Surgical stapling apparatus including releasable surgical buttress

Information

  • Patent Grant
  • 9351731
  • Patent Number
    9,351,731
  • Date Filed
    Wednesday, December 14, 2011
    12 years ago
  • Date Issued
    Tuesday, May 31, 2016
    7 years ago
Abstract
A staple cartridge for use with a surgical stapling apparatus includes a cartridge body including a tissue contacting surface defining a plurality of staple retaining slots, a staple disposed within each staple retaining slot of the cartridge body, and a substantially circular buttress. The buttress includes an inner portion, an outer portion, and a middle portion extending between the inner portion and the outer portion. At least one stiffened region joins the buttress to the tissue contacting surface of the cartridge body. The inner portion, the middle portion, the outer portion, and the at least one stiffened region are all formed from a common material.
Description
BACKGROUND

1. Technical Field


The present disclosure relates to surgical stapling apparatus including surgical buttresses which are releasably attached to the surgical stapling apparatus, and in particular, to surgical stapling apparatus having surgical buttresses having at least a portion with increased rigidity and/or stability.


2. Background of Related Art


Surgical stapling apparatus are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together. Such apparatus generally include a pair of jaws or finger-like structures between which the body tissue to be joined is placed. When the stapling apparatus is actuated, or “fired”, longitudinally moving firing bars contact staple drive members in one of the jaws. The staple drive members push the surgical staples through the body tissue and into an anvil in the opposite jaw which forms the staples. If tissue is to be removed or separated, a knife blade can be provided in the jaws of the apparatus to cut the tissue between the lines of staples.


A number of surgical stapling apparatus rely on secondary materials, such as adhesives or mounting structures (e.g., sutures) to maintain a surgical buttress on the stapling apparatus. The use of additional materials may leave a residue in the body after implantation and/or require increased firing forces as each material must be transected by the knife blade to detach the surgical buttress from the stapling apparatus.


It would be desirable to provide a buttress that may be releasably secured to a surgical stapling apparatus without the need for a secondary material or mounting structure.


Buttress materials that are formed from non-woven or mesh-like materials are known. These materials are relatively flexible and can shift on the surgical stapling apparatus. It may be desirable in at least certain applications to provide a buttress that has a stiffer construction or at least some stiffer portions to facilitate the placement of the buttress on the apparatus, or the placement of the buttress on tissue, or both.


SUMMARY

According to an aspect of the present disclosure, a staple cartridge for use with a surgical stapling apparatus includes a cartridge body including a tissue contacting surface defining a plurality of staple retaining slots, a staple disposed within each staple retaining slot of the cartridge body, and a substantially circular buttress. The buttress includes an inner portion, an outer portion, and a middle portion extending between the inner and outer portions. At least one stiffened region joins the buttress to the tissue contacting surface of the cartridge body. The inner portion, the middle portion, the outer portion, and the at least one stiffened region are all formed from a common material.


The stiffened region may be disposed in any portion of the buttress. In embodiments, at least the outer portion of the buttress includes the stiffened region. In embodiments, at least the inner portion of the buttress includes the stiffened region. In embodiments, the stiffened region includes a plurality of spokes extending radially outward from the inner portion of the buttress to the outer portion of the buttress. In some embodiments, the stiffened region may be disposed radially inward of the staple retaining slots. Alternatively, or additionally, the stiffened region may be disposed radially outward of the staple retaining slots.


The stiffened region may include ruffles. The ruffles may be folds, pleats, undulations, corrugations, creases, ridges, or bends. The stiffened region may be a localized crosslinked region of the buttress. The buttress may include a stiffening agent.


The buttress may include a flange. In embodiments, the outer portion of the buttress includes a terminal flange extending around an outer perimeter of the tissue contacting surface of the cartridge body. In such embodiments, the stiffened region may extend through the terminal flange. The terminal flange may be adjoined to an outer surface of the cartridge body.


The buttress material may include a central opening. The stiffened region may be concentric with the central opening. In embodiments, the inner portion of the buttress may include an interior flange annularly extending into the central opening. In such embodiments, the stiffened region may extend through the interior flange. The interior flange may be adjoined to an inner surface of the cartridge body.


Accordingly to another aspect of the present disclosure, a surgical stapling apparatus includes a tubular body portion, an anvil assembly, a cartridge body, a staple, and a substantially circular buttress. The tubular body portion of the surgical stapling apparatus has a distal end and a shaft with a connection portion, and the anvil assembly includes an anvil plate having staple forming recesses and a shaft connectable with the connection portion. The cartridge body is receivable in the distal end of the tubular body portion and includes a tissue contacting surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots. A staple is disposed within each staple retaining slot of the cartridge body. The buttress includes an inner portion, an outer portion, and a middle portion extending between the inner portion and the outer portion. At least one stiffened region joins the buttress to the tissue contacting surface. The inner portion, the middle portion, the outer portion, and the at least one stiffened region are all formed from a common material.


Accordingly to yet another aspect of the present disclosure, a surgical stapling apparatus includes a tubular body portion, an anvil assembly, a cartridge body, a staple, and a substantially circular buttress. The tubular body portion of the surgical stapling apparatus has a distal end and a shaft with a connection portion, and the anvil assembly includes an anvil plate having staple forming recesses and a shaft connectable with the connection portion. The cartridge body is receivable in the distal end of the tubular body portion and includes a tissue contacting surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots. A staple is disposed within each staple retaining slot of the cartridge body. The buttress includes at least one buttress region and at least one stiffened region formed from a common material.


The stiffened region may be disposed in any portion of the buttress. In embodiments, the stiffened region is disposed about an outer portion of the buttress. In embodiments, the stiffened region is disposed about an inner portion of the buttress. In embodiments, the stiffened region includes a plurality of spokes extending radially outward from an inner portion of the buttress to an outer portion of the buttress. In some embodiments, the stiffened region may be disposed radially inward of the staple retaining slots. Alternatively, or additionally, the stiffened region may be disposed radially outward of the staple retaining slots.


The stiffened region may include ruffles. The stiffened region may be a localized crosslinked region of the buttress. The buttress may include a stiffening agent.


The buttress may include a flange. In embodiments, the buttress includes a terminal flange extending around an outer perimeter of the tissue contacting surface of the cartridge body. In such embodiments, the stiffened region may extend through the terminal flange. The terminal flange may be adjoined to an outer surface of the cartridge body.


The buttress material may include a central opening. The stiffened region may be concentric with the central opening. In embodiments, the buttress may include an interior flange annularly extending into the central opening. In such embodiments, the stiffened region may extend through the interior flange. The interior flange may be adjoined to an inner surface of the cartridge body.


