124 (action 704). See FIG. 13. The user may then insert the exposed contaminated portion 624 of the control rod 52 and the distal end of the casing 124 into an appropriate cleaning or sterilization medium 630 such as, for example, Ethylene Oxide, Peroxide, etc. (action 706). See FIG. 15.


To sterilize the handle assembly 12, the handle assembly 12 may be easily disassembled (action 708). Referring again to FIG. 5, the user may separate the rotation knob segments 28a and 28b by removing the screws or fasteners 29 (action 710). The rotation knob segments 28a and 28b, as well as the translation member 138, are removed and laid aside (action 712). The right and left retract knobs 32a, 32b are then pulled off of the coupling rod 60 (action 714). The three quick release fasteners 400 may then be removed from the left hand housing portion 36b—unless the fasteners 400 are loosely coupled thereto (action 716). The handle housing segment 36b may then be laid aside (action 718). The user may then lift the firing assembly 500 from the housing segment 36a and place it on a flat surface (action 720). The user may then grasp the distal end of the control rod 52 and rotate it vertically (represented by arrow “V” in FIG. 5—action 722). The control rod 52 may then be pulled from the cavity 47 in the actuation shaft 46 as shown in FIG. 4 (action 724). The user may then detach the sensor cylinder 178 from the proximal end of the sensor tube 176 (action 726). Thus, the stapling apparatus 10 may be separated into the parts shown in FIG. 4. The user may then select a desired cleaning/sterilization cycle (action 730). See FIG. 16. In particular, the user may choose between a “wet” cleaning cycle wherein the components are submerged in an appropriate cleaning solution 630 (FIG. 17) or a “dry” cleaning cycle wherein radiation is employed or a combination of both cycles may be employed. Those of ordinary skill in the art will recognize that FIG. 17 only illustrates some of the handle assembly components being submerged in the cleaning medium 630. It will be appreciated that it is intended that all of the handle assembly components be submerged either simultaneously (if the container is large enough) or one at a time or in small groups until all of the components have been cleaned (action 732). It will be appreciated, however, those components that have been worn or damaged may be replaced with new sterilized components to complete the assembly. The reservoir 632 containing the cleaning medium 630 may be agitated or the cleaning medium may be stirred or otherwise agitated using conventional methods to drive the cleaning medium 630 through the openings 511 in the internal frame assembly 510 into contact with all of the components retained therein (action 734). After the components have all been exposed to the cleaning medium 630 for a desired amount of time, the components may be removed from the cleaning medium 630 and then air dried or dried utilizing other conventional methods (action 736).


After the components have been cleaned by the cleaning medium (actions 732-736), the user may also choose to irradiate the components (actions 740, 742) or the user may elect not to irradiate the components (action 744) at which point the user then may lubricate certain components (action 746) as will be discussed in further detail below. If the user elects to irradiate the disassembled components either after wet cleaning the components or in lieu of wet cleaning, the user may lay all of the component parts on an appropriate tray or other object (not shown). Radiation may then be applied to the components using convention irradiation techniques. For example, electron beam radiation may be employed. Other forms of vapor sterilization mediums, such as for example, Ethylene Oxide vapor mediums, Peroxide vapor mediums may also be employed.


After the components have been sterilized, certain components may be lubricated (action 746). As can be seen in FIG. 18, in various components, lubrication instructions 770 may be embossed or otherwise provided on the internal frame assembly 510. A sterile lubrication medium such as, for example, Sodium Sterate may be applied to the various components as shown in FIG. 18.


The components may then be reassembled as outlined in FIG. 19. To assist with the assembly of the components, a sterile assembly member or tray 790 that has a series of complementary cavities 792, 794 therein may be employed. See FIG. 20. One method of reassembly includes the action 750 which comprises placing the rotation knob segment 28a in the complementary shaped cavity 792 in the assembly tray 790. The retract knob 32a may be placed in the complementary cavity 794 (action 752). The first housing segment 36a may be placed in the complementary cavity 796 (action 754). The translation member 138 may be placed into the right hand rotation member 28a with the pin 166 attached thereto inserted into the stepped cam slot 148 in the cam member 136 that is mounted under the flanges 170, 172 in the right hand rotation knob segment 28a (action 756). The sensor cylinder 178 may be placed onto the proximal end of the control rod 52 (action 758). The control rod assembly 125 is oriented vertically with the distal end up. The sensor cylinder 178 is retained on the control rod 52 (action 760). The proximal end of the control rod 52 is inserted into the cavity 47 in the actuation shaft 46 (action 762). The control rod assembly 125 is then rotated downward to the left to complete the attachment to the actuation shaft 46 (action 764). The sensor cylinder 178 is rotated until tab 544 is downward (action 766). The joined firing assembly 500 and control rod assembly 125 is inserted into the first handle housing segment 36a and the right hand rotation knob segment 28a in the corresponding cavities 798, 792, 796 in the assembly tray 790. The lockout tab 544 on the sensor cylinder 178 is inserted into the notch 542 in the translation member 138 (action 768). The coupling rod 60 may be aligned for insertion into a hole (not shown) in the right hand retract knob 32a (action 770). The second handle housing segment 36b is then placed over the assembly and aligned to enable the quick release fasteners 400 to couple the handle housing segments 36a, 36b together (action 772). The rotation knob segment 28b may be oriented to mate with the rotation knob segment 28a and coupled thereto with screws 29 (action 774). The left hand retract knob 32b may then be pressed onto the retraction shaft 60 to complete the assembly (action 776).


The firing lockout assembly 80 described above, as well as the firing lockout assembly disclosed in the aforementioned U.S. Pat. No. 5,865,361, can be difficult to use because the clinician must depress the plunger 82 to enable actuation shaft 46 to be actuated by cycling the movable handle 24. Such arrangement generally requires the clinician to use both hands (one to hold onto the handle assembly and actuate the movable handle and the other hand to depress the plunger 82). It would be more desirable to have a surgical stapling apparatus that has a more ergonomically efficient firing lockout trigger arrangement that does not require the clinician to use both hands to fire the instrument. FIGS. 21-33 illustrate a stapling apparatus 810 that is substantially similar to the stapling apparatus 10 described above or maybe substantially similar to the stapling apparatus described in U.S. Pat. No. 5,865,361 or other prior surgical instruments that employ the plunger-type lockout assembly, except that stapling apparatus 810 employs a firing lockout system 880 that is much easier to use and does not require both hands to fire the instrument.


Referring to FIGS. 21 and 22, handle assembly 12 includes a handle housing 36, which is preferably formed from molded handle housing segments 36a and 36b, which collectively form stationary handle member 22 and barrel portion 26 of handle assembly 12. A movable handle 824 may be pivotably supported between handle housing segments 36a and 36b about pivot pin 38. See FIG. 22. A biasing member 40, that may comprise a torsion spring, biases movable handle 824 away from stationary handle 22. An actuation shaft 46 may be supported within barrel portion 26 of handle housing 36 and includes a rack 48 of teeth 49. A driving pawl 42 that has a rack engagement tooth 43 thereon may be pivotably mounted to one end of movable handle 824 about a pivot pin 44. A biasing member 50, which may comprise a torsion spring, may be employed to urge driving pawl 42 towards rack 48 on actuation shaft 46. As movable handle 824 is actuated (e.g., pivoted), it moves driving pawl 42 such that rack engagement tooth 43 drivingly engages toothed rack 48 of actuation shaft 46 to advance the actuation shaft 46 linearly in the distal direction “DD”. The forward end of actuation shaft 46 has a cavity 47 formed therein to receive the proximal end 53 of a control rod 52 (FIG. 23) such that linear advancement of actuation shaft 46 causes corresponding linear advancement of control rod 52.


The stapling apparatus 810 may further have a locking pawl 54 that has a rack locking member 55 that may be pivotably mounted within the handle housing 36 about pivot pin 57 and is biased towards toothed rack 48 by biasing member 56, which is also preferably a torsion spring. Rack locking protrusion 55 of locking pawl 54 is oriented for movement into a cavity 512 in actuation shaft 46, such that when rack locking protrusion 55 is in the cavity 512, actuation shaft 46 is retained in a longitudinally fixed position when no disposable loading unit has been coupled to the stapling apparatus 810.


Various embodiments may also include a retraction mechanism 58 that may comprise a right retractor knob 32a and a left retractor knob 32b that are connected to the proximal end of actuation shaft 46 by a coupling rod 60. See FIG. 22. Coupling rod 60 may include right and left engagement portions 62a and 62b for receiving retractor knobs 32a, 32b and a central portion 62c which is dimensioned and configured to translate within a pair of longitudinal slots 34a respectively formed in actuation shaft 46 adjacent the proximal end thereof. A release plate 64 may be operatively associated with actuation shaft 46 and is mounted for movement with respect thereto in response to manipulation of retractor knobs 32a, 32b. A pair of spaced apart pins 66 may extend outwardly from a lateral face of actuation shaft 46 to engage a pair of corresponding angled cam slots 68 formed in release plate 64. Upon movement of retractor knobs 32a, 32b in the proximal direction “PD”, pins 66 can release plate 64 downwardly with respect to actuation shaft 46 and with respect to toothed rack 48 such that the bottom portion of release plate 64 extends below toothed rack 48 to disengage engagement tooth 43 of driving pawl 42 from toothed rack 48. A slot 70 may be formed at the proximal end of release plate 64 to accommodate the central portion 62c of coupling rod 60, and elongated slots 34 are provided in the barrel section 26 of handle assembly 12 to accommodate the longitudinal translation of coupling rod 60 as retraction knobs 32a, 32b are pulled in the proximal direction “PD” to retract actuation shaft 46 and thus retract control rod 52 rearwardly.


The stapling apparatus 810 may further include a sensor link 882 that may be slidably attached to the handle housing segment 36a by a pin or screw 530 that extends through a slot 532 in the sensor link 882 such that the sensor link 882 may slide longitudinally relative to the handle housing 36. A distal end of a spring 531 may be attached to the screw 530 and the proximal end of the spring 531 may be hooked over a hook 533 on the sensor link 882. See FIG. 22. Spring 531 serves to bias the sensor link 882 in the distal direction “DD”. The sensor link 882 further includes a proximal locking arm 535 that has an inwardly protruding proximal end 537 configured to interact with the locking pawl 54. In particular, when no disposable loading unit 16, 16′ is attached to the instrument 810, the sensor link 882 is biased distally by spring 531. When in that “unloaded” position, the proximal end 537 of the proximal locking arm 535 disengages the locking pawl 54 to retain the locking pawl 54 in the locked position wherein the locking protrusion 55 is received in cavity 512 to retain actuation shaft 46 in a longitudinally fixed position. Thus, when no disposable reload unit 16, 16′ is coupled to the instrument 810, the instrument 810 cannot be fired.


Referring to FIG. 23, a disposable loading unit sensing mechanism may extend within stapling apparatus 810 from elongated body 14 into handle assembly 12. The sensing mechanism may include a sensor tube 176 which is slidably supported within the outer casing 124. The distal end of sensor tube 176 is positioned towards the distal end of elongated body 14 and the proximal end of sensor tube 176 is secured within the distal end of a sensor cylinder 178′ via a pair of nubs 180′. The distal end of a sensor link 882 is oriented in abutting relationship with the flanged proximal end 190′ of sensor cylinder 178′.


The sensor link 882 may further have a downwardly extending distal tab 534 formed thereon for contact with a flange 179 formed on a sensor cylinder 178′. See FIGS. 22 and 23. As will be discussed in further detail below, a sensor tube 176 is oriented to interface with the sensor cylinder 178′. See FIG. 23. When a disposable loading unit 16, 16′ is coupled to the distal end of elongated body 14, the disposable loading unit 16, 16′ engages the distal end of the sensor tube 176 to drive sensor tube 176 proximally, and thereby drive sensor cylinder 178′ and sensor link 882 proximally. As the sensor link 882 is moved proximally, the proximal end 537 of the proximal locking arm 535 to pivot the locking pawl 54 such that the locking protrusion 55 moves out of cavity 512 to permit actuation shaft 46 to be actuated.


The stapling apparatus 810 may also employ an articulation mechanism 120 of the type and construction described in detail above, with the following noted differences. In various embodiments, an articulation mechanism 120 may be supported on rotatable knob 28 and include an articulation lever 30, a cam member 136 and a translation member 138′. In various embodiments, translation member 138′ may include a plurality of ridges 156 which are configured to be slidably received within grooves (not shown) formed along the inner walls of rotation knob 28. Engagement between ridges 156 and those grooves prevent relative rotation of rotation knob 28 and translation member 138′ while permitting relative linear movement. The distal end of translation member 138′ may include an arm 160 which includes an opening 162 configured to receive a finger 164 extending from the proximal end of articulation link 123. See FIG. 23.


In an assembled condition, proximal and distal stepped portions 150 and 152 of cam member 136 are positioned beneath flanges 170 and 172 formed on rotation knob 28 to restrict cam member 136 to transverse movement with respect to the longitudinal axis “L-L” of stapling apparatus 810. When articulation lever 30 is pivoted about pivot pin 140, cam member 136 is moved transversely on rotation knob 28 to move stepped camming surface 148 (refer to FIG. 11) transversely relative to pin 166, forcing pin 166 to move proximally or distally along stepped cam slot 148. Since pin 166 is fixedly attached to translation member 138′, translation member 138′ is moved proximally or distally to effect corresponding proximal or distal movement of first actuation link 123. See FIGS. 23 and 24.


Referring again to FIG. 24, cam member 136 may include a recess 154. A locking ring 184 having a nub portion 186 configured to be received within recess 154 is positioned about sensor cylinder 178′ between a control tab portion 188′ and a proximal flange portion 190′. See FIG. 23. A spring 192′ positioned between flange portion 190′ and locking ring 184 urges locking ring 184 distally about sensor cylinder 178′. When an articulating disposable loading unit 16 having an extended tip portion is inserted into the distal end of elongated body 14 of stapling apparatus 810, insertion tip causes control tab portion 188′ to move proximally into engagement with locking ring 184 to urge locking ring 184 and nub portion 186 proximally of recess 154 in cam member 136. With nub portion 186 positioned proximally of recess 154, cam member 136 is free to move transversely to effect articulation of stapling apparatus 810. Other non-articulating disposable loading units may not have an extended insertion tip. As such, when a non-articulating disposable loading unit 16 is coupled to elongated body 14, sensor cylinder 178′ is not retracted proximally a sufficient distance to move nub portion 186 from recess 154. Thus, cam member 136 is prevented from moving transversely by nub portion 186 of locking ring 184 which is positioned in recess 154 and articulation lever 30 is locked in its central position.


Referring to FIG. 23, the distal end of elongated body 14 may include a control rod locking mechanism 900 which may be activated during coupling of a disposable loading unit 16, 16′ with the distal end of elongated body 14. Control rod locking mechanism 900 may include a blocking plate 902 which is biased distally by a spring 904 and includes a proximal finger 906 having angled cam surface 908. In various embodiments, a firing shaft lock 910 that has a lock tab 912 protruding therefrom may be employed. The lock tab 912 may be configured to selectively engage a notch 914 in the control rod 52. The firing shaft lock 910 may be provided with a biasing member in the form of a leaf spring (not shown) or the like and have a lock pin 916 extending therethrough. The leaf spring serves to bias the firing shaft lock 910 outwardly when the proximal end of the blocking plate 902 is forward in a distal position. Blocking plate 902 may be movable from a distal position spaced from lock tab 912 to a proximal position located behind lock tab 912. In the proximal position, the blocking plate 902 causes the lock tab 912 to extend through a slot 918 in the sensor tube 176 into engagement with notch 914 in the control rod 52.


During insertion of a disposable loading unit 16, 16′ into the distal end of elongated body 14, as will be described in further detail below, cam surface 908 of blocking plate 902 is engaged by a nub on the disposable loading unit 16, 16′ as the disposable loading unit 16, 16′ is rotated into engagement with elongated body 14 to urge plate 902 to the proximal position. Locking tab 912, which is positioned within notch 914, is retained therein by blocking plate 902 while the nub engages cam surface 908 to prevent longitudinal movement of control rod 52 during assembly. When the disposable loading unit 16, 16′ is properly positioned with respect to the elongated body 14, the nub on the proximal end of the disposable loading unit 16, 16′ passes off cam surface 908 allowing spring 904 to return blocking plate 902 to its distal position to permit subsequent longitudinal movement of control rod 52. It is noted that when the disposable loading unit nub passes off cam surface 908, an audible clicking sound may be produced indicating that the disposable loading unit 16, 16′ is properly fastened to the elongated body 14.


Referring now to FIGS. 22, 25 and 26, the stapling apparatus 810 may employ an improved firing lockout assembly 880. In this embodiment, the movable handle 824 may be provided with a cavity 930 sized to receive a proximal portion of a firing release trigger 932. As can be seen in those Figures, the firing release trigger 932 may have a nub 934 formed thereon and a release spring 936 may extend between the bottom of the cavity 930 and the nub 934 to apply a biasing force to the firing release trigger 932 in the “A” direction. As can be most particularly seen in FIG. 26, the firing release trigger 932 may have a proximal tail portion 940 that is sized to slidably extend into a slot 825 formed in the movable handle 824 as the firing release trigger is depressed in the “B” direction. The improved firing lock out assembly 880 may further include a gear linkage assembly 950. In various embodiments, the gear linkage assembly 950 may include a first gear 952 that is rotatably received on a first gear pin 954 that is attached to the movable handle 824. First gear 952 may have a first gear segment 956 that is arranged for meshing engagement with a release trigger gear rack 960 formed on the tail portion 940 of the firing release trigger 932. First gear 952 may be linked to a release pawl 970 by a first connector link 972 that is pivotally pinned or otherwise attached to the first gear 952 and the release pawl 970. As can be seen in FIGS. 22 and 25, the release pawl 970 may be pivotally supported on pin 38.


In various embodiments, release pawl 970 may have an engagement portion 974 that is configured to engage a release pin 980 that is attached to a second connector link 982 and is constrained to ride in an arcuate slot 826 formed in the movable handle 824. As the present Detailed Description proceeds, it will become apparent that the slot 826 prevents actuation of the movable handle 824 from moving the second connector link 982. The second connector link 982 may also be pivotally pinned or attached to a gate gear 990 that is rotatably journaled on a gear pin 992 that is supported by handle housing segments 36a, 36b. Gate gear 990 has a segment of gear teeth 994 thereon oriented for meshing engagement with a gate rack 998 formed on a locking gate 996. The locking gate 996 may have a slot 997 therein that is adapted to receive a portion 1002 of a gate spring 1000 that is supported on a gate pin 1004 that extends between the handle housing segments 36a, 36b. Gate spring 1000 serves to bias the locking gate 996 in the “C” direction. See FIG. 26.


Operation of the firing lockout assembly 880 will now be described with reference to FIGS. 27-30. FIG. 27 illustrates the stapling apparatus 810 prior to clamping tissue in the disposable loading unit (not shown). As can be seen in that Figure, the engagement portion 974 of the release pawl 970 is not in contact with the release pin 980 at this stage of operation. As can also be seen, the upper end of the locking gate 996 is at the distal end of the actuation shaft 46. FIG. 28 illustrates a first actuation of movable handle 824 to cause the staple forming anvil of the disposable loading unit to close in the manner described above. The clinician has not yet depressed the firing release trigger 932 and has conveniently placed his or her index finger behind the actuation portion 933 of the firing release trigger 932. By actuating the movable handle 824, the actuation shaft 46 is driven in the distal direction “DD” by the driving pawl 42 in the manner described above. As can be seen in FIG. 28, the actuation shaft 46 has moved to a position wherein the end of the locking gate 996 has entered into the locking detent 53 in the actuation shaft 46 and corresponding locking detent 53′ in the release plate 64. As more easily seen in FIG. 25, the upper end of the locking gate 996 has a chamfered or tapered portion 999 formed thereon that meets with the vertical extending proximal side 1005 of the locking gate 996. As can also be seen in FIG. 25, the locking detent 53 in the actuation shaft 46 has angled surfaces 1006, 1007 and also a vertical ledge portion 1008. When the upper end of the locking gate 996 is completely biased into the locking detent 53 by the gate spring 1000, the proximal side 1005 of the locking gate 996 is in confronting relationship with the vertical ledge 1008 in the actuation shaft 46 to thereby prevent movement of the actuation shaft 46. However, when the locking gate 996 is pulled in the direction “D”, the angled surfaces 1006, 1007, as well as the chamfered surface 999 on the locking gate 996, enable the actuation shaft 46 to move longitudinally past the locking gate 996 without the locking gate 996 having to be completely biased out of contact with the actuation shaft 46.


Returning to FIG. 28, when in that position, the slot 826 in the movable handle 824 permitted the movable handle to be pulled toward the stationary handle portion 22 without causing the pin 980 to move the second connection link 982 which in turn would actuate the locking gate 996. As can be seen in FIG. 28, the spring 1000 has biased the locking gate 996 into the blocking position wherein the locking gate 996 is received in locking detents 53, 53′ and the proximal surface 998 thereof is in confronting relationship with the vertical ledge 1008 in the actuation shaft 46. After the movable handle 824 has been pulled to the first position shown in FIG. 28 to close the staple forming anvil, the clinician then permits the movable handle 824 to move to the position illustrated in FIG. 29 under the biasing force of the handle closure spring 40. At this stage, the retractor knobs 32a, 32b could be pulled proximally to cause the staple forming anvil to unclamp the tissue in the event that the clinician wishes to re-manipulate the tool 17 or, the clinician may wish to commence the firing cycle by placing his or her index finger on the actuation portion 933 of the firing release trigger 932 as illustrated in FIG. 30.


In FIG. 31, the clinician has depressed the firing release trigger 932. Such action causes the release trigger gear rack 960 in the release trigger tail portion 940 to mesh with the first gear segment 956 on the first gear 952 to cause the first gear 952 to rotate in the counterclockwise direction “CCW”. As the first gear 952 rotates in the counterclockwise direction, it pushes the first connector link 972 in the “E” direction, causes the release pawl 970 to rotate in the clockwise “C” direction. As the release pawl 970 rotates in the “C” direction, the engagement surface 974 contacts release pin 980 and draws the second connection link 982 in the “F’ direction. As the second connector link 982 moves in the “F” direction, it causes the gate gear 990 to rotate in the counterclockwise direction “CCW”. The gear teeth 994 on the gate gear 990 mesh with the gate rack 998 and drive the locking gate 996 in the “D” direction out of blocking engagement with the locking detents 53, 53′.



FIG. 32 illustrates the position of the locking gate 996 relative to the actuation shaft 46 as the actuation shaft 46 begins to move in the distal direction “DD” by actuating the movable handle 824. As can be seen in that Figure, the upper chamfered portion 999 of the locking gate 996 is now in contact with the vertical edge 1005 in the actuation shaft 46 and permits the actuation shaft 46 to move distally. FIG. 33 illustrates the completion of a first firing stroke of the movable handle 824. As can be seen in that Figure, the upper end of the locking gate 996 rides on the bottom of the actuation shaft 46 and the plate 64 as the actuation shaft 46 is advanced in the distal direction “DD”. Link 982, proximal end has moved to the proximal end of slot 826 during that stroke.



FIG. 34 illustrates an alternative stapling apparatus embodiment 810′ that employs an alternative firing lockout assembly 880′ that may be substantially the same as the firing lockout assembly 880 described above, except for the differences noted below. In particular, the firing lock out assembly 880′ employs a flexible bar 1020 that is constrained to move in a serpentine passage 828 formed in the movable handle 824′. The flexible bar 1020 replaces the first gear 952, the first connector link 972, and the release pawl 970. One end of the flexible bar 1020 is coupled to the firing release trigger 932 and the other end of the flexible bar 1020 is constrained to contact the release pin 980 which is also constrained to move in the slot 828. Thus, as the firing release trigger 932 is depressed, the flexible bar 1020 pushes the release pin 980 which causes the second connector link 982 to move in the “F” direction. As the second connector link 982 moves in the “F” direction, the gate gear 990 moves in the counter clockwise direction “CC” and drives the locking gate 996 in the “D” direction. When the clinician releases the firing release trigger 932, the release spring 936 drives the firing release trigger 932 in the “A” direction pulling the flexible bar 1020 away from the release pin 980, thereby permitting the release pin 980 to move unconstrained in the slot 828. As the release pin 980 is unconstrained, the gate spring 1000 is permitted to bias the locking gate 996 in the “C” direction. As the locking gate 996 is biased in the “C” direction, the gate gear 990 is driven unconstrained in a clockwise “C” direction. Those of ordinary skill in the art will appreciate that the firing lockout arrangements 880, 880′ described above enable the clinician to operate the instruments with one hand. This represents a vast improvement over those firing lockout systems disclosed in U.S. Pat. No. 5,865,361 and other prior stapling apparatuses configured for use with disposable loading units.



FIGS. 35-46 depict a surgical stapling apparatus 1210 that addresses at least some of the aforementioned problems associated with prior surgical stapling apparatuses that are designed to accommodate articulatable disposable loading units. More particularly and with reference to FIG. 35, the surgical stapling apparatus 1210 may be substantially similar in construction as the various instruments described above, except for the selectively lockable rotation system 1220 and the articulation system 1320 (FIG. 36) as will be described in detail below. Those components that are the same as the components employed in the above-mentioned embodiments will be labeled with the same element numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation.


In one embodiment, the surgical stapling apparatus 1210 may include a handle assembly 12 that has an elongated body 14 that is operably coupled thereto and which protrudes distally therefrom. A distal end of the elongated body 14 may be coupled to an articulatable disposable loading unit 16. The disposable loading unit 16 may include a tool assembly 17 that is selectively articulatable about an articulation axis “A1-“A1” by articulation motions transferred thereto by the elongated body 14 as is known. See FIG. 35. In various embodiments of the present invention, the proximal end of the elongated body 14 may be coupled to a rotatable shroud 1260 that is coupled to handle housing 36′. As can be seen in FIGS. 36, 44 and 45, handle housing 36′ may include an annular channel 117 configured to receive an annular rib 1262 formed on the proximal end of rotatable shroud 1260, which is preferably formed from molded shroud segments 1260a and 1260b. Annular channel 117 and rib 1262 permit relative rotation between shroud 1260 and handle housing 36′. Rotation of rotatable shroud 1260 causes the elongated body 14 and the disposable loading unit attached thereto to rotate about the longitudinal axis “L-L” defined by the elongated body 14. Various embodiments of surgical stapling apparatus 1210 may include a selectively lockable rotation system 1220 for selectively locking the rotatable shroud 1260 to prevent rotation thereof (as well as rotation of elongated body 14 and disposable loading unit 16) relative to the handle assembly 12 about the longitudinal axis “L-L”.


In various embodiments, the lockable rotation system 1220 may include a cylindrical distal cover 1222 formed or otherwise provided on the distal end of the handle housing 36′. FIG. 36 illustrates housing segment 36a′ of handle housing 36′ that has one cover segment 1222a formed thereon. Those of ordinary skill in the art will understand that the housing segment 36b′ of handle housing 36′ has a mating cover segment 1222b formed thereon that cooperates with cover segment 1222a to form distal cover 1222. See FIG. 40.


The lockable rotation system 1220 may further include a brake system 1229. In particular, cover segment 1222a may have an internal spline section 1224a and cover segment 1222b may have an internal spline 1224b. Internal spline sections 1224a, 1224b cooperate to form an internal spline 1224 which is configured to support a brake tube 1230 of the brake system 1229. In various embodiments, the brake tube 1230 has an external spline 1232 formed thereon that is sized to be received in internal spline 1224 in the distal cover 1222 such that the brake tube 1230 can move axially relative to the distal cover 1222, but is constrained to rotate therewith. The brake system 1229 may further include a brake band 1240 that interacts with a brake arm pin 1250 that is operably supported in a rotatable shroud 1260. The operation of the brake arm pin 1250 and brake band 1240 will be discussed in further detail below.


The brake tube 1230 may be moved axially relative to the cylindrical distal cover 1222 by a switch bar 1270 that is operably connected to a selector switch assembly 1290. As can be seen in FIG. 36, the switch bar 1270 has a proximal end 1272 and a distal end 1276. The proximal end 1272 may have a hole 1274 for receipt of a shaft portion 1294 of a selector switch 1292. The shaft portion 1294 extends through the hole 1274 in the switch bar 1270 and is pinned thereto by a cross pin 1296. In addition, the selector switch 1292 may have a fastener pin 1298 that pivotally couples the shaft portion 1294 to the housing 36′. A detent spring 1300 may be employed to lock the selector switch 1292 in position. The detent spring 1300 may have a bulbous portion 1302 that is adapted to be engaged by the cross pin 1296 as the selector switch 1292 is pivoted distally and proximally about a axis “SA-SA” defined by fastener pin 1298. See FIG. 36. Thus, as the selector switch 1292 is pivoted to the proximal position (FIGS. 42, 43 and 46) and as the selector switch 1292 is pivoted to the distal position (FIGS. 37, 38, 41 and 45) the bulbous portion 1302 of spring 1300 retains the selector switch 1292 and the switch bar 1270 in position.


Referring again to FIG. 36, the distal end 1276 of the switch bar 1270 may have a connector pin 1278 protruding therefrom that is adapted to couple the switch bar 1270 to the brake tube 1230. See FIG. 38. Thus, linear movement of the switch bar in the proximal direction “PD” and distal direction “DD” causes the brake tube 1230 to also move in those directions within the cylindrical distal cover portion 1222. As can also be seen in FIGS. 36-39 and 41-46, the distal end 1276 of the switch bar 1270 may further have a bolt 1280 formed thereon or attached thereto. The bolt 1280 is adapted to selectively meshingly engage a rotation lock ring 1264 that comprises a series of teeth 1266 formed on or otherwise provided on the annular rib 1262. As can be seen in FIG. 36, the annular channel 117 in the cylindrical distal cover 1222 is formed by a inwardly extending flange 1226 that has a groove 1228 therethrough to receive the distal end 1276 of the switch bar 1270 therethrough. Thus, as will be discussed in further detail below, when the switch bar 1270 is moved in the distal direction “DD”, the bolt 1280 can be brought into meshing engagement with the teeth 1266 of the rotation lock ring 1264 of the shroud 1260 and thereby prevent the shroud 1260 from rotating with respect to the cover 1222 and shroud 36. See FIG. 44.


Various embodiments of the surgical stapling apparatus 1210 may further include a unique and novel articulation system 1320 which, as will be described below, interfaces with the components forming the elongated body 14 to selectively apply articulation motions thereto for transfer to the disposable loading unit 16. The articulation system 1320 may include a translation member 138′. For example, the translation member 138′ may include a plurality of ridges 156 which are configured to be slidably received within grooves 1261 formed along the inner walls of the shroud 1260. Engagement between ridges 156 and those grooves 1261 (FIGS. 36 and 37) prevents relative rotation of the translation member 138′ and the shroud 1260 while permitting relative linear movement between those components. The distal end of translation member 138′ may include an arm 160 which includes an opening 162 configured to receive a finger 164 extending from the proximal end of articulation link 123. See FIG. 37. Also in this embodiment, the translation member 138′ has an articulation pin 166 protruding therefrom that extends through an articulation slot 1265 in the articulation shroud 1260. The articulation pin 166 is received in a hole 1324 (FIG. 36) formed in a linear articulation and rotation grip 1320 that is received on the shroud 1260. The articulation system may further include a linear articulation and rotation grip 1322 that may be fabricated from two grip segments 1322a, 1322b that are coupled together about the shroud 1260. The hole 1324 may be provided in the grip segment 1322a as shown in FIG. 36. Thus, when the clinician moves the grip 1322 axially in the proximal direction “PD” and distal direction “DD”, the translation member 138′, as well as the articulation link 123, moves in those directions to effectuate articulation of the articulatable disposable loading unit.


Also in this embodiment, the brake system 1229 may be configured to prevent actuation of the articulation system 1320. For example, referring again to FIG. 36, the band brake 1240 may be configured to be received within spaced shoulder flanges 1267 formed on the exterior of shroud 1260 to form a brake band groove 1269. As can be seen in FIG. 36, the brake band 1240 does not form a complete ring; the ends 1242 of the band brake 1240 are in spaced confronting relationship relative to each other to define a cam-receiving opening 1244 therebetween. The brake band 1240 is installed within the brake band groove 1269 such that the cam opening 1242 is oriented to receive a brake cam 1330 therein. Attached to the brake cam 1330 is a brake arm shift pin 1332 that extends through a brake cam hole 1334 in the shroud 1260. As can be seen in FIG. 37 the brake arm shift pin 1332 is configured to be received within a shifting groove 1234 formed in the distal end of the brake tube 1230. The linear articulation and rotation grip 1322 which comprises a portion of the articulation system 1320 has an undercut area 1326 therein to enable the grip 1320 to move axially relative to the shroud 1260. In various embodiments, the grip segment 1322a may be provided with a series of detents 1328 that is adapted to engage an indicator pin 1263 (FIG. 41) protruding from the shroud 1260 such that as the grip 1320 is axially moved on the shroud 1260, the indicator pin 1263 makes an audible click or sound as it engages the detents 1328. Five detents 1328 are illustrated in that Figure; other numbers of detents 1328 may be used.


The operation of the surgical stapling apparatus 1210 will now be described with reference to FIGS. 37-39, 41, and 42-44. FIGS. 37-39 illustrate the stapling apparatus 1210 in the “rotation” mode wherein the outer casing 124 may be selectively rotated about longitudinal axis “L-L”. As can be seen in FIGS. 37 and 38, the selector switch 1292 is pivoted to the distal position wherein the switch bar 1270 is pulled in the proximal direction “PD”. When the switch bar 1270 is pulled in the proximal direction, the rotation bolt 1280 is disengaged from the rotation lock ring 1264 (FIG. 39) thereby permitting the shroud 1260 to rotate about longitudinal axis “L-L”. As discussed above, the proximal end of casing 124 includes diametrically opposed openings 128, which are dimensioned to receive radial projections 132 formed inside the distal end of shroud 1260. See FIGS. 36 and 38. Projections 132 and openings 128 fixedly secure shroud 1260 and elongated body 14 in relation to each other, both longitudinally and rotatably. Rotation of shroud 1260 with respect to handle assembly 12 thus results in corresponding rotation of elongated body 14 about longitudinal axis L-L with respect to handle assembly 12. Also, because the switch bar 1270 is coupled to the brake tube 1230 by connector pin 1278, as the switch bar 1270 is moved in the proximal direction “PD”, the brake tube 1230 also moves in the proximal direction within the cylindrical distal cover 1222. As explained above, the shift pin 1332 of the brake cam 1330 is received in a shifting groove 1234 in the brake tube 1230. When the brake tube 1230 is moved proximally, the shift pin 1332 that is a distal feature of a radius arm that in turn is rigidly affixed to the pin 1250 rotates brake cam 1330 such that it forces the ends 1242 of the brake band 1240 radially outwardly to thereby lock the linear articulation and rotation grip 1322 to the shroud 1260. The brake band 1240 prevents the grip 1322 from moving axially on the shroud 1260; however, rotation of the grip 1322 causes the shroud 1260 to rotate about axis “L-L”. Thus, when the selector switch 1292 is pivoted to the distal direction, the elongated body 14 and disposable loading unit attached thereto may be rotated about the longitudinal axis “L-L” by rotating the grip 1320.


When the clinician desires to articulate the disposable loading unit, the selector switch 1292 is pivoted in the proximal direction “PD” illustrated in FIGS. 42, 43 and 46. As can be seen FIGS. 42, 43 and 46, when the selector switch 1292 is pivoted to the proximal direction, the switch bar 1270 is axially advanced in the distal direction “D-D” bringing the rotation bolt 1280 into locking engagement with the rotation lock ring 1264. When the locking bolt 1280 is engaged with the rotation locking ring 1264, the shroud 1260 (and the elongated body 14 and casing 124) are unable to rotate relative to the handle assembly 12 about the longitudinal axis “L-L”. When the switch bar 1270 is moved in the distal direction, the brake tube 1230 is also moved in the distal direction “D-D” because the switch bar 1270 is attached thereto. As the brake tube 1230 moves proximally, the shift pin 1332 is caused to rotate and rotates brake cam 1330 such that it permits the ends 1242 of the brake band 1240 to move inwardly toward each other to thereby permit the grip 1320 to be moved relative to the shroud 1260. See FIG. 46. In various embodiments, an articulation pin 166 extends from translation member 138′ through a slot 1265 in the shroud segment 1260a and is received in a hole 1324 in the grip segment 1322a. See FIGS. 36 and 37. Thus, when the clinician moves the rotation grip 1322 axially in the proximal direction “PD” and distal direction “DD”, the translation member 138′ as well as the articulation link 123 which is attached thereto by an arm 160 also moves. Thus, when the clinician moves the rotation grip 1322 axially in the proximal direction “PD” and distal direction “DD”, the translation member 138′ as well as the articulation link 123 also moves in those directions to effectuate articulation of the articulatable disposable loading unit. In addition, as the grip 1322 is axially moved on the shroud 1260, the indicator pin 1263 makes an audible click or sound as it engages the detents 1328 to provide the clinician with an audible indication of the progress of the articulation motion.



