1. Technical Field
The present disclosure relates to surgical stapling apparatus including surgical buttresses which are releasably attached to the surgical stapling apparatus, and in particular, to surgical stapling apparatus having surgical buttresses having at least a portion with increased rigidity and/or stability.
2. Background of Related Art
Surgical stapling apparatus are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together. Such apparatus generally include a pair of jaws or finger-like structures between which the body tissue to be joined is placed. When the stapling apparatus is actuated, or “fired”, longitudinally moving firing bars contact staple drive members in one of the jaws. The staple drive members push the surgical staples through the body tissue and into an anvil in the opposite jaw which forms the staples. If tissue is to be removed or separated, a knife blade can be provided in the jaws of the apparatus to cut the tissue between the lines of staples.
A number of surgical stapling apparatus rely on secondary materials, such as adhesives or mounting structures (e.g., sutures) to maintain a surgical buttress on the stapling apparatus. The use of additional materials may leave a residue in the body after implantation and/or require increased firing forces as each material must be transected by the knife blade to detach the surgical buttress from the stapling apparatus.
It would be desirable to provide a buttress that may be releasably secured to a surgical stapling apparatus without the need for a secondary material or mounting structure.
Buttress materials that are formed from non-woven or mesh-like materials are known. These materials are relatively flexible and can shift on the surgical stapling apparatus. It may be desirable in at least certain applications to provide a buttress that has a stiffer construction or at least some stiffer portions to facilitate the placement of the buttress on the apparatus, or the placement of the buttress on tissue, or both.
According to an aspect of the present disclosure, a staple cartridge for use with a surgical stapling apparatus includes a cartridge body including a tissue contacting surface defining a plurality of staple retaining slots, a staple disposed within each staple retaining slot of the cartridge body, and a substantially circular buttress. The buttress includes an inner portion, an outer portion, and a middle portion extending between the inner and outer portions. At least one stiffened region joins the buttress to the tissue contacting surface of the cartridge body. The inner portion, the middle portion, the outer portion, and the at least one stiffened region are all formed from a common material.
The stiffened region may be disposed in any portion of the buttress. In embodiments, at least the outer portion of the buttress includes the stiffened region. In embodiments, at least the inner portion of the buttress includes the stiffened region. In embodiments, the stiffened region includes a plurality of spokes extending radially outward from the inner portion of the buttress to the outer portion of the buttress. In some embodiments, the stiffened region may be disposed radially inward of the staple retaining slots. Alternatively, or additionally, the stiffened region may be disposed radially outward of the staple retaining slots.
The stiffened region may include ruffles. The ruffles may be folds, pleats, undulations, corrugations, creases, ridges, or bends. The stiffened region may be a localized crosslinked region of the buttress. The buttress may include a stiffening agent.
The buttress may include a flange. In embodiments, the outer portion of the buttress includes a terminal flange extending around an outer perimeter of the tissue contacting surface of the cartridge body. In such embodiments, the stiffened region may extend through the terminal flange. The terminal flange may be adjoined to an outer surface of the cartridge body.
The buttress material may include a central opening. The stiffened region may be concentric with the central opening. In embodiments, the inner portion of the buttress may include an interior flange annularly extending into the central opening. In such embodiments, the stiffened region may extend through the interior flange. The interior flange may be adjoined to an inner surface of the cartridge body.
Accordingly to another aspect of the present disclosure, a surgical stapling apparatus includes a tubular body portion, an anvil assembly, a cartridge body, a staple, and a substantially circular buttress. The tubular body portion of the surgical stapling apparatus has a distal end and a shaft with a connection portion, and the anvil assembly includes an anvil plate having staple forming recesses and a shaft connectable with the connection portion. The cartridge body is receivable in the distal end of the tubular body portion and includes a tissue contacting surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots. A staple is disposed within each staple retaining slot of the cartridge body. The buttress includes an inner portion, an outer portion, and a middle portion extending between the inner portion and the outer portion. At least one stiffened region joins the buttress to the tissue contacting surface. The inner portion, the middle portion, the outer portion, and the at least one stiffened region are all formed from a common material.
Accordingly to yet another aspect of the present disclosure, a surgical stapling apparatus includes a tubular body portion, an anvil assembly, a cartridge body, a staple, and a substantially circular buttress. The tubular body portion of the surgical stapling apparatus has a distal end and a shaft with a connection portion, and the anvil assembly includes an anvil plate having staple forming recesses and a shaft connectable with the connection portion. The cartridge body is receivable in the distal end of the tubular body portion and includes a tissue contacting surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots. A staple is disposed within each staple retaining slot of the cartridge body. The buttress includes at least one buttress region and at least one stiffened region formed from a common material.
The stiffened region may be disposed in any portion of the buttress. In embodiments, the stiffened region is disposed about an outer portion of the buttress. In embodiments, the stiffened region is disposed about an inner portion of the buttress. In embodiments, the stiffened region includes a plurality of spokes extending radially outward from an inner portion of the buttress to an outer portion of the buttress. In some embodiments, the stiffened region may be disposed radially inward of the staple retaining slots. Alternatively, or additionally, the stiffened region may be disposed radially outward of the staple retaining slots.
The stiffened region may include ruffles. The stiffened region may be a localized crosslinked region of the buttress. The buttress may include a stiffening agent.
The buttress may include a flange. In embodiments, the buttress includes a terminal flange extending around an outer perimeter of the tissue contacting surface of the cartridge body. In such embodiments, the stiffened region may extend through the terminal flange. The terminal flange may be adjoined to an outer surface of the cartridge body.