According to another aspect of the present disclosure, a surgical stapling apparatus includes a tubular body portion, an anvil assembly, a cartridge body, a staple, and a substantially circular buttress. The tubular body portion of the surgical stapling apparatus has a distal end and a shaft with a connection portion, and the anvil assembly includes an anvil plate having staple forming recesses and a shaft connectable with the connection portion. The cartridge body is receivable in the distal end of the tubular body portion and includes a tissue contacting surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots. A staple is disposed within each staple retaining slot of the cartridge body. The buttress includes at least one buttress material and at least one stiffened region. The stiffened region is formed by adding a stiffening agent to the buttress material, the stiffening agent being a sugar, a salt, a starch, a hydrogel, a degradable polymer, or combinations thereof.


For example, sugars may include tahalose, sucrose, galatose, and glucose; salts may include sodium chloride, potassium chloride, and sodium phosphate; hydrogels may include degradable polyethylene glycol or poly(2-hydroxyethyl methacrylate); and degradable polymers may include poloxamers or polyhydroxy acids. In embodiments, the polyhydroxy acids are glycolide, lactide, trimethylene carbonate, p-dioxanone, ε-caprolactone, or combinations thereof. The stiffening agent may be coated on the buttress and/or impregnated therein.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the presently disclosed surgical stapling apparatus and surgical buttress are described herein with reference to the accompanying drawings, wherein:



FIG. 1A is a perspective view of an illustrative embodiment of a surgical stapling apparatus and surgical buttress (shown separated from a staple cartridge assembly of the surgical stapling apparatus) in accordance with an embodiment of the present disclosure;



FIG. 1B is a cross-sectional view of a portion of the surgical stapling apparatus of FIG. 1A including a surgical buttress positioned within an intestinal area;



FIG. 1C is a top view of the surgical buttress depicted in FIG. 1B, illustrating its attachment to the surgical stapling apparatus of FIG. 1A;



FIGS. 2A-2D are top views of surgical buttresses in accordance with other embodiments of the present disclosure;



FIG. 2E is a perspective view of a surgical buttress in accordance with an embodiment of the present disclosure;



FIGS. 3A and 3B are cross-sectional views of a staple cartridge of the surgical stapling apparatus and a surgical buttress in accordance with an exemplary process of forming the stiffened regions in accordance with an embodiment of the present disclosure;



FIG. 4 is a schematic side view of a staple cartridge assembly and surgical buttress in accordance with an embodiment of the present disclosure;



FIG. 5A is a perspective view, with parts separated, of a staple cartridge assembly and surgical buttress in accordance with an embodiment of the present disclosure;



FIG. 5B is a schematic side view of the surgical buttress of FIG. 5A positioned on the staple cartridge assembly in accordance with an embodiment of the present disclosure;



FIG. 5C is a schematic perspective view of the surgical buttress of FIG. 5A positioned on the staple cartridge assembly in accordance with another embodiment of the present disclosure;



FIG. 6A is a perspective view, with parts separated, of a staple cartridge assembly and surgical buttress in accordance with an embodiment of the present disclosure;



FIG. 6B is a schematic side view of the surgical buttress of FIG. 6A positioned on the staple cartridge assembly in accordance with an embodiment of the present disclosure;



FIG. 6C is a schematic perspective view of the surgical buttress of FIG. 6A positioned on the staple cartridge assembly in accordance with another embodiment of the present disclosure;



FIGS. 7A-7C are top views of surgical buttresses, illustrating their attachment to the surgical stapling apparatus of FIG. 1A, in accordance with other embodiments of the present disclosure;



FIG. 8A is a perspective view of an illustrative embodiment of a surgical stapling apparatus in accordance with an embodiment of the present disclosure;



FIG. 8B is a perspective view, with parts separated, of the staple cartridge assembly of the surgical stapling apparatus and of the surgical buttress of FIG. 8A;



FIG. 9 is a perspective view of another illustrative embodiment of a surgical stapling apparatus for use with a surgical buttress of the present disclosure; and



FIG. 10 is a perspective view of yet another illustrative embodiment of a surgical stapling apparatus for use with a surgical buttress of the present disclosure.





DETAILED DESCRIPTION OF THE EMBODIMENTS

Various exemplary embodiments of the present disclosure are discussed herein below in terms of surgical buttresses for use with surgical stapling apparatus. The surgical buttresses described herein may be used in joining the edges of wound tissue utilizing a surgical stapling apparatus which has at least one surgical buttress mounted thereon. The at least one surgical buttress is joined to the surgical stapling apparatus and includes at least one stiffened region. The at least one stiffened region can adhere, or otherwise be used to connect, the surgical buttress to the surgical stapling apparatus. In embodiments, actuation of a knife provides a force that impinges against the surgical buttress and displaces the buttress by a sufficient amount to weaken or break the bond created by the stiffened region between the surgical buttress and the surgical stapling apparatus, thereby releasing the surgical buttress therefrom before substantial cutting of the buttress material. In other embodiments, cutting of the surgical buttress by the knife blade releases a portion of the surgical buttress that is free of the stiffened region. Thus, the present disclosure describes surgical buttresses, surgical stapling apparatus supporting said surgical buttresses, and methods and mechanisms for using the same.


It should be understood that a variety of surgical stapling apparatus may be utilized with a surgical buttress of the present disclosure. For example, circular stapler configurations may be utilized, such as, for example those including end-to-end anastomosis staplers having a circular cartridge and anvil (see, e.g., commonly owned U.S. Pat. No. 5,915,616, entitled “Surgical Fastener Applying Apparatus,” the entire content of which is incorporated herein by this reference), and linear stapler configurations, such as, for example those including Duet TRS™ reloads and staplers with Tri-Staple™ technology, available through Covidien, which maintain a principal place of business at 555 Long Wharf Drive, North Haven, Conn. 06511, and transverse anastomosis staplers, such as, for example, EEA™ instruments, CEEA™ instruments, GIA™ instruments, EndoGIA™ instruments, and TA™ instruments, also available through Covidien. It should also be appreciated that the principles of the present disclosure are equally applicable to surgical staplers having alternate configurations, such as, for example, laparoscopic staplers (see, e.g., commonly owned U.S. Pat. Nos. 6,330,965 and 6,241,139, each entitled “Surgical Stapling Apparatus,” the entire contents of each of which being incorporated herein by this reference) and transverse anastomosis staplers (see, e.g., commonly owned U.S. Pat. Nos. 5,964,394 and 7,334,717, each entitled “Surgical Fastener Applying Apparatus”, the entire contents of each of which being hereby incorporated herein by this reference).