FIG. 46 depicts use of translation member 138 that has an upstanding arm portion 540 and an arm 546 which includes an opening 548 configured to receive a finger (not shown) extending from the proximal end of articulation link 123 (not shown). See FIGS. 4 and 11. Pin 166 is secured to translation member 138 and dimensioned to extend through the slot 1265 in the shroud and into the hole 1324 in the shroud 1322. This embodiment otherwise works the same as the embodiments depicted in FIGS. 37 and 38. Those of ordinary skill in the art will recognize that the aforementioned embodiment represents a vast improvement over prior instruments adapted for use with disposable loading units such as those disclosed in U.S. Pat. No. 5,865,361. In particular, in the embodiments described above, the clinician may rotate the disposable loading unit to the desired position and then lock the shroud 1260 to prevent further rotation of the shroud 1260. The clinician may then articulate the disposable loading unit while the shroud 1260 remains locked in position. In prior units, the rotation knob was free to rotate while the clinician was trying to articulate the disposable loading unit. Thus, to prevent the disposable loading unit from rotating, the clinician had to manipulate the articulation lever while being careful not to impart a rotation motion to the rotation knob. The above-described embodiments solve that problem.



FIGS. 47-51 illustrate another surgical stapling apparatus 1410 of the present invention constructed for use with a disposable loading unit (not shown) that permits a clinician to articulate and fire the disposable loading unit with one hand. More particularly and with reference to FIG. 47, the surgical instrument 1410 is substantially similar in construction as the various instruments described above, except for the articulation system 1420 as will be described in detail below. Those components that are the same as the components employed in the above-mentioned embodiments will be labeled with the same numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation.


In one embodiment, the surgical stapling apparatus 1410 may include a handle assembly 12 that has an elongated body 14 that is operably coupled to the handle assembly 12 and protrudes distally therefrom. A distal end of the elongated body 14 may be coupled to an articulatable disposable loading unit 16. The disposable loading unit may include a tool assembly 17 that is selectively articulatable about an articulation axis “AA-“AA” by articulation motions transferred thereto by the elongated body 14 as is known.


The handle assembly 12 may comprise a handle housing 36 and have a movable handle 24 operably coupled thereto that is movable through actuation strokes relative to the handle housing 36. As in the above-described embodiments, actuation of the movable handle 24 may cause longitudinal actuation motions to be applied to an actuation shaft 46 which is operably coupled to a control rod 52 which comprises a portion of the elongated body 14. As can be seen in FIGS. 48-51, the articulation system 1420 may include an articulation trigger 1422 that may be shaped and oriented relative to the stationary portion 22 of the handle housing 36 and the movable handle 24 to enable the clinician to actuate it with his or her index finger of the hand that is grasping the handle assembly 12 and which actuates the movable handle 24. The trigger 1422 may have a drive bar portion 1424 attached thereto that has a vertical portion 1426 that is pivotally pinned to the handle housing 36 by a pivot pin 1428 such that the articulation trigger 1422 may be selectively pivoted in the “G” and “H” directions about pivot pin 1428. See FIG. 49. The drive bar portion 1424 may further have a drive portion 1430 that has a slot 1432 therein adapted to receive a drive pin 1434 attached to an articulation bar 1440. As can be seen in FIG. 49, the articulation bar 1440 may be provided with a pair of elongated slots 1442, 1444 that are adapted to receive portions of screws 1450, 1452, respectively. Screws 1450, 1452 extend through the elongated slots 1442, 1444, respectively and are attached to the handle housing segment 36a such that the articulation bar 1440 is constrained to move longitudinally within handle housing 36 in the proximal direction “PD” and the distal direction “DD”. The distal end of the articulation bar 1440 may have an articulation pin 1446 that is adapted to extend into an annular groove 139″ provided in the proximal end of the translation member 138″ which may be otherwise identical in construction and operation with respect to translation member 138′ described in detail above. That is, the translation member 138″ may have a plurality of ridges 156 which are configured to be slidably received within grooves formed along the inner walls of the rotatable knob 28″. Engagement between ridges 156 and those grooves prevent relative rotation of the translation member 138″ and the rotatable knob 28″ while permitting relative linear movement between those components. The distal end of translation member 138″ may include an arm 160 which includes an opening 162 configured to receive a finger 164 extending from the proximal end of articulation link 123. See FIGS. 48 and 49. Thus, when the clinician actuates the articulation trigger 1422 in the “G” direction, the drive portion 1430 pulls the articulation bar 1440 in the proximal direction “PD” which also pulls the translation member 138″ and the articulation link 123 attached thereto in the proximal direction “PD” which may thereby cause the disposable loading unit coupled thereto to articulate in the right hand direction in the manner described above and hereinbelow. When the clinician pulls the articulation trigger 1422 in the “H” direction, the drive portion 1430 pushes the articulation bar 1440 in the distal direction “DD” which also pushes the translation member 138″ and the articulation link 123 attached thereto in the distal direction “DD” which may thereby cause the disposable loading unit coupled thereto to articulate in the left hand direction.


As indicated above, this embodiment may include a sensor cylinder 178′ that interfaces with a sensor tube 176 and a sensor link 182 as was described above to detect whether a disposable reload unit has been coupled to the control rod 52 and prevent actuation of the articulation mechanism 1420 when no disposable reload unit has been attached. In this embodiment, however, the flange 190′ of the sensor tube 178′ is configured to interact with a “no reload” lockout ramp 1448 formed on the articulation bar 1440. See FIGS. 50 and 51. When no disposable loading unit has been coupled to the elongated member 14 and control rod 52, the sensor tube 178′ is biased into the position illustrated in FIG. 50. As can be seen in that Figure, the no reload lockout ramp 1448 on the articulation bar 1440 is engaged with the flange 190′ on the sensor tub 178′ such that the articulation bar 1440 is biased laterally outward in the “I” direction. As can also be seen in that Figure, an inwardly extending locking detent 37 is formed on the handle housing segment 36a and is adapted to be received in a locking notch 1445 in the articulation bar 1440 when the flange 190′ engages the no reload lockout ramp 1448 to bias the articulation bar 1440 in the “I” direction. When the detent 37 is received in the locking notch 1445, the articulation bar 1440 cannot be actuated. Thus, when no disposable loading unit is coupled to the instrument 1410, the articulation trigger 1422 cannot be actuated. When a disposable loading unit is coupled to the elongated member 14 and control rod 52 and sensor bar 176, the sensor cylinder 178′ is biased in the proximal direction “PD” which causes the flange 190′ to disengage the non reload lockout ramp 1448 as shown in FIG. 51 and thereby permit the articulation bar 1440 to move. Thus, the articulation trigger 1422 may be actuated when a disposable loading unit has been coupled to the stapling apparatus 1410.


Those of ordinary skill in the art will appreciate that the articulation mechanism 1420 described above enable the clinician to operate the instrument with one hand. This represents a vast improvement over those articulation mechanisms disclosed in U.S. Pat. No. 5,865,361 and other prior stapling apparatuses configured for use with disposable loading units.



FIGS. 52-64 disclose another surgical stapling apparatus 1510 of the present invention constructed for use with an articulatable disposable loading unit (not shown) that permits a clinician to articulate and fire the disposable loading unit by manipulating the movable handle 24″. In one embodiment, the surgical stapling apparatus 1510 may include a handle assembly 12 that has an elongated body 14 that is operably coupled to the handle assembly 12 and protrudes distally therefrom. A distal end of the elongated body 14 may be coupled to an articulatable disposable loading unit 16. The disposable loading unit may include a tool assembly 17 that is selectively articulatable about an articulation axis “A1-A1” by articulation motions transferred thereto by the elongated body 14 as is known. As will be discussed in detail below, the surgical stapling apparatus 1510 may employ a unique and novel selector arrangement 1512 that interfaces with the movable handle 24″, the actuation shaft 46 and an articulation system 1520. When the selector arrangement 1512 is in a “firing” orientation, manipulation of the movable handle member 24″ through actuation strokes imparts a firing motion to the actuation shaft 46 and when the selector arrangement 1512 is in an “articulation” orientation, manipulation of the movable handle 24″ through the actuation strokes actuates the articulation system 1520. Those components that are the same as the components employed in the above-mentioned embodiments will be labeled with the same numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation.


As can be seen in FIGS. 52 and 53, the selector arrangement 1512 may include an articulation selector switch 1522 that is located outside of the handle housing 36 to provide access thereto. The articulation selector switch 1522 may be coupled to an articulation selector switch shaft 1524 that extends through the handle housing segment 36b and is attached to a rocker mount 1530 which comprises a portion of the articulation system 1520. A second articulation selector switch shaft 1526 protrudes outward from the other side of the rocker mount 1530 to extend through the handle housing segment 36a for attachment to a selector switch 1522a such that the rocker mount 1530 is pivotable about rocker axis “RA” defined by the shafts 1524, 1526. See FIG. 60. As can be seen in FIGS. 56-58, the articulation system 1520 further includes a first articulation gear 1540 and a second articulation gear 1550 that are each freely rotatable within the rocker mount 1530. The first and second articulation gears 1540 and 1550 are oriented for selective engagement with an articulation bar extension 1441′ that comprises a portion of articulation bar 1440′, which is otherwise similar to articulation bar 1440 described above. As can be seen in FIG. 55, the articulation bar extension 1441′ has a series of holes 1443′ therein adapted to be engaged by the first and second articulation gears 1540, 1550, depending upon the orientation of the rocker mount 1530.


The selector arrangement 1512 may further include a unique and novel gear selector switch assembly 1560 for interfacing between a firing gear 1610 and an articulation transfer gear train 1600 that comprises a portion of the articulation system. In various embodiments, the articulation transfer gear train 1600 may comprise a first transfer gear 1602 that is mounted to a first transfer gear shaft 1604 that is rotatably supported in sockets (not shown) in the handle housing segments 36a, 36b and a second transfer gear 1606 that is mounted on a second transfer gear shaft 1608 that is rotatably supported in sockets (not shown) in the handle housing segments 36a, 36b. In various embodiments, the gear selector switch assembly 1560 may include a function selector switch 1562 that has a pair of pins 1563 protruding therefrom that extend through corresponding arcuate slots 1564 in the handle housing segment 36b and are attached to a drive disc 1566. See FIGS. 61 and 62. As can be seen in those Figures, the drive disc 1566 may have a series of teeth-receiving cavities 1568 therein that are adapted to selectively mesh with corresponding disc teeth 1571 in a shift disc 1570. The shift disc 1570 may be non-rotatably affixed to a stationary shaft 1574. As can be seen in FIGS. 61 and 62, an end 1575 of the stationary shaft 1574 may be received in a cavity 1577 and pinned thereto by a lock pin 1578. In various embodiments for example, the end 1575 may be molded into the handle housing segment 36a such that stationary shaft 1574 is not rotatable relative thereto. As can also be seen in FIG. 62, the shift disc 1570 may be non-rotatably pinned to stationary shaft 1574 by a shift pin 1580 that extends through a transverse slot 1576 in the stationary shaft 1574 to enable the shift disc 1570 to move axially (and non-rotatably) on the stationary shaft 1574.


As can also be seen in FIGS. 61 and 62, the gear selector switch assembly 1560 may further include a drive gear assembly 1590 that comprises a drive gear portion 1592 and an articulation drive gear portion 1594. The drive gear assembly 1590 is configured to move axially on the stationary shaft 1574 and is biased in the “J” direction by a spring 1596 that is journaled on the stationary shaft 1574.


The operation of the articulation system 1520 will now be described with reference to FIGS. 57 and 58. To commence the articulation process, the clinician actuates one of the articulation selector switches 1522a, 1522b. In one embodiment, for example, if the clinician desires to articulate the disposable loading unit to the right, the clinician pivots the articulation selector switches 1522a, 1522b downward (arrow ““L” in FIG. 52). By pivoting the selector switches 1522 downward, the rocker mount 1530 is pivoted in the counterclockwise direction “CCW” in FIG. 58 to bring the second articulation gear 1550 into meshing engagement with the holes 1443′ in the articulation bar extension 1441′. In the articulation mode, the gear selector switch assembly 1560 is permitted to remain in the unactuated position illustrated in FIGS. 59 and 63. When in that position, the drive gear assembly 1590 is positioned such that a handle gear 1620 attached to or otherwise molded to the movable handle 24 is in meshing engagement with the drive gear portion 1592 of the drive gear assembly 1590. In addition, the articulation drive gear portion 1594 of the drive gear assembly 1590 is in meshing engagement with the first transfer gear 1602. As can be seen in FIG. 59, when the drive gear assembly 1590 is positioned in that manner, the firing gear 1610, which is rotatably supported on a firing gear shaft 1612, is not engaged with the drive gear assembly 1590. Thus, actuation of the movable handle 24 will not affect the firing gear 1610.


When the selector switches 1522a, 1522b, 1562 are positioned in the manner described immediately above, the clinician may articulate the disposable loading unit attached to the stapling apparatus 1510 by actuating (ratcheting or pivoting) the movable handle 24. As the movable handle 24 is actuated, the handle gear 1620 rotates in the counterclockwise direction “CCW” which, in turn, causes the drive gear 1592 to rotate in the clockwise direction “CW” which, in turn, causes the first transfer gear 1602 to rotate in the counterclockwise direction “CCW” which, in turn, causes the second transfer gear 1606 to rotate in the clockwise direction “CW” which, in turn, causes the first articulation gear 1540 to rotate in the counterclockwise direction “CCW” which, in turn, causes the second articulation gear 1550 to rotate in the clockwise direction “CW” which, in turn, drives the articulation bar extension 1441′ in the proximal direction “PD”. See FIG. 58. As the articulation bar extension 1441′ is driven in the proximal direction “PD”, the articulation bar 1440′ drives the translation member 138″ and the articulation link 123 attached thereto is drawn in the proximal direction “PD” which may thereby cause the disposable loading unit coupled thereto to articulate in the right hand direction in the manner described above and hereinbelow. To articulate the disposable loading unit to the left, the clinician pivots the articulation selector switches 1522a, 1522b in the up direction (the “M” direction in FIG. 52). When the selector switches 1522a, 1522b are pivoted in that direction, the articulation rack 1530 is pivoted in the clockwise direction “CW” about the rack axis “RA” to thereby bring the first articulation gear 1540 into meshing engagement with the articulation bar extension 1441′. Because the first articulation gear 1540 is rotating in the clockwise direction “CW”, the first articulation gear 1540 drives the articulation bar extension 1441′ in the distal direction “DD” as the movable handle is actuated. As the articulation bar extension 1441′ is driven in the distal direction “DD”, the articulation bar 1440′ drives the translation member 138″ and the articulation link 123 attached thereto in the distal direction “DD” which may thereby cause the disposable loading unit coupled thereto to articulate in the left hand direction. Also in this embodiment, the articulation bar 1440′ may employ the locking arrangement described above with respect to articulation bar 1440 for preventing movement of articulation bar 1440′ when no disposable loading unit has been coupled to the stapling apparatus 1510. Thus, in this embodiment, the articulation motions are generated by actuating the movable handle 24.


This embodiment may also employ a unique and novel firing system generally designated as 1601, of which firing gear 1610 is a part. More particularly and with reference to FIGS. 55-60, the firing assembly 1601 may also include a pawl slide 1640 that is movably supported in a right hand rack guide 1630a formed in the right hand housing segment 36a and a left hand rack guide 1630b formed in the left hand housing segment 36b as shown in FIG. 54 (the housing segments 36a, 36b have been omitted for clarity in FIG. 54). In various embodiments, the pawl slide 1640 may generally have the shape of a capital “I” with a distal cross bar portion 1642, central bar portion 1644 and a proximal cross bar portion 1646. The cross bar portions 1642, 1646 serve to slidingly support the pawl slide 1640 in the rack guides 1630a, 1630b such that the pawl slide 1640 is able to axially move in the proximal direction “PD” and the distal direction “DD”. Also in this embodiment, a drive rack 1650 may be formed on the bottom of, or otherwise attached to, the bottom of the central bar portion 1644 of the pawl slide 1640. The firing rack 1650 is oriented in meshing engagement with the firing gear 1610 as will be discussed in further detail below. Also attached to the central bar portion 1644 is a pawl 42 that has a rack engagement portion 43 for driving engagement of the rack 48 on the actuation shaft 46. As shown in FIGS. 55 and 64, the pawl 42 in various embodiments may be stamped out of metal and formed in a substantially U-shape such that the pawl 42 may be pivotally pinned to the central bar portion 1644 by a pivot pin 44′. A pawl spring 50′ may be supported in a hole 1645 in the central bar portion 1644 to bias the pawl 42 into meshing engagement with the rack 48 on the actuation shaft 46. See FIG. 64.


The operation of the firing system 1601 will now be described with reference to FIGS. 60 and 64. To commence the firing process, the clinician turns the gear selector switch assembly 1560 to the position depicted in FIG. 64, such that the drive gear assembly 1590 is biased in the “K” direction such that the handle gear 1620 remains in meshing engagement with the drive gear 1592 and the articulation gear 1594 of the drive gear assembly 1590 does not mesh with the first articulation transfer gear 1602. In addition, the drive gear 1592 is in meshing engagement with the firing gear 1610 which, as described above, is in meshing engagement with the firing rack 1650. Because the articulation drive gear 1594 does not mesh with the first articulation transfer gear 1602, actuation of the movable handle 24″ will not result in the generation of any articulation motions.


When selector switch 1562 is positioned in the manner described immediately above, the clinician may fire the actuation shaft 46 which, in turn, transfers firing motions to the control rod 52 coupled to the actuation shaft 46 which, in turn, transfers firing motions to the disposable loading unit coupled thereto in the manner described in U.S. Pat. No. 5,865,361. As illustrated in FIG. 56, the actuation shaft 46 of this unique and novel embodiment is fired (or moved in the distal direction “DD”) by actuating (ratcheting or pivoting) the movable handle 24. As the movable handle 24″ is actuated, the handle gear 1620 rotates in the counterclockwise direction “CCW” which, in turn, causes the drive gear 1592 to rotate in the clockwise direction “CW” which, in turn, causes the firing gear 1610 to rotate in the counterclockwise direction “CCW” and drive the firing rack 1650 and pawl 42 attached thereto in the distal direction “DD”. The rack engagement portion 43 of the pawl 42 is in engagement with the teeth 49 of the rack 48 on the actuation shaft 46 and thereby drives the actuation shaft 46 in the distal direction “DD”. This embodiment otherwise operates as described above. In particular, the clinician continues to ratchet the movable handle 24″ until the firing sequence has been completed. When the movable handle 24″ is pivoted to a position adjacent the stationary handle portion 22, the clinician releases the movable handle 24″ and the movable handle 24″ is pivoted to the starting position by the spring 40 (described above) and then the movable handle 24″ can be pivoted again for another stroke to advance the pawl 42 and the actuation shaft 46. When the movable handle 24″ is released, the rack engagement tooth 43 of the pawl 42 slides over the teeth 49 on the actuation shaft rack 48 as the pawl moves in the proximal direction “PD” and then reengages the teeth 49 when the movable handle 12 is pivoted to drive the actuation shaft in the distal direction “DD”.


Those of ordinary skill in the art will understand that the stapling apparatus 1510 is equipped with a movable handle 12 that can be used to fire the instrument as well as to articulate the disposable loading unit attached thereto. It will be further appreciated that such embodiments are able to generate higher articulation forces than another prior devices such as those disclosed in U.S. Pat. No. 5,865,361.



FIGS. 65-69 illustrate an alternative articulation mechanism 1720 for axially advancing the translation member 138 to ultimately result in the longitudinal actuation of an articulation link (not shown in FIG. 65). As can be seen in FIGS. 65 and 66, the articulation mechanism 1720 may be used in connection with a rotation knob 28′ which may be substantially identical to rotation knob 28 described above, except that rotation knob 28′ is configured to support a articulation knob 1730 as shown. As can be seen in FIG. 66, the articulation knob 1730 may include a thumb tab 1732 that is attached to a pivot shaft 1734 that extends through a hole 1736 in the rotation knob segment 28a′. The pivot shaft 1734 may have a squared portion 1735 that is adapted to be non-rotatably received in a corresponding square hole 1752 in a cam disc 1750. The translation member 138 may have an upstanding arm portion 540 that has a notch 542 therein that is sized to receive a tab (not shown) formed on the sensor cylinder (not shown) as was described above. The distal end of translation member 138 may include an arm 546 which includes an opening 548 configured to receive a finger 164 (not shown in FIGS. 65 and 66) extending from the proximal end of articulation link 123 (not shown in FIGS. 65 and 66) as was described above. See FIGS. 4 and 11. A pin 166 that may be constructed from a non-abrasive material, e.g., Teflon® or metal that has been coated with Teflon®, is secured to translation member 138 and dimensioned to be received within an arcuate-shaped cam slot 1754. Thus, as the actuation knob 1730 is rotated, the pin 166 is driven longitudinally either in the proximal direction “PD” or the distal direction “DD”, depending upon the direction in which the actuation knob 1730 is rotated. The longitudinal displacement of the pin 166 is illustrated in the series of FIGS. 67-69. For example, FIG. 67 illustrates the position of the cam disc 1750 and pin 166 when the disposable loading unit has been articulated to the left. FIG. 68 illustrates the position of the cam disc 17650 and articulation pin 166 when the disposable loading unit has not been articulated (e.g., is axially aligned with the elongated body) and FIG. 69 illustrates the position of the cam disc 1750 and articulation pin 166 when the disposable loading unit has been articulated to the right. In some embodiments, the arcuate cam slot 1754 may be shaped such that the ramp angle thereof relative to pin 166 throughout the entire actuation sequence is relatively low (under 15 degrees) which may result in an effective articulation lock.



FIGS. 70 and 71 illustrate another unique and novel articulation mechanism 1820 and unique and novel lockable rotation system 1850 that may be used in connection with a stapling apparatus 1810 that may employ a disposable loading unit. The articulation mechanism 1820 is constructed to axially advance the translation member 138 to ultimately result in the longitudinal actuation of an articulation link 123 (not shown in FIGS. 70 and 71) that is coupled to the translation member 138. As can be seen in FIGS. 70 and 71, the articulation mechanism 1820 may be used in connection with a handle housing 36″ that is formed from handle segments (handle segment 36a″ is shown in FIGS. 70 and 71 with it being understood that another handle segment shaped to mate with handle segment 36a″ is employed to form handle housing 36″). In various embodiments, the articulation mechanism 1820 is mounted to a rotatable shroud 1830 that has a flanged proximal end 1832 that is adapted to be received in an annular groove 1834 formed in the handle housing 36″ such that the rotatable shroud 1830 may be selectively rotated about axis “L-L” relative to handle housing 36″ as will be discussed in further detail below. Although not shown in FIGS. 70 and 71, the elongated member 14 and casing 124 described above in connection with other embodiments may be attached to the rotatable shroud 1830 by radial projections 132 formed on the distal end of rotatable shroud 1830. See FIG. 70. Projections 132 and openings 128 in casing 124 fixedly secure rotatable shroud 1830 and elongated body 14 in relation to each other, both longitudinally and rotatably. Rotation of rotatable shroud 1830 with respect to handle housing 36″ thus results in corresponding rotation of elongated body 14 with respect to handle housing 36″.


As can be seen in FIGS. 70 and 71, the articulation mechanism 1820 may comprise an articulation ring 1822 that is threadedly attached to a series a of threads 1836 provided on the rotatable shroud 1830. The translation member 138 may have an upstanding arm portion 540 that has a notch 542 therein that is sized to receive a tab (not shown) formed on the sensor cylinder (not shown) as was described above. The distal end of translation member 138 may include an arm 546 which includes an opening 548 configured to receive a finger 164 (not shown in FIGS. 70 and 71) extending from the proximal end of articulation link 123 (not shown in FIGS. 70 and 71) as was described above. See FIGS. 4 and 11. A pin 166 that may be constructed from a non-abrasive material, e.g., Teflon® or metal that has been coated with Teflon®, is secured to translation member 138 and dimensioned to be received within an annular slot 1825 formed in the articulation ring 1822. Thus, as the articulation ring 1822 is threadedly advanced on the rotatable shroud 1830 in the proximal direction “PD”, the pin 166 also drives the translation member 138 (and the articulation link 123) in the proximal direction “PD” to cause the disposable loading unit to articulate in the right hand direction. Likewise, as the articulation ring 1822 is threadedly advanced on the rotatable shroud 1830 in the distal direction “DD”, the pin 166 also drives the translation member 138 (and the articulation link 123) in the distal direction “DD” to cause the disposable loading unit to articulate in the left hand direction.


The embodiment depicted in FIGS. 70 and 71 also has a unique and novel lockable rotation system 1850 which may include a lockable knob 1852 that consists of two knob segments 1852a that are coupled together by screws, glue, snap features, posts, etc. over the distal end of the handle housing 36″ such that the lockable knob 1852 is rotatably and axially supported on the distal end of the handle assembly 36″. As can also be seen in FIGS. 70 and 71, the distal end of the handle housing 36″ has a first lock flange 1860 with a first set of radial gear teeth 1862 formed thereon. The lockable knob 1852 may also have an inwardly extending second lock flange 1854 that has a second set of radial gear teeth 1856 formed thereon. The second set of radial gear teeth 1856 are located in confronting relationship with the first set of radial gear teeth 1862 on the first lock flange 1860 such that the second radial gear teeth 1856 may selectively mesh with the first radial gear teeth 1862. A lock spring 1870 may be used to bias the lock knob 1852 in the distal direction “DD” to bring the second set of radial gear teeth 1856 into meshing engagement with the first set of radial gear teeth 1862. As can also be seen in FIGS. 70 and 71, the proximal end 1831 of the rotatable shroud 1830 has a rotation spline 1837 formed thereon configured to mesh with an inwardly extending toothed flange 1858 formed on the distal end of the lockable knob 1852. Those of ordinary skill in the art will understand that the rotation spline 1837 and toothed flange 1858 serve to rotatably affix the lockable knob 1852 to the rotatable shroud 1830 while enabling the lockable knob 1852 to move axially relative to the rotatable shroud 1830. Thus, to rotate the rotatable shroud 1830 (and the elongate body 14 and disposable loading unit affixed thereto), the clinician biases the lockable knob 1852 in the proximal direction “PD” to disengage the second set of radial gear teeth 1856 from the first set of radial gear teeth 1862 which thereby permits the lockable knob 1852 to rotate about longitudinal axis “L-L” relative to handle housing 36″. As the lockable knob 1852 is rotated, the rotatable shroud 1830 also rotates with the lockable knob 1852 by virtue of the engagement between the toothed flange 1858 and the rotation spline 1837. After the clinician has rotated the rotatable shroud 1830 to the desired position, he or she then releases the lockable knob 1852. When the lockable knob 1852 is released, the spring 1870 biases the second set of radial gear teeth 1856 into meshing engagement with the first set of radial gear teeth 1862 to retain the rotatable shroud 1830 in that position. Thus, such unique and novel arrangements solve the problems associated with rotatable knobs and articulation mechanisms employed in prior surgical instruments that are used in connection with disposable loading units. In particular, after the disposable loading unit and elongated body has been inserted into the patient, the clinician may rotate the disposable loading unit about the longitudinal axis “L-L” relative to the handle assembly 12″ to a desired orientation and then lock it in that position. Thereafter, the clinician may then articulate the disposable loading unit to the left side or right side of the longitudinal axis. In the embodiments described immediately above, the threaded engagement between the articulation ring and the rotatable knob serves to lock the disposable loading unit in the desired articulated position. As in indicated above, in prior surgical instruments that employ a rotatable knob that has an articulation knob affixed thereto, the rotation knob may move as the clinician actuates the articulation lever making it difficult to accurately position the disposable loading unit.



FIGS. 72 and 73 illustrate another unique and novel articulation mechanism 1920 mounted within a rotatable knob 28″ of the type of construction and operation described hereinabove. In this embodiment, the articulation mechanism 1920 may comprise an outer articulation ring 1922 that has a thrust flange 1924 formed thereon configured to be received in an annular groove 1930 formed in the rotatable knob 28″ for rotatably supporting the outer articulation ring 1922 in the rotatable knob 28″ such that the outer articulation ring 1922 is free to rotate relative to the rotatable knob 28″, but it cannot move axially relative thereto. In various embodiments, the proximal end 1923 of the outer articulation ring 1922 may have radial gear teeth 1926 formed thereon for meshing engagement with a spur gear 1940 that is attached to an articulation knob 1942. As can be seen in FIG. 73, the articulation knob 1942 has a shaft 1944 attached thereto that is rotatably received in a through hole 1943 in the rotatable knob 28″ and is non-rotatably attached to the spur gear 1940 such that rotation of the articulation knob 1942 causes the spur gear 1940 to rotate. As the spur gear 1940 is rotated, the outer articulation ring 1922 is also rotated about the longitudinal axis “L-L”. Those of ordinary skill in the art will understand that the outer articulation ring 1922 may be selectively rotated in the clockwise “CCW” or counterclockwise “CCW” directions about the longitudinal axis L-L, depending upon the direction of rotation of the articulation knob 1942.


As can also be seen in FIG. 72, the outer articulation ring 1922 has an internal thread 1928 formed therein for threaded engagement with an inner articulation ring 1950. In this embodiment, the translation member comprises a metal link 1960 that is attached or pinned to the inner articulation ring 1950 by a pin 1952 or other fastener arrangements. The metal link 1960 is constrained to only move axially in the proximal direction “PD” and “distal direction “DD” because it is received within an axial groove 1962 formed in the rotatable knob 28″. The distal end of the metal link 1960 includes an opening 1964 configured to receive a finger 164 extending from the proximal end of articulation link 123. Thus, rotation of articulation knob 1942 will result in the axial movement of the articulation link 123 in the proximal direction “PD” or distal direction “DD” depending upon the direction of rotation of the articulation knob 1942. When the articulation link 123 is advanced in the distal direction “DD”, it will result in the disposable loading unit being articulated to left and when the articulation link is pulled in the proximal direction “PD”, it will result in the disposable loading unit being articulated to the right as was discussed above. Those of ordinary skill in the art will appreciate that the threaded engagement between the inner articulation ring 1950 and the outer articulation ring 1922 will serve to retain the articulation link (and, ultimately the disposable loading unit) in the desired articulated position until the articulation knob is again rotated. It will be further appreciated that the desired knob rotation can be set by the gear ratio and thread pitch.



FIGS. 74 and 75 depict an another alternative articulation mechanism 1920′ that employs an inner articulation ring 1922′ that is identical to articulation ring 1922 described above, except that articulation ring 1922′ has a cam slot 1970 therein instead of the inner threads 1928. As can be seen in FIGS. 74 and 75, the metal link 1960 has an articulation pin 1966 attached thereto that rides in the cam slot 1970 in the inner articulation ring 1922′. Thus, as the inner articulation ring 1922′ is rotated by means of the articulation knob 1942 as was described above, the cam slot 1970 and articulation pin 1966 received therein drives the metal link 1960 in the proximal direction “PD” and the distal direction “DD” which results in the axial movement of the articulation link 123 in those directions as was described above.


When using prior surgical stapling devices that are adapted for use with disposable loading units, often times the control rod gets inadvertently advanced out of the end of the casing of the elongated body prior to attachment of the disposable reload unit. When that happens, and the disposable reload unit is attached to the apparatus, the reload unit cannot be fired. Instead, the clinician must first retract the control rod before attaching the reload unit. This occurrence can engender confusion and results in unnecessary downtime during the operation. In addition, during the firing sequence, the firing bar may become jammed requiring the clinician to retract the firing bar which can be difficult at times depending upon the nature of the jam. The embodiment of the surgical stapling apparatus 2010 of the present invention addresses such problems.


More particularly and with reference to FIG. 76, the surgical stapling apparatus 2010 may be substantially similar in construction as the various instruments described above, except for the unique and novel retraction system 2020 as will be described in detail below. Those components that are the same as the components employed in the above-mentioned embodiments will be labeled with the same element numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation.


In one embodiment, the surgical stapling apparatus 2010 may include a handle assembly 2012 that has an elongated body 14 that is operably coupled to the handle assembly 2012 and protrudes distally therefrom. A distal end of the elongated body 14 may be coupled to an articulatable disposable loading unit 16 (or a non-articulatable disposable loading unit). The disposable loading unit 16 may include a tool assembly 17 that is selectively articulatable about an articulation axis “A1-“A1” by articulation motions transferred thereto by the elongated body 14 as is known. See FIG. 76. In various embodiments, the proximal end of the elongated body 14 is coupled to a rotatable knob 28 that is coupled to handle housing 2036. As can be seen in FIGS. 76 and 77, the handle housing 2036 may be formed from a right housing segment 2036a and a left housing segment 2036b that are attached together.


As shown in FIGS. 76-78, the right hand housing segment 2036a may have a removable cover 2040 that is coupled to the right housing segment 2036a by snaps, screws, pin inserts or a releasable detent post inserted into a boss. As will be discussed in further detail below, this embodiment also employs a release plate 64 (FIG. 81) of the type and construction described above which has a coupling rod 60 attached thereto. The coupling rod 60 extends through an elongated retract slot 34b in the left housing segment 2036b (FIG. 76) as well as through an elongated retract slot 34a in the removable cover 2040 (FIG. 77) to have retractor knobs 32a, 32b attached thereto as was described above. The right housing segment 2036a further has a retract slot 34a′ formed therein that corresponds with the retract slot 34a in the removable cover 2040 when the removable cover 2040 is attached thereto by snap features, adhesive, screws, etc. In this embodiment, the right housing segment 2036a may have a pair of spaced elongated guide ribs 2050 formed therein that serve to define an elongated retract passage 2052 therebetween. Also in various embodiments, a retract slide member 2060 may be received on the coupling rod 60 and be constrained to axially move in the distal direction “DD” and proximal direction “PD” within the elongated retract passage 2052. The retraction system 2020 may further include a cable slide 2070 that is also constrained to move longitudinally within the retract passage 2052 as can be seen in FIGS. 79 and 84-86. The proximal end 2072 of the cable slide 2070 may have a notch 2074 therein to enable a proximal end 2082 of a retract cable 2080 to be pinned or otherwise attached thereto. A distal end 2084 of the retract cable 2080 may be attached to a proximal end 2092 of a retraction spring 2090. The distal end 2094 of the retraction spring 2090 may be attached to a retraction spring post 2096 formed on the right housing segment 2036a. See FIGS. 78 and 83-85. The retraction cable 2080 may be journaled on a retract pulley 2100 that is rotatably supported on a pulley post 2102 formed on the right housing segment 2036a.


In various embodiments, the retraction system 2020 may be configured to enable the control rod 52 to be automatically retracted at the end of the firing sequence or, if desired, manually retracted. For example, as can be seen in FIG. 83, a cocking lug 2110 may have a hollow cavity 2111 therein and be attached to the cable slide 2070 by a clevis-like lug mount 2112 and pin 2114 that is received within the hollow cavity 2111. As can be seen in FIG. 83, the cocking lug 2110 may further have an inner end portion 2116 that is arranged to be adjacent to the removable cover 2040 and also have a relieved area or notch 2118 formed therein. A lug spring 2120 configured as shown in FIGS. 78 and 83, may be journaled on the pin 2114 to bias the cocking lug 2110 about the pin 2114 in the counterclockwise “CCW” direction as shown in FIG. 83. The retraction system 2020 may further include a retraction lock assembly 2130.


The retraction lock assembly 2130 may include a lock member 2132 that is pivotally pinned to the removable cover 2040 by a lock pin 2134. A lock spring 2140 configured as shown in FIGS. 82 and 83, may be journaled on the lock pin 2134 and attached to the cover 2040 by a screw 2142 or other suitable fastener such that the lock spring 2140 is biased in the counterclockwise “CCW” direction in FIG. 83. As can further be seen in FIG. 83, the lock member 2132 is configured to protrude through a window 2044 in the cover 2040 and has a notched proximal end 2136 adapted to engage a notch 2046 in the cover 2040. See FIG. 83. The lock member 2132 may have a distal end 2138 that is adapted to retainingly engage a notch 2076 in the proximal end 2072 of the cable slide 2070.