The buttress material may include a central opening. The stiffened region may be concentric with the central opening. In embodiments, the buttress may include an interior flange annularly extending into the central opening. In such embodiments, the stiffened region may extend through the interior flange. The interior flange may be adjoined to an inner surface of the cartridge body.
According to another aspect of the present disclosure, a surgical stapling apparatus includes a tubular body portion, an anvil assembly, a cartridge body, a staple, and a substantially circular buttress. The tubular body portion of the surgical stapling apparatus has a distal end and a shaft with a connection portion, and the anvil assembly includes an anvil plate having staple forming recesses and a shaft connectable with the connection portion. The cartridge body is receivable in the distal end of the tubular body portion and includes a tissue contacting surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots. A staple is disposed within each staple retaining slot of the cartridge body. The buttress includes at least one buttress material and at least one stiffened region. The stiffened region is formed by adding a stiffening agent to the buttress material, the stiffening agent being a sugar, a salt, a starch, a hydrogel, a degradable polymer, or combinations thereof.
For example, sugars may include tahalose, sucrose, galatose, and glucose; salts may include sodium chloride, potassium chloride, and sodium phosphate; hydrogels may include degradable polyethylene glycol or poly(2-hydroxyethyl methacrylate); and degradable polymers may include poloxamers or polyhydroxy acids. In embodiments, the polyhydroxy acids are glycolide, lactide, trimethylene carbonate, p-dioxanone, ε-caprolactone, or combinations thereof. The stiffening agent may be coated on the buttress and/or impregnated therein.
Embodiments of the presently disclosed surgical stapling apparatus and surgical buttress are described herein with reference to the accompanying drawings, wherein:
Various exemplary embodiments of the present disclosure are discussed herein below in terms of surgical buttresses for use with surgical stapling apparatus. The surgical buttresses described herein may be used in joining the edges of wound tissue utilizing a surgical stapling apparatus which has at least one surgical buttress mounted thereon. The at least one surgical buttress is joined to the surgical stapling apparatus and includes at least one stiffened region. The at least one stiffened region can adhere, or otherwise be used to connect, the surgical buttress to the surgical stapling apparatus. In embodiments, actuation of a knife provides a force that impinges against the surgical buttress and displaces the buttress by a sufficient amount to weaken or break the bond created by the stiffened region between the surgical buttress and the surgical stapling apparatus, thereby releasing the surgical buttress therefrom before substantial cutting of the buttress material. In other embodiments, cutting of the surgical buttress by the knife blade releases a portion of the surgical buttress that is free of the stiffened region. Thus, the present disclosure describes surgical buttresses, surgical stapling apparatus supporting said surgical buttresses, and methods and mechanisms for using the same.
It should be understood that a variety of surgical stapling apparatus may be utilized with a surgical buttress of the present disclosure. For example, circular stapler configurations may be utilized, such as, for example those including end-to-end anastomosis staplers having a circular cartridge and anvil (see, e.g., commonly owned U.S. Pat. No. 5,915,616, entitled “Surgical Fastener Applying Apparatus,” the entire content of which is incorporated herein by this reference), and linear stapler configurations, such as, for example those including Duet TRS™ reloads and staplers with Tri-Staple™ technology, available through Covidien, which maintain a principal place of business at 555 Long Wharf Drive, North Haven, Conn. 06511, and transverse anastomosis staplers, such as, for example, EEA™ instruments, CEEA™ instruments, GIA™ instruments, EndoGIA™ instruments, and TA™ instruments, also available through Covidien. It should also be appreciated that the principles of the present disclosure are equally applicable to surgical staplers having alternate configurations, such as, for example, laparoscopic staplers (see, e.g., commonly owned U.S. Pat. Nos. 6,330,965 and 6,241,139, each entitled “Surgical Stapling Apparatus,” the entire contents of each of which being incorporated herein by this reference) and transverse anastomosis staplers (see, e.g., commonly owned U.S. Pat. Nos. 5,964,394 and 7,334,717, each entitled “Surgical Fastener Applying Apparatus”, the entire contents of each of which being hereby incorporated herein by this reference).
Embodiments of the presently disclosed surgical buttress and surgical stapling apparatus will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. In the following discussion, the terms “proximal” and “trailing” may be employed interchangeably, and should be understood as referring to the portion of a structure that is closer to a clinician during proper use. The terms “distal” and “leading” may also be employed interchangeably, and should be understood as referring to the portion of a structure that is further from the clinician during proper use. As used herein, the term “patient” should be understood as referring to a human subject or other animal, and the term “clinician” should be understood as referring to a doctor, nurse, or other care provider and may include support personnel.
Referring now to
Staple cartridge assembly 32 may be fixedly connected to the distal end of tubular body portion 14 or may be configured to concentrically fit within the distal end of tubular body portion 14. Typically, staple cartridge assembly 32 includes a staple pusher 64 including a proximal portion having a generally frusto-conical shape and a distal portion defining two concentric rings of peripherally spaced fingers (not shown), each one of which is received within a respective staple retaining slot 52.
A knife 30, substantially in the form of an open cup with the rim thereof defining a knife blade 31, is disposed within staple cartridge assembly 32 and mounted to a distal surface of a staple pusher 64. The knife 30 is disposed radially inward of the annular arrays of staples 50. Accordingly, in use, as the staple pusher 64 is advanced, the knife 30 is also advanced axially outward.
Reference may be made to commonly owned U.S. Pat. No. 5,915,616 to Viola et al., referenced above, for a detailed discussion of the construction and operation of an annular stapling device, the disclosure of which is hereby incorporated by reference herein.