Embodiments of the presently disclosed surgical buttress and surgical stapling apparatus will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. In the following discussion, the terms “proximal” and “trailing” may be employed interchangeably, and should be understood as referring to the portion of a structure that is closer to a clinician during proper use. The terms “distal” and “leading” may also be employed interchangeably, and should be understood as referring to the portion of a structure that is further from the clinician during proper use. As used herein, the term “patient” should be understood as referring to a human subject or other animal, and the term “clinician” should be understood as referring to a doctor, nurse, or other care provider and may include support personnel.


Referring now to FIGS. 1A and 1B, there is disclosed an exemplary surgical stapling apparatus or surgical stapler 10 for use in stapling tissue and applying a buttress material or surgical buttress to the tissue. Surgical stapling apparatus 10 generally includes a handle assembly 12 having at least one pivotable actuating handle member 33, and an advancing member 35. Extending from handle member 12, there is provided a tubular body portion 14 which may be constructed so as to have a curved shape along its length. Body portion 14 terminates in a staple cartridge assembly 32 which includes an annular array of staple retaining slots 52 having a staple 50 disposed in each one of staple retaining slots 52. Positioned distally of staple cartridge assembly 32 there is provided an anvil assembly 20 including an anvil member 21 and a shaft 23 operatively associated therewith for removably connecting anvil assembly 20 to a distal end portion of stapling apparatus 10.


Staple cartridge assembly 32 may be fixedly connected to the distal end of tubular body portion 14 or may be configured to concentrically fit within the distal end of tubular body portion 14. Typically, staple cartridge assembly 32 includes a staple pusher 64 including a proximal portion having a generally frusto-conical shape and a distal portion defining two concentric rings of peripherally spaced fingers (not shown), each one of which is received within a respective staple retaining slot 52.


A knife 30, substantially in the form of an open cup with the rim thereof defining a knife blade 31, is disposed within staple cartridge assembly 32 and mounted to a distal surface of a staple pusher 64. The knife 30 is disposed radially inward of the annular arrays of staples 50. Accordingly, in use, as the staple pusher 64 is advanced, the knife 30 is also advanced axially outward.


Reference may be made to commonly owned U.S. Pat. No. 5,915,616 to Viola et al., referenced above, for a detailed discussion of the construction and operation of an annular stapling device, the disclosure of which is hereby incorporated by reference herein.


A surgical buttress 24 is releasably attached to the staple cartridge assembly 32 by at least one stiffened region 40 that bonds the surgical buttress 24 to a tissue contacting/facing surface of staple cartridge assembly 32. It should be understood that while the surgical buttress 24 is described herein as being associated with the staple cartridge assembly 32, the surgical buttress 24 may, alternatively or additionally, be associated with the anvil assembly 20. Surgical buttress 24 is provided to reinforce and seal staple lines applied to tissue by surgical stapling apparatus 10. Surgical buttress 24 may be configured into any shape, size, or dimension suitable to fit any surgical stapling, fastening, or firing apparatus.


Surgical buttress 24 is fabricated from a biocompatible material which is a bioabsorbable or non-absorbable, natural or synthetic material. It should of course be understood that any combination of natural, synthetic, bioabsorbable, and non-bioabsorbable materials may be used to form the surgical buttress. In embodiments, the entire surgical buttress 24, or portions thereof, may be fabricated from the same material, or combination of materials that is homogeneous throughout the surgical buttress 24. In other embodiments, the surgical buttress 24 may be formed of different materials.


The surgical buttress 24 may be porous, non-porous, or combinations thereof. It is also envisioned that surgical buttress 24 described herein may contain a plurality of layers in which any combination of non-porous and porous layers may be configured as discussed further below. For example, surgical buttress may be formed to include multiple non-porous layers and porous layers that are stacked in an alternating manner. In another example, surgical buttress may be formed in a “sandwich-like” manner wherein the outer layers of the surgical buttress include porous layers and the inner layers are non-porous layers. It is further envisioned that non-porous and porous layers may be positioned in any order relative to the tissue contacting surfaces of the staple cartridge/anvil assembly. Examples of multilayered surgical buttresses are disclosed in U.S. patent application Publication No. 2009/0001122 filed Jun. 27, 2007, entitled “Buttress and Surgical Stapling Apparatus,” the entire disclosure of which is incorporated by reference herein.


Some non-limiting examples of materials from which non-porous and/or porous layers of surgical buttress 24 may be made include, but are not limited to, poly(lactic acid), poly(glycolic acid), poly(hydroxybutyrate), poly(phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly(ether-esters), polyalkylene oxalates, polyamides, poly(iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends, and combinations thereof.


In embodiments, natural biological polymers are used in forming a non-porous layer of the surgical buttress. Suitable natural biological polymers include, but are not limited to, collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, oxidized cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, carboxymethyl cellulose, chitan, chitosan, and combinations thereof. In addition, the natural biological polymers may be combined with any of the other polymeric materials described herein to produce a non-porous layer of the surgical buttress.


In embodiments, collagen of human and/or animal origin, e.g., type I porcine or bovine collagen, type I human collagen or type III human collagen, may be used to form a non-porous layer of the surgical buttress. In embodiments, a non-porous layer of the surgical buttress according to the present disclosure is made of collagen which is oxidized or a mixture in any proportions of non-oxidized and oxidized collagens.


The use of non-porous layer(s) in the surgical buttress may enhance the ability of the surgical buttress to resist tears and perforations during the manufacturing, shipping, handling, and stapling processes. Also, the use of a non-porous layer in the surgical buttress may also retard or prevent tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and preventing the formation of unwanted scar tissue. Thus, in embodiments, the non-porous layer(s) of the surgical buttress may possess anti-adhesion properties.


A non-porous layer of the surgical buttress may be formed using techniques within the purview of those skilled in the art, such as casting, molding, and the like.


Any of the porous layers of the surgical buttress may have openings or pores over at least a portion of a surface thereof. As described in more detail below, suitable materials for forming a porous layer include, but are not limited to, fibrous structures (e.g., knitted structures, woven structures, non-woven structures, etc.) and/or foams (e.g., open or closed cell foams). In embodiments, the pores may be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. Woven fabrics, knitted fabrics, and open cell foam are illustrative examples of structures in which the pores can be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. In embodiments, the pores may not interconnect across the entire thickness of the porous layer, but rather may be present at a portion thereof. Thus, in some embodiments, pores may be located on a portion of the porous layer, with other portions of the porous layer having a non-porous texture. Those skilled in the art reading the present disclosure will envision a variety of pore distribution patterns and configurations for the porous layer. Closed cell foam or fused non-woven materials are illustrative examples of structures in which the pores may not interconnect across the entire thickness of the porous layer.