Operation of the surgical stapling apparatus 2010 will now be described with reference to FIGS. 84-88. FIG. 84 illustrates the surgical stapling apparatus 2010 in an initial “pre-fired” position wherein the retract knob 32a and the cocking knob 2110 (FIG. 80) are in the “pre-fired” position located at the proximal end of the handle housing 2036. Prior to commencing the firing sequence, the clinician may push the cocking lug 2110 in the distal direction “DD” to the cocked position shown in FIG. 85. As can be seen in that Figure, when the cocking lug 2110 is in the cocked position, the retraction spring 2090 is stretched and serves to store retraction energy therein. After the cocking lug 2110 has been moved to the cocked position, the clinician may press the firing button 82 (as was discussed above) and then commence the firing sequence by ratcheting the movable handle 24. As the clinician advances the actuation shaft 46 in the distal direction “DD” by ratcheting the movable handle 24, the retract knobs 32a, 32b move distally with the actuation shaft 46 until they reach the position shown in FIG. 86 which is prior to the end of the firing stroke (i.e., the control rod 52 has been advanced as far as it can go in the distal direction to cause the disposable reload unit to be completed fired). If the clinician wishes to manually retract the control rod 52 prior to reaching the final firing stroke (at any time during the firing sequence), the clinician simply biases the cocking lug 2110 in the clockwise “CW” direction shown in FIG. 87 which causes the cocking lug 2110 to bias the lock member 2132 in the clockwise direction “CW” to thereby cause the distal end 2138 to move out of the locking notch 2076 in the cable slide 2070 to thereby permit the cable slide 2070 to move in the proximal direction “PD” under the force of the retraction spring 2090 and thereby force the retract slide 2060 in the proximal direction “PD”. Because the retract bar 60 extend through the retract slide 2060 and is attached to the retraction plate 64, the retract bar 60 causes the retract plate 64 to retract the actuation shaft 46 (and the control rod 52) by virtue of its attachment to the actuation shaft 46.


If the clinician does not wish to manually actuate the retraction system 2020, the clinician may keep ratcheting the movable handle 24 until the firing sequence is completed. When the actuation shaft 46 has been distally advanced to its distal most position at the completion of the firing sequence, (FIG. 88) the retract slide 2060 biases the lock member 2132 to the position shown in FIG. 88 such that the distal end 2138 is moved out of retaining engagement with the notch 2076 in the cable slide 2070 which permits the cable slide 2070 to move to the proximal most retracted position under the force of the retraction spring 2090. Thus, when the retract knob 32a reaches the fully fired position, it causes the retract system 2020 to automatically retract the actuation shaft 46 and control rod 52.


Those of ordinary skill in the art will readily appreciate that these embodiments serve to avoid the problem of the control rod 52 not being fully retracted to a position wherein another disposable reload unit may be attached to the stapling apparatus. In addition, the retraction spring serves to assist the clinician in retracting the control rod, should it be necessary to do so during the firing sequence.



FIG. 89 illustrates an alternative disposable loading unit 2216 that has an elongated housing portion 250′ that may include an upper housing half (not shown) and a lower housing half 252′. The distal end of the housing 250′ is attached to a tool assembly 17 (FIG. 76) and removably attachable to the elongated body 14. Housing halves define a channel 253′ for slidably receiving axial drive assembly 212 therein. As will be discussed further below, the drive assembly 212 includes an elongated drive beam 266 including a distal working head 268 and a proximal engagement section 270. Drive beam 266 may be constructed from a single sheet of material or, preferably, from multiple stacked sheets. Engagement section 270 may include a pair of engagement fingers 270a and 270b which may be dimensioned and configured to mountingly engage a pair of corresponding retention slots 272a formed in drive member 272. Drive member 272 may include a proximal porthole 274 configured to receive the distal end of control rod 52 when the proximal end of disposable loading unit 2216 is engaged with elongated body 14 of surgical stapling apparatus 10. In this embodiment, at least one, and preferably a pair of, energy storing members 2220 are also supported in the housing 250′ as shown. Energy storing members 2220 may comprise compression springs 2222. As control rod 52 is axially advanced in the distal direction “DD”, the drive member 272 and drive beam 266 are driven in that direction compressing the springs 2222 (i.e., storing retraction energy therein). After the firing sequence has been completed or, if during the firing sequence it becomes necessary to retract the drive beam 266, the compressed springs 2222 will release the stored retraction energy and serve to assist in the retraction processes by releasing their stored energy to bias the drive beam 266 and drive member 272 in the proximal direction “PD”.


Prior instruments, such as those disclosed in U.S. Pat. No. 5,865,361 suffer from the inability to be fired in thicker tissues (e.g., tissues with thicknesses greater than 3.5 mm) due to the increased loads applied to the firing system. Such increased loads can, for example, increase the likelihood that the firing system will fail when the knife is still in the anvil and may therefore require that the end effector be cut off of the tissue. Such failure mode can have serious patient injury consequences. Various embodiments of the present invention are directed to improved actuation transfer mechanisms or assemblies that are constructed to act as a fail safe “fuse” or device that would prevent advancement of the actuation shaft 46 (e.g., prevent transfer of actuation motions to the disposable loading unit) when the firing load resulting from thick tissue exceeds a predetermined magnitude.



FIG. 90 illustrates one actuation transfer assembly 100 that includes a driving pawl 42′ that has a pawl body portion 102 that has rack engagement member or tooth 43 that is attached to or formed on the pawl body portion 102 at an attachment area generally designated as 104. In the embodiment depicted in FIG. 90, an undercut or weakened area 45 is formed along at least a portion of the attachment area 104. The characteristics of the undercut or weakened area 45 may be sized such that the tooth 43 will shear off of the driving pawl 42′ or otherwise assume a non-driving position when the firing load attains a predetermined maximum value to thereby prevent advancement of the actuation shaft 46—even though the manually actuatable handle member 24 continues to be actuated. In various embodiments, the predetermined maximum value may be selected so that the tooth 43 shears off or otherwise assumes a non-driving position before any other components would fail or otherwise become inoperable due to the resistance experienced by the drive beam due to jamming or other restriction.


Another pawl arrangement is depicted in FIG. 91. As can be seen in that Figure, the pawl 42″ has a pawl body 106 a width “W” and the engagement tooth 43 has a width “W” that is less than “W”, such that the engagement tooth 43 will shear or otherwise fail when the firing load exceeds a predetermined magnitude to prevent the actuation shaft 46 from being further advanced—even though the manually actuatable handle member 24 continues to be actuated. In various embodiments, the pawls 42′, 42″ may be fabricated (molded, machined, etc.) from a single material. In other embodiments, the engagement tooth 43 may be formed separately from the pawl body 106 and may be attached thereto by a shear pin (not shown) or other means such as adhesive to support the engagement tooth 43 in a position for driving engagement with the actuation shaft 46 under normal loads, yet shear off to permit the tooth 43 to pivot to a non-engaged position when the firing load exceeds a predetermined magnitude.



FIG. 92 illustrates another actuation transfer assembly 100′ that includes an actuation shaft 46′ that is designed to fail when the firing load exceeds a predetermined magnitude. In this embodiment, an undercut area 108 is provided between adjacent teeth 49 and is sized to form a shear area length “SL” that will facilitate in the shearing of the tooth 49 or otherwise permit the tooth 49 to drivingly disengage from the tooth 43 or permit the tooth 43 on the pawl 42 to slip over the tooth 49 on the rack 48′ when the firing load attains or exceeds the predetermined magnitude described above. In an alternative embodiment illustrated in FIG. 93, the actuation bar 46″ has a width “WB” and each tooth 49 has a width “WT” that may be less than the width “WB”. The width “WT” may be sized to enable the teeth 49 to shear off of the actuation shaft 46″ or otherwise fail or drivingly disengage from the tooth 43 on the pawl 42 when the firing load attains or exceeds a predetermined magnitude as was discussed above. Further, the transfer assembly may be sized to buckle or flex under appropriate load so as to disengage the teeth from the pawl at a predetermined load. The teeth on the pawl and the rack in various embodiments may be designed at a very wide range of minimum failure loads depending upon the degree of safety desired. Such minimum failure loads may be attained by altering the geometry, design and/or materials from which the teeth, adhesive, shear pins, etc. are made.


Those of ordinary skill in the art will appreciate that the foregoing described actuation transfer assembly arrangements of the present invention represent vast improvements over prior surgical instruments that are adapted to actuate disposable reload units. In particular, such actuation transfer assemblies of the present invention will prevent the clinician from advancing the cutting and stapling components in the reload unit when the reload unit has encountered firing forces that might lead to the jamming and/or failure of the cutting and stapling components to advance completely through the tissue clamped in the unit. In prior units, the clinician might be unaware that the thickness of the tissue clamped in the unit was too great to complete the procedure and unwittingly continue to advance the cutting and stapling components in the unit by actuating the handle until the handle assembly exploded or otherwise failed destroying the ability to retract the knife. If the components become jammed, the clinician may be unable to retract the components and therefor have to cut the unit from the tissue. The various arrangements of the present invention described above, address such problems.


These unique and novel features may also be effectively employed with other surgical cutting and stapling apparatuses that use a driving pawl arrangement. For example, FIGS. 93A and 93B illustrate the use of a two part pawl arrangement 2000 that can be effectively employed with the surgical instruments disclosed in U.S. patent application Ser. No. 11/821,277, filed Jun. 22, 2007, entitled SURGICAL STAPLING INSTRUMENTS, now U.S. Pat. No. 7,753,245, the disclosure of which is herein incorporated by reference in its entirety. In particular, the two part pawl assembly 2000 may comprise a pawl body 2010 that may be configured and otherwise operated as described in the aforementioned patent application except that, in this embodiment, the tooth portion 2020 is pivotally or otherwise movably coupled to the pawl body 2010. The tooth portion 2020 may be normally supported in a driving orientation (FIG. 93A) by a shear pin 2030 or other suitable arrangement such as adhesive, etc. that is selected to shear or otherwise fail when the firing member 2040 thereof encounters a predetermined amount of firing load or resistance during firing. FIG. 93A illustrates the tooth 2020 in driving engagement with the firing member 2040. FIG. 93B illustrates the position after the firing member 2040 has encountered a resistance that exceeds the predetermined firing load which thereby caused the shear pin 2030 to shear off permitting the tooth 2020 to pivot to a non-engaged position. Thus, when in the non-engaged position, the firing member 2040 cannot be advanced distally even though the firing trigger continues to be actuated.



FIGS. 94-97 illustrate a unique and novel articulatable disposable reload unit 3016 that may be employed with the surgical stapling apparatus 10 or any of the other various surgical stapling apparatuses described herein above. Referring to FIG. 96, the disposable loading unit 3016 may include a tool assembly 17 that has an anvil assembly 20 and cartridge assembly 18. Anvil assembly 20 may include anvil portion 204 that may have a plurality of staple deforming concavities (not shown) formed in the undersurface thereof. A cover plate 208 may be secured to a top surface of anvil portion 204 to define a cavity therebetween. The cavity may be dimensioned to receive a distal end of an axial drive assembly 212. A longitudinal slot 214 extends through anvil portion 204 to facilitate passage of retention flange 284 of axial drive assembly 212 into the anvil cavity. A camming surface 209 formed on anvil portion 204 may be positioned to engage axial drive assembly 212 to facilitate clamping of tissue between the anvil assembly 20 and the cartridge 18. A pair of pivot members 211 formed on anvil portion 204 may be positioned within slots 213 formed in carrier 216 to guide the anvil portion 204 between the open and clamped positions.


In various embodiments, cartridge assembly 18 may include a carrier 216 which defines an elongated support channel 218. See FIG. 96. Elongated support channel 218 may be dimensioned and configured to receive a staple cartridge 220. Corresponding tabs 222 and slots 224 formed along staple cartridge 220 and elongated support channel 218 may function to retain staple cartridge 220 within support channel 218. A pair of support struts 223 may be formed on staple cartridge 220 such that they are positioned to rest on side walls of carrier 216 to further stabilize staple cartridge 220 within support channel 218.


Staple cartridge 220 may include retention slots 225 for receiving a plurality of fasteners and pushers as is known. A plurality of spaced apart longitudinal slots 230 extend through staple cartridge 220 to accommodate upstanding cam wedges 232 of an actuation sled 234. A central longitudinal slot 282 extends along the length of staple cartridge 220 to facilitate passage of a knife blade 280. During operation of surgical stapler 10, actuation sled 234 translates through longitudinal slots 230 of staple cartridge 220 to advance cam wedges 232 into sequential contact with pushers operably supported in the slots 225, to cause pushers (not shown) to translate vertically within slots 225 and urge the fasteners associated with the pushers (not shown) from slots 225 into the staple deforming cavities of the anvil assembly 20.


Various embodiments may include a mounting assembly 202 that may comprise upper and lower mounting portions 236 and 238. In one embodiment, the upper mounting portion 236 may be provided with a pair of trunnions 237 that are adapted to be pivotally received within holes 219 in the side walls of the carrier 216. A pair of anti-buckling springs 241 may be supported in corresponding cavities formed in the mounting assembly 202 to provide support to the laminated knife assembly within the mounting assembly 202. A proximal portion of mounting assembly 202 may be non-rotatably mounted in a distal body adapter 243 as shown in FIG. 96.


Housing portion 200 of disposable loading unit 3016 may include an upper housing half 250 and a lower housing half 252. The proximal end of housing half 250 may include engagement nubs 254 for releasably engaging elongated body 14 (FIG. 94) and an insertion tip 193. Nubs 254 form a bayonet type coupling with the distal end of body 14 as described in U.S. Pat. No. 5,865,361.


As can also be seen in FIG. 96, axial drive assembly 212 may include an elongated drive beam 266 including a distal working head 268 and a proximal engagement section 270. Drive beam 266 may be constructed from a single sheet of material or, preferably, from multiple stacked sheets. Engagement section 270 may include a pair of engagement fingers 270a and 270b which may be dimensioned and configured to mountingly engage a pair of corresponding retention slots 272a formed in drive member 272. Drive member 272 may include a proximal porthole (not shown) configured to receive the distal end 276 of control rod 52 (described above) when the proximal end of disposable loading unit 3016 is engaged with elongated body 14 of surgical stapling apparatus 10.


The distal end of drive beam 266 may be defined by a vertical support strut 278 which supports a knife blade 280, and an abutment surface 283 which engages the central portion of actuation sled 234 during a stapling procedure. Surface 285 at the base of surface 283 may be configured to receive a support member 287 slidably positioned along the bottom of the carrier 216. Knife blade 280 may be positioned to translate slightly behind actuation sled 234 through a central longitudinal slot 282 in staple cartridge 220 to form an incision between rows of stapled body tissue. To provide support to the drive beam 266 within the housing 200 as the drive beam 266 is advanced axially, a blade stabilizing member 290 may be mounted within the housing 200.


A retention flange 284 may project distally from vertical strut 278 and may support a pair of cylindrical cam rollers 286 at its distal end. Cam rollers 286 may comprise pressed in or welded in pins and be dimensioned and configured to engage camming surface 209 on anvil body 204 to clamp anvil portion 204 against body tissue. A pair of springs 207 may be provided between the proximal end of the anvil portion 204 and the upper mounting portion 236 to bias the anvil assembly 20 to a normally open position.


The reload unit 3016 depicted in FIGS. 94-97 employs a “passive” articulation arrangement. As can be seen in those FIGS., the reload unit 3016 includes a flexible articulation member 300 that is coupled to a housing assembly 200 by, for example, a proximal body collar 301. The flexible articulation member 300 has a body portion 301 that may be fabricated from polyethylene, poly propylene or other suitable materials, for example, and include a plurality of kerfs 302 separated by ribs 304. In various embodiments, the kerfs 302 and ribs 304 may be equally spaced along the flexible articulation member 300 thereby promoting a continuous bend radius when the flexible articulation member is articulated. A flexible articulation member 300 having multiple bend radii may be achieved by providing unequal spacing between the kerfs 302 and the ribs 304. For example, such arrangement may be achieved by spacing the ribs 304 more closely at one end and farther apart at the other end. As will be appreciated by those of ordinary skill in the art, increasing the spacing of the kerfs 302 and/or the ribs 304 reduces the bend radius of the section having increased spacing, more closely approximating a pivot point bend connection. Conversely spacing the kerfs 3402 and/or ribs 304 more closely results in a more gradual bend, having a larger bend radius. Alternatively, the flexible articulation member 300 may be fabricated from a combination of materials, the exterior of which may be slotted stainless steel, which will function in a similar manner to the above-mentioned plastics and polymeric materials.


In the embodiment illustrated in FIGS. 94-97, the kerfs 302 comprise annular grooves that extend at least partially around the perimeter of the flexible articulation member 300. The kerfs 302 preferably, however, comprise semi-annular grooves which are separated by a central longitudinal spine 306 passing down the longitudinal axis L-L of the flexible articulation member 300 such that a first plurality of ribs are formed on one lateral side of the spine 306 and a second plurality of ribs are formed on another lateral side of the spine 306. This spine 306 assists in providing stiffening to the flexible articulation member 300 and accommodates a slot 310 therethrough for receiving the surgical tools, such as the drive assembly 212. The longitudinal spine 306 may run the entire longitudinal length of the flexible articulation member 300. The flexible articulation member 300 may also include a pair of side slots 314 passing through each rib 304 on each lateral side for receiving a corresponding articulation plate 320. See FIG. 96. Such articulation plates 320 may be fabricated from a material that is relatively inelastic. That is, the plates 320 may be fabricated from a material that retains its position after bending. Articulation plates 320 may be fabricated from materials such as, for example, lead, copper, stainless steel, titanium, etc.


The disposable loading unit 3016 is sized for insertion, in a non-articulated state as depicted in FIGS. 94 and 95, through a trocar cannula passageway to a surgical site in a patient (not shown) for performing a surgical procedure. For example, the disposable loading unit 3016 may be sized to be inserted through a gastroscope or colonoscope. After the tool assembly 17 portion of the disposable loading unit 3016 has been inserted through the trocar cannula passageway, the clinician can move the tool assembly 17 to a desired articulated orientation by “passively” bringing the tool assembly 17 into contact with the organ or other portion of the body or another medical instrument 330 (e.g., graspers—FIG. 97) to apply an external force to the tool assembly 17 to cause it to articulate within a plane relative to the housing portion 200 of the disposable loading unit 3016. The person of ordinary skill in the art will appreciate once the tool assembly 17 is articulated to the desired position, the articulation plates 320 serve to retain the tool assembly 17 in that configuration. The tool assembly 17 can be articulated through an angle “PA” as illustrated in FIG. 97.



FIGS. 98-101 illustrate another reload unit 3016′ embodiment of the present invention. Reload unit 3016′ is substantially identical to reload unit 16, except that reload unit 3016′ is constructed to be passively articulated as well as actively articulated. As can be seen in FIGS. 98 and 99, the reload unit 3016′ includes a first articulation joint 340 that is formed from a mounting assembly 202′ that includes a distal portion 206 and a proximal portion 226 that is pivotally coupled thereto. In various embodiments, the distal portion 206 includes an upper mounting portion 208 and a lower mounting portion 210. A pivot pin 244 may be formed on each of the mounting portions 206′, 208′ to define a pivot axis “A1” which may be substantially perpendicular to the longitudinal axis “L′L′ of the disposable reload unit 3016′. The proximal portion 226 of the mounting assembly 202′ may comprise an upper mounting portion 236′ and a lower mounting portion 238′. The distal portion 206 of the mounting member 202′ and the proximal portion 226 of the mounting member 202′ may be pivotally coupled together by a pair of coupling members 246. Coupling members 246 each have a hole 247 therethrough for receiving a corresponding pin 244 therethrough. The proximal end 248 of each coupling member 246 is configured to be interlockingly received in a corresponding groove 251 formed in the upper mounting portion 236′ and lower mounting portion 238′. The proximal portion 226 of mounting assembly 202′ may be non-rotatably mounted in a distal body adapter 243 as shown in FIG. 99. Housing portion 200 of disposable loading unit 3016′ may include an upper housing half 250 and a lower housing half 252. The proximal end of housing half 250 may include engagement nubs 254 for releasably engaging elongated body 14 (not shown in FIG. 99) and an insertion tip 193. Nubs 254 form a bayonet type coupling with the distal end of body 14 which will be discussed in further detail below. Housing halves 250 and 252 define a channel 253 for slidably receiving axial drive assembly 212 therein. A pair of springs 207 may be provided between the proximal end of the anvil portion 204 and the upper mounting portion to bias the anvil assembly 20 to a normally open position.


This embodiment may also employ a flexible articulation member 300′ that may be substantially similar to the flexible articulation member 300 described above, except for the differences noted below. The distal end of the flexible articulation member 300′ may be non-rotatably affixed to the distal body adapter 243 and the proximal end of the flexible articulation member 300′ may be non-rotatably affixed to the proximal body collar 301 that is attached to the housing portion 200. In this embodiment, an articulation link 256′ may be employed to also enable the user to actively articulate the tool assembly 17. Articulation link 256′ may have an elongated flexible wire portion 450 that terminates in a distal hook portion 452. The wire portion 450 may be received in a lumen 420 in the flexible articulation member 300′. The hooked end 452 may be pinned between distal portion 206 and lower mounting portion 210 by a pin affixed therebetween. See FIG. 99. The flexible wire portion 450 may be attached to a rod portion 451 that has a tab or other hook portion 258′ that is configured for hooking engagement with a distal hook 165 formed on the distal end of the first articulation link 123 in a known manner as described in U.S. Pat. No. 5,865,361. See FIG. 10. Such reload unit 3016′ arrangement may be passively articulated using flexible articulation member 300′ about angle “PA” in the manner described above through a range of travel “PA” or, if desired, the clinician may actively articulate the tool assembly 17 thereof about the first articulation axis “A1-A1” through a range of travel “AA” by activating the articulation lever 30 in the manner described in U.S. Pat. No. 5,865,361. See FIG. 101.



FIGS. 102-104 illustrate another reload unit 3016″ embodiment of the present invention. Reload unit 3016″ may be substantially identical to reload unit 3016′, except that reload unit 3016″ is constructed with two active articulation links 256R, 256L that enables the articulation link 300 to be actively pulled on one side while being actively pushed on the opposite side. As can be seen in FIG. 103 articulation links 256R and 256L may have a distal plate portion 430 that is sized to extend through a corresponding side slot 314 in the articulation member 300. A thrust attachment feature 432 may be formed on the distal end of each distal plate portion 430 to retain the distal plate portion 430 within its respective side slot 314. In alternative embodiments, the thrust feature may be molded into the articulation member 300 or other attachment arrangements may be used. Articulation link 256R, 256L may further have an elongated extension portion 334R, 334L that terminates in a hook portion 336R, 336L, respectively. In various embodiments, the articulation links 256R, 256L may be fabricated from metal or a series of laminated or stacked plates.


Referring to FIG. 104, there is shown a control rod assembly 125′ that may be substantially similar to control rod assembly 125 described above, except that control rod assembly 125′ includes a right articulation link 123R and a left articulation link 123L. The right articulation link 123R may have a distal hook 165R formed thereon for detachable engagement with the hook portion 336R of the articulation link 256R in the disposable loading unit 3016″. See FIG. 103. Likewise, the left articulation link 123L may have a distal hook portion 165L formed thereon for detachable engagement with the hook portion 336L of the articulation link 256L in the disposable loading unit 3016″. The right articulation link 123R may further have a finger 164R protruding from its proximal end, and the left articulation link 123L may have a finger 164L protruding from its proximal end. Although not specifically illustrated in FIG. 103, a linkage bar, gear train, etc. may be employed to movably couple the fingers 164R, 164L to the arm 160 attached to the translation member 138′ such that as the translation member 138′ is axially advanced in the distal “DD” direction as described in detail above, the right articulation links 123R and 256R are advanced in the distal direction “DD” and the left articulation links 123L and 256L are pulled in the proximal direction “PD” to thereby cause the tool assembly 17 to pivot about the first articulation axis “A1-A1” to the right of the longitudinal axis L-L as illustrated in FIG. 101 or visa-versa. Likewise, in various embodiments, when the translation member 138′ is advanced in the proximal direction “PD”, the right articulation links 123R and 256R are pulled in the proximal direction “PD” and the left articulation links 123L and 256L are advanced in the distal direction “DD” to thereby cause the tool assembly 17 to pivot to the left of the longitudinal axis L-L or visa-versa. Those of ordinary skill in the art will understand that such “pushing” and “pulling” action results in less stresses being applied to a single articulation link than those prior articulation arrangements that only employ a single articulation link. The flexible articulation member 300′ may require more force to bend or flex as opposed to the pivot pin arrangement like in 206.



FIGS. 105-107 illustrate another reload unit 3016′″ embodiment of the present invention. Reload unit 3016′″ is essentially a combination of reload units 3016 and 3016′ in that reload unit 3016′″ employs the articulation link 256′ and the articulation links 256R and 256L that enables the articulation link 300′ to be passively articulated through a range of travel “PA” and actively articulated through an additional range of travel “AA”.



FIGS. 108-111 illustrate another surgical stapling apparatus 4010 of the present invention that is constructed for use with a disposable loading unit. FIG. 108 depicts a disposable loading unit 16 that has a first articulation joint 340 of the type and construction described above that enables the tool assembly 17 to pivot about a first pivot axis A1-A1 relative to the disposable loading unit housing 200 that is attached to the surgical stapling apparatus 4010. The surgical stapling apparatus 4010 may have aspects and components that are substantially similar to the aspects and components of the various stapling apparatus embodiments described above, except for the unique and novel articulation system 4012, various configurations of which, will be described in detail below. Those components that are the same as the components employed in the above-mentioned surgical stapling apparatus embodiments will be labeled with the same element numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation. As can be seen in FIG. 108, the articulation system 4012 may include an intermediate articulation joint 4020 that is situated in the elongated body assembly 4014 between the disposable loading unit 16 and the handle assembly 12 such that the disposable loading unit 16 may be selectively pivoted relative to the handle assembly 12 about a second articulation axis A2-A2. As illustrated in FIG. 108, the second articulation axis A2-A2 is substantially transverse to the longitudinal axis L-L and the first articulation axis A1-A1.


As can be seen in FIGS. 108 and 109, the elongated body assembly 4014 may comprise a distal body segment 4030 and a proximal body segment 4040 that are coupled together at the intermediate articulation joint 4020. The articulation system 4012 may further include a translation member 138 that has an upstanding arm portion 540 that has a notch 542 therein that is sized to receive a tab 544 formed on the sensor cylinder 178. The distal end of translation member 138 may include an arm 546 which includes an opening 548 configured to receive a finger 164 extending from the proximal end of articulation link 4050. A pin 166 that may be constructed from a non-abrasive material, e.g., Teflon® or metal coated with Teflon®, is secured to translation member 138 and dimensioned to be received within stepped camming surface 148 (shown in FIG. 11). The operation of those components was described above.



FIG. 110 illustrates an intermediate articulation joint embodiment 4020 of the present invention. As can be seen in that Figure, the distal body segment 4030 is hollow and has a proximal end 4031 that has two proximally protruding lugs 4032 formed thereon. Each lug 4032 may have a pin 4034 protruding therefrom and at least one locking rib 4036 formed thereon. The proximal body segment 4040 is hollow and, as can be seen in FIG. 109, has a proximal end 4041 that has openings 128 for receiving a corresponding radial projection 132 (shown in FIG. 10) formed on the rotatable knob 28 as was described above. As can be seen in FIG. 110, the distal end 4042 of the proximal body segment 4040, may have a pair of distally protruding lugs 4044 that each have a pin receiving hole 4046 therethrough for receiving a corresponding pin 4034 on the distal body segment 4030 to enable the distal body segment 4030 to pivot relative to the proximal body segment 4040. Each lug 4044 may have a series of radial grooves 4048 formed thereon to mesh in confronting engagement with the corresponding locking ribs 4036 on the lugs 4032. Thus, when assembled together, the pins 4034 and holes 4046 serve to define the second articulation axis A2-A2 and are loosely fitted to enable the distal body segment 4030 to be pivoted to a desired position relative to the proximal body segment 4040 by applying a force to the distal body segment 4030 while keeping the proximal body segment 4040 stationary or visa-versa. The interaction between the locking ribs 4036 and the grooves 4048 serve to retain the distal body segment 4030 in the desired position relative to the proximal body segment 4040 after the articulation force has been discontinued. In alternative embodiments, the locking ribs 4036 may be formed on the distally protruding lugs 4044 and the radial grooves 4048 may be formed on the proximally protruding lugs 4032. In still other embodiments, at least one locking rib 4036 may be formed on one lug 4032 and radial grooves 4048 may be provided on the lug 4044 attached thereto and at least one locking rib 4036 may be provided on the other lug 4044 and the grooves 4048 provided on the lug 4032 attached to that lug 4044. When coupled together by the intermediate articulation joint 4020, the distal body segment 4030 and the proximal body segment 4040 of the elongated body assembly 4014 define the longitudinal axis L-L.


As indicated above, the articulation system 4012 may further comprise an articulation link 4050 that includes a proximal portion 4052 that has a finger 164 protruding therefrom that is configured to be received in the opening 548 in the arm 546 of the translation member 138. See FIG. 109. The articulation link 4050 may further have a distal portion 4054 that is pivotally pinned to the proximal portion 4052 such that the distal portion 4054 can pivot relative to the proximal portion 4052 about an articulation axis A2′-A2′. The distal end of the distal portion 4054 has a distal hook 165 formed thereon for detachable engagement with the hook portion of the articulation link in the disposable loading unit 16 in a known manner. As can also be seen in FIG. 109, this embodiment may employ a hollow sensor tube 4060 that has a distal portion 4062 that is pivotally coupled to a proximal portion 4064 for pivotal travel relative thereto about an articulation axis A2″-A2″. The distal portion 4062 and the proximal portion 4064 of the sensor tube 4060 may be loosely coupled together to enable the sensor tube 4060 to accommodate some axial misalignment of components. For example, in various embodiments, the sensor tube portions 4062 and 4064 may be coupled to permit a ±0.125″ axial movement of those components relative to each other. The sensor tube 4060 may operate in the same way as was described above with respect to sensor tube 123 and may have a control rod locking mechanism (not shown) of the type described above attached thereto.


As can also be seen in FIG. 109, the articulation system 4012 may include a control rod assembly 4070 that is similar in operation to control rod 52 above, except for the articulation segment 4074 that interconnects a distal portion 4072 and a proximal portion 4076. The articulation segment 4074 may comprise a series of laminated metal strips that will enable the control rod assembly 4070 to bend as the elongated body assembly 4014 is articulated about the intermediate articulation joint 4042, yet be sufficiently stiff to axially transmit the firing forces from the handle assembly 12 to the disposable loading unit 16. Other flexible joint arrangements could also be employed. In addition, an O-ring 4080 may be provided between the proximal portion 4076 of the control rod assembly 4070 and the sensor tube 4060 to provide additional support to the control rod assembly 4070 therein. When assembled together, those of ordinary skill in the art will appreciate that the articulation link 4050 and the sensor tube 4060 are supported within the elongated body assembly 4014 such that the axes A2″-A2″ and A2′-A2′ substantially coincide with the second articulation axis A2-A2. Likewise, the control rod assembly 4070 is supported within the elongated body assembly 4014 such that the articulation segment 4074 spans the intermediate articulation joint 4020.



FIG. 111 depicts use of the surgical stapling apparatus 4010 in an “open” surgery setting wherein the disposable loading unit 16 and elongated body assembly 4014 are inserted into the patient through an open incision in the tissue “T”. As can be understood from reference to that Figure, the tool assembly 17 may be selectively articulated about the first articulation axis A1-A1 by manipulating the articulation lever 30 as was described above. The disposable loading unit 16 may also be pivoted about the second articulation axis A2-A2 relative to the proximal body segment 4040 of the elongated body assembly 4014 and handle assembly 12 by “passively” bringing the tool assembly 17 into contact with the organ or other portion of the body or by grasping the disposable reload unit 16 with another surgical instruments such as, for example, graspers (not shown) to apply an external force to the tool assembly 17 to cause it to articulate about the second articulation axis A2-A2. The person of ordinary skill in the art will appreciate that once the tool assembly 17 is articulated to the desired position about the second articulation axis A2-A2, it is retained in that position by virtue of the engagement between the locking ribs 4036 and radial grooves 4048 as described above. To enable the stapling apparatus 4010 to be used endoscopically through a conventional trocar 4000 as shown in FIG. 112, the intermediate articulation joint 4020 may be provided adjacent the rotation knob 28 such that the articulation joint 4020 can remain external to the trocar 4000 to enable the handle assembly 12 to be pivoted about the second articulation axis A2-A2, relative to the portion of the surgical stapling apparatus 4010 protruding into the patient through the trocar 4000.



FIGS. 113-115 illustrate an articulation system 5012 that may be employed with various surgical stapling apparatuses of the present invention. Those components that are the same as the components employed in the above-mentioned embodiments will be labeled with the same element numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation. The articulation system 5012 may include an intermediate articulation joint 5020 in the elongated body assembly 5014 that facilitates pivotal travel of the disposable reload unit 16 relative to the handle assembly 12 about a second articulation axis A2-A2 that is substantially transverse to the longitudinal axis L-L and the first articulation axis A1-A1. The elongated body assembly 5014 may comprise a distal body segment 5030 and a proximal body segment 5040 that are coupled together at the intermediate articulation joint 5020. As shown in FIG. 114, the articulation system 5012 may further include a translation member 138 that has an upstanding arm portion 540 that has a notch 542 therein that is sized to receive a tab 544 formed on the sensor cylinder 178. The distal end of translation member 138 may include an arm 546 which includes an opening 548 configured to receive a finger 164 extending from the proximal end of articulation link 4050. A pin 166 that may be constructed from a non-abrasive material, e.g., Teflon® or metal coated with Teflon® is secured to translation member 138 and dimensioned to be received within stepped camming surface 148 (shown in FIG. 11). The operation of these components was described above.


As further shown in FIG. 114, the distal body segment 5030 is hollow and has a proximal end 5031 that has two proximally protruding lugs 5032. Each lug 5032 has a pin 5034 protruding therefrom. The proximal body segment 5040 is hollow and has an opening 128 for receiving a corresponding radial projection 132 formed on the rotatable knob 28 as was described above. See FIGS. 114 and 115. The distal end 5042 of the proximal body segment 5040 may have a pair of distally protruding lugs 5044 that each have a pin receiving hole (not shown) therethrough for receiving a corresponding pin 5034 on the distal body segment 5030, to enable the distal body segment 5030 to pivot relative to the proximal body segment 5040. In various embodiments, the intermediate articulation joint 5020 may be formed with the radial grooves 4048 and locking ribs 4036 as was described above. The intermediate articulation joint 5020 in other embodiments may be made without such radial grooves and locking ribs.


The articulation system 5012 illustrated in FIGS. 113-115 is an “active” articulation system and may include an articulation bar 5050 that has a distal end 5052 that is pinned or otherwise attached to the distal body segment 5030 by a pin 5054. As shown in FIG. 114, the articulation bar 5050 may ride in an elongated bar slot 5043 provided in the proximal body segment 5040 of the elongated body assembly 5014. To provide additional support to the articulation bar 5050, a shroud 5080 may be placed over the proximal body segment 5040. See FIGS. 113 and 115. The articulation bar 5050 may have a proximal end 5056 that is integrally formed with or otherwise non-movably attached to a stabilizing collar 5060. The stabilizing collar 5060 may be sized to fit about the proximal body segment 5040 and have a base portion 5062 attached thereto that is attached to or formed with a button post 5064 that terminates in an articulation button 5066. As can be seen in FIGS. 114 and 115, the base portion 5062 may be formed with two upwardly extending lock detents 5068 that are adapted to retainingly engage locking racks 5072 formed on two locking plates 5070 that are non-movably supported in the rotation knob 28. As shown in FIGS. 114 and 115, two locking plates 5070 may be employed—one on each side of the button post 5064.


Referring to FIG. 113, to articulate the distal body segment 5030 as well as the distal portion 4072 of the control rod assembly 4070 (and the disposable loading unit attached thereto) in the right direction “RD” about the second articulation axis A2-A2, the clinician simply slides the articulation button 5066 in the distal “D-D′ direction. To articulate the distal body segment 5030, distal portion 4072 of the control rod assembly 4070 and the disposable loading unit in the left direction “LD”, the clinician slides the articulation button 5066 in the proximal direction “PD”. Those of ordinary skill in the art will understand that the articulation system 5020 may be effectively employed with surgical stapling apparatuses that are adapted to receive articulatable and non-articulatable disposable reload units. The articulation system 5012 depicted in FIGS. 113-115 is well adapted for use in open surgical applications. The articulation system 5012′ depicted in FIG. 116 may be better suited for endoscopic applications. As can be seen in that Figure, the articulation joint 5020 is closer to the rotation knob 28 such that when in use, the articulation joint 5020 is external to the trocar through which the distal body segment 5030 of the elongated body assembly 5014 extends.



FIGS. 117-121 illustrate a unique and novel “active” articulation system 6012 that may be used in connection with various surgical stapling apparatuses adapted for use with disposable loading units. Those components of the articulation system 6012 that are the same as the components employed in the above-mentioned embodiments will be labeled with the same element numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation. In various embodiments, the articulation system 6012 includes a rotation knob assembly 6028 that, except for the differences noted below, is similar to rotation knob 28 described above. As can be seen in FIG. 118, the rotation knob 6028 has an articulation shroud extension 6030 that has a distal articulation ball 6032 formed thereon. In various embodiments, the rotation knob assembly 6028 may be formed from two segments 6028a and 6028b that are molded from plastic or other suitable material and which may be interconnected by, for example, snap features, screws, adhesive, etc. See FIG. 117. Rotatably received on the distal articulation ball 6032 is a distal body segment 6040 whose proximal end 6042 forms an articulation socket 6044 that may be formed from cover segments 6040a and 6040b that may be interconnected by snap features, adhesive, etc. As illustrated in FIG. 118, the articulation system 6012 may also include a translation member of the type and construction described above which is configured to receive a finger 164 extending from the proximal end of articulation link 4050′. Articulation link 4050′ is similar to articulation link 4050 described above except that the articulation link 4050′ has a flexible connector portion (coil spring, etc.) 6025 formed therein.