A surgical buttress 24 is releasably attached to the staple cartridge assembly 32 by at least one stiffened region 40 that bonds the surgical buttress 24 to a tissue contacting/facing surface of staple cartridge assembly 32. It should be understood that while the surgical buttress 24 is described herein as being associated with the staple cartridge assembly 32, the surgical buttress 24 may, alternatively or additionally, be associated with the anvil assembly 20. Surgical buttress 24 is provided to reinforce and seal staple lines applied to tissue by surgical stapling apparatus 10. Surgical buttress 24 may be configured into any shape, size, or dimension suitable to fit any surgical stapling, fastening, or firing apparatus.
Surgical buttress 24 is fabricated from a biocompatible material which is a bioabsorbable or non-absorbable, natural or synthetic material. It should of course be understood that any combination of natural, synthetic, bioabsorbable, and non-bioabsorbable materials may be used to form the surgical buttress. In embodiments, the entire surgical buttress 24, or portions thereof, may be fabricated from the same material, or combination of materials that is homogeneous throughout the surgical buttress 24. In other embodiments, the surgical buttress 24 may be formed of different materials.
The surgical buttress 24 may be porous, non-porous, or combinations thereof. It is also envisioned that surgical buttress 24 described herein may contain a plurality of layers in which any combination of non-porous and porous layers may be configured as discussed further below. For example, surgical buttress may be formed to include multiple non-porous layers and porous layers that are stacked in an alternating manner. In another example, surgical buttress may be formed in a “sandwich-like” manner wherein the outer layers of the surgical buttress include porous layers and the inner layers are non-porous layers. It is further envisioned that non-porous and porous layers may be positioned in any order relative to the tissue contacting surfaces of the staple cartridge/anvil assembly. Examples of multilayered surgical buttresses are disclosed in U.S. patent application Publication No. 2009/0001122 filed Jun. 27, 2007, entitled “Buttress and Surgical Stapling Apparatus,” the entire disclosure of which is incorporated by reference herein.
Some non-limiting examples of materials from which non-porous and/or porous layers of surgical buttress 24 may be made include, but are not limited to, poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly(phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly(ether-esters), polyalkylene oxalates, polyamides, poly(iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends, and combinations thereof.
In embodiments, natural biological polymers are used in forming a non-porous layer of the surgical buttress. Suitable natural biological polymers include, but are not limited to, collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitan, chitosan, and combinations thereof. In addition, the natural biological polymers may be combined with any of the other polymeric materials described herein to produce a non-porous layer of the surgical buttress.
In embodiments, collagen of human and/or animal origin, e.g., type I porcine or bovine collagen, type I human collagen or type III human collagen, may be used to form a non-porous layer of the surgical buttress. In embodiments, a non-porous layer of the surgical buttress according to the present disclosure is made of collagen which is oxidized or a mixture in any proportions of non-oxidized and oxidized collagens.
The use of non-porous layer(s) in the surgical buttress may enhance the ability of the surgical buttress to resist tears and perforations during the manufacturing, shipping, handling, and stapling processes. Also, the use of a non-porous layer in the surgical buttress may also retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue. Thus, in embodiments, the non-porous layer(s) of the surgical buttress may possess anti-adhesion properties.
A non-porous layer of the surgical buttress may be formed using techniques within the purview of those skilled in the art, such as casting, molding, and the like.
Any of the porous layers of the surgical buttress may have openings or pores over at least a portion of a surface thereof. As described in more detail below, suitable materials for forming a porous layer include, but are not limited to, fibrous structures (e.g., knitted structures, woven structures, non-woven structures, etc.) and/or foams (e.g., open or closed cell foams). In embodiments, the pores may be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. Woven fabrics, knitted fabrics, and open cell foam are illustrative examples of structures in which the pores can be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. In embodiments, the pores may not interconnect across the entire thickness of the porous layer, but rather may be present at a portion thereof. Thus, in some embodiments, pores may be located on a portion of the porous layer, with other portions of the porous layer having a non-porous texture. Those skilled in the art reading the present disclosure will envision a variety of pore distribution patterns and configurations for the porous layer. Closed cell foam or fused non-woven materials are illustrative examples of structures in which the pores may not interconnect across the entire thickness of the porous layer.
Where a porous layer of the surgical buttress is fibrous, the fibers may be filaments or threads suitable for knitting or weaving or may be staple fibers, such as those frequently used for preparing non-woven materials. Suitable techniques for making fibrous structures are within the purview of those skilled in the art. The buttress material may be made using non-woven processes, including processes disclosed in U.S. patent application Ser. No. 13/293,215, filed Nov. 10, 2011 and entitled Hydrophilic Medical Devices, the disclosure of which is hereby incorporated by reference herein.
Where a porous layer of the surgical buttress is a foam, the porous layer may be formed using any method suitable to forming a foam or sponge including, but not limited to, the lyophilization or freeze-drying of a composition. Suitable techniques for making foams are within the purview of those skilled in the art.
The origin and types of collagens that may be used to form the porous layer are the same as those indicated above for the non-porous layer. However, the oxidized or non-oxidized collagen may be lyophilized, freeze-dried, or emulsified in the presence of a volume of air to create a foam and then freeze-dried, to form a porous compress.
In embodiments, a porous layer of the surgical buttress may be made from denatured collagen or collagen which has at least partially lost its helical structure through heating or any other method. The term “denatured collagen” means collagen which has lost its helical structure. The collagen used for the porous layer as described herein may be native collagen or atellocollagen. The collagen may have been previously chemically modified by oxidation, methylation, succinylation, ethylation, or any other known process.
The porous layer(s) may enhance the ability of the surgical buttress to absorb fluid, reduce bleeding, and seal the wound. Also, the porous layer(s) may allow for tissue ingrowth to fix the surgical buttress in place.