Where a porous layer of the surgical buttress is fibrous, the fibers may be filaments or threads suitable for knitting or weaving or may be staple fibers, such as those frequently used for preparing non-woven materials. Suitable techniques for making fibrous structures are within the purview of those skilled in the art. The buttress material may be made using non-woven processes, including processes disclosed in U.S. patent application Ser. No. 13/293,215, filed Nov. 10, 2011 and entitled Hydrophilic Medical Devices, the disclosure of which is hereby incorporated by reference herein.


Where a porous layer of the surgical buttress is a foam, the porous layer may be formed using any method suitable to forming a foam or sponge including, but not limited to, the lyophilization or freeze-drying of a composition. Suitable techniques for making foams are within the purview of those skilled in the art.


The origin and types of collagens that may be used to form the porous layer are the same as those indicated above for the non-porous layer. However, the oxidized or non-oxidized collagen may be lyophilized, freeze-dried, or emulsified in the presence of a volume of air to create a foam and then freeze-dried, to form a porous compress.


In embodiments, a porous layer of the surgical buttress may be made from denatured collagen or collagen which has at least partially lost its helical structure through heating or any other method. The term “denatured collagen” means collagen which has lost its helical structure. The collagen used for the porous layer as described herein may be native collagen or atellocollagen. The collagen may have been previously chemically modified by oxidation, methylation, succinylation, ethylation, or any other known process.


The porous layer(s) may enhance the ability of the surgical buttress to absorb fluid, reduce bleeding, and seal the wound. Also, the porous layer(s) may allow for tissue ingrowth to fix the surgical buttress in place.


As illustrated in the current embodiment, and shown in FIGS. 1B and 1C, surgical buttress 24 includes a radially inner portion 42 defining an aperture 29 to receive shaft 23 of anvil assembly 20, a radially outer portion 46, and a radially middle portion 44 extending between the inner portion 42 and the outer portion 46. Stiffened region 40 is provided in at least a portion of the surgical buttress 24 and is configured to reduce shifting of the buttress or a portion of the buttress in relation to the staple retaining slots 52. The stiffened region 40 may be configured to releasably attach the surgical buttress 24 to the staple cartridge assembly 32.


For example, stiffened region 40 of surgical buttress 24 releasably attaches the staple cartridge assembly 32 in a manner which allows the surgical buttress 24 to be removed or released from the staple cartridge assembly 32 upon actuation of the knife 30. Accordingly, the stiffened region 40 is formed with a bond strength that is strong enough to hold the buttress 24 onto the staple cartridge assembly 32, but is weak enough to break free of the staple cartridge assembly 32 when the knife 30 impacts or penetrates the surgical buttress 24 to facilitate the release of the stiffened region 40 from the tissue contact surface 23 and thus, the surgical buttress 24 upon firing of surgical stapling apparatus 10.


As illustrated, stiffened region 40 is provided in the outer portion 46 of the surgical buttress 24 and bonds the surgical buttress 24 to the inwardly facing or tissue contacting surface 26 of the staple cartridge assembly 32. While the stiffened region 40 is shown as continuously extending around the outer portion 46 of the surgical buttress 24, it should be understood that stiffened region 40 may be discontinuous and include a plurality of stiffened regions 40a attaching the surgical buttress 24a to the surgical stapling apparatus 10, such as in the configuration illustrated in FIG. 2A, for example. In embodiments, the stiffened region 40, 40a may be disposed radially outward of the staple retaining slots 52 (FIGS. 1A and 1B).


Other configurations of the stiffened region 40 may be utilized to retain the surgical buttress 24 on the staple cartridge assembly 32. A stiffened region may be provided in other portions of a surgical buttress, such as, for example, in the inner portion as shown in FIG. 2B. The buttress shown in FIG. 2B can be part of any of the embodiments disclosed herein In particular, FIG. 2B illustrates a stiffened region 40b extending continuously around an inner portion 42 of surgical buttress 24b. In other embodiments, a stiffened region 40c may be discontinuous as illustrated in FIG. 2C, for example. The buttress shown in FIG. 2C can be part of any of the embodiments disclosed herein While stiffened region 40c is illustrated as a plurality of circular regions, stiffened region 40c may be formed of any number of suitably shaped and sized regions. In embodiments, the stiffened region 40b, 40c may be disposed radially inward of the staple retaining slots 52 (FIGS. 1A and 1B).



FIG. 2D illustrates a stiffened region 40d including a plurality of spokes extending radially outward from the inner portion 42 to the outer portion 46 of the surgical buttress 24d. The buttress shown in FIG. 2D can be part of any of the embodiments disclosed herein While the spokes of the stiffened region 40d are illustrated as tapering from the inner portion 42 to the outer portion 46 of the surgical buttress 24, it should be understood that the spokes of the stiffened region 40d may taper from the outer portion 46 to the inner portion 42 of the surgical buttress 24, or be of uniform or changing width from the outer portion 46 to the inner portion 42.



FIG. 2E illustrates a surgical buttress 24e in which the stiffened region 40e extends throughout the inner, outer, and middle portions 42, 44, 46 thereof to form ruffles 41. The buttress shown in FIG. 2E can be part of any of the embodiments disclosed herein. In such embodiments, the ruffles 41 of the stiffened region 40e may be folds, pleats, undulations, corrugations, creases, ridges, bends, or include other fluctuations in the surface of the surgical buttress 24e to provide radial stability to the surgical buttress 24e relative to the staple cartridge assembly 32.


It is envisioned that other configurations, as well as combinations of the embodiments described above, may be utilized to form the stiffened region of a surgical buttress. For example, a surgical buttress may include a stiffened region in both the inner and outer portions of the surgical buttress, or may include ruffles in only a portion thereof. Other configurations will be readily apparent to those skilled in the art. It is envisioned that the number of stiffened regions, stiffened region size, positioning, and spacing can be varied to optimize the attachment of the surgical buttress to the surgical stapling apparatus, as well as to minimize the detachment force required during firing.


The stiffened regions may be formed by applying pressure and/or heat to compress the buttress, or a portion thereof. The pressure and heat may be used to join a surgical buttress to a surgical stapling apparatus, or may be applied during a manufacturing process prior to affixing of the surgical buttress to the surgical stapling apparatus. In embodiments, stiffened regions may be formed by melt pressing, heat staking, and the like. In embodiments in which a fibrous woven or non-woven buttress material is utilized, heat staking the fibers of the surgical buttress will cause the fibers to substantially coalesce or bond to create stiffened regions in the desired portions of the surgical buttress.