As can be seen in FIG. 118, the articulation system 6012 may further comprise a hollow sensor tube 6060 that has a distal portion end 6062 that is coupled to a proximal portion 6064 by a flexible connector (coil spring, etc.) 6066. The sensor tube 6060 may operate in the same way as was described above with respect to sensor tube 123 and may have a control rod locking mechanism (not shown) of the type described above attached thereto. As can also be seen in FIG. 118, the articulation system 6012 may include a control rod assembly 6070 that is similar in operation to control rod 52 above, except for the flexible connector segment 6074 that interconnects a distal portion 6072 and a proximal portion 6076. The flexible connector segment 6074 may comprise a coil spring, etc. that will enable the control rod assembly 6070 to bend during articulation, yet be sufficiently stiff to axially transmit the firing forces from the handle assembly 12 to the disposable loading unit 16. As can be seen in FIGS. 118 and 119, the control rod assembly 6070 extends through the sensor tube 6060 and the proximal end portion 6076 is supported therein by an O-ring 6068. To provide additional axial support to the proximal portion 6076 of the control rod assembly 6070 and the flexible connector segment 6074, a proximal firing rod tube 6080 may be employed. See FIGS. 118 and 119. When assembled together, those of ordinary skill in the art will appreciate that the flex connector portion 6025 of articulation link 4050′, flexible connector portion 6066 of the sensor tube 6060 and the flexible connector segment 6074 are supported within the articulation ball 6032 as shown in FIG. 119.


As can be seen in FIGS. 118 and 119, the articulation system 6012 further comprises a articulation handle 6090 that is movably supported on the distal end 6034 of the shroud extension 6030. In various embodiments, the articulation handle 6090 may be formed from two arcuate segments 6090a and 6090b that are coupled together, by, for example, screws 6091 or other suitable fastener arrangements. The articulation handle 6090 is coupled to two diametrically opposed horizontal articulation bands 6100 and two diametrically opposed vertical articulation bands 6110. See FIG. 118. Referring now to FIGS. 120 and 121, in various embodiments, the proximal end 6102 of each horizontal articulation band 6100 may be pivotally coupled to a horizontal articulation pin 6104. Likewise the proximal end 6112 of each vertical articulation band 6110 may be pivotally coupled to a vertical articulation pin 6114. FIGS. 120 and 121, illustrate one form of attaching the proximal end 6102 of a horizontal articulation band 6100 to a horizontal articulation pin 6104 as well as of attaching the proximal end 6112 of a vertical articulation band 6110 to a vertical articulation pin 6114. As can be seen in those Figures, a ball connector 6120 may be coupled to the distal ends 6102, 6112 and be rotatably received in a corresponding socket 6108, 6118 in the horizontal and vertical articulation pins 6104, 6114, respectively. The horizontal articulation pins 6104 may extend through diametrically opposed horizontal slots 6036 (FIG. 118) in the proximal end portion 6034 of the shroud extension 6030 to be received in holes 6092 in the articulation handle 6090. Similarly, the vertical articulation pins 6114 extend through vertical slots 6038 formed in the proximal end portion 6034 of the shroud extension 6030 to be received in holes 6094 in the articulation ring 6090.


In various embodiments, the horizontal articulation bands 6100 and the vertical articulation bands 6110 may comprise metal bands that will bend or flex about their weak axis (i.e., the axis that extends transversely to their length), but will not bend or flex in their strong axis (i.e., their elongated axis extending along their length). To provide support to the articulation bands 6100, 6110 along their respective lengths, the horizontal articulation bands 6100 may be movably supported in elongated horizontal slots 6033 formed in the elongated shroud 6030. The distal end 6106 of each horizontal articulation band 6100 may have a distal articulation pin 6109 protruding therefrom that extends through a corresponding horizontal slot 6037 in the ball portion 6032 of the elongated shroud 6030 to be coupled to the distal body segment 6040. In various embodiments, the distal articulation pin 6109 extends through a hole in the corresponding distal end 6106 of the horizontal articulation band 6100 to enable the distal end 6106 thereof to rotate there around. Similarly, the distal end 6116 of each vertical articulation band 6110 may have a distal articulation pin 6119 protruding therefrom that extends through a corresponding vertical slot 6039 in the ball portion 6032 of the elongated shroud 6030 to be coupled to the distal body segment 6040. See FIG. 119. The distal articulation pins 6119 may extend through a hole in the distal end 6116 of a corresponding vertical articulation band 6110 to enable the distal end 6116 to rotate therearound.


Although not specifically illustrated in FIGS. 117-118, those of ordinary skill in the art will understand that the distal body segment 6040 may be configured for operable attachment to an articulatable disposable loading unit or a non-articulatable disposable loading unit in the manner described above or in the manner that is known in the art. However, in this embodiment, the clinician can selectively articulate the distal body segment 6040 and the disposable loading unit attached thereto by selectively pivoting the articulation handle 6090 on the proximal end 6034 of the shroud extension 6030. For example, FIG. 119 illustrates the articulation handle 6090 pivoted to a position wherein the distal body segment 6040 is pivoted in the vertical direction “VD”. To pivot the distal body segment 6040 in a horizontal direction (the direction perpendicular to the direction VD depicted in FIG. 119), the clinician first brings the articulation handle back to a vertical neutral position (wherein the distal body segment 6040 is coaxial with the shroud extension 6030 and then the clinician pivots the articulation handle such that one side portion of the handle 6090 moves in the distal direction, while the other side moves in the proximal direction (represented by arrows “DD” and “PD” in FIG. 117). Such active articulation comprises substantially bi-planar articulation. That is, the distal body segment 6040 and the disposable loading unit coupled thereto can only be selectively articulated through a vertically extending plane or through a horizontally extending plane that is substantially orthogonal to the vertically extending plane. The distal body segment 6040 and the disposable loading unit cannot be articulated in the vertical and horizontal directions at the same time. However, those of ordinary skill in the art will appreciate that the rotation knob 6028 by virtue of its rotatable attachment to the handle assembly facilitates selective rotation of the distal body segment 6040 and the disposable loading unit coupled thereto about the longitudinal axis L-L.



FIGS. 122 and 123 illustrate another surgical stapling apparatus embodiment 7010 of the present invention that employs a passive articulation system 7012. As can be seen in those Figures, the passive articulation system 7012 may comprise a rotation knob 7028 that is somewhat similar to rotation knob 28 described above, except for the differences discussed below. Those components of the surgical stapling apparatus 7010 that are the same as the components employed in the above-mentioned embodiments will be labeled with the same element numbers and those of ordinary skill in the art can refer to the disclosure set forth hereinabove that explains their construction and operation. As can be seen in FIG. 123, the rotation knob 7028 has an articulation socket 7030 formed therein that is sized to rotatably receive a ball 7016 formed on an elongated body assembly 7014. In alternative embodiments, the socket 7030 may be formed in a casing segment that is non-rotatably supported within the rotatable knob 7028. The distal end 7015 of the elongated body assembly 7014 is configured for operable attachment to an articulatable or non-articulatable disposable loading unit in a known manner. As can also be seen in FIG. 123, the articulation system 7012 may further include a translation member 138 that has an upstanding arm portion 540 that has a notch 542 therein that is sized to receive a tab (not shown) formed on the sensor cylinder (not shown) in the manner described above. The distal end of translation member 138 may include an arm 546 which includes an opening 548 configured to receive a finger 164 extending from the proximal end 7052 of articulation link 7050. The distal end 7054 of the articulation link 7050 has a distal hook 165 formed thereon which can hookingly engage an articulation tab or hook formed on an articulation link supported in the disposable reload unit. A pin 166 that may be constructed from a non-abrasive material, e.g., Teflon® or metal coated with Teflon®, is secured to translation member 138 and dimensioned to be received within stepped camming surface 148 (shown in FIG. 11). As can be seen in FIG. 123, a flexible member 7055 in the form of a coil spring or the like may be provided in the articulation link 7050 adjacent the proximal end 7052 thereof.


The passive articulation system 7012 may further comprise a hollow sensor tube 7060 that has a distal portion end 7062 that is coupled to a proximal portion 7064 by a flexible connector (coil spring, etc.) 7066. The sensor tube 7060 may operate in the same way as was described above with respect to sensor tube 123 and may have a control rod locking mechanism (not shown) of the type described above attached thereto. As can also be seen in FIG. 123, the articulation system 7012 may include a control rod assembly 7070 that is similar in operation to control rod 52 above, except for the flexible connector segment 7074 that interconnects a distal portion 7072 and a proximal portion 7076. The flexible connector segment 7074 may comprise a coil spring, etc. that will enable the control rod assembly 7070 to bend during articulation, yet be sufficiently stiff to axially transmit the firing forces from the handle assembly 12 to the disposable reload unit 16. The firing rod assembly 7070 extends through the sensor tube 7060 and the distal portion 7072 is supported therein by an O-ring 7068. When assembled together, those of ordinary skill in the art will appreciate that the flex connector portion 7055 of articulation link 7050, flexible connector portion 7066 of the sensor tube 7060 and the flexible connector segment 7074 of the control rod assembly 7070 are at least partially supported within the articulation ball 7016 and socket 7030.



FIG. 122 illustrates use of the surgical stapling apparatus 7010 of the present invention with a conventional trocar 4000. As can be seen in that Figure, a disposable loading unit 16 is coupled to the elongated body assembly 7014. Although an articulatable disposable loading unit 16 is illustrated, the person of ordinary skill in the art will understand that the apparatus 7012 may be effectively employed with non-articulating disposable loading units. After the trocar 4000 has been installed through the tissue “T” utilizing known techniques, the clinician can insert the disposable loading unit 16 through the trocar into the patient. If an articulatable disposable loading unit 16 is employed, the clinician must orient the disposable loading unit in a non-articulated state to insert it through the trocar. After the disposable loading unit 16 has been inserted into the patient and actuated to clamp onto the target tissue in the manners described above, the clinician may articulate the handle simply by pivoting the handle assembly 12 about the ball and socket articulation joint 7020. The ball portion 7016 may be sized relative to the socket 7030 such that a sufficient amount of friction is established between the components at rest to retain them in position, yet not be so great as to prevent manipulation of those components relative to each other. In other embodiments, detents may be provided in the ball and socket joint components to retain the joint in various positions. The clinician may also manipulate the handle assembly 12 relative to the elongated body assembly 7014 prior to clamping onto the target tissue by grasping the proximal end of the elongated body assembly protruding from the trocar 4000 and then manipulating the handle assembly 12 relative thereto.


While several embodiments of the invention have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the disclosed invention as defined by the appended claims.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device may be reconditioned for reuse after at least one use. Reconditioning may include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device may be disassembled, and any number of particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device may be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device may utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


Preferably, the invention described herein will be processed before surgery. First a new or used instrument is obtained and, if necessary, cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or higher energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


The invention which is intended to be protected is not to be construed as limited to the particular embodiments disclosed. The embodiments are therefore to be regarded as illustrative rather than restrictive. Variations and changes may be made by others without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such equivalents, variations and changes which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.

Claims
  • 1. A surgical stapling system for treating the tissue of a patient, comprising: a handle comprising a rotary motion generator;a shaft extending from said handle;a disposable loading unit attachable to said shaft, said disposable loading unit comprising: a cartridge body including a distal end;staples removably stored in said cartridge body; anda firing system movable toward said distal end, wherein said firing system is configured to fire said staples from said cartridge body to staple the tissue, and wherein said firing system comprises a cutting portion configured to cut the tissue; andan actuation system configured to regulate a firing force applied to said firing system by said rotary motion generator, wherein said actuation system is configured to modify the application of said firing force to said firing system when a load resulting from firing said staples and cutting the tissue exceeds a predetermined magnitude.
  • 2. The surgical stapling system of claim 1, wherein said actuation system is configured to disengage said rotary motion generator from said firing system when said firing force exceeds said predetermined magnitude.
  • 3. The surgical stapling system of claim 2, further comprising a retraction system configured to retract said firing system after said rotary motion generator has been disengaged from said firing system.
  • 4. The surgical stapling system of claim 1, wherein said rotary motion generator is rendered ineffective when said load exceeds said predetermined magnitude.
  • 5. A surgical stapling system for treating the tissue of a patient, comprising: a handle;a shaft extending from said handle;a disposable loading unit attachable to said shaft, said disposable loading unit comprising: a cartridge body including a distal end;staples removably stored in said cartridge body; anda firing system movable toward said distal end, wherein said firing system is configured to fire said staples from said cartridge body to staple the tissue, and wherein said firing system comprises a cutting portion configured to cut the tissue; andan actuation system configured to apply a firing force to said firing system to move said firing system toward said distal end, wherein said actuation system is configured to stop the application of said firing force to said firing system when a load resulting from firing said staples and cutting the tissue exceeds a predetermined magnitude.
  • 6. A surgical stapling system for treating the tissue of a patient, comprising: a handle;a shaft extending from said handle;a stapling assembly attachable to said shaft, said stapling assembly comprising: a cartridge body including a distal end;staples removably stored in said cartridge body; anda firing system movable toward said distal end, wherein said firing system is configured to fire said staples from said cartridge body to staple the tissue, and wherein said firing system comprises a cutting portion configured to cut the tissue; andan actuation system configured to apply a firing force to said firing system to move said firing system toward said distal end, wherein said actuation system is configured to stop the application of said firing force to said firing system when a load resulting from firing said staples and cutting the tissue reaches a predetermined magnitude.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application claiming priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 14/314,525, entitled SURGICAL STAPLING APPARATUS, filed Jun. 25, 2014, which issued on Jul. 7, 2015 as U.S. Pat. No. 9,072,515, which is a continuation application claiming priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 12/878,574, entitled SURGICAL STAPLING APPARATUS WITH CONTROL FEATURES OPERABLE WITH ONE HAND, filed Sep. 9, 2010, which issued on Mar. 10, 2015 as U.S. Pat. No. 8,973,803, which is a divisional patent application claiming priority under 35 U.S.C. §121 to U.S. patent application Ser. No. 12/031,030, entitled SURGICAL STAPLING APPARATUS WITH CONTROL FEATURES OPERABLE WITH ONE HAND, filed Feb. 14, 2008, which issued on Oct. 26, 2010 as U.S. Pat. No. 7,819,298, the entire disclosures of which are incorporated by reference herein.