As illustrated in the current embodiment, and shown in
For example, stiffened region 40 of surgical buttress 24 releasably attaches the staple cartridge assembly 32 in a manner which allows the surgical buttress 24 to be removed or released from the staple cartridge assembly 32 upon actuation of the knife 30. Accordingly, the stiffened region 40 is formed with a bond strength that is strong enough to hold the buttress 24 onto the staple cartridge assembly 32, but is weak enough to break free of the staple cartridge assembly 32 when the knife 30 impacts or penetrates the surgical buttress 24 to facilitate the release of the stiffened region 40 from the tissue contact surface 23 and thus, the surgical buttress 24 upon firing of surgical stapling apparatus 10.
As illustrated, stiffened region 40 is provided in the outer portion 46 of the surgical buttress 24 and bonds the surgical buttress 24 to the inwardly facing or tissue contacting surface 26 of the staple cartridge assembly 32. While the stiffened region 40 is shown as continuously extending around the outer portion 46 of the surgical buttress 24, it should be understood that stiffened region 40 may be discontinuous and include a plurality of stiffened regions 40a attaching the surgical buttress 24a to the surgical stapling apparatus 10, such as in the configuration illustrated in
Other configurations of the stiffened region 40 may be utilized to retain the surgical buttress 24 on the staple cartridge assembly 32. A stiffened region may be provided in other portions of a surgical buttress, such as, for example, in the inner portion as shown in
It is envisioned that other configurations, as well as combinations of the embodiments described above, may be utilized to form the stiffened region of a surgical buttress. For example, a surgical buttress may include a stiffened region in both the inner and outer portions of the surgical buttress, or may include ruffles in only a portion thereof. Other configurations will be readily apparent to those skilled in the art. It is envisioned that the number of stiffened regions, stiffened region size, positioning, and spacing can be varied to optimize the attachment of the surgical buttress to the surgical stapling apparatus, as well as to minimize the detachment force required during firing.
The stiffened regions may be formed by applying pressure and/or heat to compress the buttress, or a portion thereof. The pressure and heat may be used to join a surgical buttress to a surgical stapling apparatus, or may be applied during a manufacturing process prior to affixing of the surgical buttress to the surgical stapling apparatus. In embodiments, stiffened regions may be formed by melt pressing, heat staking, and the like. In embodiments in which a fibrous woven or non-woven buttress material is utilized, heat staking the fibers of the surgical buttress will cause the fibers to substantially coalesce or bond to create stiffened regions in the desired portions of the surgical buttress.
As illustrated in
In embodiments, the die plate 1012 may assume a concave shape so that the surgical buttress 24f, as shown in
In other embodiments, the stiffened regions may be formed by coating or impregnating the buttress material with a stiffening agent. The stiffening agent is biocompatible and may be dissolvable and/or degradable in vivo. Stiffening agents include, for example: sugars such as tehalose, sucrose, galatose, and glucose; salts such as sodium chloride, potassium chloride, and sodium phosphate; hydrogels such as degradable polyethylene glycol (PEG) or poly(2-hydroxyethyl methacrylate) (pHEMA); and degradable polymer coatings such as those including poloxamers as well as polyhydroxy acids prepared from lactone monomers such as glycolide, lactide, trimethylene carbonate, p-dioxanone, ε-caprolactone, and combinations thereof. In some embodiments, the degradable polymer coating may include a copolymer of glycolic acid and trimethylene carbonate. In embodiments, the degradable polymer coating may include a copolymer of l-lactide and glycolide, and in some embodiments, the coating may include from about 70% l-lactide and about 30% glycolide. In embodiments, the coating may include a copolymer of glycolide and e-caprolactone, and in some embodiments, from about 15% glycolide and about 85% e-caprolactone. The stiffening agent may impart rigidity to the surgical buttress for several minutes after contact with body fluids after insertion of the surgical stapling apparatus into the body cavity, leaving the buttress material supple after implantation.
Referring again to
Thereafter, the clinician maneuvers anvil assembly 20 until the proximal end of shaft 23 is inserted into the distal end of tubular body portion 14 of surgical stapling apparatus 10, wherein a mounting structure within the distal end of tubular body portion 14 engages shaft 23 to effect the mounting. Anvil assembly 20 and tubular body portion 14 are then approximated to approximate intestinal sections 1, 2. Surgical stapling apparatus 10 is then fired. The staples 50 are fired, effecting stapling of intestinal sections 1, 2 to one another. The force of the knife 30 being fired breaks the bonds between the surgical buttress 24 and the staple cartridge assembly 32 created by stiffened region 40 thereby releasing the surgical buttress 24 from the staple cartridge assembly 32, and cutting the portion of tissue and surgical buttress 24 disposed radially inward of the knife 30, to complete the anastomosis.
Referring now to
As shown in
A surgical buttress of the present disclosure may include perforations or cut zones around and/or through the stiffened region to allow the surgical buttress to release by breaking the perforations or cut zones when a specified amount of force is applied thereto. Such perforations or cut zones can be included in any of the embodiments disclosed herein. Perforations or cut zones allow for repeatable separation of the surgical buttress from the staple cartridge and/or anvil assembly, and would allow for stronger attachment of a surgical buttress by the stiffened region while also reducing the risk of movement or detachment prior to firing of the surgical stapling apparatus. As detachment is effected by breaking the perforations, knife cutting of the surgical buttress is not required for buttress release and thus, increased firing forces may not be required.