As illustrated in FIGS. 3A and 3B, a heat staking apparatus 1000, or the like, is illustrated for attaching a surgical buttress 24 to a staple cartridge assembly 32. The staple cartridge assembly 32 and surgical buttress 24 are placed within a retaining channel 1022 of base 1020 of heat staking apparatus 1000. Heat staking apparatus 1000 includes a compression device 1010 operably connected to a generator (not shown) for activating at least one heating element as is known in the art such that when a die plate 1012 contacts the surgical buttress 24 with a desired amount of pressure, a combination of the desired amount of pressure and/or thermal energy from the compression device 1010 joins the surgical buttress 24 to the staple cartridge assembly 32, forming stiffening region 40. Die 1012 may define a patterned surface 1014 including projections 1016 for forming individual stiffened regions 40 on the surgical buttress 24. Projections 1016 provide small contact surfaces so that the energy delivered by the compression device 1010 is concentrated over a small area. The projections are positioned to form stiffened region 40 and, as described above, may be any shape and size depending on the desired configuration.


In embodiments, the die plate 1012 may assume a concave shape so that the surgical buttress 24f, as shown in FIG. 4, may be heat pressed into a dome shape over staple cartridge assembly 32 to provide structural rigidity to the surgical buttress 24f.


In other embodiments, the stiffened regions may be formed by coating or impregnating the buttress material with a stiffening agent. The stiffening agent is biocompatible and may be dissolvable and/or degradable in vivo. Stiffening agents include, for example: sugars such as tehalose, sucrose, galatose, and glucose; salts such as sodium chloride, potassium chloride, and sodium phosphate; hydrogels such as degradable polyethylene glycol (PEG) or poly(2-hydroxyethyl methacrylate) (pHEMA); and degradable polymer coatings such as those including poloxamers as well as polyhydroxy acids prepared from lactone monomers such as glycolide, lactide, trimethylene carbonate, p-dioxanone, ε-caprolactone, and combinations thereof. In some embodiments, the degradable polymer coating may include a copolymer of glycolic acid and trimethylene carbonate. In embodiments, the degradable polymer coating may include a copolymer of l-lactide and glycolide, and in some embodiments, the coating may include from about 70% l-lactide and about 30% glycolide. In embodiments, the coating may include a copolymer of glycolide and e-caprolactone, and in some embodiments, from about 15% glycolide and about 85% e-caprolactone. The stiffening agent may impart rigidity to the surgical buttress for several minutes after contact with body fluids after insertion of the surgical stapling apparatus into the body cavity, leaving the buttress material supple after implantation.


Referring again to FIGS. 1A and 1B, surgical stapling apparatus 10 and detachable anvil assembly 20 are used in an anastomosis procedure to effect joining of intestinal sections 1 and 2. The anastomosis procedure is typically performed using minimally invasive surgical techniques including laparoscopic means and instrumentation. At the point in the procedure shown in FIG. 1B, a diseased intestinal section has been previously removed, anvil assembly 20 has been applied to the operative site either through a surgical incision or transanally and positioned within intestinal section 2, and tubular body portion 14 of surgical stapling apparatus 10 has been inserted transanally into intestinal section 1. Intestinal sections 1 and 2 are also shown temporarily secured about their respective components (e.g., shaft 23 of anvil assembly 20, and the distal end of tubular body portion 14) by conventional means such as a purse string suture “P”.


Thereafter, the clinician maneuvers anvil assembly 20 until the proximal end of shaft 23 is inserted into the distal end of tubular body portion 14 of surgical stapling apparatus 10, wherein a mounting structure within the distal end of tubular body portion 14 engages shaft 23 to effect the mounting. Anvil assembly 20 and tubular body portion 14 are then approximated to approximate intestinal sections 1, 2. Surgical stapling apparatus 10 is then fired. The staples 50 are fired, effecting stapling of intestinal sections 1, 2 to one another. The force of the knife 30 being fired breaks the bonds between the surgical buttress 24 and the staple cartridge assembly 32 created by stiffened region 40 thereby releasing the surgical buttress 24 from the staple cartridge assembly 32, and cutting the portion of tissue and surgical buttress 24 disposed radially inward of the knife 30, to complete the anastomosis.


Referring now to FIGS. 5A-6C, the surgical buttress may include an outer and/or inner flange. As shown in FIGS. 5A-5C, surgical buttress 24 may include a terminal flange 21a extending around an outer perimeter of the tissue contacting surface 23 of the staple cartridge assembly 32. In embodiments, as shown in FIG. 5B, terminal flange 21a may be secured to a side surface 25a of the staple cartridge assembly 32. Terminal flange 21a of surgical buttress 24 may be joined to an outer side surface 25a of the staple cartridge assembly 32 via stiffened region 40 by melt pressing, heat staking, and the like, as described above. Alternatively, as shown in FIG. 5C, terminal flange 21a may extend outwardly from the staple cartridge assembly 32 such that the stiffened region 40, shown as ruffles 41a, provide stability around the edges of the staple cartridge assembly 32. The flange and/or ruffled portion disclosed herein can be included in any of the embodiments disclosed herein. Furthermore, the flange and/or ruffled portion can be provided as a resilient material that resiliently engages the stapling apparatus or instrument. Furthermore, the flange and/or ruffled portion can be provided as a material having a desirable frictional characteristic for frictionally engaging the stapling apparatus or instrument.


As shown in FIGS. 6A-6C, surgical buttress 24 may include an interior flange 21b annularly extending into aperture 29 of surgical buttress 24. In embodiments, as shown in FIG. 6B, interior flange 21b may be joined to an inner side surface 25b of the staple cartridge assembly 32 via stiffened region 40. Alternatively, as shown in FIG. 6C, internal flange 21b may extend inwardly into aperture 29 such that the stiffened region 40, shown as ruffles 41b, provide stability around the inner edges of the staple cartridge assembly 32. The interior flange and/or ruffled portion disclosed herein can be included in any of the embodiments disclosed herein. Furthermore, the flange and/or ruffled portion can be provided as a resilient material that resiliently engages the stapling apparatus or instrument. Furthermore, the flange and/or ruffled portion can be provided as a material having a desirable frictional characteristic for frictionally engaging the stapling apparatus or instrument.


A surgical buttress of the present disclosure may include perforations or cut zones around and/or through the stiffened region to allow the surgical buttress to release by breaking the perforations or cut zones when a specified amount of force is applied thereto. Such perforations or cut zones can be included in any of the embodiments disclosed herein. Perforations or cut zones allow for repeatable separation of the surgical buttress from the staple cartridge and/or anvil assembly, and would allow for stronger attachment of a surgical buttress by the stiffened region while also reducing the risk of movement or detachment prior to firing of the surgical stapling apparatus. As detachment is effected by breaking the perforations, knife cutting of the surgical buttress is not required for buttress release and thus, increased firing forces may not be required.