US Referenced Citations (3811)
Number Name Date Kind
66052 Smith Jun 1867 A
662587 Blake Nov 1900 A
670748 Weddeler Mar 1901 A
951393 Hahn Mar 1910 A
1306107 Elliott Jun 1919 A
1314601 McCaskey Sep 1919 A
1677337 Grove Jul 1928 A
1794907 Kelly Mar 1931 A
2037727 La Chapelle Apr 1936 A
2132295 Hawkins Oct 1938 A
2161632 Nattenheimer Jun 1939 A
2211117 Hess Aug 1940 A
2214870 West Sep 1940 A
2318379 Davis et al. May 1943 A
2329440 La Place Sep 1943 A
2441096 Happe May 1948 A
2448741 Scott et al. Sep 1948 A
2450527 Smith et al. Oct 1948 A
2526902 Rublee Oct 1950 A
2527256 Jackson Oct 1950 A
2578686 Fish Dec 1951 A
2674149 Benson Apr 1954 A
2711461 Happe Jun 1955 A
2804848 O'Farrell et al. Sep 1957 A
2808482 Zanichkowsky et al. Oct 1957 A
2853074 Olson Sep 1958 A
2887004 Stewart May 1959 A
2959974 Emrick Nov 1960 A
3032769 Palmer May 1962 A
3075062 Iaccarino Jan 1963 A
3078465 Bobrov Feb 1963 A
3079606 Bobrov et al. Mar 1963 A
3166072 Sullivan, Jr. Jan 1965 A
3196869 Scholl Jul 1965 A
3204731 Bent et al. Sep 1965 A
3266494 Brownrigg et al. Aug 1966 A
3269630 Fleischer Aug 1966 A
3275211 Hirsch et al. Sep 1966 A
3317103 Cullen et al. May 1967 A
3317105 Astafjev et al. May 1967 A
3357296 Lefever Dec 1967 A
3490675 Green et al. Jan 1970 A
3494533 Green et al. Feb 1970 A
3499591 Green Mar 1970 A
3503396 Pierie et al. Mar 1970 A
3551987 Wilkinson Jan 1971 A
3568675 Harvey Mar 1971 A
3572159 Tschanz Mar 1971 A
3583393 Takahashi Jun 1971 A
3598943 Barrett Aug 1971 A
3608549 Merrill Sep 1971 A
3640317 Panfili Feb 1972 A
3643851 Green et al. Feb 1972 A
3661666 Foster et al. May 1972 A
3662939 Bryan May 1972 A
3695646 Mommsen Oct 1972 A
3709221 Riely Jan 1973 A
3717294 Green Feb 1973 A
3734207 Fishbein May 1973 A
3740994 DeCarlo, Jr. Jun 1973 A
3744495 Johnson Jul 1973 A
3746002 Haller Jul 1973 A
3751902 Kingsbury et al. Aug 1973 A
3799151 Fukaumi et al. Mar 1974 A
3819100 Noiles et al. Jun 1974 A
3821919 Knohl Jul 1974 A
3841474 Maier Oct 1974 A
3851196 Hinds Nov 1974 A
3885491 Curtis May 1975 A
3892228 Mitsui Jul 1975 A
3894174 Cartun Jul 1975 A
3940844 Colby et al. Mar 1976 A
3950686 Randall Apr 1976 A
3955581 Spasiano et al. May 1976 A
RE28932 Noiles et al. Aug 1976 E
3981051 Brumlik Sep 1976 A
4054108 Gill Oct 1977 A
4060089 Noiles Nov 1977 A
4106446 Yamada et al. Aug 1978 A
4111206 Vishnevsky et al. Sep 1978 A
4129059 Van Eck Dec 1978 A
4169990 Lerdman Oct 1979 A
4180285 Reneau Dec 1979 A
4198734 Brumlik Apr 1980 A
4198982 Fortner et al. Apr 1980 A
4207898 Becht Jun 1980 A
4213562 Garrett et al. Jul 1980 A
4226242 Jarvik Oct 1980 A
4244372 Kapitanov et al. Jan 1981 A
4250436 Weissman Feb 1981 A
4261244 Becht et al. Apr 1981 A
4272002 Moshofsky Jun 1981 A
4272662 Simpson Jun 1981 A
4274304 Curtiss Jun 1981 A
4275813 Noiles Jun 1981 A
4289133 Rothfuss Sep 1981 A
4296654 Mercer Oct 1981 A
4304236 Conta et al. Dec 1981 A
4305539 Korolkov et al. Dec 1981 A
4312685 Riedl Jan 1982 A
4317451 Cerwin et al. Mar 1982 A
4321002 Froehlich Mar 1982 A
4328839 Lyons et al. May 1982 A
4331277 Green May 1982 A
4340331 Savino Jul 1982 A
4347450 Colligan Aug 1982 A
4349028 Green Sep 1982 A
4353371 Cosman Oct 1982 A
4373147 Carlson, Jr. Feb 1983 A
4379457 Gravener et al. Apr 1983 A
4380312 Landrus Apr 1983 A
4382326 Rabuse May 1983 A
4383634 Green May 1983 A
4393728 Larson et al. Jul 1983 A
4396139 Hall et al. Aug 1983 A
4397311 Kanshin et al. Aug 1983 A
4402445 Green Sep 1983 A
4408692 Sigel et al. Oct 1983 A
4409057 Molenda et al. Oct 1983 A
4415112 Green Nov 1983 A
4416276 Newton et al. Nov 1983 A
4428376 Mericle Jan 1984 A
4429695 Green Feb 1984 A
4434796 Karapetian et al. Mar 1984 A
4438659 Desplats Mar 1984 A
4442964 Becht Apr 1984 A
4448194 DiGiovanni et al. May 1984 A
4451743 Suzuki et al. May 1984 A
4454887 Krüger Jun 1984 A
4467805 Fukuda Aug 1984 A
4470414 Imagawa et al. Sep 1984 A
4473077 Noiles et al. Sep 1984 A
4475679 Fleury, Jr. Oct 1984 A
4485816 Krumme Dec 1984 A
4485817 Swiggett Dec 1984 A
4486928 Tucker et al. Dec 1984 A
4488523 Shichman Dec 1984 A
4489875 Crawford et al. Dec 1984 A
4499895 Takayama Feb 1985 A
4500024 DiGiovanni et al. Feb 1985 A
4505272 Utyamyshev et al. Mar 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4506671 Green Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4520817 Green Jun 1985 A
4522327 Korthoff et al. Jun 1985 A
4526174 Froehlich Jul 1985 A
4527724 Chow et al. Jul 1985 A
4530453 Green Jul 1985 A
4531522 Bedi et al. Jul 1985 A
4532927 Miksza, Jr. Aug 1985 A
4548202 Duncan Oct 1985 A
4565109 Tsay Jan 1986 A
4565189 Mabuchi Jan 1986 A
4566620 Green et al. Jan 1986 A
4569469 Mongeon et al. Feb 1986 A
4571213 Ishimoto Feb 1986 A
4573468 Conta et al. Mar 1986 A
4573469 Golden et al. Mar 1986 A
4573622 Green et al. Mar 1986 A
4576167 Noiles et al. Mar 1986 A
4580712 Green Apr 1986 A
4585153 Failla et al. Apr 1986 A
4589416 Green May 1986 A
4591085 Di Giovanni May 1986 A
4597753 Turley Jul 1986 A
4600037 Hatten Jul 1986 A
4604786 Howie, Jr. Aug 1986 A
4605001 Rothfuss et al. Aug 1986 A
4605004 Di Giovanni et al. Aug 1986 A
4606343 Conta et al. Aug 1986 A
4607638 Crainich Aug 1986 A
4608981 Rothfuss et al. Sep 1986 A
4610250 Green Sep 1986 A
4610383 Rothfuss et al. Sep 1986 A
4619262 Taylor Oct 1986 A
4619391 Sharkany et al. Oct 1986 A
4628459 Shinohara et al. Dec 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4633874 Chow et al. Jan 1987 A
4634419 Kreizman et al. Jan 1987 A
4641076 Linden Feb 1987 A
4643731 Eckenhoff Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4655222 Florez et al. Apr 1987 A
4662555 Thornton May 1987 A
4663874 Sano et al. May 1987 A
4664305 Blake, III et al. May 1987 A
4665916 Green May 1987 A
4667674 Korthoff et al. May 1987 A
4669647 Storace Jun 1987 A
4671445 Barker et al. Jun 1987 A
4676245 Fukuda Jun 1987 A
4684051 Akopov et al. Aug 1987 A
4691703 Auth et al. Sep 1987 A
4693248 Failla Sep 1987 A
4700703 Resnick et al. Oct 1987 A
4708141 Inoue et al. Nov 1987 A
4709120 Pearson Nov 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4719917 Barrows et al. Jan 1988 A
4727308 Huljak et al. Feb 1988 A
4728020 Green et al. Mar 1988 A
4728876 Mongeon et al. Mar 1988 A
4729260 Dudden Mar 1988 A
4730726 Holzwarth Mar 1988 A
4741336 Failla et al. May 1988 A
4743214 Tai-Cheng May 1988 A
4747820 Hornlein et al. May 1988 A
4750902 Wuchinich et al. Jun 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4767044 Green Aug 1988 A
4773420 Green Sep 1988 A
4777780 Holzwarth Oct 1988 A
4787387 Burbank, III et al. Nov 1988 A
4790225 Moody et al. Dec 1988 A
4805617 Bedi et al. Feb 1989 A
4805823 Rothfuss Feb 1989 A
4809695 Gwathmey et al. Mar 1989 A
4815460 Porat et al. Mar 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4827911 Broadwin et al. May 1989 A
4830855 Stewart May 1989 A
4834720 Blinkhorn May 1989 A
4844068 Arata et al. Jul 1989 A
4848637 Pruitt Jul 1989 A
4856078 Konopka Aug 1989 A
4865030 Polyak Sep 1989 A
4868530 Ahs Sep 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4873977 Avant et al. Oct 1989 A
4875486 Rapoport et al. Oct 1989 A
4880015 Nierman Nov 1989 A
4890613 Golden et al. Jan 1990 A
4892244 Fox et al. Jan 1990 A
4893622 Green et al. Jan 1990 A
4896678 Ogawa Jan 1990 A
4900303 Lemelson Feb 1990 A
4903697 Resnick et al. Feb 1990 A
4915100 Green Apr 1990 A
4930503 Pruitt Jun 1990 A
4930674 Barak Jun 1990 A
4931047 Broadwin et al. Jun 1990 A
4932960 Green et al. Jun 1990 A
4933843 Scheller et al. Jun 1990 A
4938408 Bedi et al. Jul 1990 A
4941623 Pruitt Jul 1990 A
4943182 Hoblingre Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
4951860 Peters et al. Aug 1990 A
4955959 Tompkins et al. Sep 1990 A
4965709 Ngo Oct 1990 A
4973274 Hirukawa Nov 1990 A
4978049 Green Dec 1990 A
4978333 Broadwin et al. Dec 1990 A
4986808 Broadwin et al. Jan 1991 A
4988334 Hornlein et al. Jan 1991 A
5002543 Bradshaw et al. Mar 1991 A
5002553 Shiber Mar 1991 A
5005754 Van Overloop Apr 1991 A
5009661 Michelson Apr 1991 A
5014899 Presty et al. May 1991 A
5015227 Broadwin et al. May 1991 A
5018515 Gilman May 1991 A
5018657 Pedlick et al. May 1991 A
5024671 Tu et al. Jun 1991 A
5027834 Pruitt Jul 1991 A
5031814 Tompkins et al. Jul 1991 A
5035040 Kerrigan et al. Jul 1991 A
5038109 Goble et al. Aug 1991 A
5040715 Green et al. Aug 1991 A
5042707 Taheri Aug 1991 A
5061269 Muller Oct 1991 A
5062563 Green et al. Nov 1991 A
5065929 Schulze et al. Nov 1991 A
5071052 Rodak et al. Dec 1991 A
5071430 de Salis et al. Dec 1991 A
5074454 Peters Dec 1991 A
5079006 Urquhart Jan 1992 A
5080556 Carreno Jan 1992 A
5083695 Foslien et al. Jan 1992 A
5084057 Green et al. Jan 1992 A
5088979 Filipi et al. Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5094247 Hernandez et al. Mar 1992 A
5100420 Green et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5104397 Vasconcelos et al. Apr 1992 A
5106008 Tompkins et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5111987 Moeinzadeh et al. May 1992 A
5116349 Aranyi May 1992 A
5122156 Granger et al. Jun 1992 A
5124990 Williamson Jun 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5141144 Foslien et al. Aug 1992 A
5142932 Moya et al. Sep 1992 A
5155941 Takahashi et al. Oct 1992 A
5156315 Green et al. Oct 1992 A
5156609 Nakao et al. Oct 1992 A
5156614 Green et al. Oct 1992 A
5158567 Green Oct 1992 A
D330699 Gill Nov 1992 S
5163598 Peters et al. Nov 1992 A
5171247 Hughett et al. Dec 1992 A
5171249 Stefanchik et al. Dec 1992 A
5171253 Klieman Dec 1992 A
5188111 Yates et al. Feb 1993 A
5190517 Zieve et al. Mar 1993 A
5190544 Chapman et al. Mar 1993 A
5190560 Woods et al. Mar 1993 A
5192288 Thompson et al. Mar 1993 A
5195968 Lundquist et al. Mar 1993 A
5197648 Gingold Mar 1993 A
5197649 Bessler et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5200280 Karasa Apr 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5207697 Carusillo et al. May 1993 A
5209747 Knoepfler May 1993 A
5211649 Kohler et al. May 1993 A
5211655 Hasson May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217478 Rexroth Jun 1993 A
5219111 Bilotti et al. Jun 1993 A
5221036 Takase Jun 1993 A
5221281 Klicek Jun 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5222976 Yoon Jun 1993 A
5223675 Taft Jun 1993 A
5234447 Kaster et al. Aug 1993 A
5236440 Hlavacek Aug 1993 A
5239981 Anapliotis Aug 1993 A
5240163 Stein et al. Aug 1993 A
5242457 Akopov et al. Sep 1993 A
5244462 Delahuerga et al. Sep 1993 A
5246156 Rothfuss et al. Sep 1993 A
5246443 Mai Sep 1993 A
5253793 Green et al. Oct 1993 A
5258009 Conners Nov 1993 A
5258012 Luscombe et al. Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5259835 Clark et al. Nov 1993 A
5260637 Pizzi Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5263973 Cook Nov 1993 A
5264218 Rogozinski Nov 1993 A
5268622 Philipp Dec 1993 A
5271543 Grant et al. Dec 1993 A
5271544 Fox et al. Dec 1993 A
RE34519 Fox et al. Jan 1994 E
5275323 Schulze et al. Jan 1994 A
5275608 Forman et al. Jan 1994 A
5279416 Malec et al. Jan 1994 A
5281216 Klicek Jan 1994 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5284128 Hart Feb 1994 A
5285381 Iskarous et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5289963 McGarry et al. Mar 1994 A
5290271 Jernberg Mar 1994 A
5292053 Bilotti et al. Mar 1994 A
5297714 Kramer Mar 1994 A
5304204 Bregen Apr 1994 A
5307976 Olson et al. May 1994 A
5309387 Mori et al. May 1994 A
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5312024 Grant et al. May 1994 A
5312329 Beaty et al. May 1994 A
5314424 Nicholas May 1994 A
5314445 Heidmueller née Degwitz et al. May 1994 A
5314466 Stern et al. May 1994 A
5318221 Green et al. Jun 1994 A
5330487 Thornton et al. Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5333422 Warren et al. Aug 1994 A
5333772 Rothfuss et al. Aug 1994 A
5333773 Main et al. Aug 1994 A
5334183 Wuchinich Aug 1994 A
5336232 Green et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5341724 Vatel Aug 1994 A
5341810 Dardel Aug 1994 A
5342381 Tidemand Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5343391 Mushabac Aug 1994 A
5344060 Gravener et al. Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5346504 Ortiz et al. Sep 1994 A
5348259 Blanco et al. Sep 1994 A
5350388 Epstein Sep 1994 A
5350391 Iacovelli Sep 1994 A
5350400 Esposito et al. Sep 1994 A
5352229 Goble et al. Oct 1994 A
5352235 Koros et al. Oct 1994 A
5352238 Green et al. Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5356006 Alpern et al. Oct 1994 A
5358506 Green et al. Oct 1994 A
5358510 Luscombe et al. Oct 1994 A
5359231 Flowers et al. Oct 1994 A
D352780 Glaeser et al. Nov 1994 S
5360305 Kerrigan Nov 1994 A
5360428 Hutchinson, Jr. Nov 1994 A
5364001 Bryan Nov 1994 A
5364003 Williamson, IV Nov 1994 A
5366133 Geiste Nov 1994 A
5366134 Green et al. Nov 1994 A
5366479 McGarry et al. Nov 1994 A
5368015 Wilk Nov 1994 A
5368592 Stern et al. Nov 1994 A
5370645 Klicek et al. Dec 1994 A
5372124 Takayama et al. Dec 1994 A
5372596 Klicek et al. Dec 1994 A
5372602 Burke Dec 1994 A
5374277 Hassler Dec 1994 A
5376095 Ortiz Dec 1994 A
5379933 Green et al. Jan 1995 A
5381649 Webb Jan 1995 A
5381782 DeLaRama et al. Jan 1995 A
5382247 Cimino et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5383881 Green et al. Jan 1995 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5389104 Hahnen et al. Feb 1995 A
5391180 Tovey et al. Feb 1995 A
5392979 Green et al. Feb 1995 A
5395030 Kuramoto et al. Mar 1995 A
5395033 Byrne et al. Mar 1995 A
5395034 Allen et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395384 Duthoit Mar 1995 A
5397046 Savage et al. Mar 1995 A
5397324 Carroll et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5405073 Porter Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405360 Tovey Apr 1995 A
5407293 Crainich Apr 1995 A
5408409 Glassman Apr 1995 A
5409498 Braddock et al. Apr 1995 A
5411481 Allen et al. May 1995 A
5411508 Bessler et al. May 1995 A
5413107 Oakley et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5413268 Green et al. May 1995 A
5413272 Green et al. May 1995 A
5413573 Koivukangas May 1995 A
5415334 Williamson, IV et al. May 1995 A
5415335 Knodell, Jr. May 1995 A
5417203 Tovey et al. May 1995 A
5417361 Williamson, IV May 1995 A
5421829 Olichney et al. Jun 1995 A
5422567 Matsunaga Jun 1995 A
5423471 Mastri et al. Jun 1995 A
5423809 Klicek Jun 1995 A
5425745 Green et al. Jun 1995 A
5431322 Green et al. Jul 1995 A
5431654 Nic Jul 1995 A
5431668 Burbank, III et al. Jul 1995 A
5433721 Hooven et al. Jul 1995 A
5437681 Meade et al. Aug 1995 A
5438302 Goble Aug 1995 A
5439155 Viola Aug 1995 A
5439156 Grant et al. Aug 1995 A
5439479 Shichman et al. Aug 1995 A
5441191 Linden Aug 1995 A
5441193 Gravener Aug 1995 A
5441483 Avitall Aug 1995 A
5441494 Ortiz Aug 1995 A
5444113 Sinclair et al. Aug 1995 A
5445155 Sieben Aug 1995 A
5445304 Plyley et al. Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5447265 Vidal et al. Sep 1995 A
5447417 Kuhl et al. Sep 1995 A
5447513 Davison et al. Sep 1995 A
5449355 Rhum et al. Sep 1995 A
5449365 Green et al. Sep 1995 A
5449370 Vaitekunas Sep 1995 A
5452836 Huitema et al. Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5454378 Palmer et al. Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456401 Green et al. Oct 1995 A
5458579 Chodorow et al. Oct 1995 A
5462215 Viola et al. Oct 1995 A
5464013 Lemelson Nov 1995 A
5464144 Guy et al. Nov 1995 A
5464300 Crainich Nov 1995 A
5465894 Clark et al. Nov 1995 A
5465895 Knodel et al. Nov 1995 A
5465896 Allen et al. Nov 1995 A
5466020 Page et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5468253 Bezwada et al. Nov 1995 A
5470006 Rodak Nov 1995 A
5470007 Plyley et al. Nov 1995 A
5470009 Rodak Nov 1995 A
5470010 Rothfuss et al. Nov 1995 A
5472132 Savage et al. Dec 1995 A
5472442 Klicek Dec 1995 A
5473204 Temple Dec 1995 A
5474057 Makower et al. Dec 1995 A
5474223 Viola et al. Dec 1995 A
5474566 Alesi et al. Dec 1995 A
5476206 Green et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478003 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480089 Blewett Jan 1996 A
5480409 Riza Jan 1996 A
5482197 Green et al. Jan 1996 A
5484095 Green et al. Jan 1996 A
5484398 Stoddard Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5485952 Fontayne Jan 1996 A
5487499 Sorrentino et al. Jan 1996 A
5487500 Knodel et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5489256 Adair Feb 1996 A
5496312 Klicek Mar 1996 A
5496317 Goble et al. Mar 1996 A
5497933 DeFonzo et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5503320 Webster et al. Apr 1996 A
5503635 Sauer et al. Apr 1996 A
5503638 Cooper et al. Apr 1996 A
5505363 Green et al. Apr 1996 A
5507426 Young et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5509916 Taylor Apr 1996 A
5511564 Wilk Apr 1996 A
5514129 Smith May 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5520678 Heckele et al. May 1996 A
5520700 Beyar et al. May 1996 A
5522817 Sander et al. Jun 1996 A
5522831 Sleister et al. Jun 1996 A
5527320 Carruthers et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
D372086 Grasso et al. Jul 1996 S
5531305 Roberts et al. Jul 1996 A
5531744 Nardella et al. Jul 1996 A
5533521 Granger Jul 1996 A
5533581 Barth et al. Jul 1996 A
5533661 Main et al. Jul 1996 A
5535934 Boiarski et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5541376 Ladtkow et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5542949 Yoon Aug 1996 A
5543119 Sutter et al. Aug 1996 A
5547117 Hamblin et al. Aug 1996 A
5549583 Sanford et al. Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5549627 Kieturakis Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5551622 Yoon Sep 1996 A
5553675 Pitzen et al. Sep 1996 A
5553765 Knodel et al. Sep 1996 A
5554148 Aebischer et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5558671 Yates Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562241 Knodel et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5562690 Green et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5563481 Krause Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5569161 Ebling et al. Oct 1996 A
5569270 Weng Oct 1996 A
5569284 Young et al. Oct 1996 A
5571090 Sherts Nov 1996 A
5571100 Goble et al. Nov 1996 A
5571116 Bolanos et al. Nov 1996 A
5571285 Chow et al. Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5574431 McKeown et al. Nov 1996 A
5575054 Klinzing et al. Nov 1996 A
5575789 Bell et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5577654 Bishop Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5582611 Tsuruta et al. Dec 1996 A
5582617 Klieman et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5591187 Dekel Jan 1997 A
5597107 Knodel et al. Jan 1997 A
5599151 Daum et al. Feb 1997 A
5599279 Slotman et al. Feb 1997 A
5599344 Paterson Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5599852 Scopelianos et al. Feb 1997 A
5601224 Bishop et al. Feb 1997 A
5601573 Fogelberg et al. Feb 1997 A
5603443 Clark et al. Feb 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5607095 Smith et al. Mar 1997 A
5607433 Polla et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5609285 Grant et al. Mar 1997 A
5609601 Kolesa et al. Mar 1997 A
5611709 McAnulty Mar 1997 A
5613966 Makower et al. Mar 1997 A
5615820 Viola Apr 1997 A
5618294 Aust et al. Apr 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5620289 Curry Apr 1997 A
5620452 Yoon Apr 1997 A
5624398 Smith et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626587 Bishop et al. May 1997 A
5626595 Sklar et al. May 1997 A
5628446 Geiste et al. May 1997 A
5628743 Cimino May 1997 A
5628745 Bek May 1997 A
5630539 Plyley et al. May 1997 A
5630540 Blewett May 1997 A
5630541 Williamson, IV et al. May 1997 A
5630782 Adair May 1997 A
5632432 Schulze et al. May 1997 A
5632433 Grant et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5639008 Gallagher et al. Jun 1997 A
5643291 Pier et al. Jul 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5649956 Jensen et al. Jul 1997 A
5651491 Heaton et al. Jul 1997 A
5653373 Green et al. Aug 1997 A
5653374 Young et al. Aug 1997 A
5653677 Okada et al. Aug 1997 A
5653721 Knodel et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657429 Wang et al. Aug 1997 A
5657921 Young et al. Aug 1997 A
5658238 Suzuki et al. Aug 1997 A
5658281 Heard Aug 1997 A
5658300 Bito et al. Aug 1997 A
5658307 Exconde Aug 1997 A
5662258 Knodel et al. Sep 1997 A
5662260 Yoon Sep 1997 A
5662662 Bishop et al. Sep 1997 A
5665085 Nardella Sep 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669904 Platt, Jr. et al. Sep 1997 A
5669907 Platt, Jr. et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5673840 Schulze et al. Oct 1997 A
5673841 Schulze et al. Oct 1997 A
5673842 Bittner et al. Oct 1997 A
5674286 D'Alessio et al. Oct 1997 A
5678748 Plyley et al. Oct 1997 A
5680981 Mililli et al. Oct 1997 A
5680982 Schulze et al. Oct 1997 A
5680983 Plyley et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5685474 Seeber Nov 1997 A
5686090 Schilder et al. Nov 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5692668 Schulze et al. Dec 1997 A
5693020 Rauh Dec 1997 A
5693042 Boiarski et al. Dec 1997 A
5693051 Schulze et al. Dec 1997 A
5695494 Becker Dec 1997 A
5695502 Pier et al. Dec 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697542 Knodel et al. Dec 1997 A
5697543 Burdorff Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5700270 Peyser et al. Dec 1997 A
5702387 Arts et al. Dec 1997 A
5702408 Wales et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5704087 Strub Jan 1998 A
5704534 Huitema et al. Jan 1998 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5707392 Kortenbach Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5709706 Kienzle et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5712460 Carr et al. Jan 1998 A
5713128 Schrenk et al. Feb 1998 A
5713505 Huitema Feb 1998 A
5713895 Lontine et al. Feb 1998 A
5713896 Nardella Feb 1998 A
5713920 Bezwada et al. Feb 1998 A
5715987 Kelley et al. Feb 1998 A
5715988 Palmer Feb 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5718360 Green et al. Feb 1998 A
5718548 Costellessa Feb 1998 A
5718714 Livneh Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
D393067 Geary et al. Mar 1998 S
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5728110 Vidal et al. Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732821 Stone et al. Mar 1998 A
5732871 Clark et al. Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5733308 Daugherty et al. Mar 1998 A
5735445 Vidal et al. Apr 1998 A
5735848 Yates et al. Apr 1998 A
5735874 Measamer et al. Apr 1998 A
5738474 Blewett Apr 1998 A
5738648 Lands et al. Apr 1998 A
5743456 Jones et al. Apr 1998 A
5747953 Philipp May 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5752644 Bolanos et al. May 1998 A
5752965 Francis et al. May 1998 A
5755717 Yates et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769748 Eyerly et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5772379 Evensen Jun 1998 A
5772578 Heimberger et al. Jun 1998 A
5772659 Becker et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5778939 Hok-Yin Jul 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5782749 Riza Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5784934 Izumisawa Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5787897 Kieturakis Aug 1998 A
5792135 Madhani et al. Aug 1998 A
5792165 Klieman et al. Aug 1998 A
5794834 Hamblin et al. Aug 1998 A
5796188 Bays Aug 1998 A
5797536 Smith et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5797906 Rhum et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5799857 Robertson et al. Sep 1998 A
5800379 Edwards Sep 1998 A
5800423 Jensen Sep 1998 A
5806676 Wasgien Sep 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5809441 McKee Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810846 Virnich et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5813813 Daum et al. Sep 1998 A
5814055 Knodel et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817091 Nardella et al. Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5817109 McGarry et al. Oct 1998 A
5817119 Klieman et al. Oct 1998 A
5820009 Melling et al. Oct 1998 A
5823066 Huitema et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5829662 Allen et al. Nov 1998 A
5833690 Yates et al. Nov 1998 A
5833695 Yoon Nov 1998 A
5833696 Whitfield et al. Nov 1998 A
5836503 Ehrenfels et al. Nov 1998 A
5836960 Kolesa et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5843021 Edwards et al. Dec 1998 A
5843096 Igaki et al. Dec 1998 A
5843097 Mayenberger et al. Dec 1998 A
5843122 Riza Dec 1998 A
5843132 Ilvento Dec 1998 A
5843169 Taheri Dec 1998 A
5846254 Schulze et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5849023 Mericle Dec 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5860581 Robertson et al. Jan 1999 A
5860975 Goble et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5871135 Williamson, IV et al. Feb 1999 A
5873885 Weidenbenner Feb 1999 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5878607 Nunes et al. Mar 1999 A
5878937 Green et al. Mar 1999 A
5878938 Bittner et al. Mar 1999 A
5891160 Williamson, IV et al. Apr 1999 A
5893506 Powell Apr 1999 A
5893835 Witt et al. Apr 1999 A
5893878 Pierce Apr 1999 A
5894979 Powell Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5899914 Zirps et al. May 1999 A
5901895 Heaton et al. May 1999 A
5902312 Frater et al. May 1999 A
5903117 Gregory May 1999 A
5904647 Ouchi May 1999 A
5904693 Dicesare et al. May 1999 A
5904702 Ek et al. May 1999 A
5906625 Bito et al. May 1999 A
5908402 Blythe Jun 1999 A
5908427 McKean et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5916225 Kugel Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5921956 Grinberg et al. Jul 1999 A
5928256 Riza Jul 1999 A
5931847 Bittner et al. Aug 1999 A
5931853 McEwen et al. Aug 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5938667 Peyser et al. Aug 1999 A
5941442 Geiste et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5944172 Hannula Aug 1999 A
5944715 Goble et al. Aug 1999 A
5947984 Whipple Sep 1999 A
5948030 Miller et al. Sep 1999 A
5951516 Bunyan Sep 1999 A
5951552 Long et al. Sep 1999 A
5951574 Stefanchik et al. Sep 1999 A
5951581 Saadat et al. Sep 1999 A
5954259 Viola et al. Sep 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5971916 Koren Oct 1999 A
5973221 Collyer et al. Oct 1999 A
5977746 Hershberger et al. Nov 1999 A
5984949 Levin Nov 1999 A
5988479 Palmer Nov 1999 A
5997528 Bisch et al. Dec 1999 A
5997552 Person et al. Dec 1999 A
6001108 Wang et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004319 Goble et al. Dec 1999 A
6004335 Vaitekunas et al. Dec 1999 A
6010054 Johnson et al. Jan 2000 A
6010513 Törmälä et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6013076 Goble et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6015417 Reynolds, Jr. Jan 2000 A
6017322 Snoke et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6017356 Frederick et al. Jan 2000 A
6018227 Kumar et al. Jan 2000 A
6022352 Vandewalle Feb 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024748 Manzo et al. Feb 2000 A
6024764 Schroeppel Feb 2000 A
6027501 Goble et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6033378 Lundquist et al. Mar 2000 A
6033399 Gines Mar 2000 A
6033427 Lee Mar 2000 A
6037724 Buss et al. Mar 2000 A
6037927 Rosenberg Mar 2000 A
6039733 Buysse et al. Mar 2000 A
6039734 Goble Mar 2000 A
6042601 Smith Mar 2000 A
6045560 McKean et al. Apr 2000 A
6047861 Vidal et al. Apr 2000 A
6049145 Austin et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6050990 Tankovich et al. Apr 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053390 Green et al. Apr 2000 A
6053922 Krause et al. Apr 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6056746 Goble et al. May 2000 A
6062360 Shields May 2000 A
6063095 Wang et al. May 2000 A
6063097 Oi et al. May 2000 A
6063098 Houser et al. May 2000 A
6065679 Levie et al. May 2000 A
6065919 Peck May 2000 A
6066132 Chen et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6071233 Ishikawa et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6074401 Gardiner et al. Jun 2000 A
6077286 Cuschieri et al. Jun 2000 A
6079606 Milliman et al. Jun 2000 A
6080181 Jensen et al. Jun 2000 A
6082577 Coates et al. Jul 2000 A
6083191 Rose Jul 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble Jul 2000 A
6099537 Sugai et al. Aug 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6104304 Clark et al. Aug 2000 A
6106511 Jensen Aug 2000 A
6109500 Alli et al. Aug 2000 A
6117148 Ravo et al. Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120433 Mizuno et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6123241 Walter et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126058 Adams et al. Oct 2000 A
6126359 Dittrich et al. Oct 2000 A
6126670 Walker et al. Oct 2000 A
6131789 Schulze et al. Oct 2000 A
6131790 Piraka Oct 2000 A
6132368 Cooper Oct 2000 A
6139546 Koenig et al. Oct 2000 A
6149660 Laufer et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6155473 Tompkins et al. Dec 2000 A
6156056 Kearns et al. Dec 2000 A
6159146 El Gazayerli Dec 2000 A
6159200 Verdura et al. Dec 2000 A
6159224 Yoon Dec 2000 A
6162208 Hipps Dec 2000 A
6162537 Martin et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6165184 Verdura et al. Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6168605 Measamer et al. Jan 2001 B1
6171305 Sherman Jan 2001 B1
6171316 Kovac et al. Jan 2001 B1
6171330 Benchetrit Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6175290 Forsythe et al. Jan 2001 B1
6179195 Adams et al. Jan 2001 B1
6179776 Adams et al. Jan 2001 B1
6181105 Cutolo et al. Jan 2001 B1
6182673 Kindermann et al. Feb 2001 B1
6187003 Buysse et al. Feb 2001 B1
6190386 Rydell Feb 2001 B1
6193129 Bittner et al. Feb 2001 B1
6197042 Ginn et al. Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6202914 Geiste et al. Mar 2001 B1
6206897 Jamiolkowski et al. Mar 2001 B1
6206904 Ouchi Mar 2001 B1
6210403 Klicek Apr 2001 B1
6213999 Platt, Jr. et al. Apr 2001 B1
6214028 Yoon et al. Apr 2001 B1
6220368 Ark et al. Apr 2001 B1
6223100 Green Apr 2001 B1
6223835 Habedank et al. May 2001 B1
6224617 Saadat et al. May 2001 B1
6228081 Goble May 2001 B1
6228083 Lands et al. May 2001 B1
6228084 Kirwan, Jr. May 2001 B1
6231565 Tovey et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6241140 Adams et al. Jun 2001 B1
6241723 Heim et al. Jun 2001 B1
6245084 Mark et al. Jun 2001 B1
6248116 Chevillon et al. Jun 2001 B1
6248117 Blatter Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6249105 Andrews et al. Jun 2001 B1
6250532 Green et al. Jun 2001 B1
6258107 Balázs et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6270508 Klieman et al. Aug 2001 B1
6273876 Klima et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6277114 Bullivant et al. Aug 2001 B1
6293942 Goble et al. Sep 2001 B1
6296640 Wampler et al. Oct 2001 B1
6302311 Adams et al. Oct 2001 B1
6305891 Burlingame Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6306149 Meade Oct 2001 B1
6309403 Minor et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6320123 Reimers Nov 2001 B1
6322494 Bullivant et al. Nov 2001 B1
6324339 Hudson et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6331181 Tierney et al. Dec 2001 B1
6331761 Kumar et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334860 Dorn Jan 2002 B1
6334861 Chandler et al. Jan 2002 B1
6336926 Goble Jan 2002 B1
6338737 Toledano Jan 2002 B1
6343731 Adams et al. Feb 2002 B1
6346077 Taylor et al. Feb 2002 B1
6352503 Matsui et al. Mar 2002 B1
6352532 Kramer et al. Mar 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6356072 Chass Mar 2002 B1
6358224 Tims et al. Mar 2002 B1
6364877 Goble et al. Apr 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6370981 Watarai Apr 2002 B2
6373152 Wang et al. Apr 2002 B1
6383201 Dong May 2002 B1
6387113 Hawkins et al. May 2002 B1
6387114 Adams May 2002 B2
6391038 Vargas et al. May 2002 B2
6392854 O'Gorman May 2002 B1
6398781 Goble et al. Jun 2002 B1
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
6406440 Stefanchik Jun 2002 B1
6406472 Jensen Jun 2002 B1
6409724 Penny et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6413274 Pedros Jul 2002 B1
6416486 Wampler Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6419695 Gabbay Jul 2002 B1
6423079 Blake, III Jul 2002 B1
RE37814 Allgeyer Aug 2002 E
6428070 Takanashi et al. Aug 2002 B1
6429611 Li Aug 2002 B1
6430298 Kettl et al. Aug 2002 B1
6432065 Burdorff et al. Aug 2002 B1
6436097 Nardella Aug 2002 B1
6436107 Wang et al. Aug 2002 B1
6436110 Bowman et al. Aug 2002 B2
6436122 Frank et al. Aug 2002 B1
6439439 Rickard et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6441577 Blumenkranz et al. Aug 2002 B2
6443973 Whitman Sep 2002 B1
6447518 Krause et al. Sep 2002 B1
6447864 Johnson et al. Sep 2002 B2
6450391 Kayan et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6454781 Witt et al. Sep 2002 B1
6468275 Wampler et al. Oct 2002 B1
6471106 Reining Oct 2002 B1
6471659 Eggers et al. Oct 2002 B2
6478210 Adams et al. Nov 2002 B2
6482200 Shippert Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6485667 Tan Nov 2002 B1
6488196 Fenton, Jr. Dec 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6491690 Goble et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6492785 Kasten et al. Dec 2002 B1
6494896 D'Alessio et al. Dec 2002 B1
6498480 Manara Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500194 Benderev et al. Dec 2002 B2
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6505768 Whitman Jan 2003 B2
6510854 Goble Jan 2003 B2
6511468 Cragg et al. Jan 2003 B1
6512360 Goto et al. Jan 2003 B1
6517528 Pantages et al. Feb 2003 B1
6517535 Edwards Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6522101 Malackowski Feb 2003 B2
6527782 Hogg et al. Mar 2003 B2
6527785 Sancoff et al. Mar 2003 B2
6533157 Whitman Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6535764 Imran et al. Mar 2003 B2
6543456 Freeman Apr 2003 B1
6545384 Pelrine et al. Apr 2003 B1
6547786 Goble Apr 2003 B1
6550546 Thurler et al. Apr 2003 B2
6551333 Kuhns et al. Apr 2003 B2
6554861 Knox et al. Apr 2003 B2
6555770 Kawase Apr 2003 B2
6558378 Sherman et al. May 2003 B2
6558379 Batchelor et al. May 2003 B1
6565560 Goble et al. May 2003 B1
6566619 Gillman et al. May 2003 B2
6569085 Kortenbach et al. May 2003 B2
6569171 DeGuillebon et al. May 2003 B2
6578751 Hartwick Jun 2003 B2
6582427 Goble et al. Jun 2003 B1
6582441 He et al. Jun 2003 B1
6583533 Pelrine et al. Jun 2003 B2
6585144 Adams et al. Jul 2003 B2
6587750 Gerbi et al. Jul 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6588931 Betzner et al. Jul 2003 B2
6589164 Flaherty Jul 2003 B1
6592538 Hotchkiss et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6596296 Nelson et al. Jul 2003 B1
6596304 Bayon et al. Jul 2003 B1
6596432 Kawakami et al. Jul 2003 B2
D478665 Isaacs et al. Aug 2003 S
D478986 Johnston et al. Aug 2003 S
6601749 Sullivan et al. Aug 2003 B2
6602252 Mollenauer Aug 2003 B2
6602262 Griego et al. Aug 2003 B2
6605078 Adams Aug 2003 B2
6605669 Awokola et al. Aug 2003 B2
6607475 Doyle et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6613069 Boyd et al. Sep 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620166 Wenstrom, Jr. et al. Sep 2003 B1
6626834 Dunne et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6629974 Penny et al. Oct 2003 B2
6629988 Weadock Oct 2003 B2
6635838 Kornelson Oct 2003 B1
6636412 Smith Oct 2003 B2
6638108 Tachi Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
RE38335 Aust et al. Nov 2003 E
6641528 Torii Nov 2003 B2
6644532 Green et al. Nov 2003 B2
6645201 Utley et al. Nov 2003 B1
6646307 Yu et al. Nov 2003 B1
6648816 Irion et al. Nov 2003 B2
6652595 Nicolo Nov 2003 B1
D484243 Ryan et al. Dec 2003 S
D484595 Ryan et al. Dec 2003 S
D484596 Ryan et al. Dec 2003 S
6656177 Truckai et al. Dec 2003 B2
6656193 Grant et al. Dec 2003 B2
6663623 Oyama et al. Dec 2003 B1
6663641 Kovac et al. Dec 2003 B1
6666854 Lange Dec 2003 B1
6666875 Sakurai et al. Dec 2003 B1
6667825 Lu et al. Dec 2003 B2
6669073 Milliman et al. Dec 2003 B2
6671185 Duval Dec 2003 B2
D484977 Ryan et al. Jan 2004 S
6676660 Wampler et al. Jan 2004 B2
6679269 Swanson Jan 2004 B2
6679410 Würsch et al. Jan 2004 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685727 Fisher et al. Feb 2004 B2
6689153 Skiba Feb 2004 B1
6692507 Pugsley et al. Feb 2004 B2
6695198 Adams et al. Feb 2004 B2
6695199 Whitman Feb 2004 B2
6695774 Hale et al. Feb 2004 B2
6697048 Rosenberg et al. Feb 2004 B2
6698643 Whitman Mar 2004 B2
6699235 Wallace et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6705503 Pedicini et al. Mar 2004 B1
6709445 Boebel et al. Mar 2004 B2
6712773 Viola Mar 2004 B1
6716223 Leopold et al. Apr 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6722552 Fenton, Jr. Apr 2004 B2
6723087 O'Neill et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6726697 Nicholas et al. Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6729119 Schnipke et al. May 2004 B2
6736825 Blatter et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6740030 Martone et al. May 2004 B2
6747121 Gogolewski Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6752768 Burdorff et al. Jun 2004 B2
6752816 Culp et al. Jun 2004 B2
6755195 Lemke et al. Jun 2004 B1
6755338 Hahnen et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761685 Adams et al. Jul 2004 B2