Perforations may be formed by placing a surgical buttress between two knife blades with the spacing between the blades corresponding to a percentage of the average thickness of the surgical buttress. The knife blade spacing could be tailored in the range of about 10% to about 100% of the average thickness of the surgical buttress, in embodiments, from about 20% to about 90% of the average thickness, and in some embodiments, about 30% of the average thickness, to ensure that the surgical buttress is well secured during insertion but break away from the stiffened regions upon firing of the surgical stapling apparatus.
As illustrated in
In another embodiment, shown in
It is envisioned that other configurations of perforations may be provided within a surgical buttress. For example,
The surgical buttress of the present disclosure may be adapted for use with other surgical stapling apparatus in accordance with the present disclosure, such as the surgical stapling apparatus disclosed in commonly owned U.S. Pat. Nos. 6,330,965 and 6,241,139, the entire contents of which are incorporated by reference herein. For example, surgical stapling apparatus for both laparoscopic and/or endoscopic surgical procedures that include an elongated body and a tool assembly for applying a linear row or rows of staples can have a buttress as disclosed in any of the embodiments hereof. Apparatus for applying a linear row or rows of staples that are arranged for open surgical procedures can also have any of the buttresses disclosed in any of the embodiments discussed herein. Apparatus having a distal end adapted to releasably engage a disposable loading unit can be used, or apparatus having removable and replaceable cartridges can be used, with the surgical buttresses disclosed herein.
As illustrated in
Surgical stapling apparatus 100 further includes a trigger 133 movably mounted on handle 112. Actuation of trigger 133 initially operates to move anvil jaw member 120 from the open to the closed position relative to staple cartridge jaw member 122 and subsequently actuates surgical stapling apparatus 100 to apply lines of staples to tissue. In order to properly orient jaw assembly 116 relative to the tissue to be stapled, surgical stapling apparatus 100 is additionally provided with a rotation knob 134 mounted on handle 112. Rotation of rotation knob 134 relative to handle 112 rotates elongate tubular member 114 and jaw assembly 116 relative to handle 112 so as to properly orient jaw assembly 116 relative to the tissue to be stapled.
A driver 136 is provided to move anvil jaw member 120 between the open and closed positions relative to staple cartridge jaw member 122. Driver 136 moves between a longitudinal slot 138 formed in anvil jaw member 120. A knife (not shown) is associated with driver 136 to cut tissue captured between anvil jaw member 120 and staple cartridge jaw member 122 as driver 136 passes through slot 138.
As illustrated in the current embodiment and shown in
The surgical buttress of the present disclosure, in particular surgical buttress 124, may also be adapted for use with a surgical stapling apparatus, such as that shown and described in U.S. Pat. No. 7,334,717, entitled “Surgical Fastener Applying Apparatus,” the entire content of which is incorporated herein by reference. As illustrated in
The surgical buttress of the present disclosure, in particular surgical buttress 124, may also be adapted for use with a transverse surgical stapling apparatus 310, as illustrated in
In embodiments, at least one bioactive agent may be combined with a surgical buttress of the present disclosure. The at least one bioactive agent may be disposed on a surface of the surgical buttress and/or impregnated therein. In these embodiments, the surgical buttress can also serve as a vehicle for delivery of the bioactive agent. The term “bioactive agent”, as used herein, is used in its broadest sense and includes any substance or mixture of substances that have clinical use. Consequently, bioactive agents may or may not have pharmacological activity per se, e.g., a dye, or fragrance. Alternatively a bioactive agent could be any agent which provides a therapeutic or prophylactic effect, a compound that affects or participates in tissue growth, cell growth, cell differentiation, an anti-adhesive compound, a compound that may be able to invoke a biological action such as an immune response, or could play any other role in one or more biological processes. It is envisioned that the bioactive agent may be applied to the surgical buttress in any suitable form of matter, e.g., films, powders, liquids, gels and the like.
Examples of classes of bioactive agents which may be utilized in accordance with the present disclosure include anti-adhesives, antimicrobials, analgesics, antipyretics, anesthetics, antiepileptics, antihistamines, anti-inflammatories, cardiovascular drugs, diagnostic agents, sympathomimetics, cholinomimetics, antimuscarinics, antispasmodics, hormones, growth factors, muscle relaxants, adrenergic neuron blockers, antineoplastics, immunogenic agents, immunosuppressants, gastrointestinal drugs, diuretics, steroids, lipids, lipopolysaccharides, polysaccharides, and enzymes. It is also intended that combinations of bioactive agents may be used.
Other bioactive agents which may be included as a bioactive agent in the surgical buttress of the present disclosure include: local anesthetics; non-steroidal antifertility agents; parasympathomimetic agents; psychotherapeutic agents; tranquilizers; decongestants; sedative hypnotics; steroids; sulfonamides; sympathomimetic agents; vaccines; vitamins; antimalarials; anti-migraine agents; anti-parkinson agents such as L-dopa; anti-spasmodics; anticholinergic agents (e.g. oxybutynin); antitussives; bronchodilators; cardiovascular agents such as coronary vasodilators and nitroglycerin; alkaloids; analgesics; narcotics such as codeine, dihydrocodeinone, meperidine, morphine and the like; non-narcotics such as salicylates, aspirin, acetaminophen, d-propoxyphene and the like; opioid receptor antagonists, such as naltrexone and naloxone; anti-cancer agents; anti-convulsants; anti-emetics; antihistamines; anti-inflammatory agents such as hormonal agents, hydrocortisone, prednisolone, prednisone, non-hormonal agents, allopurinol, indomethacin, phenylbutazone and the like; prostaglandins and cytotoxic drugs; estrogens; antibacterials; antibiotics; anti-fungals; anti-virals; anticoagulants; anticonvulsants; antidepressants; antihistamines; and immunological agents.