Perforations may be formed by placing a surgical buttress between two knife blades with the spacing between the blades corresponding to a percentage of the average thickness of the surgical buttress. The knife blade spacing could be tailored in the range of about 10% to about 100% of the average thickness of the surgical buttress, in embodiments, from about 20% to about 90% of the average thickness, and in some embodiments, about 30% of the average thickness, to ensure that the surgical buttress is well secured during insertion but break away from the stiffened regions upon firing of the surgical stapling apparatus.


As illustrated in FIG. 7A, in one embodiment, a surgical buttress 24 includes at least one stiffened region 40 disposed radially outward of the annular row of staples 50 (FIG. 1B) and perforations 27 extending around the periphery of the stiffened regions 40. Upon firing the surgical stapling apparatus (FIGS. 1A and 1B), the knife 30 (FIG. 1B) disposed within the staple cartridge assembly 32 (FIG. 1B) will impact or penetrate the surgical buttress 24 and allow the portions of the surgical buttress 24 to separate from the stiffened regions 40, via perforations 27, and pull apart from the stiffened regions which are adhered to the staple cartridge assembly 32 (FIG. 1B).


In another embodiment, shown in FIG. 7B, a surgical buttress 24 includes at least one stiffened region 40 disposed radially inward of the annular row of staples 50 (FIG. 1B) and perforations 27 extending in a circumferential line through the stiffened regions 40. Upon firing the surgical stapling apparatus (FIGS. 1A and 1B), the knife 30 (FIG. 1B) disposed within the staple cartridge assembly 32 (FIG. 1B) will impact or penetrate the surgical buttress 24 separating a portion of the surgical buttress 24 extending radially outward of the perforations 27 from the portion of the surgical buttress 24.


It is envisioned that other configurations of perforations may be provided within a surgical buttress. For example, FIG. 7C illustrates a surgical buttress including at least one stiffened region 40a disposed radially inward of the annular row of staples 50 (shown in phantom) and at least one stiffened region 40b disposed radially outward of the annular row of staples 50. Perforations 27a and 27b are provided between stiffened regions 40a and 40b. In embodiments, the perforations 27a and 27b form a circumferential perforation line separating a middle portion 44 of the surgical buttress 24 from the inner and outer portions 42, 46, respectively, of the surgical buttress 24 such that the middle portion 44 can be stapled to tissue while the inner and outer portions 42, 46 remains with the staple cartridge assembly 32.


The surgical buttress of the present disclosure may be adapted for use with other surgical stapling apparatus in accordance with the present disclosure, such as the surgical stapling apparatus disclosed in commonly owned U.S. Pat. Nos. 6,330,965 and 6,241,139, the entire contents of which are incorporated by reference herein. For example, surgical stapling apparatus for both laparoscopic and/or endoscopic surgical procedures that include an elongated body and a tool assembly for applying a linear row or rows of staples can have a buttress as disclosed in any of the embodiments hereof. Apparatus for applying a linear row or rows of staples that are arranged for open surgical procedures can also have any of the buttresses disclosed in any of the embodiments discussed herein. Apparatus having a distal end adapted to releasably engage a disposable loading unit can be used, or apparatus having removable and replaceable cartridges can be used, with the surgical buttresses disclosed herein.


As illustrated in FIGS. 8A and 8B, an exemplary surgical stapling apparatus or surgical stapler 100 for use in stapling tissue and applying a buttress material or surgical buttress to the tissue. Surgical stapling apparatus 100 generally includes a handle 112 having an elongate tubular member 114 extending distally from handle 112. A jaw assembly 116 is mounted on a distal end 118 of elongate tubular member 114. Jaw assembly 116 includes a staple clinching anvil jaw member 120 and a receiving jaw member 122 configured to receive a staple cartridge assembly 132. Jaw assembly 116 may be permanently affixed to elongate tubular member 114 or may be detachable and thus replaceable with a new jaw assembly 116. Staple clinching anvil jaw member 120 is movably mounted on distal end 118 of jaw assembly 116 and is movable between an open position spaced apart from staple cartridge jaw member 122 to a closed position substantially adjacent staple cartridge jaw member 122.


Surgical stapling apparatus 100 further includes a trigger 133 movably mounted on handle 112. Actuation of trigger 133 initially operates to move anvil jaw member 120 from the open to the closed position relative to staple cartridge jaw member 122 and subsequently actuates surgical stapling apparatus 100 to apply lines of staples to tissue. In order to properly orient jaw assembly 116 relative to the tissue to be stapled, surgical stapling apparatus 100 is additionally provided with a rotation knob 134 mounted on handle 112. Rotation of rotation knob 134 relative to handle 112 rotates elongate tubular member 114 and jaw assembly 116 relative to handle 112 so as to properly orient jaw assembly 116 relative to the tissue to be stapled.


A driver 136 is provided to move anvil jaw member 120 between the open and closed positions relative to staple cartridge jaw member 122. Driver 136 moves between a longitudinal slot 138 formed in anvil jaw member 120. A knife (not shown) is associated with driver 136 to cut tissue captured between anvil jaw member 120 and staple cartridge jaw member 122 as driver 136 passes through slot 138.


As illustrated in the current embodiment and shown in FIG. 8B, the surgical buttress 124 is releasably attached to the staple cartridge assembly 132 and/or the anvil jaw member 120 by at least one stiffened region 140 that bonds the surgical buttress 124 to the inwardly facing or tissue contacting surface 126 of the staple cartridge 132 and/or the anvil jaw member 120, in a manner similar to the bonds securing surgical buttresses 24 to the staple cartridge assembly 32, as described above.


The surgical buttress of the present disclosure, in particular surgical buttress 124, may also be adapted for use with a surgical stapling apparatus, such as that shown and described in U.S. Pat. No. 7,334,717, entitled “Surgical Fastener Applying Apparatus,” the entire content of which is incorporated herein by reference. As illustrated in FIG. 9, surgical stapling apparatus 210 includes an anvil receiving section 220 and a cartridge receiving section 222. A surgical buttress (not shown) may be attached to at least one of an anvil 221 coupled to the anvil receiving section 220, a staple cartridge assembly 232 coupled to the cartridge receiving section 222, or both, as discussed above, by at least one stiffened region. The anvil receiving section 220 and the cartridge receiving section 222 are pivotally connected via handles 212, 213 for approximation during use. Following approximation of the anvil receiving section 220 and the cartridge receiving section 222, the surgical stapling apparatus 210 is fired by driving a firing slide 236 distally through the advancement of a firing lever 233. Distal movement of the firing slide 233 causes a plurality of cam bars to engage camming surfaces that interact with a plurality of pushers to expel a plurality of surgical staples (not shown) from the cartridge receiving section 222. The staples are positioned on either side of a track which guides a knife (not shown) during longitudinal movement. The force of the knife being fired breaks the bonds between the surgical buttress and the staple cartridge, for example, created by the stiffened region between the surgical buttress and the staple cartridge, thereby releasing the surgical buttress from the staple cartridge, and severs tissue along a cut-line.