6762339 Klun et al. Jul 2004 B1
6764445 Ramans et al. Jul 2004 B2
6767352 Field et al. Jul 2004 B2
6767356 Kanner et al. Jul 2004 B2
6769590 Vresh et al. Aug 2004 B2
6769594 Orban, III Aug 2004 B2
6770027 Banik et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6777838 Miekka et al. Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786864 Matsuura et al. Sep 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6790173 Saadat et al. Sep 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793661 Hamilton et al. Sep 2004 B2
6793663 Kneifel et al. Sep 2004 B2
6802843 Truckai et al. Oct 2004 B2
6805273 Bilotti et al. Oct 2004 B2
6806808 Watters et al. Oct 2004 B1
6808525 Latterell et al. Oct 2004 B2
6814741 Bowman et al. Nov 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6818018 Sawhney Nov 2004 B1
6820791 Adams Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6821282 Perry et al. Nov 2004 B2
6821284 Sturtz et al. Nov 2004 B2
6827246 Sullivan et al. Dec 2004 B2
6827712 Tovey et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6828902 Casden Dec 2004 B2
6830174 Hillstead et al. Dec 2004 B2
6831629 Nishino et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6834001 Myono Dec 2004 B2
6835173 Couvillon, Jr. Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835336 Watt Dec 2004 B2
6837846 Jaffe et al. Jan 2005 B2
6837883 Moll et al. Jan 2005 B2
6838493 Williams et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6843403 Whitman Jan 2005 B2
6843789 Goble Jan 2005 B2
6843793 Brock et al. Jan 2005 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6850817 Green Feb 2005 B1
6853879 Sunaoshi Feb 2005 B2
6858005 Ohline et al. Feb 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6861142 Wilkie et al. Mar 2005 B1
6863694 Boyce et al. Mar 2005 B1
6866178 Adams et al. Mar 2005 B2
6866671 Tierney et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6869430 Balbierz et al. Mar 2005 B2
6869435 Blake, III Mar 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6874669 Adams et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6878106 Herrmann Apr 2005 B1
6889116 Jinno May 2005 B2
6893435 Goble May 2005 B2
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905498 Hooven Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6911033 de Guillebon et al. Jun 2005 B2
6911916 Wang et al. Jun 2005 B1
6913579 Truckai et al. Jul 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6921397 Corcoran et al. Jul 2005 B2
6921412 Black et al. Jul 2005 B1
6923093 Ullah Aug 2005 B2
6923803 Goble Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929641 Goble et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6931830 Liao Aug 2005 B2
6932218 Kosann et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6936042 Wallace et al. Aug 2005 B2
6936948 Bell et al. Aug 2005 B2
6939358 Palacios et al. Sep 2005 B2
6942662 Goble et al. Sep 2005 B2
6945444 Gresham et al. Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6953138 Dworak et al. Oct 2005 B1
6953139 Milliman et al. Oct 2005 B2
6958035 Friedman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
6959852 Shelton, IV Nov 2005 B2
6960107 Schaub et al. Nov 2005 B1
6960163 Ewers et al. Nov 2005 B2
6960220 Marino et al. Nov 2005 B2
6962587 Johnson et al. Nov 2005 B2
6963792 Green Nov 2005 B1
6964363 Wales et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6971988 Orban, III Dec 2005 B2
6972199 Lebouitz et al. Dec 2005 B2
6974462 Sater Dec 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6981978 Gannoe Jan 2006 B2
6984203 Tartaglia et al. Jan 2006 B2
6984231 Goble et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6990796 Schnipke et al. Jan 2006 B2
6993413 Sunaoshi Jan 2006 B2
6994708 Manzo Feb 2006 B2
6995729 Govari et al. Feb 2006 B2
6997931 Sauer et al. Feb 2006 B2
6998816 Wieck et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze Feb 2006 B2
7001380 Goble Feb 2006 B2
7001408 Knodel et al. Feb 2006 B2
7008435 Cummins Mar 2006 B2
7009039 Yayon et al. Mar 2006 B2
7011657 Truckai et al. Mar 2006 B2
7018357 Emmons Mar 2006 B2
7018390 Turovskiy et al. Mar 2006 B2
7021669 Lindermeir et al. Apr 2006 B1
7025743 Mann et al. Apr 2006 B2
7029435 Nakao Apr 2006 B2
7029439 Roberts et al. Apr 2006 B2
7032798 Whitman et al. Apr 2006 B2
7032799 Viola et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7036680 Flannery May 2006 B1
7037344 Kagan et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7041868 Greene et al. May 2006 B2
7043852 Hayashida et al. May 2006 B2
7044350 Kameyama et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044353 Mastri et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7048745 Tierney et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7052499 Steger et al. May 2006 B2
7055730 Ehrenfels et al. Jun 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059331 Adams et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7063671 Couvillon, Jr. Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7070559 Adams et al. Jul 2006 B2
7070597 Truckai et al. Jul 2006 B2
7071287 Rhine et al. Jul 2006 B2
7075770 Smith Jul 2006 B1
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083073 Yoshie et al. Aug 2006 B2
7083075 Swayze et al. Aug 2006 B2
7083571 Wang et al. Aug 2006 B2
7083615 Peterson et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7083620 Jahns et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7090637 Danitz et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7090683 Brock et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7094202 Nobis et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7097644 Long Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
7098794 Lindsay et al. Aug 2006 B2
7100949 Williams et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7104741 Krohn Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7111769 Wales Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
RE39358 Goble Oct 2006 E
7114642 Whitman Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7121446 Arad et al. Oct 2006 B2
7122028 Looper et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7126303 Farritor et al. Oct 2006 B2
7126879 Snyder Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128254 Shelton, IV Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7133601 Phillips et al. Nov 2006 B2
7134587 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7137981 Long Nov 2006 B2
7139016 Squilla et al. Nov 2006 B2
7140527 Ehrenfels et al. Nov 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147139 Schwemberger et al. Dec 2006 B2
7147140 Wukusick et al. Dec 2006 B2
7147637 Goble Dec 2006 B2
7147650 Lee Dec 2006 B2
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160299 Baily Jan 2007 B2
7161036 Oikawa et al. Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7172593 Trieu et al. Feb 2007 B2
7179223 Motoki et al. Feb 2007 B2
7179267 Nolan et al. Feb 2007 B2
7182239 Myers Feb 2007 B1
7182763 Nardella Feb 2007 B2
7183737 Kitagawa Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7189207 Viola Mar 2007 B2
7195627 Amoah et al. Mar 2007 B2
7199537 Okamura et al. Apr 2007 B2
7202653 Pai Apr 2007 B2
7204835 Latterell et al. Apr 2007 B2
7207233 Wadge Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7207472 Wukusick et al. Apr 2007 B2
7207556 Saitoh et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7210609 Leiboff et al. May 2007 B2
7211081 Goble May 2007 B2
7211084 Goble et al. May 2007 B2
7211092 Hughett May 2007 B2
7211979 Khatib et al. May 2007 B2
7213736 Wales May 2007 B2
7214224 Goble May 2007 B2
7215517 Takamatsu May 2007 B2
7217285 Vargas et al. May 2007 B2
7220260 Fleming et al. May 2007 B2
7220272 Weadock May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7234624 Gresham et al. Jun 2007 B2
7235089 McGuckin, Jr. Jun 2007 B1
7235302 Jing et al. Jun 2007 B2
7237708 Guy et al. Jul 2007 B1
7238195 Viola Jul 2007 B2
7238901 Kim et al. Jul 2007 B2
7241288 Braun Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7247161 Johnston et al. Jul 2007 B2
7249267 Chapuis Jul 2007 B2
7252660 Kunz Aug 2007 B2
7255696 Goble et al. Aug 2007 B2
7256695 Hamel et al. Aug 2007 B2
7258262 Mastri et al. Aug 2007 B2
7258546 Beier et al. Aug 2007 B2
7260431 Libbus et al. Aug 2007 B2
7265374 Lee et al. Sep 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7278949 Bader Oct 2007 B2
7278994 Goble Oct 2007 B2
7282048 Goble et al. Oct 2007 B2
7286850 Frielink et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7293685 Ehrenfels et al. Nov 2007 B2
7295893 Sunaoshi Nov 2007 B2
7295907 Lu et al. Nov 2007 B2
7296722 Ivanko Nov 2007 B2
7296724 Green et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300373 Jinno et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303106 Milliman et al. Dec 2007 B2
7303107 Milliman et al. Dec 2007 B2
7303108 Shelton, IV Dec 2007 B2
7303502 Thompson Dec 2007 B2
7303556 Metzger Dec 2007 B2
7306597 Manzo Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7322859 Evans Jan 2008 B2
7322975 Goble et al. Jan 2008 B2
7322994 Nicholas et al. Jan 2008 B2
7324572 Chang Jan 2008 B2
7326203 Papineau et al. Feb 2008 B2
7326213 Benderev et al. Feb 2008 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7330004 DeJonge et al. Feb 2008 B2
7331340 Barney Feb 2008 B2
7334717 Rethy et al. Feb 2008 B2
7334718 McAlister et al. Feb 2008 B2
7335199 Goble et al. Feb 2008 B2
7336048 Lohr Feb 2008 B2
7336184 Smith et al. Feb 2008 B2
7338513 Lee et al. Mar 2008 B2
7341591 Grinberg Mar 2008 B2
7343920 Toby et al. Mar 2008 B2
7344532 Goble et al. Mar 2008 B2
7344533 Pearson et al. Mar 2008 B2
7346344 Fontaine Mar 2008 B2
7348763 Reinhart et al. Mar 2008 B1
RE40237 Bilotti et al. Apr 2008 E
7351258 Ricotta et al. Apr 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7354502 Polat et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7357806 Rivera et al. Apr 2008 B2
7361195 Schwartz et al. Apr 2008 B2
7364060 Milliman Apr 2008 B2
7364061 Swayze Apr 2008 B2
7377918 Amoah May 2008 B2
7377928 Zubik et al. May 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7384417 Cucin Jun 2008 B2
7386365 Nixon Jun 2008 B2
7386730 Uchikubo Jun 2008 B2
7388217 Buschbeck et al. Jun 2008 B2
7388484 Hsu Jun 2008 B2
7391173 Schena Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7397364 Govari Jul 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7400752 Zacharias Jul 2008 B2
7401721 Holsten et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7404822 Viart et al. Jul 2008 B2
7407074 Ortiz et al. Aug 2008 B2
7407075 Holsten et al. Aug 2008 B2
7407076 Racenet et al. Aug 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7410086 Ortiz et al. Aug 2008 B2
7413563 Corcoran et al. Aug 2008 B2
7416101 Shelton, IV Aug 2008 B2
7418078 Blanz et al. Aug 2008 B2
RE40514 Mastri et al. Sep 2008 E
7419080 Smith et al. Sep 2008 B2
7419081 Ehrenfels et al. Sep 2008 B2
7419495 Menn et al. Sep 2008 B2
7422136 Marczyk Sep 2008 B1
7422138 Bilotti et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7427607 Suzuki Sep 2008 B2
7431188 Marczyk Oct 2008 B1
7431189 Shelton, IV et al. Oct 2008 B2
7431694 Stefanchik et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7438718 Milliman et al. Oct 2008 B2
7439354 Lenges et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7442201 Pugsley et al. Oct 2008 B2
7443547 Moreno et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7455208 Wales et al. Nov 2008 B2
7455676 Holsten et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7462187 Johnston et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7467849 Silverbrook et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7472816 Holsten et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7473263 Johnston et al. Jan 2009 B2
7476237 Taniguchi et al. Jan 2009 B2
7479608 Smith Jan 2009 B2
7481347 Roy Jan 2009 B2
7481348 Marczyk Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7485133 Cannon et al. Feb 2009 B2
7485142 Milo Feb 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7490749 Schall Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7501198 Barlev et al. Mar 2009 B2
7503474 Hillstead et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7507202 Schoellhorn Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7513408 Shelton, IV et al. Apr 2009 B2
7517356 Heinrich Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7530984 Sonnenschein et al. May 2009 B2
7530985 Takemoto et al. May 2009 B2
7533906 Luettgen et al. May 2009 B2
7534259 Lashinski et al. May 2009 B2
7540867 Jinno et al. Jun 2009 B2
7542807 Bertolero et al. Jun 2009 B2
7546939 Adams et al. Jun 2009 B2
7546940 Milliman et al. Jun 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549563 Mather et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7552854 Wixey et al. Jun 2009 B2
7553173 Kowalick Jun 2009 B2
7556185 Viola Jul 2009 B2
7556186 Milliman Jul 2009 B2
7556647 Drews et al. Jul 2009 B2
7559449 Viola Jul 2009 B2
7559450 Wales et al. Jul 2009 B2
7559452 Wales et al. Jul 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7562910 Kertesz et al. Jul 2009 B2
7563862 Sieg et al. Jul 2009 B2
7565993 Milliman et al. Jul 2009 B2
7566300 Devierre et al. Jul 2009 B2
7567045 Fristedt Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7568604 Ehrenfels et al. Aug 2009 B2
7568619 Todd et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7583063 Dooley Sep 2009 B2
7588174 Holsten et al. Sep 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7591783 Boulais et al. Sep 2009 B2
7591818 Bertolero et al. Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7597230 Racenet et al. Oct 2009 B2
7597693 Garrison Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7611474 Hibner et al. Nov 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615067 Lee et al. Nov 2009 B2
7617961 Viola Nov 2009 B2
7624902 Marczyk et al. Dec 2009 B2
7624903 Green et al. Dec 2009 B2
7625370 Hart et al. Dec 2009 B2
7631793 Rethy et al. Dec 2009 B2
7631794 Rethy et al. Dec 2009 B2
7635074 Olson et al. Dec 2009 B2
7637409 Marczyk Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7638958 Philipp et al. Dec 2009 B2
7641091 Olson et al. Jan 2010 B2
7641092 Kruszynski et al. Jan 2010 B2
7641093 Doll et al. Jan 2010 B2
7641095 Viola Jan 2010 B2
7644783 Roberts et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645230 Mikkaichi et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7650185 Maile et al. Jan 2010 B2
7651017 Ortiz et al. Jan 2010 B2
7651498 Shifrin et al. Jan 2010 B2
7654431 Hueil et al. Feb 2010 B2
7655288 Bauman et al. Feb 2010 B2
7656131 Embrey et al. Feb 2010 B2
7658311 Boudreaux Feb 2010 B2
7658312 Vidal et al. Feb 2010 B2
7659219 Biran et al. Feb 2010 B2
7662161 Briganti et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674253 Fisher et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7674263 Ryan Mar 2010 B2
7674270 Layer Mar 2010 B2
7682307 Danitz et al. Mar 2010 B2
7682367 Shah et al. Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7688028 Phillips et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7691106 Schenberger et al. Apr 2010 B2
7694865 Scirica Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7699204 Viola Apr 2010 B2
7699835 Lee et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699846 Ryan Apr 2010 B2
7699856 Van Wyk et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7699860 Huitema et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708180 Murray et al. May 2010 B2
7708181 Cole et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7712182 Zeiler et al. May 2010 B2
7714239 Smith May 2010 B2
7717312 Beetel May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7717846 Zirps et al. May 2010 B2
7718180 Karp May 2010 B2
7718556 Matsuda et al. May 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721933 Ehrenfels et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7722610 Viola et al. May 2010 B2
7726537 Olson et al. Jun 2010 B2
7726538 Holsten et al. Jun 2010 B2
7726539 Holsten et al. Jun 2010 B2
7727954 McKay Jun 2010 B2
7729742 Govari Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7731073 Wixey et al. Jun 2010 B2
7731724 Huitema et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7736374 Vaughan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7742036 Grant et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7744624 Bettuchi Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7744628 Viola Jun 2010 B2
7748587 Haramiishi et al. Jul 2010 B2
7749204 Dhanaraj et al. Jul 2010 B2
7751870 Whitman Jul 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753246 Scirica Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7758612 Shipp Jul 2010 B2
7766207 Mather et al. Aug 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7766821 Brunnen et al. Aug 2010 B2
7766894 Weitzner et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7770776 Chen et al. Aug 2010 B2
7771396 Stefanchik et al. Aug 2010 B2
7772720 McGee et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7778004 Nerheim et al. Aug 2010 B2
7780054 Wales Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7784662 Wales et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7787256 Chan et al. Aug 2010 B2
7789875 Brock et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7799044 Johnston et al. Sep 2010 B2
7799965 Patel et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810690 Bilotti et al. Oct 2010 B2
7810691 Boyden et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815092 Whitman et al. Oct 2010 B2
7815565 Stefanchik et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819884 Lee et al. Oct 2010 B2
7819886 Whitfield et al. Oct 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7823760 Zemlok et al. Nov 2010 B2
7824401 Manzo et al. Nov 2010 B2
7824426 Racenet et al. Nov 2010 B2
7828189 Holsten et al. Nov 2010 B2
7828794 Sartor Nov 2010 B2
7828808 Hinman et al. Nov 2010 B2
7831292 Quaid et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832611 Boyden et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7833234 Bailly et al. Nov 2010 B2
7836400 May et al. Nov 2010 B2
7837079 Holsten et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7837081 Holsten et al. Nov 2010 B2
7837694 Tethrake et al. Nov 2010 B2
7838789 Stoffers et al. Nov 2010 B2
7841503 Sonnenschein et al. Nov 2010 B2
7842025 Coleman et al. Nov 2010 B2
7842028 Lee Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845534 Viola et al. Dec 2010 B2
7845535 Scircia Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7850642 Moll et al. Dec 2010 B2
7850982 Stopek et al. Dec 2010 B2
7854736 Ryan Dec 2010 B2
7857183 Shelton, IV Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7857813 Schmitz et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7862579 Ortiz et al. Jan 2011 B2
7866525 Scirica Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7866528 Olson et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7883465 Donofrio et al. Feb 2011 B2
7886951 Hessler Feb 2011 B2
7886952 Scirica et al. Feb 2011 B2
7887530 Zemlok et al. Feb 2011 B2
7887535 Lands et al. Feb 2011 B2
7891531 Ward Feb 2011 B1
7891532 Mastri et al. Feb 2011 B2
7892245 Liddicoat et al. Feb 2011 B2
7893586 West et al. Feb 2011 B2
7896214 Farascioni Mar 2011 B2
7896215 Adams et al. Mar 2011 B2
7896877 Hall et al. Mar 2011 B2
7896895 Boudreaux et al. Mar 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7905889 Catanese, III et al. Mar 2011 B2
7905902 Huitema et al. Mar 2011 B2
7909191 Baker et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7909221 Viola et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7913893 Mastri et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7914551 Ortiz et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7918376 Knodel et al. Apr 2011 B1
7918377 Measamer et al. Apr 2011 B2
7918848 Lau et al. Apr 2011 B2
7918867 Dana et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7922743 Heinrich et al. Apr 2011 B2
7923144 Kohn et al. Apr 2011 B2
7926691 Viola et al. Apr 2011 B2
7927328 Orszulak et al. Apr 2011 B2
7928281 Augustine Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7931660 Aranyi et al. Apr 2011 B2
7931695 Ringeisen Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7934631 Balbierz et al. May 2011 B2
7935773 Hadba et al. May 2011 B2
7938307 Bettuchi May 2011 B2
7941865 Seman, Jr. et al. May 2011 B2
7942303 Shah May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7944175 Mori et al. May 2011 B2
7945792 Cherpantier May 2011 B2
7950560 Zemlok et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951071 Whitman et al. May 2011 B2
7951166 Orban et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7954687 Zemlok et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7955322 Devengenzo et al. Jun 2011 B2
7955380 Chu et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7959052 Sonnenschein et al. Jun 2011 B2
7963432 Knodel et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7963964 Santilli et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
7967181 Viola et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
7972298 Wallace et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7987405 Turner et al. Jul 2011 B2
7988026 Knodel et al. Aug 2011 B2
7988027 Olson et al. Aug 2011 B2
7988028 Farascioni et al. Aug 2011 B2
7992757 Wheeler et al. Aug 2011 B2
7993360 Hacker et al. Aug 2011 B2
7994670 Ji Aug 2011 B2
7997468 Farascioni Aug 2011 B2
7997469 Olson et al. Aug 2011 B2
8002696 Suzuki Aug 2011 B2
8002784 Jinno et al. Aug 2011 B2
8002785 Weiss et al. Aug 2011 B2
8002795 Beetel Aug 2011 B2
8006365 Levin et al. Aug 2011 B2
8006885 Marczyk Aug 2011 B2
8006889 Adams et al. Aug 2011 B2
8007511 Brock et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011551 Marczyk et al. Sep 2011 B2
8011553 Mastri et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8012170 Whitman et al. Sep 2011 B2
8016176 Kasvikis et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8016858 Whitman Sep 2011 B2
8016881 Furst Sep 2011 B2
8020742 Marczyk Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8021375 Aldrich et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8028884 Sniffin et al. Oct 2011 B2
8028885 Smith et al. Oct 2011 B2
8034077 Smith et al. Oct 2011 B2
8034363 Li et al. Oct 2011 B2
8037591 Spivey et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8038046 Smith et al. Oct 2011 B2
8038686 Huitema et al. Oct 2011 B2
8043207 Adams Oct 2011 B2
8043328 Hahnen et al. Oct 2011 B2
8044536 Nguyen et al. Oct 2011 B2
8047236 Perry Nov 2011 B2
8048503 Farnsworth et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8056788 Mastri et al. Nov 2011 B2
8057508 Shelton, IV Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8060250 Reiland et al. Nov 2011 B2
8061576 Cappola Nov 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8063619 Zhu et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8066168 Vidal et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
8070033 Milliman et al. Dec 2011 B2
8070035 Holsten et al. Dec 2011 B2
8070743 Kagan et al. Dec 2011 B2
8075571 Vitali et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8080004 Downey et al. Dec 2011 B2
8083118 Milliman et al. Dec 2011 B2
8083119 Prommersberger Dec 2011 B2
8083120 Shelton, IV et al. Dec 2011 B2
8084001 Burns et al. Dec 2011 B2
8085013 Wei et al. Dec 2011 B2
8087563 Milliman et al. Jan 2012 B2
8089509 Chatenever et al. Jan 2012 B2
8091756 Viola Jan 2012 B2
8092443 Bischoff Jan 2012 B2
8092932 Phillips et al. Jan 2012 B2
8096458 Hessler Jan 2012 B2
8097017 Viola Jan 2012 B2
8100310 Zemlok Jan 2012 B2
8100872 Patel Jan 2012 B2
8102278 Deck et al. Jan 2012 B2
8105350 Lee et al. Jan 2012 B2
8107925 Natsuno et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8109426 Milliman et al. Feb 2012 B2
8110208 Hen Feb 2012 B1
8113405 Milliman Feb 2012 B2
8113410 Hall et al. Feb 2012 B2
8114100 Smith et al. Feb 2012 B2
8122128 Burke Feb 2012 B2
8123103 Milliman Feb 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8125168 Johnson et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8127976 Scirica et al. Mar 2012 B2
8128624 Couture et al. Mar 2012 B2
8128643 Aranyi et al. Mar 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8132703 Milliman et al. Mar 2012 B2
8132706 Marczyk et al. Mar 2012 B2
8134306 Drader et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8136713 Hathaway et al. Mar 2012 B2
8137339 Jinno et al. Mar 2012 B2
8140417 Shibata Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8141763 Milliman Mar 2012 B2
8142425 Eggers Mar 2012 B2
8146790 Milliman Apr 2012 B2
8147485 Wham et al. Apr 2012 B2
8152041 Kostrzewski Apr 2012 B2
8154239 Katsuki et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157148 Scirica Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8157152 Holsten et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8157793 Omori et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162138 Bettenhausen et al. Apr 2012 B2
8162197 Mastri et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8167895 D'Agostino et al. May 2012 B2
8167898 Schaller et al. May 2012 B1
8170241 Roe et al. May 2012 B2
8172120 Boyden et al. May 2012 B2
8172122 Kasvikis et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8179705 Chapuis May 2012 B2
8180458 Kane et al. May 2012 B2
8181840 Milliman May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8191752 Scirica Jun 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8201721 Zemlok et al. Jun 2012 B2
8205779 Ma Jun 2012 B2
8205780 Sorrentino et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210415 Ward Jul 2012 B2
8210416 Milliman et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8214019 Govari et al. Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8215533 Viola et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8221424 Cha Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8226715 Hwang et al. Jul 2012 B2
8227946 Kim Jul 2012 B2
8228048 Spencer Jul 2012 B2
8231040 Zemlok et al. Jul 2012 B2
8231041 Marczyk et al. Jul 2012 B2
8231042 Hessler et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8236010 Ortiz et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8241308 Kortenbach et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8245594 Rogers et al. Aug 2012 B2
8245898 Smith et al. Aug 2012 B2
8245899 Swensgard et al. Aug 2012 B2
8245900 Scirica Aug 2012 B2
8245901 Stopek Aug 2012 B2
8246637 Viola et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8256655 Sniffin et al. Sep 2012 B2
8256656 Milliman et al. Sep 2012 B2
8257251 Shelton, IV et al. Sep 2012 B2
8257356 Bleich et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267924 Zemlok et al. Sep 2012 B2
8267946 Whitfield et al. Sep 2012 B2
8267951 Whayne et al. Sep 2012 B2
8269121 Smith Sep 2012 B2
8272553 Mastri et al. Sep 2012 B2
8272554 Whitman et al. Sep 2012 B2
8273404 Dave et al. Sep 2012 B2
8276801 Zemlok et al. Oct 2012 B2
8276802 Kostrzewski Oct 2012 B2
8277473 Sunaoshi et al. Oct 2012 B2
8281973 Wenchell et al. Oct 2012 B2
8281974 Hessler et al. Oct 2012 B2
8282654 Ferrari et al. Oct 2012 B2
8286845 Perry et al. Oct 2012 B2
8287561 Nunez et al. Oct 2012 B2
8292147 Viola Oct 2012 B2
8292150 Bryant Oct 2012 B2
8292151 Viola Oct 2012 B2
8292152 Milliman et al. Oct 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8292157 Smith et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298161 Vargas Oct 2012 B2
8298677 Wiesner et al. Oct 2012 B2
8302323 Fortier et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8308042 Aranyi Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8308659 Scheibe et al. Nov 2012 B2
8313496 Sauer et al. Nov 2012 B2
8313509 Kostrzewski Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8317071 Knodel Nov 2012 B1
8317074 Ortiz et al. Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8319002 Daniels et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8322590 Patel et al. Dec 2012 B2
8323789 Rozhin et al. Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328062 Viola Dec 2012 B2
8328063 Milliman et al. Dec 2012 B2
8328064 Racenet et al. Dec 2012 B2
8328802 Deville et al. Dec 2012 B2
8328823 Aranyi et al. Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8333764 Francischelli et al. Dec 2012 B2
8336753 Olson et al. Dec 2012 B2
8336754 Cappola et al. Dec 2012 B2
8342377 Milliman et al. Jan 2013 B2
8342378 Marczyk et al. Jan 2013 B2
8342379 Whitman et al. Jan 2013 B2
8348123 Scirica et al. Jan 2013 B2
8348125 Viola et al. Jan 2013 B2
8348126 Olson et al. Jan 2013 B2
8348127 Marczyk Jan 2013 B2
8348129 Bedi et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8356740 Knodel Jan 2013 B1
8357144 Whitman et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8360298 Farascioni et al. Jan 2013 B2
8360299 Zemlok et al. Jan 2013 B2
8361501 DiTizio et al. Jan 2013 B2
8365973 White et al. Feb 2013 B1
8365975 Manoux et al. Feb 2013 B1
8365976 Hess et al. Feb 2013 B2
8366559 Papenfuss et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8376865 Forster et al. Feb 2013 B2
8377044 Coe et al. Feb 2013 B2
8388633 Rousseau et al. Mar 2013 B2
8389588 Ringelsen Mar 2013 B2
8393513 Jankowski Mar 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393516 Kostrzewski Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398633 Mueller Mar 2013 B2
8398673 Hinchliffe et al. Mar 2013 B2
8403138 Weisshaupt et al. Mar 2013 B2
8403198 Sorrentino et al. Mar 2013 B2
8403832 Cunningham et al. Mar 2013 B2
8403945 Whitfield et al. Mar 2013 B2
8408439 Huang et al. Apr 2013 B2
8408442 Racenet et al. Apr 2013 B2
8409079 Okamoto et al. Apr 2013 B2
8409174 Omori Apr 2013 B2
8409222 Whitfield et al. Apr 2013 B2
8409223 Sorrentino et al. Apr 2013 B2
8413870 Pastorelli et al. Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8413872 Patel Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424737 Scirica Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8424741 McGuckin, Jr. et al. Apr 2013 B2
8425600 Maxwell Apr 2013 B2
8430292 Patel et al. Apr 2013 B2
8430892 Bindra et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8439246 Knodel May 2013 B1
8444036 Shelton, IV May 2013 B2
8444549 Viola et al. May 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453906 Huang et al. Jun 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453912 Mastri et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8454628 Smith et al. Jun 2013 B2
8457757 Cauller et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464922 Marczyk Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8464924 Gresham et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8465502 Zergiebel Jun 2013 B2
8469973 Meade et al. Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8475474 Bombard et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8490853 Criscuolo et al. Jul 2013 B2
8491581 Deville et al. Jul 2013 B2
8496156 Sniffin et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8499992 Whitman et al. Aug 2013 B2
8499993 Shelton, IV et al. Aug 2013 B2
8500762 Sholev et al. Aug 2013 B2
8506557 Zemlok et al. Aug 2013 B2
8506580 Zergiebel et al. Aug 2013 B2
8506581 Wingardner, III et al. Aug 2013 B2
8511308 Hecox et al. Aug 2013 B2
8512359 Whitman et al. Aug 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8521273 Kliman Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8523900 Jinno et al. Sep 2013 B2
8529588 Ahlberg et al. Sep 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8529819 Ostapoff et al. Sep 2013 B2
8534528 Shelton, IV Sep 2013 B2
8535304 Sklar et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8540733 Whitman et al. Sep 2013 B2
8540735 Mitelberg et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8556151 Viola Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV et al. Nov 2013 B2
8574199 von Bülow et al. Nov 2013 B2
8574263 Mueller Nov 2013 B2
8575880 Grantz Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579178 Holsten et al. Nov 2013 B2
8579897 Vakharia et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8584919 Hueil et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8602287 Yates et al. Dec 2013 B2
8602288 Shelton, IV et al. Dec 2013 B2
8603135 Mueller Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8608045 Smith et al. Dec 2013 B2
8608046 Laurent et al. Dec 2013 B2
8608745 Guzman et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8616431 Timm et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8622275 Baxter, III et al. Jan 2014 B2
8628518 Blumenkranz et al. Jan 2014 B2
8628545 Cabrera et al. Jan 2014 B2
8631987 Shelton, IV et al. Jan 2014 B2
8632462 Yoo et al. Jan 2014 B2
8632525 Kerr et al. Jan 2014 B2
8632535 Shelton, IV et al. Jan 2014 B2
8632563 Nagase et al. Jan 2014 B2
8636187 Hueil et al. Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652151 Lehman et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657176 Shelton, IV et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8657178 Hueil et al. Feb 2014 B2
8657482 Malackowski et al. Feb 2014 B2
8662370 Takei Mar 2014 B2
8663192 Hester et al. Mar 2014 B2
8668129 Olson Mar 2014 B2
8668130 Hess et al. Mar 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8672207 Shelton, IV et al. Mar 2014 B2
8672208 Hess et al. Mar 2014 B2
8673210 Deshays Mar 2014 B2
8678263 Viola Mar 2014 B2
8679093 Farra Mar 2014 B2
8679098 Hart Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8679454 Guire et al. Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8695866 Leimbach et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8701959 Shah Apr 2014 B2
8708211 Zemlok et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715256 Greener May 2014 B2
8720766 Hess et al. May 2014 B2
8721630 Ortiz et al. May 2014 B2
8721666 Schroeder et al. May 2014 B2
8727197 Hess et al. May 2014 B2
8727200 Roy May 2014 B2
8728119 Cummins May 2014 B2
8733613 Huitema et al. May 2014 B2
8733614 Ross et al. May 2014 B2
8734478 Widenhouse et al. May 2014 B2
8739033 Rosenberg May 2014 B2
8740034 Morgan et al. Jun 2014 B2
8740037 Shelton, IV et al. Jun 2014 B2
8740038 Shelton, IV et al. Jun 2014 B2
8740987 Geremakis et al. Jun 2014 B2
8746529 Shelton, IV et al. Jun 2014 B2
8746530 Giordano et al. Jun 2014 B2
8746533 Whitman et al. Jun 2014 B2
8746535 Shelton, IV et al. Jun 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752699 Morgan et al. Jun 2014 B2
8752747 Shelton, IV et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8757465 Woodard, Jr. et al. Jun 2014 B2
8758235 Jaworek Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8758438 Boyce et al. Jun 2014 B2
8763875 Morgan et al. Jul 2014 B2
8763877 Schall et al. Jul 2014 B2
8763879 Shelton, IV et al. Jul 2014 B2
8771169 Whitman et al. Jul 2014 B2
8777004 Shelton, IV et al. Jul 2014 B2
8783541 Shelton, IV et al. Jul 2014 B2
8783542 Riestenberg et al. Jul 2014 B2
8783543 Shelton, IV et al. Jul 2014 B2
8784404 Doyle et al. Jul 2014 B2
8784415 Malackowski et al. Jul 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8789739 Swensgard Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8789741 Baxter, III et al. Jul 2014 B2
8790684 Dave et al. Jul 2014 B2
8794496 Scirica Aug 2014 B2
8794497 Zingman Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8800839 Beetel Aug 2014 B2
8800841 Ellerhorst et al. Aug 2014 B2
8801734 Shelton, IV et al. Aug 2014 B2
8801735 Shelton, IV et al. Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8806973 Ross et al. Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808294 Fox et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8813866 Suzuki Aug 2014 B2
8814024 Woodard, Jr. et al. Aug 2014 B2
8814025 Miller et al. Aug 2014 B2
8820603 Shelton, IV et al. Sep 2014 B2
8820605 Shelton, IV Sep 2014 B2
8820606 Hodgkinson Sep 2014 B2
8820607 Marczyk Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8827903 Shelton, IV et al. Sep 2014 B2
8833632 Swensgard Sep 2014 B2
8840003 Morgan et al. Sep 2014 B2
8840603 Shelton, IV et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852199 Deslauriers et al. Oct 2014 B2
8857693 Schuckmann et al. Oct 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8858590 Shelton, IV et al. Oct 2014 B2
8864007 Widenhouse et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8875971 Hall et al. Nov 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8876857 Burbank Nov 2014 B2
8888688 Julian et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8893949 Shelton, IV et al. Nov 2014 B2
8894647 Beardsley et al. Nov 2014 B2
8894654 Anderson Nov 2014 B2
8899463 Schall et al. Dec 2014 B2
8899464 Hueil et al. Dec 2014 B2
8899465 Shelton, IV et al. Dec 2014 B2
8899466 Baxter, III et al. Dec 2014 B2
8905977 Shelton et al. Dec 2014 B2
8911426 Coppeta et al. Dec 2014 B2
8911471 Spivey et al. Dec 2014 B2
8920438 Aranyi et al. Dec 2014 B2
8925782 Shelton, IV Jan 2015 B2
8925783 Zemlok et al. Jan 2015 B2
8925788 Hess et al. Jan 2015 B2
8926598 Mollere et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8936614 Allen, IV Jan 2015 B2
8939343 Milliman et al. Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8955732 Zemlok et al. Feb 2015 B2
8956342 Russo et al. Feb 2015 B1
8960520 McCuen Feb 2015 B2
8960521 Kostrzewski Feb 2015 B2
8961504 Hoarau et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8967446 Beardsley et al. Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8968340 Chowaniec et al. Mar 2015 B2