Other examples of suitable bioactive agents which may be included include viruses and cells, peptides, polypeptides and proteins, analogs, muteins, and active fragments thereof, such as immunoglobulins, antibodies, cytokines (e.g. lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (IL-2, IL-3, IL-4, IL-6), interferons (β-IFN, (α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents and tumor suppressors, blood proteins, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone), vaccines (e.g., tumoral, bacterial and viral antigens); somatostatin; antigens; blood coagulation factors; growth factors (e.g., nerve growth factor, insulin-like growth factor); protein inhibitors, protein antagonists, and protein agonists; nucleic acids, such as antisense molecules, DNA and RNA; oligonucleotides; polynucleotides; and ribozymes.
In embodiments, a reinforcement member may be positioned within or over a surgical buttress. In embodiments utilizing a multilayered surgical buttress, one or more reinforcement members may be positioned between, within, or at an external surface of a layer of the surgical buttress as are disclosed, for example, in U.S. Patent Application Publication No. 2009/0001122, referenced above.
Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another exemplary embodiment without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3124136 | Usher | Mar 1964 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4452245 | Usher | Jun 1984 | A |
4473670 | Kessidis | Sep 1984 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull | Nov 1993 | A |
5314471 | Brauker et al. | May 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5713920 | Bezwada et al. | Feb 1998 | A |
5752965 | Francis et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5895412 | Tucker | Apr 1999 | A |
5895415 | Chow et al. | Apr 1999 | A |
5902312 | Frater et al. | May 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5964394 | Robertson | Oct 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov et al. | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton et al. | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6592597 | Grant et al. | Jul 2003 | B2 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6702828 | Whayne | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6896684 | Monassevitch et al. | May 2005 | B2 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6946196 | Foss | Sep 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
7060087 | DiMatteo et al. | Jun 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7232449 | Sharkawy et al. | Jun 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7307031 | Carroll et al. | Dec 2007 | B2 |
7311720 | Mueller et al. | Dec 2007 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7571845 | Viola | Aug 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7666198 | Suyker et al. | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7717313 | Bettuchi et al. | May 2010 | B2 |
7722642 | Williamson, IV | May 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7892247 | Conston et al. | Feb 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7909837 | Crows et al. | Mar 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban | May 2011 | B2 |
7967179 | Olson | Jun 2011 | B2 |
7988027 | Olson | Aug 2011 | B2 |
8011550 | Aranyi | Sep 2011 | B2 |
8016177 | Bettuchi | Sep 2011 | B2 |
8016178 | Olson | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8062330 | Prommersberger | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8123766 | Bauman | Feb 2012 | B2 |
8123767 | Bauman | Feb 2012 | B2 |
8146791 | Bettuchi | Apr 2012 | B2 |
8157149 | Olson | Apr 2012 | B2 |
8157151 | Ingmanson | Apr 2012 | B2 |
8167895 | D'Agostino | May 2012 | B2 |
8178746 | Hildeberg et al. | May 2012 | B2 |
8192460 | Orban | Jun 2012 | B2 |
8210414 | Bettuchi | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli | Jul 2012 | B2 |
8235273 | Olson | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8256654 | Bettuchi | Sep 2012 | B2 |
8257391 | Orban | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8348126 | Olson | Jan 2013 | B2 |
8348130 | Shah | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371491 | Huitema | Feb 2013 | B2 |
8371492 | Aranyi | Feb 2013 | B2 |
8371493 | Aranyi | Feb 2013 | B2 |
8393514 | Shelton, IV | Mar 2013 | B2 |
8408440 | Olson | Apr 2013 | B2 |
8413869 | Heinrich | Apr 2013 | B2 |
8413871 | Racenet | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros | Jun 2013 | B2 |
8453909 | Olson | Jun 2013 | B2 |
8453910 | Bettuchi | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8474677 | Woodard, Jr. | Jul 2013 | B2 |
8479968 | Hodgkinson | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger | Jul 2013 | B2 |
8511533 | Viola | Aug 2013 | B2 |
8512402 | Marczyk | Aug 2013 | B2 |
8529600 | Woodard, Jr. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban | Oct 2013 | B2 |
8556918 | Bauman | Oct 2013 | B2 |
8561873 | Ingmanson | Oct 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess | Nov 2013 | B2 |
8616430 | Prommersberger | Dec 2013 | B2 |
8631989 | Aranyi | Jan 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8684250 | Bettuchi | Apr 2014 | B2 |
8721703 | Fowler | May 2014 | B2 |
8757466 | Olson | Jun 2014 | B2 |
8789737 | Hodgkinson | Jul 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010609 | Carter et al. | Apr 2015 | B2 |
9010610 | Hodgkinson | Apr 2015 | B2 |
9010612 | Stevenson et al. | Apr 2015 | B2 |
9016543 | (Prommersberger) Stopek et al. | Apr 2015 | B2 |
9016544 | Hodgkinson et al. | Apr 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9107665 | Hodgkinson et al. | Aug 2015 | B2 |
9107667 | Hodgkinson | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113885 | Hodgkinson et al. | Aug 2015 | B2 |
9113893 | Sorrentino et al. | Aug 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161757 | Bettuchi | Oct 2015 | B2 |
20020028243 | Masters | Mar 2002 | A1 |