The surgical buttress of the present disclosure, in particular surgical buttress 124, may also be adapted for use with a transverse surgical stapling apparatus 310, as illustrated in FIG. 10. An exemplary transverse surgical stapling apparatus is shown and described in U.S. Pat. No. 5,964,394, entitled “Surgical Fastener Applying Device,” the entire content of which is incorporated herein by reference. The surgical stapling apparatus 310 includes an approximation lever 333, a movable handle 312, an elongated portion 314 that extends distally from the handle 312, and an arm 322 that extends from a distal end 315 of the elongated portion 314. The surgical stapling apparatus 310 further includes an anvil 321 that is orthogonally affixed to the arm 322, and a cartridge receiver 320 that is operatively coupled to the distal end 315 of the elongated portion 314 for retention of a staple cartridge assembly 332. A surgical buttress (not shown) may be joined to at least one of the anvil 321, staple cartridge assembly 332, or both as discussed above, via a stiffened region.


In embodiments, at least one bioactive agent may be combined with a surgical buttress of the present disclosure. The at least one bioactive agent may be disposed on a surface of the surgical buttress and/or impregnated therein. In these embodiments, the surgical buttress can also serve as a vehicle for delivery of the bioactive agent. The term “bioactive agent”, as used herein, is used in its broadest sense and includes any substance or mixture of substances that have clinical use. Consequently, bioactive agents may or may not have pharmacological activity per se, e.g., a dye, or fragrance. Alternatively a bioactive agent could be any agent which provides a therapeutic or prophylactic effect, a compound that affects or participates in tissue growth, cell growth, cell differentiation, an anti-adhesive compound, a compound that may be able to invoke a biological action such as an immune response, or could play any other role in one or more biological processes. It is envisioned that the bioactive agent may be applied to the surgical buttress in any suitable form of matter, e.g., films, powders, liquids, gels and the like.


Examples of classes of bioactive agents which may be utilized in accordance with the present disclosure include anti-adhesives, antimicrobials, analgesics, antipyretics, anesthetics, antiepileptics, antihistamines, anti-inflammatories, cardiovascular drugs, diagnostic agents, sympathomimetics, cholinomimetics, antimuscarinics, antispasmodics, hormones, growth factors, muscle relaxants, adrenergic neuron blockers, antineoplastics, immunogenic agents, immunosuppressants, gastrointestinal drugs, diuretics, steroids, lipids, lipopolysaccharides, polysaccharides, and enzymes. It is also intended that combinations of bioactive agents may be used.


Other bioactive agents which may be included as a bioactive agent in the surgical buttress of the present disclosure include: local anesthetics; non-steroidal antifertility agents; parasympathomimetic agents; psychotherapeutic agents; tranquilizers; decongestants; sedative hypnotics; steroids; sulfonamides; sympathomimetic agents; vaccines; vitamins; antimalarials; anti-migraine agents; anti-parkinson agents such as L-dopa; anti-spasmodics; anticholinergic agents (e.g. oxybutynin); antitussives; bronchodilators; cardiovascular agents such as coronary vasodilators and nitroglycerin; alkaloids; analgesics; narcotics such as codeine, dihydrocodeinone, meperidine, morphine and the like; non-narcotics such as salicylates, aspirin, acetaminophen, d-propoxyphene and the like; opioid receptor antagonists, such as naltrexone and naloxone; anti-cancer agents; anti-convulsants; anti-emetics; antihistamines; anti-inflammatory agents such as hormonal agents, hydrocortisone, prednisolone, prednisone, non-hormonal agents, allopurinol, indomethacin, phenylbutazone and the like; prostaglandins and cytotoxic drugs; estrogens; antibacterials; antibiotics; anti-fungals; anti-virals; anticoagulants; anticonvulsants; antidepressants; antihistamines; and immunological agents.


Other examples of suitable bioactive agents which may be included include viruses and cells, peptides, polypeptides and proteins, analogs, muteins, and active fragments thereof, such as immunoglobulins, antibodies, cytokines (e.g. lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (IL-2, IL-3, IL-4, IL-6), interferons (β-IFN, (α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents and tumor suppressors, blood proteins, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone), vaccines (e.g., tumoral, bacterial and viral antigens); somatostatin; antigens; blood coagulation factors; growth factors (e.g., nerve growth factor, insulin-like growth factor); protein inhibitors, protein antagonists, and protein agonists; nucleic acids, such as antisense molecules, DNA and RNA; oligonucleotides; polynucleotides; and ribozymes.


In embodiments, a reinforcement member may be positioned within or over a surgical buttress. In embodiments utilizing a multilayered surgical buttress, one or more reinforcement members may be positioned between, within, or at an external surface of a layer of the surgical buttress as are disclosed, for example, in U.S. Patent Application Publication No. 2009/0001122, referenced above.


Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, it is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another exemplary embodiment without departing from the scope of the present disclosure, and that such modifications and variations are also intended to be included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.