8970507 Holbein et al. Mar 2015 B2
8973803 Hall Mar 2015 B2
8973804 Hess et al. Mar 2015 B2
8978954 Shelton, IV et al. Mar 2015 B2
8978955 Aronhalt et al. Mar 2015 B2
8978956 Schall et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8982195 Claus et al. Mar 2015 B2
8991676 Hess et al. Mar 2015 B2
8991677 Moore et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992565 Brisson et al. Mar 2015 B2
8996165 Wang et al. Mar 2015 B2
8998058 Moore et al. Apr 2015 B2
9005230 Yates et al. Apr 2015 B2
9011471 Timm et al. Apr 2015 B2
9016539 Kostrzewski et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9016542 Shelton, IV et al. Apr 2015 B2
9017331 Fox Apr 2015 B2
9017371 Whitman et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9027817 Milliman et al. May 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028495 Mueller et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9033203 Woodard, Jr. et al. May 2015 B2
9033204 Shelton, IV et al. May 2015 B2
9038881 Schaller et al. May 2015 B1
9039690 Kersten et al. May 2015 B2
9039720 Madan May 2015 B2
9043027 Durant et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9044228 Woodard, Jr. et al. Jun 2015 B2
9044230 Morgan et al. Jun 2015 B2
9050083 Yates et al. Jun 2015 B2
9050084 Schmid et al. Jun 2015 B2
9050100 Yates et al. Jun 2015 B2
9055941 Schmid et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9072515 Hall Jul 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078653 Leimbach et al. Jul 2015 B2
9084601 Moore et al. Jul 2015 B2
9084602 Glieman Jul 2015 B2
9086875 Harrat et al. Jul 2015 B2
9089330 Widenhouse et al. Jul 2015 B2
9095339 Moore et al. Aug 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9099863 Smith et al. Aug 2015 B2
9101358 Kerr et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107663 Swensgard Aug 2015 B2
9113862 Morgan et al. Aug 2015 B2
9113864 Morgan et al. Aug 2015 B2
9113865 Shelton, IV et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113874 Shelton, IV et al. Aug 2015 B2
9113880 Zemlok et al. Aug 2015 B2
9113883 Aronhalt et al. Aug 2015 B2
9113884 Shelton, IV et al. Aug 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9123286 Park Sep 2015 B2
9125654 Aronhalt et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9131940 Huitema et al. Sep 2015 B2
9131957 Skarbnik et al. Sep 2015 B2
9138225 Huang et al. Sep 2015 B2
9149274 Spivey et al. Oct 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9161753 Prior Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168038 Shelton, IV et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168144 Rivin et al. Oct 2015 B2
9179911 Morgan et al. Nov 2015 B2
9179912 Yates et al. Nov 2015 B2
9186143 Timm et al. Nov 2015 B2
9186148 Felder et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9193045 Saur et al. Nov 2015 B2
9198661 Swensgard Dec 2015 B2
9198662 Barton et al. Dec 2015 B2
9204877 Whitman et al. Dec 2015 B2
9204878 Hall et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204880 Baxter, III et al. Dec 2015 B2
9211120 Scheib et al. Dec 2015 B2
9211121 Hall et al. Dec 2015 B2
9211122 Hagerty et al. Dec 2015 B2
9216019 Schmid et al. Dec 2015 B2
9220500 Swayze et al. Dec 2015 B2
9220501 Baxter, III et al. Dec 2015 B2
9226750 Weir et al. Jan 2016 B2
9226751 Shelton, IV et al. Jan 2016 B2
9232941 Mandakolathur Vasudevan et al. Jan 2016 B2
9232945 Zingman Jan 2016 B2
9232979 Parihar et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9241714 Timm et al. Jan 2016 B2
9259274 Prisco Feb 2016 B2
9271799 Shelton, IV et al. Mar 2016 B2
9272406 Aronhalt et al. Mar 2016 B2
9277919 Timmer et al. Mar 2016 B2
9277922 Carter et al. Mar 2016 B2
9282962 Schmid et al. Mar 2016 B2
9282966 Shelton, IV et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283054 Morgan et al. Mar 2016 B2
9289206 Hess et al. Mar 2016 B2
9289207 Shelton, IV Mar 2016 B2
9289210 Baxter, III et al. Mar 2016 B2
9289212 Shelton, IV et al. Mar 2016 B2
9289225 Shelton, IV et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295464 Shelton, IV et al. Mar 2016 B2
9301752 Mandakolathur Vasudevan et al. Apr 2016 B2
9301753 Aldridge et al. Apr 2016 B2
9301755 Shelton, IV et al. Apr 2016 B2
9301759 Spivey et al. Apr 2016 B2
9307986 Hall et al. Apr 2016 B2
9307988 Shelton, IV Apr 2016 B2
9308011 Chao et al. Apr 2016 B2
9314246 Shelton, IV et al. Apr 2016 B2
9320518 Henderson et al. Apr 2016 B2
9320520 Shelton, IV et al. Apr 2016 B2
9320521 Shelton, IV et al. Apr 2016 B2
9320523 Shelton, IV et al. Apr 2016 B2
9326767 Koch, Jr. et al. May 2016 B2
9326768 Shelton, IV May 2016 B2
9326769 Shelton, IV et al. May 2016 B2
9326770 Shelton, IV et al. May 2016 B2
9326771 Baxter, III et al. May 2016 B2
9332890 Ozawa May 2016 B2
9332974 Henderson et al. May 2016 B2
9332984 Weaner et al. May 2016 B2
9332987 Leimbach et al. May 2016 B2
9345481 Hall et al. May 2016 B2
9351726 Leimbach et al. May 2016 B2
9351727 Leimbach et al. May 2016 B2
9351730 Schmid et al. May 2016 B2
9358003 Hall et al. Jun 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9364220 Williams Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9364233 Alexander, III et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370358 Shelton, IV et al. Jun 2016 B2
9370364 Smith et al. Jun 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9386984 Aronhalt et al. Jul 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9393015 Laurent et al. Jul 2016 B2
9398911 Auld Jul 2016 B2
9402626 Ortiz et al. Aug 2016 B2
9408604 Shelton, IV et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9414838 Shelton, IV et al. Aug 2016 B2
9433419 Gonzalez et al. Sep 2016 B2
9445813 Shelton, IV et al. Sep 2016 B2
9451958 Shelton, IV et al. Sep 2016 B2
9480476 Aldridge et al. Nov 2016 B2
9526564 Rusin Dec 2016 B2
9597104 Nicholas et al. Mar 2017 B2
20010025183 Shahidi Sep 2001 A1
20010044637 Jacobs et al. Nov 2001 A1
20020014510 Richter et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020026126 Burdorff et al. Feb 2002 A1
20020029032 Arkin Mar 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020049472 Coleman et al. Apr 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020103494 Pacey Aug 2002 A1
20020117534 Green et al. Aug 2002 A1
20020127265 Bowman et al. Sep 2002 A1
20020128552 Nowlin et al. Sep 2002 A1
20020134811 Napier et al. Sep 2002 A1
20020135474 Sylliassen Sep 2002 A1
20020143340 Kaneko Oct 2002 A1
20020157481 Kogiso et al. Oct 2002 A1
20020165541 Whitman Nov 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020193808 Belef et al. Dec 2002 A1
20030023316 Brown et al. Jan 2003 A1
20030066858 Holgersson Apr 2003 A1
20030078647 Vallana et al. Apr 2003 A1
20030084983 Rangachari et al. May 2003 A1
20030093103 Malackowski et al. May 2003 A1
20030096158 Takano et al. May 2003 A1
20030105478 Whitman et al. Jun 2003 A1
20030130677 Whitman et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030153908 Goble et al. Aug 2003 A1
20030153968 Geis et al. Aug 2003 A1
20030163085 Tanner et al. Aug 2003 A1
20030181900 Long Sep 2003 A1
20030195387 Kortenbach et al. Oct 2003 A1
20030205029 Chapolini et al. Nov 2003 A1
20030216732 Truckai et al. Nov 2003 A1
20030220660 Kortenbach et al. Nov 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20040002726 Nunez et al. Jan 2004 A1
20040006335 Garrison Jan 2004 A1
20040006340 Latterell et al. Jan 2004 A1
20040006372 Racenet et al. Jan 2004 A1
20040006861 Haytayan Jan 2004 A1
20040030333 Goble Feb 2004 A1
20040032345 Kazuya et al. Feb 2004 A1
20040034357 Beane et al. Feb 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040044364 DeVries et al. Mar 2004 A1
20040068161 Couvillon, Jr. Apr 2004 A1
20040068224 Couvillon, Jr. et al. Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040070369 Sakahibara Apr 2004 A1
20040073222 Koseki Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040093024 Lousararian et al. May 2004 A1
20040094597 Whitman et al. May 2004 A1
20040097987 Pugsley et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040101822 Wiesner et al. May 2004 A1
20040102783 Sutterlin, III et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040110439 Chaikof et al. Jun 2004 A1
20040111081 Whitman et al. Jun 2004 A1
20040115022 Albertson et al. Jun 2004 A1
20040116952 Sakurai et al. Jun 2004 A1
20040133095 Dunki-Jacobs et al. Jul 2004 A1
20040143297 Ramsey Jul 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040173659 Green et al. Sep 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040186470 Goble et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040199181 Knodel et al. Oct 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040225186 Horne, Jr. et al. Nov 2004 A1
20040230214 Donofrio et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040236352 Wang et al. Nov 2004 A1
20040243147 Lipow Dec 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040243176 Hahnen et al. Dec 2004 A1
20040247415 Mangone, Jr. Dec 2004 A1
20040254455 Iddan Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040267297 Malackowski Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050010158 Brugger et al. Jan 2005 A1
20050010213 Stad et al. Jan 2005 A1
20050032511 Malone et al. Feb 2005 A1
20050033352 Zepf et al. Feb 2005 A1
20050033357 Braun Feb 2005 A1
20050054946 Krzyzanowski Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050075561 Golden Apr 2005 A1
20050080454 Drews et al. Apr 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050090817 Phan Apr 2005 A1
20050096683 Ellins et al. May 2005 A1
20050103819 Racenet May 2005 A1
20050107814 Johnston et al. May 2005 A1
20050107824 Hillstead et al. May 2005 A1
20050113820 Goble et al. May 2005 A1
20050116673 Carl et al. Jun 2005 A1
20050119525 Takemoto Jun 2005 A1
20050119669 Demmy Jun 2005 A1
20050124855 Jaffe et al. Jun 2005 A1
20050125009 Perry et al. Jun 2005 A1
20050125897 Wyslucha et al. Jun 2005 A1
20050131173 McDaniel et al. Jun 2005 A1
20050131211 Bayley et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131436 Johnston et al. Jun 2005 A1
20050131437 Johnston et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050137454 Saadat et al. Jun 2005 A1
20050137455 Ewers et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050145675 Hartwick et al. Jul 2005 A1
20050150928 Kameyama et al. Jul 2005 A1
20050154258 Tartaglia et al. Jul 2005 A1
20050154406 Bombard et al. Jul 2005 A1
20050159184 Kerner et al. Jul 2005 A1
20050165419 Sauer et al. Jul 2005 A1
20050165435 Johnston et al. Jul 2005 A1
20050169974 Tenerz et al. Aug 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050187572 Johnston et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050192609 Whitman et al. Sep 2005 A1
20050192628 Viola Sep 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050228224 Okada et al. Oct 2005 A1
20050240178 Morley et al. Oct 2005 A1
20050240222 Shipp Oct 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20050251128 Amoah Nov 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20050256522 Francischelli et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050261677 Hall et al. Nov 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20050267455 Eggers et al. Dec 2005 A1
20050267530 Cummins Dec 2005 A1
20050272973 Kawano et al. Dec 2005 A1
20050274768 Cummins et al. Dec 2005 A1
20050283188 Loshakove et al. Dec 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060008787 Hayman et al. Jan 2006 A1
20060011699 Olson et al. Jan 2006 A1
20060015009 Jaffe et al. Jan 2006 A1
20060020247 Kagan et al. Jan 2006 A1
20060020258 Strauss et al. Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025811 Shelton, IV Feb 2006 A1
20060025812 Shelton, IV Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060049229 Milliman et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060060630 Shelton, IV et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060079115 Aranyi et al. Apr 2006 A1
20060079735 Martone et al. Apr 2006 A1
20060085031 Bettuchi Apr 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060086032 Valencic et al. Apr 2006 A1
20060087746 Lipow Apr 2006 A1
20060089535 Raz et al. Apr 2006 A1
20060100643 Laufer et al. May 2006 A1
20060100649 Hart May 2006 A1
20060108393 Heinrich et al. May 2006 A1
20060111711 Goble May 2006 A1
20060111723 Chapolini et al. May 2006 A1
20060116634 Shachar Jun 2006 A1
20060122636 Bailly et al. Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060149163 Hibner et al. Jul 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060167471 Phillips Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178556 Hasser et al. Aug 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060185682 Marczyk Aug 2006 A1
20060200123 Ryan Sep 2006 A1
20060201989 Ojeda Sep 2006 A1
20060206100 Eskridge et al. Sep 2006 A1
20060212069 Shelton, IV Sep 2006 A1
20060217729 Eskridge et al. Sep 2006 A1
20060226196 Hueil et al. Oct 2006 A1
20060235368 Oz Oct 2006 A1
20060235469 Viola Oct 2006 A1
20060241655 Viola Oct 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060244460 Weaver Nov 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060253069 Li et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060258910 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060264831 Skwarek et al. Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20060273135 Beetel Dec 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060282064 Shimizu et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20060287576 Tsuji et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20060291981 Viola et al. Dec 2006 A1
20070010702 Wang et al. Jan 2007 A1
20070010838 Shelton, IV et al. Jan 2007 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070026039 Drumheller et al. Feb 2007 A1
20070026040 Crawley et al. Feb 2007 A1
20070027468 Wales et al. Feb 2007 A1
20070027472 Hiles et al. Feb 2007 A1
20070027551 Farnsworth et al. Feb 2007 A1
20070027553 Biran et al. Feb 2007 A1
20070034668 Holsten et al. Feb 2007 A1
20070049951 Menn Mar 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070051375 Milliman Mar 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070066981 Meagher Mar 2007 A1
20070070574 Nerheim et al. Mar 2007 A1
20070073341 Smith Mar 2007 A1
20070078328 Ozaki et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070083193 Werneth et al. Apr 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070090788 Hansford et al. Apr 2007 A1
20070093869 Bloom et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070106113 Ravo May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070118175 Butler et al. May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070155010 Farnsworth et al. Jul 2007 A1
20070158358 Mason, II et al. Jul 2007 A1
20070170225 Shelton, IV et al. Jul 2007 A1
20070173687 Shima et al. Jul 2007 A1
20070173806 Orszulak et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20070175955 Shelton, IV et al. Aug 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070181632 Milliman Aug 2007 A1
20070185545 Duke Aug 2007 A1
20070190110 Pameijer et al. Aug 2007 A1
20070191868 Theroux et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070198039 Jones et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070213750 Weadock Sep 2007 A1
20070219571 Balbierz et al. Sep 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070233163 Bombard et al. Oct 2007 A1
20070239028 Houser et al. Oct 2007 A1
20070243227 Gertner Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20070249999 Sklar et al. Oct 2007 A1
20070250113 Hegeman et al. Oct 2007 A1
20070260278 Wheeler et al. Nov 2007 A1
20070270784 Smith et al. Nov 2007 A1
20070270884 Smith et al. Nov 2007 A1
20070275035 Herman et al. Nov 2007 A1
20070276409 Ortiz et al. Nov 2007 A1
20070279011 Jones et al. Dec 2007 A1
20070286892 Herzberg et al. Dec 2007 A1
20070287993 Hinman et al. Dec 2007 A1
20070288044 Jinno et al. Dec 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080003196 Jonn et al. Jan 2008 A1
20080015598 Prommersberger Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080030170 Dacquay et al. Feb 2008 A1
20080035701 Racenet et al. Feb 2008 A1
20080041916 Milliman et al. Feb 2008 A1
20080041917 Racenet et al. Feb 2008 A1
20080051833 Gramuglia et al. Feb 2008 A1
20080065153 Allard et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080083808 Scirica Apr 2008 A1
20080083813 Zemlok et al. Apr 2008 A1
20080085296 Powell et al. Apr 2008 A1
20080086078 Powell et al. Apr 2008 A1
20080091072 Omori et al. Apr 2008 A1
20080097563 Petrie et al. Apr 2008 A1
20080108443 Jinno et al. May 2008 A1
20080114250 Urbano et al. May 2008 A1
20080114315 Voegele et al. May 2008 A1
20080114385 Byrum et al. May 2008 A1
20080128469 Dalessandro et al. Jun 2008 A1
20080129253 Shiue et al. Jun 2008 A1
20080140115 Stopek Jun 2008 A1
20080140159 Bornhoft et al. Jun 2008 A1
20080154299 Livneh Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172087 Fuchs et al. Jul 2008 A1
20080172088 Smith et al. Jul 2008 A1
20080183193 Omori et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080190989 Crews et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080200762 Stokes et al. Aug 2008 A1
20080200835 Monson et al. Aug 2008 A1
20080200933 Bakos et al. Aug 2008 A1
20080200949 Hiles et al. Aug 2008 A1
20080228029 Mikkaichi et al. Sep 2008 A1
20080241667 Kohn et al. Oct 2008 A1
20080245841 Smith et al. Oct 2008 A1
20080249608 Dave Oct 2008 A1
20080251568 Zemlok et al. Oct 2008 A1
20080251569 Smith et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080281171 Fennell et al. Nov 2008 A1
20080281254 Humayun et al. Nov 2008 A1
20080283570 Boyden et al. Nov 2008 A1
20080287944 Pearson et al. Nov 2008 A1
20080287988 Smith et al. Nov 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080294179 Balbierz et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton, IV et al. Dec 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20080315829 Jones et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090004455 Gravagna et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012534 Madhani et al. Jan 2009 A1
20090015195 Loth-Krausser Jan 2009 A1
20090018553 McLean et al. Jan 2009 A1
20090020958 Soul Jan 2009 A1
20090047329 Stucky et al. Feb 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090048612 Farritor et al. Feb 2009 A1
20090054908 Zand et al. Feb 2009 A1
20090069842 Lee et al. Mar 2009 A1
20090076506 Baker Mar 2009 A1
20090078736 Van Lue Mar 2009 A1
20090082789 Milliman et al. Mar 2009 A1
20090088659 Graham et al. Apr 2009 A1
20090088774 Swarup et al. Apr 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090092651 Shah et al. Apr 2009 A1
20090093728 Hyde et al. Apr 2009 A1
20090099579 Nentwick et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090108048 Zemlok et al. Apr 2009 A1
20090112229 Omori et al. Apr 2009 A1
20090114701 Zemlok et al. May 2009 A1
20090119011 Kondo et al. May 2009 A1
20090137952 Ramamurthy et al. May 2009 A1
20090143805 Palmer et al. Jun 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090157067 Kane et al. Jun 2009 A1
20090157087 Wei et al. Jun 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090177226 Reinprecht et al. Jul 2009 A1
20090179757 Cohn et al. Jul 2009 A1
20090188964 Orlov Jul 2009 A1
20090198272 Kerver et al. Aug 2009 A1
20090204108 Steffen Aug 2009 A1
20090204109 Grove et al. Aug 2009 A1
20090206124 Hall Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090213685 Mak et al. Aug 2009 A1
20090234273 Intoccia et al. Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090247368 Chiang Oct 2009 A1
20090247901 Zimmer Oct 2009 A1
20090248007 Falkenstein et al. Oct 2009 A1
20090248038 Blumenkranz et al. Oct 2009 A1
20090253959 Yoshie et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090255975 Zemlok et al. Oct 2009 A1
20090255976 Marczyk et al. Oct 2009 A1
20090255977 Zemlok Oct 2009 A1
20090255978 Viola et al. Oct 2009 A1
20090262078 Pizzi Oct 2009 A1
20090270895 Churchill et al. Oct 2009 A1
20090277949 Viola et al. Nov 2009 A1
20090290016 Suda Nov 2009 A1
20090292283 Odom Nov 2009 A1
20090306639 Nevo et al. Dec 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100010511 Harris et al. Jan 2010 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100016852 Manzo et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100023024 Zeiner et al. Jan 2010 A1
20100036370 Mirel et al. Feb 2010 A1
20100041945 Isbell, Jr. Feb 2010 A1
20100049084 Nock et al. Feb 2010 A1
20100057087 Cha Mar 2010 A1
20100057107 Sorrentino et al. Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100076483 Imuta Mar 2010 A1
20100076489 Stopek et al. Mar 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100094289 Taylor et al. Apr 2010 A1
20100096431 Smith et al. Apr 2010 A1
20100100124 Calabrese et al. Apr 2010 A1
20100108740 Pastorelli et al. May 2010 A1
20100108741 Hessler et al. May 2010 A1
20100122339 Boccacci May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100145146 Melder Jun 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100179022 Shirokoshi Jul 2010 A1
20100179540 Marczyk et al. Jul 2010 A1
20100180711 Kilibarda et al. Jul 2010 A1
20100186219 Smith Jul 2010 A1
20100191292 DeMeo et al. Jul 2010 A1
20100193566 Schieb et al. Aug 2010 A1
20100200637 Beetel Aug 2010 A1
20100204717 Knodel Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100230465 Smith et al. Sep 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100249497 Peine et al. Sep 2010 A1
20100249519 Park et al. Sep 2010 A1
20100249759 Hinman et al. Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100267662 Fielder et al. Oct 2010 A1
20100268030 Viola et al. Oct 2010 A1
20100274160 Yachi et al. Oct 2010 A1
20100276471 Whitman Nov 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100294827 Boyden et al. Nov 2010 A1
20100298636 Casto et al. Nov 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100320252 Viola et al. Dec 2010 A1
20100331856 Carlson et al. Dec 2010 A1
20100331880 Stopek Dec 2010 A1
20110003528 Lam Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110009890 Palmer et al. Jan 2011 A1
20110011916 Levine Jan 2011 A1
20110016960 Debrailly Jan 2011 A1
20110017799 Whitman et al. Jan 2011 A1
20110021871 Berkelaar Jan 2011 A1
20110022032 Zemlok et al. Jan 2011 A1
20110024477 Hall et al. Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110025311 Chauvin et al. Feb 2011 A1
20110034910 Ross et al. Feb 2011 A1
20110034918 Reschke Feb 2011 A1
20110036887 Zemlok et al. Feb 2011 A1
20110036890 Ma Feb 2011 A1
20110036891 Zemlok et al. Feb 2011 A1
20110045047 Bennett et al. Feb 2011 A1
20110046666 Sorrentino et al. Feb 2011 A1
20110046667 Culligan et al. Feb 2011 A1
20110060356 Reschke et al. Mar 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110082538 Dahlgren et al. Apr 2011 A1
20110084112 Kostrzewski Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110088921 Forgues et al. Apr 2011 A1
20110095068 Patel Apr 2011 A1
20110101065 Milliman May 2011 A1
20110101069 Bombard et al. May 2011 A1
20110112517 Peine et al. May 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110118778 Burbank May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110144640 Heinrich et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110163146 Ortiz et al. Jul 2011 A1
20110167619 Smith et al. Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110178536 Kostrzewski Jul 2011 A1
20110184459 Malkowski et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110199225 Touchberry et al. Aug 2011 A1
20110208093 Gross et al. Aug 2011 A1
20110210156 Smith et al. Sep 2011 A1
20110218550 Ma Sep 2011 A1
20110241597 Zhu et al. Oct 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110257650 Deville et al. Oct 2011 A1
20110264119 Bayon et al. Oct 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110279268 Konishi et al. Nov 2011 A1
20110282446 Schulte et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110307023 Tweden et al. Dec 2011 A1
20110313894 Dye et al. Dec 2011 A1
20110315413 Fisher et al. Dec 2011 A1
20120004636 Lo Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120016413 Timm et al. Jan 2012 A1
20120018326 Racenet et al. Jan 2012 A1
20120022523 Smith et al. Jan 2012 A1
20120022630 Wübbeling Jan 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120033360 Hsu Feb 2012 A1
20120045303 Macdonald Feb 2012 A1
20120046692 Smith et al. Feb 2012 A1
20120064483 Lint et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120078278 Bales, Jr. et al. Mar 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080340 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080475 Smith et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120110810 Houser et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120116367 Houser et al. May 2012 A1
20120116388 Houser et al. May 2012 A1
20120116391 Houser et al. May 2012 A1
20120116395 Madan et al. May 2012 A1
20120123203 Riva May 2012 A1
20120125792 Cassivi May 2012 A1
20120138658 Ullrich et al. Jun 2012 A1
20120175398 Sandborn et al. Jul 2012 A1
20120187179 Gleiman Jul 2012 A1
20120209289 Duque et al. Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120228355 Combrowski et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120248167 Flanagan et al. Oct 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120265176 Braun Oct 2012 A1
20120271285 Sholev et al. Oct 2012 A1
20120273550 Scirica Nov 2012 A1
20120277780 Smith et al. Nov 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120286021 Kostrzewski et al. Nov 2012 A1
20120289979 Eskaros et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120296333 Twomey Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120310255 Brisson et al. Dec 2012 A1
20120310256 Brisson Dec 2012 A1
20120312860 Ming et al. Dec 2012 A1
20120318842 Anim et al. Dec 2012 A1
20120325892 Kostrzewski Dec 2012 A1
20130012983 Kleyman Jan 2013 A1
20130018361 Bryant Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130026973 Luke et al. Jan 2013 A1
20130030608 Taylor et al. Jan 2013 A1
20130032626 Smith et al. Feb 2013 A1
20130037596 Bear et al. Feb 2013 A1
20130046290 Palmer et al. Feb 2013 A1
20130060278 Bozung et al. Mar 2013 A1
20130062391 Boudreaux et al. Mar 2013 A1
20130068816 Mandakolathur Vasudevan et al. Mar 2013 A1
20130075446 Wang et al. Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130087599 Krumanaker et al. Apr 2013 A1
20130087602 Olson et al. Apr 2013 A1
20130090534 Burns et al. Apr 2013 A1
20130098970 Racenet et al. Apr 2013 A1
20130103023 Monson et al. Apr 2013 A1
20130103024 Monson et al. Apr 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130119108 Altman et al. May 2013 A1
20130123822 Wellman et al. May 2013 A1
20130126379 Medhal et al. May 2013 A1
20130131651 Strobl et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130150832 Belson et al. Jun 2013 A1
20130153633 Casasanta, Jr. et al. Jun 2013 A1
20130153634 Carter et al. Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153638 Carter et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130161374 Swayze et al. Jun 2013 A1
20130168431 Zemlok et al. Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130181033 Shelton, IV et al. Jul 2013 A1
20130181034 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130186934 Shelton, IV et al. Jul 2013 A1
20130190733 Giordano et al. Jul 2013 A1
20130190757 Yates et al. Jul 2013 A1
20130193189 Swensgard et al. Aug 2013 A1
20130197556 Shelton, IV et al. Aug 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130214030 Aronhalt et al. Aug 2013 A1
20130221059 Racenet et al. Aug 2013 A1
20130221063 Aronhalt et al. Aug 2013 A1
20130221064 Aronhalt et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130233905 Sorrentino et al. Sep 2013 A1
20130233906 Hess et al. Sep 2013 A1
20130233908 Knodel et al. Sep 2013 A1
20130238021 Gross et al. Sep 2013 A1
20130256371 Shelton, IV et al. Oct 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256374 Shelton, IV et al. Oct 2013 A1
20130256375 Shelton, IV et al. Oct 2013 A1
20130256377 Schmid et al. Oct 2013 A1
20130256378 Schmid et al. Oct 2013 A1
20130256379 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130256382 Swayze et al. Oct 2013 A1
20130256383 Aronhalt et al. Oct 2013 A1
20130261648 Laurent et al. Oct 2013 A1
20130267945 Behnke et al. Oct 2013 A1
20130270322 Scheib et al. Oct 2013 A1
20130277412 Gresham et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130310873 Stopek (nee Prommersberger) et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130313306 Shelton, IV et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324981 Smith et al. Dec 2013 A1
20130324982 Smith et al. Dec 2013 A1
20130327809 Shelton, IV et al. Dec 2013 A1
20130327810 Swayze et al. Dec 2013 A1
20130334283 Swayze et al. Dec 2013 A1
20130334284 Swayze et al. Dec 2013 A1
20130334285 Swayze et al. Dec 2013 A1
20130334286 Swayze et al. Dec 2013 A1
20130334287 Shelton, IV Dec 2013 A1
20130334288 Shelton, IV Dec 2013 A1
20130341374 Shelton, IV et al. Dec 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140001237 Shelton, IV et al. Jan 2014 A1
20140001238 Shelton, IV et al. Jan 2014 A1
20140001239 Shelton, IV et al. Jan 2014 A1
20140001240 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005681 Gee et al. Jan 2014 A1
20140005693 Shelton, IV et al. Jan 2014 A1
20140005694 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005703 Stulen et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140008414 Shelton, IV et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012238 Chen et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140014705 Baxter, III Jan 2014 A1
20140015782 Kim et al. Jan 2014 A1
20140018832 Shelton, IV Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140042205 Baxter, III et al. Feb 2014 A1
20140048580 Merchant et al. Feb 2014 A1
20140061279 Laurent et al. Mar 2014 A1
20140061280 Ingmanson et al. Mar 2014 A1
20140081176 Hassan Mar 2014 A1
20140100558 Schmitz et al. Apr 2014 A1
20140103093 Koch, Jr. et al. Apr 2014 A1
20140107640 Yates et al. Apr 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140128850 Kerr et al. May 2014 A1
20140138423 Whitfield et al. May 2014 A1
20140151431 Hodgkinson et al. Jun 2014 A1
20140151433 Shelton, IV et al. Jun 2014 A1
20140166722 Hess et al. Jun 2014 A1
20140166724 Schellin et al. Jun 2014 A1
20140166725 Schellin et al. Jun 2014 A1
20140166726 Schellin et al. Jun 2014 A1
20140171966 Giordano et al. Jun 2014 A1
20140175152 Hess et al. Jun 2014 A1
20140175154 Shelton, IV et al. Jun 2014 A1
20140191014 Shelton, IV Jul 2014 A1
20140191015 Shelton, IV Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140205637 Widenhouse et al. Jul 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207166 Shelton, IV et al. Jul 2014 A1
20140224857 Schmid Aug 2014 A1
20140230595 Butt et al. Aug 2014 A1
20140232316 Philipp Aug 2014 A1
20140236184 Leimbach et al. Aug 2014 A1
20140239036 Zerkle et al. Aug 2014 A1
20140239038 Leimbach et al. Aug 2014 A1
20140243865 Swayze et al. Aug 2014 A1
20140246471 Jaworek et al. Sep 2014 A1
20140246472 Kimsey et al. Sep 2014 A1
20140246475 Hall et al. Sep 2014 A1
20140246478 Baber et al. Sep 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140249557 Koch, Jr. et al. Sep 2014 A1
20140252066 Shelton, IV et al. Sep 2014 A1
20140252068 Shelton, IV et al. Sep 2014 A1
20140259591 Shelton, IV et al. Sep 2014 A1
20140263538 Leimbach et al. Sep 2014 A1
20140263539 Leimbach et al. Sep 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263542 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20140263554 Leimbach et al. Sep 2014 A1
20140263558 Hausen et al. Sep 2014 A1
20140263562 Patel et al. Sep 2014 A1
20140263564 Leimbach et al. Sep 2014 A1
20140263565 Lytle, IV et al. Sep 2014 A1
20140263572 Shelton, IV et al. Sep 2014 A1
20140277017 Leimbach et al. Sep 2014 A1
20140284371 Morgan et al. Sep 2014 A1
20140284373 Shelton, IV et al. Sep 2014 A1
20140291378 Shelton, IV et al. Oct 2014 A1
20140291379 Schellin et al. Oct 2014 A1
20140291380 Weaner et al. Oct 2014 A1
20140291382 Lloyd et al. Oct 2014 A1
20140291383 Spivey et al. Oct 2014 A1
20140296873 Morgan et al. Oct 2014 A1
20140296874 Morgan et al. Oct 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303645 Morgan et al. Oct 2014 A1
20140303646 Morgan et al. Oct 2014 A1
20140305987 Parihar et al. Oct 2014 A1
20140305988 Boudreaux et al. Oct 2014 A1
20140305989 Parihar et al. Oct 2014 A1
20140305990 Shelton, IV et al. Oct 2014 A1
20140305991 Parihar et al. Oct 2014 A1
20140305992 Kimsey et al. Oct 2014 A1
20140305994 Parihar et al. Oct 2014 A1
20140309665 Parihar et al. Oct 2014 A1
20140309666 Shelton, IV et al. Oct 2014 A1
20140330161 Swayze et al. Nov 2014 A1
20140339286 Motooka et al. Nov 2014 A1
20140352463 Parihar Dec 2014 A1
20140353358 Shelton, IV et al. Dec 2014 A1
20140367447 Woodard, Jr. et al. Dec 2014 A1
20140378950 Chiu Dec 2014 A1
20150008248 Giordano et al. Jan 2015 A1
20150034696 Shelton, IV et al. Feb 2015 A1
20150038986 Swensgard et al. Feb 2015 A1
20150041518 Shelton, IV et al. Feb 2015 A1
20150053737 Leimbach et al. Feb 2015 A1
20150053738 Morgan et al. Feb 2015 A1
20150053739 Morgan et al. Feb 2015 A1
20150053740 Shelton, IV Feb 2015 A1
20150053741 Shelton, IV et al. Feb 2015 A1
20150053742 Shelton, IV et al. Feb 2015 A1
20150053743 Yates et al. Feb 2015 A1
20150053744 Swayze et al. Feb 2015 A1
20150053745 Yates et al. Feb 2015 A1
20150053746 Shelton, IV et al. Feb 2015 A1
20150053748 Yates et al. Feb 2015 A1
20150060518 Shelton, IV et al. Mar 2015 A1
20150060519 Shelton, IV et al. Mar 2015 A1
20150060520 Shelton, IV et al. Mar 2015 A1
20150060521 Weisenburgh, II et al. Mar 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150076208 Shelton, IV Mar 2015 A1
20150076209 Shelton, IV et al. Mar 2015 A1
20150076210 Shelton, IV et al. Mar 2015 A1
20150076212 Shelton, IV Mar 2015 A1
20150080868 Kerr Mar 2015 A1
20150083780 Shelton, IV et al. Mar 2015 A1
20150083781 Giordano et al. Mar 2015 A1
20150083782 Scheib et al. Mar 2015 A1
20150083783 Shelton, IV et al. Mar 2015 A1
20150090759 Spivey et al. Apr 2015 A1
20150090760 Giordano et al. Apr 2015 A1
20150090761 Giordano et al. Apr 2015 A1
20150090762 Giordano et al. Apr 2015 A1
20150090763 Murray et al. Apr 2015 A1
20150108199 Shelton, IV et al. Apr 2015 A1
20150122869 Aronhalt et al. May 2015 A1
20150136830 Baxter, III et al. May 2015 A1
20150136831 Baxter, III et al. May 2015 A1
20150136832 Baxter, III et al. May 2015 A1
20150136833 Shelton, IV et al. May 2015 A1
20150136835 Shelton, IV et al. May 2015 A1
20150157354 Bales, Jr. et al. Jun 2015 A1
20150173744 Shelton, IV et al. Jun 2015 A1
20150173745 Baxter, III et al. Jun 2015 A1
20150173746 Baxter, III et al. Jun 2015 A1
20150173747 Baxter, III et al. Jun 2015 A1
20150173749 Shelton, IV et al. Jun 2015 A1
20150173750 Shelton, IV et al. Jun 2015 A1
20150173751 Shelton, IV et al. Jun 2015 A1
20150173755 Baxter, III et al. Jun 2015 A1
20150173756 Baxter, III et al. Jun 2015 A1
20150173760 Shelton, IV et al. Jun 2015 A1
20150173761 Shelton, IV et al. Jun 2015 A1
20150173762 Shelton, IV et al. Jun 2015 A1
20150173789 Baxter, III et al. Jun 2015 A1
20150182220 Yates et al. Jul 2015 A1
20150182222 Swayze et al. Jul 2015 A1
20150196295 Shelton, IV et al. Jul 2015 A1
20150196296 Swayze et al. Jul 2015 A1
20150196299 Swayze et al. Jul 2015 A1
20150196347 Yates et al. Jul 2015 A1
20150196348 Yates et al. Jul 2015 A1
20150201932 Swayze et al. Jul 2015 A1
20150201935 Weisenburgh, II et al. Jul 2015 A1
20150201936 Swayze et al. Jul 2015 A1
20150201937 Swayze et al. Jul 2015 A1
20150201938 Swayze et al. Jul 2015 A1
20150201939 Swayze et al. Jul 2015 A1
20150201940 Swayze et al. Jul 2015 A1
20150201941 Swayze et al. Jul 2015 A1
20150209031 Shelton, IV et al. Jul 2015 A1
20150209038 Shelton, IV et al. Jul 2015 A1
20150209039 Shelton, IV et al. Jul 2015 A1
20150209041 Milliman et al. Jul 2015 A1
20150223809 Scheib et al. Aug 2015 A1
20150223816 Morgan et al. Aug 2015 A1
20150230783 Shelton, IV et al. Aug 2015 A1
20150230784 Shelton, IV et al. Aug 2015 A1
20150231409 Racenet et al. Aug 2015 A1
20150238185 Schellin et al. Aug 2015 A1
20150238186 Aronhalt et al. Aug 2015 A1
20150238187 Schellin et al. Aug 2015 A1
20150238188 Vendely et al. Aug 2015 A1
20150238191 Schellin et al. Aug 2015 A1
20150239180 Schellin et al. Aug 2015 A1
20150265276 Huitema et al. Sep 2015 A1
20150265357 Shelton, IV et al. Sep 2015 A1
20150272557 Overmyer et al. Oct 2015 A1
20150272569 Leimbach et al. Oct 2015 A1
20150272570 Lytle, IV et al. Oct 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272572 Overmyer et al. Oct 2015 A1
20150272574 Leimbach et al. Oct 2015 A1
20150272575 Leimbach et al. Oct 2015 A1
20150272578 Leimbach et al. Oct 2015 A1
20150272579 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272581 Leimbach et al. Oct 2015 A1
20150272582 Leimbach et al. Oct 2015 A1
20150272583 Leimbach et al. Oct 2015 A1
20150277471 Leimbach et al. Oct 2015 A1
20150280384 Leimbach et al. Oct 2015 A1
20150280424 Leimbach et al. Oct 2015 A1
20150282809 Shelton, IV et al. Oct 2015 A1
20150282810 Shelton, IV et al. Oct 2015 A1
20150289873 Shelton, IV et al. Oct 2015 A1
20150289874 Leimbach et al. Oct 2015 A1
20150297210 Widenhouse et al. Oct 2015 A1
20150297217 Huitema et al. Oct 2015 A1