20020091397 | Chen | Jul 2002 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030120284 | Palacios et al. | Jun 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030183671 | Mooradian et al. | Oct 2003 | A1 |
20030208231 | Williamson, IV et al. | Nov 2003 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040254608 | Huitema et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050143756 | Jankowski | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050245965 | Orban, III et al. | Nov 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060085030 | Bettuchi et al. | Apr 2006 | A1 |
20060135992 | Bettuchi | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178683 | Shimoji et al. | Aug 2006 | A1 |
20060271104 | Viola et al. | Nov 2006 | A1 |
20070026031 | Bauman et al. | Feb 2007 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070049953 | Shimoji et al. | Mar 2007 | A2 |
20070123839 | Rousseau et al. | May 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070203509 | Bettuchi | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080110959 | Orban et al. | May 2008 | A1 |
20080125812 | Zubik et al. | May 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080161831 | Bauman et al. | Jul 2008 | A1 |
20080161832 | Bauman et al. | Jul 2008 | A1 |
20080169327 | Shelton et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080200949 | Hiles | Aug 2008 | A1 |
20080220047 | Sawhney et al. | Sep 2008 | A1 |
20080230583 | Heinrich | Sep 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090030452 | Bauman et al. | Jan 2009 | A1 |
20090043334 | Bauman et al. | Feb 2009 | A1 |
20090076510 | Bell et al. | Mar 2009 | A1 |
20090076528 | Sgro | Mar 2009 | A1 |
20090078739 | Viola | Mar 2009 | A1 |
20090095791 | Eskaros et al. | Apr 2009 | A1 |
20090095792 | Bettuchi | Apr 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090277944 | Dalessandro et al. | Nov 2009 | A9 |
20090277947 | Viola | Nov 2009 | A1 |
20090287230 | D'Agostino et al. | Nov 2009 | A1 |
20100012704 | Tarinelli Racenet et al. | Jan 2010 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100249805 | Olson et al. | Sep 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20100331880 | Stopek | Dec 2010 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110046650 | Bettuchi | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110215132 | Aranyi | Sep 2011 | A1 |
20110282446 | Schulte | Nov 2011 | A1 |
20120074199 | Olson | Mar 2012 | A1 |
20120080336 | Shelton | Apr 2012 | A1 |
20120083723 | Vitaris et al. | Apr 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120197272 | Oray et al. | Aug 2012 | A1 |
20120241499 | Baxter | Sep 2012 | A1 |
20120273547 | Hodgkinson et al. | Nov 2012 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130105548 | Hodgkinson et al. | May 2013 | A1 |
20130105553 | Racenet | May 2013 | A1 |
20130112732 | Aranyi | May 2013 | A1 |
20130112733 | Aranyi | May 2013 | A1 |
20130123816 | Hodgkinson et al. | May 2013 | A1 |
20130146641 | Shelton | Jun 2013 | A1 |
20130153633 | Casasanta | Jun 2013 | A1 |
20130153634 | Carter | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153636 | Shelton | Jun 2013 | A1 |
20130153639 | Hodgkinson | Jun 2013 | A1 |
20130153640 | Hodgkinson | Jun 2013 | A1 |
20130153641 | Shelton | Jun 2013 | A1 |
20130161374 | Swayze | Jun 2013 | A1 |
20130181031 | Olson | Jul 2013 | A1 |
20130193186 | Racenet | Aug 2013 | A1 |
20130193190 | Carter | Aug 2013 | A1 |
20130193191 | Stevenson | Aug 2013 | A1 |
20130193192 | Casasanta | Aug 2013 | A1 |
20130209659 | Racenet | Aug 2013 | A1 |
20130221062 | Hodgkinson | Aug 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130240601 | Bettuchi | Sep 2013 | A1 |
20130240602 | Stopek | Sep 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130277411 | Hodgkinson | Oct 2013 | A1 |
20130306707 | Viola | Nov 2013 | A1 |
20130310873 | Prommersberger | Nov 2013 | A1 |
20130327807 | Olson | Dec 2013 | A1 |
20140012317 | Orban | Jan 2014 | A1 |
20140021242 | Hodgkinson | Jan 2014 | A1 |
20140027490 | Marczyk | Jan 2014 | A1 |
20140034704 | Ingmanson | Feb 2014 | A1 |
20140048580 | Merchant | Feb 2014 | A1 |
20140061280 | Ingmanson | Mar 2014 | A1 |
20140061281 | Hodgkinson | Mar 2014 | A1 |
20140084042 | Stopek | Mar 2014 | A1 |
20140097224 | Prior | Apr 2014 | A1 |
20140117066 | Aranyi | May 2014 | A1 |
20140130330 | Olson | May 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140131419 | Bettuchi | May 2014 | A1 |
20140138423 | Whitfield | May 2014 | A1 |
20140151431 | Hodgkinson | Jun 2014 | A1 |
20140155916 | Hodgkinson | Jun 2014 | A1 |
20140158742 | Stopek | Jun 2014 | A1 |
20140166721 | Stevenson | Jun 2014 | A1 |
20140197224 | Penna | Jul 2014 | A1 |
20140203061 | Hodgkinson | Jul 2014 | A1 |
20140217147 | Milliman | Aug 2014 | A1 |
20140217148 | Penna | Aug 2014 | A1 |
20140239046 | Milliman | Aug 2014 | A1 |
20140239047 | Hodgkinson | Aug 2014 | A1 |
20140252062 | Mozdzierz | Sep 2014 | A1 |
20150001276 | Hodgkinson et al. | Jan 2015 | A1 |
20150041347 | Hodgkinson | Feb 2015 | A1 |
20150097018 | Hodgkinson | Apr 2015 | A1 |
20150115015 | Prescott et al. | Apr 2015 | A1 |
20150122872 | Olson et al. | May 2015 | A1 |
20150164503 | Stevenson et al. | Jun 2015 | A1 |
20150164506 | Carter et al. | Jun 2015 | A1 |
20150164507 | Carter et al. | Jun 2015 | A1 |
20150196297 | (Prommersberger) Stopek et al. | Jul 2015 | A1 |
20150209033 | Hodgkinson | Jul 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
20150209048 | Carter et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
2 667 434 | May 2008 | CA |
101310680 | Nov 2008 | CN |
101332110 | Dec 2008 | CN |
1 99 24 311 | Nov 2000 | DE |
199 24 311 | Nov 2000 | DE |
0 594 148 | Apr 1994 | EP |
0 327 022 | Apr 1995 | EP |
0 667 119 | Aug 1995 | EP |
1 064 883 | Jan 2001 | EP |
1 256 317 | Nov 2002 | EP |
1 256 318 | Nov 2002 | EP |
1 520 525 | Apr 2005 | EP |
1 621 141 | Feb 2006 | EP |
1 702 570 | Sep 2006 | EP |
1 759 640 | Mar 2007 | EP |
1 815 804 | Aug 2007 | EP |