20150297218 Shelton, IV et al. Oct 2015 A1
20150297219 Shelton, IV et al. Oct 2015 A1
20150297221 Kerr et al. Oct 2015 A1
20150297222 Huitema et al. Oct 2015 A1
20150297223 Huitema et al. Oct 2015 A1
20150297224 Hall et al. Oct 2015 A1
20150297225 Huitema et al. Oct 2015 A1
20150297227 Huitema et al. Oct 2015 A1
20150297228 Huitema et al. Oct 2015 A1
20150297229 Schellin et al. Oct 2015 A1
20150297230 Schellin et al. Oct 2015 A1
20150297231 Huitema et al. Oct 2015 A1
20150297232 Huitema et al. Oct 2015 A1
20150297233 Huitema et al. Oct 2015 A1
20150297234 Schellin et al. Oct 2015 A1
20150297235 Harris et al. Oct 2015 A1
20150297236 Harris et al. Oct 2015 A1
20150305744 Moore et al. Oct 2015 A1
20150305745 Baxter, III et al. Oct 2015 A1
20150313591 Baxter, III et al. Nov 2015 A1
20150313594 Shelton, IV et al. Nov 2015 A1
20150327853 Aronhalt et al. Nov 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20150335328 Shelton, IV et al. Nov 2015 A1
20150335329 Shelton, IV et al. Nov 2015 A1
20150342606 Schmid et al. Dec 2015 A1
20150342607 Shelton, IV et al. Dec 2015 A1
20150359536 Cropper et al. Dec 2015 A1
20150374367 Hall et al. Dec 2015 A1
20150374368 Swayze et al. Dec 2015 A1
20150374369 Yates et al. Dec 2015 A1
20150374374 Shelton, IV et al. Dec 2015 A1
20150374375 Shelton, IV et al. Dec 2015 A1
20150374376 Shelton, IV Dec 2015 A1
20150374377 Shelton, IV Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374379 Shelton, IV Dec 2015 A1
20160000430 Ming et al. Jan 2016 A1
20160000431 Giordano et al. Jan 2016 A1
20160000432 Huang et al. Jan 2016 A1
20160000437 Giordano et al. Jan 2016 A1
20160000438 Swayze et al. Jan 2016 A1
20160000439 Weisenburgh, II et al. Jan 2016 A1
20160000440 Weisenburgh, II et al. Jan 2016 A1
20160000441 Shelton, IV et al. Jan 2016 A1
20160000442 Shelton, IV Jan 2016 A1
20160000452 Yates et al. Jan 2016 A1
20160000453 Yates et al. Jan 2016 A1
20160000513 Shelton, IV et al. Jan 2016 A1
20160007992 Yates et al. Jan 2016 A1
20160008023 Yates et al. Jan 2016 A1
20160015390 Timm et al. Jan 2016 A1
20160015391 Shelton, IV et al. Jan 2016 A1
20160051257 Shelton, IV et al. Feb 2016 A1
20160058443 Yates et al. Mar 2016 A1
20160066909 Baber et al. Mar 2016 A1
20160066910 Baber et al. Mar 2016 A1
20160066911 Baber et al. Mar 2016 A1
20160066912 Baber et al. Mar 2016 A1
20160066913 Swayze et al. Mar 2016 A1
20160066914 Baber et al. Mar 2016 A1
20160066915 Baber et al. Mar 2016 A1
20160066916 Overmyer et al. Mar 2016 A1
20160069449 Kanai et al. Mar 2016 A1
20160074038 Leimbach et al. Mar 2016 A1
20160074040 Widenhouse et al. Mar 2016 A1
20160089137 Hess et al. Mar 2016 A1
20160089141 Harris et al. Mar 2016 A1
20160089142 Harris et al. Mar 2016 A1
20160089143 Harris et al. Mar 2016 A1
20160089146 Harris et al. Mar 2016 A1
20160089147 Harris et al. Mar 2016 A1
20160089148 Harris et al. Mar 2016 A1
20160089149 Harris et al. Mar 2016 A1
20160100837 Huang et al. Apr 2016 A1
20160106426 Shelton, IV et al. Apr 2016 A1
20160106427 Shelton, IV et al. Apr 2016 A1
20160106431 Shelton, IV et al. Apr 2016 A1
20160113653 Zingman Apr 2016 A1
20160120544 Shelton, IV et al. May 2016 A1
20160120545 Shelton, IV et al. May 2016 A1
20160120547 Schmid et al. May 2016 A1
20160128694 Baxter, III et al. May 2016 A1
20160135812 Shelton, IV et al. May 2016 A1
20160166256 Baxter, III et al. Jun 2016 A1
20160174969 Kerr et al. Jun 2016 A1
20160174970 Shelton, IV et al. Jun 2016 A1
20160174971 Baxter, III et al. Jun 2016 A1
20160174972 Shelton, IV et al. Jun 2016 A1
20160174973 Shelton, IV et al. Jun 2016 A1
20160174974 Schmid et al. Jun 2016 A1
20160174975 Shelton, IV et al. Jun 2016 A1
20160174976 Morgan et al. Jun 2016 A1
20160174977 Lytle, IV et al. Jun 2016 A1
20160174978 Overmyer et al. Jun 2016 A1
20160174983 Shelton, IV et al. Jun 2016 A1
20160174984 Smith et al. Jun 2016 A1
20160174985 Baxter, III et al. Jun 2016 A1
20160183939 Shelton, IV et al. Jun 2016 A1
20160183943 Shelton, IV Jun 2016 A1
20160183944 Swensgard et al. Jun 2016 A1
20160183945 Shelton, IV et al. Jun 2016 A1
20160183947 Shelton, IV et al. Jun 2016 A1
20160183948 Shelton, IV et al. Jun 2016 A1
20160183950 Shelton, IV et al. Jun 2016 A1
20160184039 Shelton, IV et al. Jun 2016 A1
20160192916 Shelton, IV et al. Jul 2016 A1
20160192917 Shelton, IV et al. Jul 2016 A1
20160192918 Shelton, IV et al. Jul 2016 A1
20160192929 Schmid et al. Jul 2016 A1
20160192933 Shelton, IV Jul 2016 A1
20160192936 Leimbach et al. Jul 2016 A1
20160192996 Spivey et al. Jul 2016 A1
20160192997 Spivey et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160199061 Shelton, IV et al. Jul 2016 A1
20160199063 Mandakolathur Vasudevan et al. Jul 2016 A1
20160199064 Shelton, IV et al. Jul 2016 A1
20160199088 Shelton, IV et al. Jul 2016 A1
20160199089 Hess et al. Jul 2016 A1
20160199956 Shelton, IV et al. Jul 2016 A1
20160206309 Hess et al. Jul 2016 A1
20160206310 Shelton, IV Jul 2016 A1
20160206314 Scheib et al. Jul 2016 A1
20160220246 Timm et al. Aug 2016 A1
20160220247 Timm et al. Aug 2016 A1
20160220248 Timm et al. Aug 2016 A1
20160220249 Shelton, IV et al. Aug 2016 A1
20160220254 Baxter, III et al. Aug 2016 A1
20160220266 Shelton, IV et al. Aug 2016 A1
20160220268 Shelton, IV et al. Aug 2016 A1
20160235403 Shelton, IV et al. Aug 2016 A1
20160235404 Shelton, IV Aug 2016 A1
20160235405 Shelton, IV et al. Aug 2016 A1
20160235406 Shelton, IV et al. Aug 2016 A1
20160235408 Shelton, IV et al. Aug 2016 A1
20160235409 Shelton, IV et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160238108 Kanai et al. Aug 2016 A1
20160242768 Moore et al. Aug 2016 A1
20160242769 Moore et al. Aug 2016 A1
20160242770 Moore et al. Aug 2016 A1
20160242775 Shelton, IV et al. Aug 2016 A1
20160242776 Shelton, IV et al. Aug 2016 A1
20160242777 Shelton, IV et al. Aug 2016 A1
20160242780 Shelton, IV et al. Aug 2016 A1
20160242781 Shelton, IV et al. Aug 2016 A1
20160242782 Shelton, IV et al. Aug 2016 A1
20160242783 Shelton, IV et al. Aug 2016 A1
20160249908 Shelton, IV et al. Sep 2016 A1
20160249909 Shelton, IV et al. Sep 2016 A1
20160249910 Shelton, IV et al. Sep 2016 A1
20160249911 Timm et al. Sep 2016 A1
20160249915 Beckman et al. Sep 2016 A1
20160249916 Shelton, IV et al. Sep 2016 A1
20160249917 Beckman et al. Sep 2016 A1
20160249918 Shelton, IV et al. Sep 2016 A1
20160249919 Savage et al. Sep 2016 A1
20160249922 Morgan et al. Sep 2016 A1
20160249927 Beckman et al. Sep 2016 A1
20160249930 Hall et al. Sep 2016 A1
20160249945 Shelton, IV et al. Sep 2016 A1
20160256071 Shelton, IV et al. Sep 2016 A1
20160256153 Shelton, IV et al. Sep 2016 A1
20160256154 Shelton, IV et al. Sep 2016 A1
20160256155 Shelton, IV et al. Sep 2016 A1
20160256156 Shelton, IV et al. Sep 2016 A1
20160256160 Shelton, IV et al. Sep 2016 A1
20160256161 Overmyer et al. Sep 2016 A1
20160256162 Shelton, IV et al. Sep 2016 A1
20160256163 Shelton, IV et al. Sep 2016 A1
20160256184 Shelton, IV et al. Sep 2016 A1
20160256185 Shelton, IV et al. Sep 2016 A1
20160256186 Shelton, IV et al. Sep 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160262746 Shelton, IV et al. Sep 2016 A1
20160262760 Shelton, IV et al. Sep 2016 A1
20160270780 Hall et al. Sep 2016 A1
20160287249 Alexander, III et al. Oct 2016 A1
20160287250 Shelton, IV et al. Oct 2016 A1
20160287251 Shelton, IV et al. Oct 2016 A1
20160287253 Shelton, IV et al. Oct 2016 A1
20160287254 Baxter, III et al. Oct 2016 A1
20160331375 Shelton, IV et al. Nov 2016 A1
Foreign Referenced Citations (1200)
Number Date Country
2008207624 Mar 2009 AU
2010214687 Sep 2010 AU
2012200178 Jul 2013 AU
2458946 Mar 2003 CA
2477181 Apr 2004 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
2639177 Feb 2009 CA
2576347 Aug 2015 CA
86100996 Sep 1986 CN
1163558 Oct 1997 CN
2488482 May 2002 CN
1424891 Jun 2003 CN
1523725 Aug 2004 CN
1545154 Nov 2004 CN
1634601 Jul 2005 CN
2716900 Aug 2005 CN
2738962 Nov 2005 CN
1726874 Feb 2006 CN
1726878 Feb 2006 CN
1868411 Nov 2006 CN
1915180 Feb 2007 CN
2868212 Feb 2007 CN
1960679 May 2007 CN
101011286 Aug 2007 CN
101095621 Jan 2008 CN
101111196 Jan 2008 CN
101137402 Mar 2008 CN
101224122 Jul 2008 CN
101224124 Jul 2008 CN
101254126 Sep 2008 CN
101507620 Aug 2009 CN
101507622 Aug 2009 CN
101507623 Aug 2009 CN
101507625 Aug 2009 CN
101507628 Aug 2009 CN
101534724 Sep 2009 CN
101541251 Sep 2009 CN
101626731 Jan 2010 CN
101675898 Mar 2010 CN
101683280 Mar 2010 CN
101868203 Oct 2010 CN
101873834 Oct 2010 CN
101912285 Dec 2010 CN
101028205 Jan 2011 CN
101933824 Jan 2011 CN
101934098 May 2011 CN
102038531 May 2011 CN
102038532 May 2011 CN
101534722 Jun 2011 CN
201949071 Aug 2011 CN
101336835 Sep 2011 CN
102188270 Sep 2011 CN
101779977 Dec 2011 CN
101534723 Jan 2012 CN
101310680 Apr 2012 CN
101912284 Jul 2012 CN
202397539 Aug 2012 CN
101317782 Oct 2012 CN
101507639 Nov 2012 CN
101507633 Feb 2013 CN
101023879 Mar 2013 CN
101327137 Jun 2013 CN
101401736 Jun 2013 CN
101332110 Jul 2013 CN
101683281 Jan 2014 CN
103648408 Mar 2014 CN
103908313 Jul 2014 CN
102166129 Mar 2015 CN
102247177 Feb 2016 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3212828 Nov 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
4228909 Mar 1994 DE
9412228 Sep 1994 DE
19509116 Sep 1996 DE
19707373 Feb 1998 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
20016423 Feb 2001 DE
10052679 May 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314827 Apr 2004 DE
10314072 Oct 2004 DE
202004012389 Nov 2004 DE
202007003114 Jun 2007 DE
0000756 Feb 1979 EP
0122046 Oct 1984 EP
0070230 Oct 1985 EP
0156774 Oct 1985 EP
0033548 May 1986 EP
0077262 Aug 1986 EP
0189807 Aug 1986 EP
0212278 Mar 1987 EP
0129442 Nov 1987 EP
0276104 Jul 1988 EP
0379721 Aug 1990 EP
0178940 Jan 1991 EP
0178941 Jan 1991 EP
0169044 Jun 1991 EP
0248844 Jan 1993 EP
0539762 May 1993 EP
0545029 Jun 1993 EP
0548998 Jun 1993 EP
0277959 Oct 1993 EP
0591946 Oct 1993 EP
0233940 Nov 1993 EP
0261230 Nov 1993 EP
0639349 Feb 1994 EP
0324636 Mar 1994 EP
0593920 Apr 1994 EP
0594148 Apr 1994 EP
0427949 Jun 1994 EP
0523174 Jun 1994 EP
0600182 Jun 1994 EP
0310431 Nov 1994 EP
0375302 Nov 1994 EP
0376562 Nov 1994 EP
0623311 Nov 1994 EP
0630612 Dec 1994 EP
0630614 Dec 1994 EP
0634144 Jan 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0505036 May 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0387980 Oct 1995 EP
0511470 Oct 1995 EP
0674876 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0364216 Jan 1996 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0488768 Apr 1996 EP
0705571 Apr 1996 EP
0528478 May 1996 EP
0711611 May 1996 EP
0484677 Jun 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0737446 Oct 1996 EP
0748614 Dec 1996 EP
0708618 Mar 1997 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0447121 Jul 1997 EP
0621009 Jul 1997 EP
0625077 Jul 1997 EP
0633749 Aug 1997 EP
0710090 Aug 1997 EP
0578425 Sep 1997 EP
0623312 Sep 1997 EP
0621006 Oct 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0649290 Mar 1998 EP
0598618 Sep 1998 EP
0676173 Sep 1998 EP
0678007 Sep 1998 EP
0869104 Oct 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0695144 Dec 1998 EP
0722296 Dec 1998 EP
0760230 Feb 1999 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0537572 Jun 1999 EP
0923907 Jun 1999 EP
0640317 Sep 1999 EP
0843906 Mar 2000 EP
0552050 May 2000 EP
0833592 May 2000 EP
0832605 Jun 2000 EP
0830094 Sep 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1058177 Dec 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
0806914 Sep 2001 EP
0768840 Dec 2001 EP
0908152 Jan 2002 EP
0717959 Feb 2002 EP
0872213 May 2002 EP
0862386 Jun 2002 EP
0949886 Sep 2002 EP
1238634 Sep 2002 EP
0858295 Dec 2002 EP
0656188 Jan 2003 EP
0717960 Feb 2003 EP
1284120 Feb 2003 EP
1287788 Mar 2003 EP
0717966 Apr 2003 EP
0869742 May 2003 EP
0829235 Jun 2003 EP
0887046 Jul 2003 EP
1323384 Jul 2003 EP
0852480 Aug 2003 EP
0891154 Sep 2003 EP
0813843 Oct 2003 EP
0873089 Oct 2003 EP
0856326 Nov 2003 EP
1374788 Jan 2004 EP
0741996 Feb 2004 EP
0814712 Feb 2004 EP
1402837 Mar 2004 EP
0705570 Apr 2004 EP
0959784 Apr 2004 EP
1407719 Apr 2004 EP
1411626 Apr 2004 EP
1086713 May 2004 EP
0996378 Jun 2004 EP
1426012 Jun 2004 EP
0833593 Jul 2004 EP
1442694 Aug 2004 EP
0888749 Sep 2004 EP
0959786 Sep 2004 EP
1453432 Sep 2004 EP
1459695 Sep 2004 EP
1254636 Oct 2004 EP
1473819 Nov 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
1001710 Jan 2005 EP
1496805 Jan 2005 EP
1256318 Feb 2005 EP
1520521 Apr 2005 EP
1520522 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1523942 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1067876 Aug 2005 EP
0870473 Sep 2005 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
0906764 Dec 2005 EP
1330989 Dec 2005 EP
0771176 Jan 2006 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621143 Feb 2006 EP
1621145 Feb 2006 EP
1621151 Feb 2006 EP
1034746 Mar 2006 EP
1201196 Mar 2006 EP
1632191 Mar 2006 EP
1647231 Apr 2006 EP
1065981 May 2006 EP
1082944 May 2006 EP
1230899 May 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1253866 Jul 2006 EP
1676539 Jul 2006 EP
1032318 Aug 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1693015 Aug 2006 EP
1400214 Sep 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1400206 Nov 2006 EP
1721568 Nov 2006 EP
1256317 Dec 2006 EP
1285633 Dec 2006 EP
1728473 Dec 2006 EP
1728475 Dec 2006 EP
1736105 Dec 2006 EP
1011494 Jan 2007 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1749485 Feb 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1767157 Mar 2007 EP
1767163 Mar 2007 EP
1563792 Apr 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1581128 May 2007 EP
1780825 May 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1790294 May 2007 EP
1563793 Jun 2007 EP
1791473 Jun 2007 EP
1800610 Jun 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813200 Aug 2007 EP
1813201 Aug 2007 EP
1813202 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1815950 Aug 2007 EP
1330991 Sep 2007 EP
1806103 Sep 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1487359 Oct 2007 EP
1599146 Oct 2007 EP
1839596 Oct 2007 EP
2110083 Oct 2007 EP
1679096 Nov 2007 EP
1857057 Nov 2007 EP
1402821 Dec 2007 EP
1872727 Jan 2008 EP
1550410 Feb 2008 EP
1671593 Feb 2008 EP
1897502 Mar 2008 EP
1611856 Apr 2008 EP
1908417 Apr 2008 EP
1917929 May 2008 EP
1330201 Jun 2008 EP
1702568 Jul 2008 EP
1943955 Jul 2008 EP
1943957 Jul 2008 EP
1943959 Jul 2008 EP
1943962 Jul 2008 EP
1943964 Jul 2008 EP
1943976 Jul 2008 EP
1593337 Aug 2008 EP
1970014 Sep 2008 EP
1974678 Oct 2008 EP
1980213 Oct 2008 EP
1980214 Oct 2008 EP
1759645 Nov 2008 EP
1987780 Nov 2008 EP
1990014 Nov 2008 EP
1992296 Nov 2008 EP
1552795 Dec 2008 EP
1693008 Dec 2008 EP
1759640 Dec 2008 EP
1997439 Dec 2008 EP
2000101 Dec 2008 EP
2000102 Dec 2008 EP
2005894 Dec 2008 EP
2005897 Dec 2008 EP
2005901 Dec 2008 EP
2008595 Dec 2008 EP
2025293 Feb 2009 EP
1736104 Mar 2009 EP
1749486 Mar 2009 EP
1782743 Mar 2009 EP
2039302 Mar 2009 EP
2039308 Mar 2009 EP
2039316 Mar 2009 EP
1721576 Apr 2009 EP
1733686 Apr 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
1550409 Jun 2009 EP
1550413 Jun 2009 EP
1719461 Jun 2009 EP
1834594 Jun 2009 EP
1709911 Jul 2009 EP
2077093 Jul 2009 EP
1745748 Aug 2009 EP
2090231 Aug 2009 EP
2090237 Aug 2009 EP
2090241 Aug 2009 EP
2090244 Aug 2009 EP
2090245 Aug 2009 EP
2090254 Aug 2009 EP
2090256 Aug 2009 EP
2095777 Sep 2009 EP
2098170 Sep 2009 EP
2110082 Oct 2009 EP
2110084 Oct 2009 EP
2111803 Oct 2009 EP
1762190 Nov 2009 EP
1813208 Nov 2009 EP
1908426 Nov 2009 EP
2116195 Nov 2009 EP
2116197 Nov 2009 EP
1607050 Dec 2009 EP
1815804 Dec 2009 EP
1875870 Dec 2009 EP
1878395 Jan 2010 EP
2151204 Feb 2010 EP
1813211 Mar 2010 EP
2165656 Mar 2010 EP
2165660 Mar 2010 EP
2165664 Mar 2010 EP
1566150 Apr 2010 EP
1813206 Apr 2010 EP
2184014 May 2010 EP
1769754 Jun 2010 EP
1854416 Jun 2010 EP
1911408 Jun 2010 EP
2198787 Jun 2010 EP
2214610 Aug 2010 EP
2218409 Aug 2010 EP
1647286 Sep 2010 EP
1825821 Sep 2010 EP
1535565 Oct 2010 EP
1702570 Oct 2010 EP
1785098 Oct 2010 EP
2005896 Oct 2010 EP
2030578 Nov 2010 EP
2036505 Nov 2010 EP
2245993 Nov 2010 EP
2245994 Nov 2010 EP
2253280 Nov 2010 EP
1627605 Dec 2010 EP
2027811 Dec 2010 EP
2130498 Dec 2010 EP
2258282 Dec 2010 EP
2263568 Dec 2010 EP
1994890 Jan 2011 EP
2005900 Jan 2011 EP
2277667 Jan 2011 EP
2283780 Feb 2011 EP
2286738 Feb 2011 EP
1494595 Mar 2011 EP
1690502 Mar 2011 EP
1884201 Mar 2011 EP
2292153 Mar 2011 EP
1769755 Apr 2011 EP
2090240 Apr 2011 EP
2305135 Apr 2011 EP
2308388 Apr 2011 EP
2314254 Apr 2011 EP
2316345 May 2011 EP
2316366 May 2011 EP
2324776 May 2011 EP
1813205 Jun 2011 EP
2042107 Jun 2011 EP
2090243 Jun 2011 EP
2329773 Jun 2011 EP
2090239 Jul 2011 EP
2340771 Jul 2011 EP
2353545 Aug 2011 EP
2361562 Aug 2011 EP
2377472 Oct 2011 EP
1836986 Nov 2011 EP
1908414 Nov 2011 EP
2153781 Nov 2011 EP
2389928 Nov 2011 EP
1847225 Dec 2011 EP
2397079 Dec 2011 EP
2399538 Dec 2011 EP
1785102 Jan 2012 EP
2415416 Feb 2012 EP
2090253 Mar 2012 EP
2430986 Mar 2012 EP
1347638 May 2012 EP
1943956 May 2012 EP
2446834 May 2012 EP
2455007 May 2012 EP
2457519 May 2012 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
1813204 Jul 2012 EP
2189121 Jul 2012 EP
2248475 Jul 2012 EP
2005895 Aug 2012 EP
2090248 Aug 2012 EP
2481359 Aug 2012 EP
2486860 Aug 2012 EP
2486862 Aug 2012 EP
1908412 Sep 2012 EP
1935351 Sep 2012 EP
2497431 Sep 2012 EP
1550412 Oct 2012 EP
1616549 Oct 2012 EP
2030579 Oct 2012 EP
2090252 Oct 2012 EP
2517637 Oct 2012 EP
2517638 Oct 2012 EP
2517642 Oct 2012 EP
2517645 Oct 2012 EP
2517649 Oct 2012 EP
2517651 Oct 2012 EP
2526877 Nov 2012 EP
2526883 Nov 2012 EP
1884206 Mar 2013 EP
2090238 Apr 2013 EP
2586380 May 2013 EP
2586383 May 2013 EP
2606812 Jun 2013 EP
2606834 Jun 2013 EP
1982657 Jul 2013 EP
2614782 Jul 2013 EP
2090234 Sep 2013 EP
2633830 Sep 2013 EP
2644124 Oct 2013 EP
2644209 Oct 2013 EP
2649948 Oct 2013 EP
2649949 Oct 2013 EP
2684529 Jan 2014 EP
2700367 Feb 2014 EP
2713902 Apr 2014 EP
1772105 May 2014 EP
2759267 Jul 2014 EP
2764826 Aug 2014 EP
2764827 Aug 2014 EP
2772206 Sep 2014 EP
2772209 Sep 2014 EP
2777520 Sep 2014 EP
2777528 Sep 2014 EP
2777538 Sep 2014 EP
2786714 Oct 2014 EP
2803324 Nov 2014 EP
2446835 Jan 2015 EP
2845545 Mar 2015 EP
1943960 Apr 2015 EP
2090255 Apr 2015 EP
2923660 Sep 2015 EP
1774914 Dec 2015 EP
2090235 Apr 2016 EP
2823773 Apr 2016 EP
2131750 May 2016 EP
2510891 Jun 2016 EP
1915957 Aug 2016 EP
2586379 Aug 2016 EP
2777533 Oct 2016 EP
2364651 Nov 2016 EP
2116192 Mar 2017 EP
2311386 Jun 2017 EP
2396594 Feb 2013 ES
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2598905 Nov 1987 FR
2689749 Jul 1994 FR
2765794 Jan 1999 FR
2815842 Oct 2000 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2024012 Jan 1980 GB
2109241 Jun 1983 GB
2272159 May 1994 GB
2284242 May 1995 GB
2286435 Aug 1995 GB
2336214 Oct 1999 GB
2425903 Nov 2006 GB
2423199 May 2009 GB
930100110 Nov 1993 GR
S 47-11908 May 1972 JP
S 50-33988 Apr 1975 JP
S 56-112235 Sep 1981 JP
S 58500053 Jan 1983 JP
S 58-501360 Aug 1983 JP
S 59-174920 Mar 1984 JP
S 60-100955 Jun 1985 JP
S 60-212152 Oct 1985 JP
S 61-98249 May 1986 JP
S 61502036 Sep 1986 JP
S 62-170011 Oct 1987 JP
S 63-59764 Mar 1988 JP
S 63-147449 Jun 1988 JP
S 63-203149 Aug 1988 JP
H 02-279149 Nov 1990 JP
H 03-12126 Jan 1991 JP
H 03-18354 Jan 1991 JP
H 03-78514 Aug 1991 JP
H 03-85009 Aug 1991 JP
H 04-215747 Aug 1992 JP
H 04-131860 Dec 1992 JP
H 05-84252 Apr 1993 JP
H 05-123325 May 1993 JP
H 06-30945 Feb 1994 JP
H 06-54857 Mar 1994 JP
H 06-63054 Mar 1994 JP
H 06-26812 Apr 1994 JP
H 06-121798 May 1994 JP
H 06-125913 May 1994 JP
H 06-197901 Jul 1994 JP
H 06-237937 Aug 1994 JP
H 06-327684 Nov 1994 JP
H 07-9622 Feb 1995 JP
H 07-31623 Feb 1995 JP
H 07-47070 Feb 1995 JP
H 07-51273 Feb 1995 JP
H 07-124166 May 1995 JP
H 07-163573 Jun 1995 JP
H 07-163574 Jun 1995 JP
H 07-171163 Jul 1995 JP
H 07-255735 Oct 1995 JP
H 07-285089 Oct 1995 JP
H 07-299074 Nov 1995 JP
H 08-33641 Feb 1996 JP
H 08-33642 Feb 1996 JP
H 08-164141 Jun 1996 JP
H 08-173437 Jul 1996 JP
H 08-182684 Jul 1996 JP
H 08-215201 Aug 1996 JP
H 08-507708 Aug 1996 JP
H 08-229050 Sep 1996 JP
H 08-289895 Nov 1996 JP
H 08-336540 Dec 1996 JP
H 08-336544 Dec 1996 JP
H 09-501081 Feb 1997 JP
H 09-501577 Feb 1997 JP
H 09-164144 Jun 1997 JP
H 10-113352 May 1998 JP
H 10-118090 May 1998 JP
10-512469 Dec 1998 JP
H 10-512465 Dec 1998 JP
2000-014632 Jan 2000 JP
2000-033071 Feb 2000 JP
2000-112002 Apr 2000 JP
2000-166932 Jun 2000 JP
2000-171730 Jun 2000 JP
2000-287987 Oct 2000 JP
2000-325303 Nov 2000 JP
2001-037763 Feb 2001 JP
2001-046384 Feb 2001 JP
2001-087272 Apr 2001 JP
2001-514541 Sep 2001 JP
2001-276091 Oct 2001 JP
2001-286477 Oct 2001 JP
2001-517473 Oct 2001 JP
2002-051974 Feb 2002 JP
2002-085415 Mar 2002 JP
2002-143078 May 2002 JP
2002-204801 Jul 2002 JP
2002-528161 Sep 2002 JP
2002-314298 Oct 2002 JP
2002-369820 Dec 2002 JP
2002-542186 Dec 2002 JP
2003-000603 Jan 2003 JP
2003-500153 Jan 2003 JP
2003-504104 Feb 2003 JP
2003-135473 May 2003 JP
2003-148903 May 2003 JP
2003-164066 Jun 2003 JP
2003-521301 Jul 2003 JP
2003-523251 Aug 2003 JP
2003-523254 Aug 2003 JP
3442423 Sep 2003 JP
2003-300416 Oct 2003 JP
2004-147701 May 2004 JP
2004-162035 Jun 2004 JP
2004-229976 Aug 2004 JP
2004-524076 Aug 2004 JP
2004-531280 Oct 2004 JP
2004-532084 Oct 2004 JP
2004-532676 Oct 2004 JP
2004-329624 Nov 2004 JP
2004-337617 Dec 2004 JP
2004-344662 Dec 2004 JP
2004-344663 Dec 2004 JP
2005-013573 Jan 2005 JP
2005-028147 Feb 2005 JP
2005-028148 Feb 2005 JP
2005-028149 Feb 2005 JP
2005-505309 Feb 2005 JP
2005-505322 Feb 2005 JP
2005-505334 Feb 2005 JP
2005-080702 Mar 2005 JP
2005-103280 Apr 2005 JP
2005-103281 Apr 2005 JP
2005-103293 Apr 2005 JP
2005-511131 Apr 2005 JP
2005-511137 Apr 2005 JP
2005-131163 May 2005 JP
2005-131164 May 2005 JP
2005-131173 May 2005 JP
2005-131211 May 2005 JP
2005-131212 May 2005 JP
2005-137423 Jun 2005 JP
2005-137919 Jun 2005 JP
2005-144183 Jun 2005 JP
2005-152416 Jun 2005 JP
2005-516714 Jun 2005 JP
2005-187954 Jul 2005 JP
2005-521109 Jul 2005 JP
2005-523105 Aug 2005 JP
2005-524474 Aug 2005 JP
4461008 Aug 2005 JP
2005-296412 Oct 2005 JP
2005-529675 Oct 2005 JP
2005-529677 Nov 2005 JP
2005-328882 Dec 2005 JP
2005-335432 Dec 2005 JP
2005-342267 Dec 2005 JP
2006-034975 Feb 2006 JP
2006-034977 Feb 2006 JP
2006-034978 Feb 2006 JP
2006-034980 Feb 2006 JP
2006-043451 Feb 2006 JP
2006-506106 Feb 2006 JP
2006-510879 Mar 2006 JP
3791856 Jun 2006 JP
2006-187649 Jul 2006 JP
2006-218297 Aug 2006 JP
2006-223872 Aug 2006 JP
2006-281405 Oct 2006 JP
2006-289064 Oct 2006 JP
2006-334412 Dec 2006 JP
2006-334417 Dec 2006 JP
2006-346445 Dec 2006 JP
2007-000634 Jan 2007 JP
2007-050253 Mar 2007 JP
2007-061628 Mar 2007 JP
2007-083051 Apr 2007 JP
2007-098130 Apr 2007 JP
2007-105481 Apr 2007 JP
3906843 Apr 2007 JP
2007-117725 May 2007 JP
2007-130471 May 2007 JP
2007-130479 May 2007 JP
2007-222615 Jun 2007 JP
3934161 Jun 2007 JP
2007-203047 Aug 2007 JP
2007-203049 Aug 2007 JP
2007-203051 Aug 2007 JP
2007-203055 Aug 2007 JP
2007-203057 Aug 2007 JP
2007-524435 Aug 2007 JP
2007-229448 Sep 2007 JP
2007-526026 Sep 2007 JP
2007-252916 Oct 2007 JP
4001860 Oct 2007 JP
2007-307373 Nov 2007 JP
2007-325922 Dec 2007 JP
2008-068073 Mar 2008 JP
2008-510515 Apr 2008 JP
2008-516669 May 2008 JP
2008-528203 Jul 2008 JP
2008-206967 Sep 2008 JP
2008-212637 Sep 2008 JP
2008-212638 Sep 2008 JP
2008-212640 Sep 2008 JP
2008-220956 Sep 2008 JP
2008-237881 Oct 2008 JP
2008-259860 Oct 2008 JP
2008-264535 Nov 2008 JP
2008-283459 Nov 2008 JP
2008-307393 Dec 2008 JP
2009-000531 Jan 2009 JP
2009-006137 Jan 2009 JP
2009-502351 Jan 2009 JP
2009-502352 Jan 2009 JP
2009-022742 Feb 2009 JP
2009-506799 Feb 2009 JP
2009-507526 Feb 2009 JP
2009-072595 Apr 2009 JP
2009-072599 Apr 2009 JP
2009-090113 Apr 2009 JP
2009-106752 May 2009 JP
2009-189821 Aug 2009 JP
2009-189823 Aug 2009 JP
2009-189836 Aug 2009 JP
2009-189837 Aug 2009 JP
2009-189838 Aug 2009 JP
2009-189847 Aug 2009 JP
2009-201998 Sep 2009 JP
2009-536082 Oct 2009 JP
2009-261944 Nov 2009 JP
2009-268908 Nov 2009 JP
2009-538684 Nov 2009 JP
2009-539420 Nov 2009 JP
2009-291604 Dec 2009 JP
2010-504808 Feb 2010 JP
2010-504809 Feb 2010 JP
2010-504813 Feb 2010 JP
2010-504846 Feb 2010 JP
2010-505524 Feb 2010 JP
2010-069307 Apr 2010 JP
2010-069310 Apr 2010 JP
2010-075694 Apr 2010 JP
2010-075695 Apr 2010 JP
2010-088876 Apr 2010 JP
2010-098844 Apr 2010 JP
2010-142636 Jul 2010 JP
2010-214166 Sep 2010 JP
4549018 Sep 2010 JP
2010-246948 Nov 2010 JP
2010-279690 Dec 2010 JP
2010-540192 Dec 2010 JP
2011-005260 Jan 2011 JP
2011-504391 Feb 2011 JP
2011-072797 Apr 2011 JP
2011-078763 Apr 2011 JP
2011-524199 Sep 2011 JP
4783373 Sep 2011 JP
2011-251156 Dec 2011 JP
2012-040398 Mar 2012 JP
2012-517289 Aug 2012 JP
5140421 Feb 2013 JP
5162595 Mar 2013 JP
2013-517891 May 2013 JP
2013-128791 Jul 2013 JP
5212039 Jul 2013 JP
5333899 Nov 2013 JP
6007357 Oct 2016 JP
20110003229 Jan 2011 KR
2008830 Mar 1994 RU
2052979 Jan 1996 RU
2098025 Dec 1997 RU
2141279 Nov 1999 RU
2144791 Jan 2000 RU
2181566 Apr 2002 RU
2187249 Aug 2002 RU
2189091 Sep 2002 RU
32984 Oct 2003 RU
2225170 Mar 2004 RU
42750 Dec 2004 RU
61114 Feb 2007 RU
189517 Jan 1967 SU
328636 Sep 1972 SU
511939 Apr 1976 SU
674747 Jul 1979 SU
886900 Dec 1981 SU
1009439 Apr 1983 SU
1022703 Jun 1983 SU
1333319 Aug 1987 SU
1377053 Feb 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1814161 May 1993 SU
WO 8202824 Sep 1982 WO
WO 8602254 Apr 1986 WO
WO 9115157 Oct 1991 WO
WO 9220295 Nov 1992 WO
WO 9221300 Dec 1992 WO
WO 9308755 May 1993 WO
WO 9313718 Jul 1993 WO
WO 9314690 Aug 1993 WO
WO 9315648 Aug 1993 WO
WO 9315850 Aug 1993 WO
WO 9319681 Oct 1993 WO
WO 9400060 Jan 1994 WO
WO 9411057 May 1994 WO
WO 9412108 Jun 1994 WO
WO 9417737 Aug 1994 WO
WO 9418893 Sep 1994 WO
WO 9420030 Sep 1994 WO
WO 9422378 Oct 1994 WO
WO 9423659 Oct 1994 WO
WO 9424943 Nov 1994 WO
WO 9424947 Nov 1994 WO
WO 9502369 Jan 1995 WO
WO 9503743 Feb 1995 WO
WO 9506817 Mar 1995 WO
WO 9509576 Apr 1995 WO
WO 9509577 Apr 1995 WO
WO 9514436 Jun 1995 WO
WO 9517855 Jul 1995 WO
WO 9518383 Jul 1995 WO
WO 9518572 Jul 1995 WO
WO 9519739 Jul 1995 WO
WO 9520360 Aug 1995 WO
WO 9523557 Sep 1995 WO
WO 9524865 Sep 1995 WO
WO 9525471 Sep 1995 WO
WO 9526562 Oct 1995 WO
WO 9529639 Nov 1995 WO
WO 9604858 Feb 1996 WO
WO 9618344 Jun 1996 WO
WO 9619151 Jun 1996 WO
WO 9619152 Jun 1996 WO
WO 9620652 Jul 1996 WO
WO 9621119 Jul 1996 WO
WO 9622055 Jul 1996 WO
WO 9623448 Aug 1996 WO
WO 9624301 Aug 1996 WO
WO 9627337 Sep 1996 WO
WO 9631155 Oct 1996 WO
WO 9635464 Nov 1996 WO
WO 9639085 Dec 1996 WO
WO 9639086 Dec 1996 WO
WO 9639087 Dec 1996 WO
WO 9639088 Dec 1996 WO
WO 9639089 Dec 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9701989 Jan 1997 WO
WO 9706582 Feb 1997 WO
WO 9710763 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9711648 Apr 1997 WO
WO 9711649 Apr 1997 WO
WO 9715237 May 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9730644 Aug 1997 WO
WO 9730659 Aug 1997 WO
WO 9734533 Sep 1997 WO
WO 9737598 Oct 1997 WO
WO 9739688 Oct 1997 WO
WO 9741767 Nov 1997 WO
WO 9801080 Jan 1998 WO
WO 9817180 Apr 1998 WO
WO 9822154 May 1998 WO
WO 9827880 Jul 1998 WO
WO 9830153 Jul 1998 WO
WO 9847436 Oct 1998 WO
WO 9858589 Dec 1998 WO
WO 9902090 Jan 1999 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912483 Mar 1999 WO
WO 9912487 Mar 1999 WO
WO 9912488 Mar 1999 WO
WO 9915086 Apr 1999 WO
WO 9915091 Apr 1999 WO
WO 9923933 May 1999 WO
WO 9923959 May 1999 WO
WO 9925261 May 1999 WO
WO 9929244 Jun 1999 WO
WO 9934744 Jul 1999 WO
WO 9945849 Sep 1999 WO
WO 9948430 Sep 1999 WO
WO 9951158 Oct 1999 WO
WO 0024322 May 2000 WO
WO 0024330 May 2000 WO
WO 0033755 Jun 2000 WO
WO 0041638 Jul 2000 WO
WO 0048506 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0054653 Sep 2000 WO
WO 0057796 Oct 2000 WO
WO 0064365 Nov 2000 WO
WO 0072762 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0078222 Dec 2000 WO
WO 0103587 Jan 2001 WO
WO 0105702 Jan 2001 WO
WO 0110482 Feb 2001 WO
WO 0135845 May 2001 WO
WO 0154594 Aug 2001 WO
WO 0158371 Aug 2001 WO
WO 0162158 Aug 2001 WO
WO 0162161 Aug 2001 WO
WO 0162162 Aug 2001 WO
WO 0162163 Aug 2001 WO
WO 0162164 Aug 2001 WO
WO 0162169 Aug 2001 WO
WO 0178605 Oct 2001 WO
WO 0180757 Nov 2001 WO
WO 0191646 Dec 2001 WO
WO 0200121 Jan 2002 WO
WO 0207608 Jan 2002 WO
WO 0207618 Jan 2002 WO
WO 0217799 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0219932 Mar 2002 WO
WO 0226143 Apr 2002 WO
WO 0230297 Apr 2002 WO
WO 0232322 Apr 2002 WO
WO 0236028 May 2002 WO
WO 0243571 Jun 2002 WO
WO 02058568 Aug 2002 WO
WO 02060328 Aug 2002 WO
WO 02065933 Aug 2002 WO
WO 02067785 Sep 2002 WO
WO 02080781 Oct 2002 WO
WO 02085218 Oct 2002 WO
WO 02087586 Nov 2002 WO
WO 02098302 Dec 2002 WO
WO 03000138 Jan 2003 WO
WO 03001329 Jan 2003 WO
WO 03001986 Jan 2003 WO
WO 03013363 Feb 2003 WO
WO 03013372 Feb 2003 WO
WO 03015604 Feb 2003 WO
WO 03020106 Mar 2003 WO
WO 03020139 Mar 2003 WO
WO 03024339 Mar 2003 WO
WO 03079909 Mar 2003 WO
WO 03030743 Apr 2003 WO
WO 03037193 May 2003 WO
WO 03047436 Jun 2003 WO
WO 03055402 Jul 2003 WO
WO 03057048 Jul 2003 WO
WO 03057058 Jul 2003 WO
WO 03063694 Aug 2003 WO
WO 03077769 Sep 2003 WO
WO 03079911 Oct 2003 WO
WO 03082126 Oct 2003 WO
WO 03086206 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03090630 Nov 2003 WO
WO 03094743 Nov 2003 WO
WO 03094745 Nov 2003 WO
WO 03094746 Nov 2003 WO
WO 03094747 Nov 2003 WO
WO 03101313 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 03105702 Dec 2003 WO
WO 2004004578 Jan 2004 WO
WO 2004006980 Jan 2004 WO
WO 2004011037 Feb 2004 WO
WO 2004014238 Feb 2004 WO
WO 2004019769 Mar 2004 WO
WO 2004019803 Mar 2004 WO
WO 2004021868 Mar 2004 WO
WO 2004028585 Apr 2004 WO
WO 2004030554 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004032783 Apr 2004 WO
WO 2004034875 Apr 2004 WO
WO 2004047626 Jun 2004 WO
WO 2004047653 Jun 2004 WO
WO 2004049956 Jun 2004 WO
WO 2004050971 Jun 2004 WO
WO 2004052426 Jun 2004 WO
WO 2004056276 Jul 2004 WO
WO 2004056277 Jul 2004 WO
WO 2004062516 Jul 2004 WO
WO 2004064600 Aug 2004 WO
WO 2004078050 Sep 2004 WO
WO 2004078051 Sep 2004 WO
WO 2004078236 Sep 2004 WO
WO 2004086987 Oct 2004 WO
WO 2004096015 Nov 2004 WO
WO 2004096057 Nov 2004 WO
WO 2004103157 Dec 2004 WO
WO 2004105593 Dec 2004 WO
WO 2004105621 Dec 2004 WO
WO 2004112618 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2005027983 Mar 2005 WO
WO 2005037329 Apr 2005 WO
WO 2005042041 May 2005 WO
WO 2005044078 May 2005 WO
WO 2005048809 Jun 2005 WO
WO 2005055846 Jun 2005 WO
WO 2005072634 Aug 2005 WO
WO 2005078892 Aug 2005 WO
WO 2005079675 Sep 2005 WO
WO 2005087128 Sep 2005 WO
WO 2005096954 Oct 2005 WO
WO 2005112806 Dec 2005 WO
WO 2005112808 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2005115253 Dec 2005 WO
WO 2005117735 Dec 2005 WO
WO 2005122936 Dec 2005 WO
WO 2006023486 Mar 2006 WO
WO 2006023578 Mar 2006 WO
WO 2006027014 Mar 2006 WO
WO 2006028314 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006044581 Apr 2006 WO
WO 2006044810 Apr 2006 WO
WO 2006049852 May 2006 WO
WO 2006050360 May 2006 WO
WO 2006051252 May 2006 WO
WO 2006059067 Jun 2006 WO
WO 2006083748 Aug 2006 WO
WO 2006085389 Aug 2006 WO
WO 2006092563 Sep 2006 WO
WO 2006092565 Sep 2006 WO
WO 2006115958 Nov 2006 WO
WO 2006125940 Nov 2006 WO
WO 2006132992 Dec 2006 WO
WO 2007002180 Jan 2007 WO
WO 2007016290 Feb 2007 WO
WO 2007018898 Feb 2007 WO
WO 2007034161 Mar 2007 WO
WO 2007051000 May 2007 WO
WO 2007059233 May 2007 WO
WO 2007074430 Jul 2007 WO
WO 2007089603 Aug 2007 WO
WO 2007098220 Aug 2007 WO
WO 2007121579 Nov 2007 WO
WO 2007129121 Nov 2007 WO
WO 2007131110 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2007139734 Dec 2007 WO
WO 2007142625 Dec 2007 WO
WO 2007145825 Dec 2007 WO
WO 2007146987 Dec 2007 WO
WO 2007147439 Dec 2007 WO
WO 2008020964 Feb 2008 WO
WO 2008021687 Feb 2008 WO
WO 2008021969 Feb 2008 WO
WO 2008039237 Apr 2008 WO
WO 2008039249 Apr 2008 WO
WO 2008039270 Apr 2008 WO
WO 2008045383 Apr 2008 WO
WO 2008057281 May 2008 WO
WO 2008070763 Jun 2008 WO
WO 2008080148 Jul 2008 WO
WO 2008089404 Jul 2008 WO
WO 2008101080 Aug 2008 WO
WO 2008101228 Aug 2008 WO
WO 2008103797 Aug 2008 WO
WO 2008109123 Sep 2008 WO
WO 2008109125 Sep 2008 WO
WO 2008112912 Sep 2008 WO
WO 2008118728 Oct 2008 WO
WO 2008118928 Oct 2008 WO
WO 2008124748 Oct 2008 WO
WO 2008131357 Oct 2008 WO
WO 2009005969 Jan 2009 WO
WO 2009022614 Feb 2009 WO
WO 2009023851 Feb 2009 WO
WO 2009033057 Mar 2009 WO
WO 2009039506 Mar 2009 WO
WO 2009046394 Apr 2009 WO
WO 2009066105 May 2009 WO
WO 2009067649 May 2009 WO
WO 2009091497 Jul 2009 WO
WO 2009120944 Oct 2009 WO
WO 2009137761 Nov 2009 WO
WO 2009143092 Nov 2009 WO
WO 2009143331 Nov 2009 WO
WO 2009150650 Dec 2009 WO
WO 2009152307 Dec 2009 WO
WO 2010028332 Mar 2010 WO
WO 2010030434 Mar 2010 WO
WO 2010045425 Apr 2010 WO
WO 2010050771 May 2010 WO
WO 2010054404 May 2010 WO
WO 2010056714 May 2010 WO
WO 2010063795 Jun 2010 WO
WO 2010090940 Aug 2010 WO
WO 2010093333 Aug 2010 WO
WO 2010098871 Sep 2010 WO
WO 2011008672 Jan 2011 WO
WO 2011013103 Feb 2011 WO
WO 2011044343 Apr 2011 WO
WO 2011060311 May 2011 WO
WO 2011084969 Jul 2011 WO
WO 2011127137 Oct 2011 WO
WO 2012006306 Jan 2012 WO
WO 2012009431 Jan 2012 WO
WO 2012021671 Feb 2012 WO
WO 2012040438 Mar 2012 WO
WO 2012044551 Apr 2012 WO
WO 2012044554 Apr 2012 WO
WO 2012044597 Apr 2012 WO
WO 2012044606 Apr 2012 WO
WO 2012044820 Apr 2012 WO
WO 2012044844 Apr 2012 WO
WO 2012044853 Apr 2012 WO
WO 2012044854 Apr 2012 WO
WO 2012058213 May 2012 WO
WO 2012068156 May 2012 WO
WO 2012109760 Aug 2012 WO
WO 2012127462 Sep 2012 WO
WO 2012135705 Oct 2012 WO
WO 2012143913 Oct 2012 WO
WO 2012148667 Nov 2012 WO
WO 2012148668 Nov 2012 WO
WO 2012148703 Nov 2012 WO
WO 2012160163 Nov 2012 WO
WO 2012166503 Dec 2012 WO
WO 2013009252 Jan 2013 WO
WO 2013009699 Jan 2013 WO
WO 2013036409 Mar 2013 WO
WO 2013043707 Mar 2013 WO
WO 2013043717 Mar 2013 WO
WO 2013043721 Mar 2013 WO
WO 2013062978 May 2013 WO
WO 2013116869 Aug 2013 WO
WO 2013148762 Oct 2013 WO
WO 2013167427 Nov 2013 WO
WO 2013188130 Dec 2013 WO
WO 2014004199 Jan 2014 WO
WO 2014004294 Jan 2014 WO
WO 2015153642 Oct 2015 WO
WO 2007014355 Feb 2017 WO
Non-Patent Literature Citations (50)
Entry
European Examination Report for Application No. 09250380.4, dated Oct. 9, 2014 (6 pages).
European Examination Report for Application No. 09250380.4, dated Jun. 2, 2015 (6 pages).
Partial European Search Report for Application No. 09250380.4, dated Aug. 6, 2013 (7 pages).
European Search Report for Application No. 09250380.4, dated Dec. 13, 2013 (13 pages).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, (2000), 3 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 3-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 3-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Matsuda, “Thermodynamics of Formation of Porous Polymeric Membrane from Solutions,” Polymer Journal, vol. 23, No. 5, pp. 435-444 (1991).
Young, “Microcellular foams via phase separation,” Journal of Vacuum Science & Technology A 4(3), (May/Jun. 1986).
Chen et al., “Elastomeric Biomaterials for Tissue Engineering,” Progress in Polymer Science 38 (2013), pp. 584-671.
Pitt et al., “Attachment of Hyaluronan to Metallic Surfaces,” J. Biomed. Mater. Res. 68A: pp. 95-106, 2004.
Schellhammer et al., “Poly-Lactic-Acid for Coating of Endovascular Stents: Preliminary Results in Canine Experimental Av-Fistulae,” Mat.-wiss. u. Werkstofftech., 32, pp. 193-199 (2001).
Solorio et al., “Gelatin Microspheres Crosslinked with Genipin for Local Delivery of Growth Factors,” J. Tissue Eng. Regen. Med. (2010), 4(7): pp. 514-523.
http://ninpgan.net/publications/51-100/89.pdf; 2004, Ning Pan, On Uniqueness of Fibrous Materials, Design & Nature II. Eds: Colins, M. and Brebbia, C. WIT Press, Boston, 493-504.
Covidien iDrive™ Ultra in Service Reference Card, “iDrive™ Ultra Powered Stapling Device,” (4 pages).
Covidien iDrive™ Ultra Powered Stapling System ibrochure, “The Power of iDrive™ Ultra Powered Stapling System and Tri-Staple™ Technology,” (23 pages).
Seils et al., Covidien Summary: Clinical Study “UCONN Biodynamics: Final Report on Results,” (2 pages).
Covidien “iDrive™ Ultra Powered Stapling System, a Guide for Surgeons,” (6 pages).
Covidien “iDrive™ Ultra Powered Stapling System, Cleaning and Sterilization Guide,” (2 pages).
Covidien brochure “iDrive™ Ultra Powered Stapling System,” (6 pages).
“Indian Standard: Automotive Vehicles—Brakes and Braking Systems (IS 11852-1:2001)”, Mar. 1, 2001.
Fast, Versatile Blackfin Processors Handle Advanced RFID Reader Applications; Analog Dialogue: vol. 40—Sep. 2006; http://www.analog.com/library/analogDialogue/archives/40-09/rfid.pdf: Wayback Machine to Feb. 15, 2012.
Serial Communication Protocol; Michael Lemmon Feb. 1, 2009; http://www3.nd.edu/˜lemmon/courses/ee224/web-manual/web-manual/lab12/node2.html; Wayback Machine to Apr. 29, 2012.
Allegro MicroSystems, LLC, Automotive Full Bridge MOSFET Driver, A3941-DS, Rev. 5, 21 pages, http://www.allegromicro.com/˜/media/Files/Datasheets/A3941-Datasheet.ashx?la=en.
Patrick J. Sweeney: “RFID for Dummies”, Mar. 11, 2010, pp. 365-365, XP055150775, ISBN: 978-1-11-805447-5, Retrieved from the Internet: URL: books.google.de/books?isbn=1118054474 [retrieved on Nov. 4, 2014]—book not attached.
Data Sheet of LM4F230H5QR, 2007.
U.S. Appl. No. 12/031,573, filed Feb. 14, 2008.
Related Publications (1)
Number Date Country
20150297226 A1 Oct 2015 US
Divisions (1)
Number Date Country
Parent 12031030 Feb 2008 US
Child 12878574 US
Continuations (2)
Number Date Country
Parent 14314525 Jun 2014 US
Child 14752127 US
Parent 12878574 Sep 2010 US
Child 14314525 US