1 825 820 | Aug 2007 | EP |
1 929 958 | Jun 2008 | EP |
1 994 890 | Nov 2008 | EP |
2 005 894 | Dec 2008 | EP |
2 005 895 | Dec 2008 | EP |
2 008 595 | Dec 2008 | EP |
2 039 308 | Mar 2009 | EP |
2 090 231 | Aug 2009 | EP |
2 090 244 | Aug 2009 | EP |
2 090 252 | Aug 2009 | EP |
2 163 211 | Mar 2010 | EP |
2 189 121 | May 2010 | EP |
2 198 787 | Jun 2010 | EP |
2 236 098 | Oct 2010 | EP |
2 236 099 | Oct 2010 | EP |
2 258 282 | Dec 2010 | EP |
2 292 276 | Mar 2011 | EP |
2 311 386 | Apr 2011 | EP |
2 436 348 | Apr 2012 | EP |
2 462 880 | Jun 2012 | EP |
2 497 431 | Sep 2012 | EP |
2 517 637 | Oct 2012 | EP |
2 586 380 | May 2013 | EP |
2 604 195 | Jun 2013 | EP |
2 604 197 | Jun 2013 | EP |
2 620 105 | Jul 2013 | EP |
2 620 106 | Jul 2013 | EP |
2 630 922 | Aug 2013 | EP |
2 644 125 | Oct 2013 | EP |
2 762 091 | Aug 2014 | EP |
2000-166933 | Jun 2000 | JP |
2002-202213 | Jul 2002 | JP |
07-124166 | May 2007 | JP |
WO 9005489 | May 1990 | WO |
WO 9516221 | Jun 1995 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9701989 | Jan 1997 | WO |
WO 9713463 | Apr 1997 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9945849 | Sep 1999 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2006023578 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2008057281 | May 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2010075298 | Jul 2010 | WO |
WO 2011143183 | Nov 2011 | WO |
WO 2012044848 | Apr 2012 | WO |
Entry |
---|
“What is Ultrasonic Welding?”, http://www.dukane.com/us/PPL—whatisUPA.htm, Mar. 14, 2010. |
International Search Report corresponding to European Application No. EP 05 02 2585.3, completed on Jan. 25, 2006 and mailed on Feb. 3, 2006; 4 pages. |
International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages. |
International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and mailed on Jan. 11, 2007; 10 pages. |
International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and mailed on Mar. 23, 2007; 8 pages. |
International Search Report corresponding to International Application No. PCT/US2007/022713, completed on Apr. 21, 2008 and mailed on May 15, 2008; 1 page. |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and mailed on Jun. 26, 2008; 2 pages. |
International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and mailed on Jul. 23, 2008; 5 pages. |
International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and mailed on Mar. 24, 2010; 6 pages. |
International Search Report corresponding to European Application No. EP 10 25 0639.1, completed on Jun. 17, 2010 and mailed on Jun. 28, 2010; 7 pages. |
International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and mailed on Jul. 20, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and mailed on Oct. 12, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and mailed on Dec. 16, 2010; 3 pages. |
International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and mailed on Feb. 15, 2011; 3 pages. |
International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and mailed on Apr. 4, 2011; 4 pages. |
International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and mailed on Jan. 12, 2012; 3 pages. |
Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages. |
Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages. |
Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages. |
International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages. |
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages. |
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages. |
International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and mailed on Jul. 13, 2012; 8 pages. |
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages. |
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages. |
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and mailed Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and mailed Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 2123.1, completed Jan. 30, 2014 and mailed Feb. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and mailed Apr. 9, 2014; (9 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Jun. 16, 2014; (5 pp). |
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and mailed Mar. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and mailed Feb. 27, 2014; (10 pp). |
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and mailed Jul. 29, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and mailed Jun. 18, 2014; (9 pp). |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages. |
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and mailed May 31, 2013; 8 pages. |
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and mailed May 29, 2013; 7 pages. |
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; 8 pages. |
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and mailed Jun. 13, 2013; 7 pages. |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages. |
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and mailed Apr. 15, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp). |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13180373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and mailed Sep. 17, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and mailed Sep. 18, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Oct. 13, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and mailed Oct. 20, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and mailed Oct. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and mailed Nov. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and mailed Mar. 30, 2015; (6 pp). |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 4814.5 dated Jun. 9, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015. |
European Office Action corresponding to EP13 180 373.6 dated Jun. 19, 2015; 4 pp. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 6912.5, dated Feb. 1, 2016. |
Number | Date | Country | |
---|---|---|---|
20130153638 A1 | Jun 2013 | US |