Claims
  • 1. A staple cartridge for use with a surgical stapling apparatus, the staple cartridge comprising: a cartridge body including a tissue facing surface defining a plurality of staple retaining slots;a staple disposed within each staple retaining slot of the cartridge body; anda substantially circular buttress including an inner portion, an outer portion, and a middle portion extending between the inner portion and the outer portion, the inner, outer, and middle portions all formed from a common material, and at least one stiffened region defined in a portion of the buttress, the at least one stiffened region formed as a plurality of spokes which are compressed regions of the common material that extend radially outward from the inner portion of the buttress to the outer portion of the buttress, the buttress affixed to the cartridge body solely by the plurality of spokes which are directly fastened to the tissue facing surface of the cartridge body.
  • 2. The staple cartridge of claim 1, wherein the stiffened region is a crosslinked region of the buttress.
  • 3. The staple cartridge of claim 1, wherein the buttress includes a stiffening agent.
  • 4. The staple cartridge of claim 1, wherein the buttress includes a central opening.
  • 5. The staple cartridge of claim 1, wherein the stiffened region extends radially inward of the staple retaining slots.
  • 6. The staple cartridge of claim 1, wherein the stiffened region extends radially outward of the staple retaining slots.
  • 7. A surgical stapling apparatus, comprising: a tubular body portion having a distal end and a shaft with a connection portion;an anvil assembly including an anvil plate having staple forming recesses and a shaft connectable with the connection portion;a cartridge body receivable in the distal end of the tubular body portion and including a tissue facing surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots;a staple disposed within each staple retaining slot of the cartridge body; anda substantially circular buttress including an inner portion, an outer portion, and a middle portion extending between the inner portion and the outer portion, and a plurality of spokes defining a plurality of stiffened regions in the buttress, the plurality of spokes extending radially outward from the inner portion of the buttress to the outer portion of the buttress in spaced relation relative to each other, the plurality of spokes being the sole area of attachment of the buttress to the tissue facing surface of the cartridge body, wherein the inner portion, the middle portion, and the outer portion are all formed from a common material, and the plurality of spokes are compressed regions of the common material of the buttress.
  • 8. A surgical stapling apparatus, comprising: a tubular body portion having a distal end and a shaft with a connection portion;an anvil assembly including an anvil plate having staple forming recesses and a shaft connectable with the connection portion;a cartridge body receivable in the distal end of the tubular body portion and including a tissue facing surface defining a plurality of staple retaining slots, the staple retaining slots defining at least two annular rows of staple retaining slots;a staple disposed within each staple retaining slot of the cartridge body; anda substantially circular buttress including at least one buttress region and at least one stiffened region including a plurality of spokes extending radially outward from an inner portion of the buttress to an outer portion of the buttress, the plurality of spokes bonded to the tissue facing surface of the cartridge body such that the buttress is adhered to the tissue facing surface of the cartridge body solely by the plurality of spokes, wherein the at least one buttress region and the at least one stiffened region are formed from a common material, and the plurality of spokes is a compressed region of the common material of the buttress.
  • 9. The surgical stapling apparatus of claim 8, wherein the stiffened region is a crosslinked region of the buttress.
  • 10. The surgical stapling apparatus of claim 8, wherein the buttress includes a stiffening agent.
  • 11. The surgical stapling apparatus of claim 8, wherein the buttress includes a central opening.
  • 12. The surgical stapling apparatus of claim 8, wherein the stiffened region extends radially inward of the staple retaining slots.
  • 13. The surgical stapling apparatus of claim 8, wherein the stiffened region extends radially outward of the staple retaining slots.
US Referenced Citations (417)
Number Name Date Kind
3054406 Usher Sep 1962 A
3124136 Usher Mar 1964 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4452245 Usher Jun 1984 A
4473670 Kessidis Sep 1984 A
4605730 Shalaby et al. Aug 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5065929 Schulze et al. Nov 1991 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull Nov 1993 A
5314471 Brauker et al. May 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk et al. Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5503638 Cooper et al. Apr 1996 A
5542594 McKean et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5713920 Bezwada et al. Feb 1998 A
5752965 Francis et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5964394 Robertson Oct 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov et al. Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6099551 Gabbay Aug 2000 A
6149667 Hovland et al. Nov 2000 A
6155265 Hammerslag Dec 2000 A
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6330965 Milliman et al. Dec 2001 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6592597 Grant et al. Jul 2003 B2
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6773458 Brauker et al. Aug 2004 B1
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6959851 Heinrich Nov 2005 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7307031 Carroll et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7334717 Rethy et al. Feb 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7594921 Browning Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7717313 Bettuchi et al. May 2010 B2
7722642 Williamson, IV May 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crows et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban May 2011 B2
7967179 Olson Jun 2011 B2
7988027 Olson Aug 2011 B2
8011550 Aranyi Sep 2011 B2
8016177 Bettuchi Sep 2011 B2
8016178 Olson Sep 2011 B2
8028883 Stopek Oct 2011 B2
8062330 Prommersberger Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8123766 Bauman Feb 2012 B2
8123767 Bauman Feb 2012 B2
8146791 Bettuchi Apr 2012 B2
8157149 Olson Apr 2012 B2
8157151 Ingmanson Apr 2012 B2
8167895 D'Agostino May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban Jun 2012 B2
8210414 Bettuchi Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli Jul 2012 B2
8235273 Olson Aug 2012 B2
8245901 Stopek Aug 2012 B2
8256654 Bettuchi Sep 2012 B2
8257391 Orban Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8348126 Olson Jan 2013 B2
8348130 Shah Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371491 Huitema Feb 2013 B2
8371492 Aranyi Feb 2013 B2
8371493 Aranyi Feb 2013 B2
8393514 Shelton, IV Mar 2013 B2
8408440 Olson Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros Jun 2013 B2
8453909 Olson Jun 2013 B2
8453910 Bettuchi Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8474677 Woodard, Jr. Jul 2013 B2
8479968 Hodgkinson Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger Jul 2013 B2
8511533 Viola Aug 2013 B2
8512402 Marczyk Aug 2013 B2
8529600 Woodard, Jr. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban Oct 2013 B2
8556918 Bauman Oct 2013 B2
8561873 Ingmanson Oct 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess Nov 2013 B2
8616430 Prommersberger Dec 2013 B2
8631989 Aranyi Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8684250 Bettuchi Apr 2014 B2
8721703 Fowler May 2014 B2
8757466 Olson Jun 2014 B2
8789737 Hodgkinson Jul 2014 B2
8820606 Hodgkinson Sep 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
20020028243 Masters Mar 2002 A1
20020091397 Chen Jul 2002 A1
20030065345 Weadock Apr 2003 A1
20030083676 Wallace May 2003 A1
20030120284 Palacios et al. Jun 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian et al. Oct 2003 A1
20030208231 Williamson, IV et al. Nov 2003 A1
20040107006 Francis et al. Jun 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050143756 Jankowski Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050245965 Orban, III et al. Nov 2005 A1
20060004407 Hiles et al. Jan 2006 A1
20060085030 Bettuchi et al. Apr 2006 A1
20060135992 Bettuchi Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060178683 Shimoji et al. Aug 2006 A1
20060271104 Viola et al. Nov 2006 A1
20070026031 Bauman et al. Feb 2007 A1
20070034669 de la Torre et al. Feb 2007 A1
20070049953 Shimoji et al. Mar 2007 A2
20070123839 Rousseau et al. May 2007 A1
20070179528 Soltz et al. Aug 2007 A1
20070203509 Bettuchi Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080110959 Orban et al. May 2008 A1
20080125812 Zubik et al. May 2008 A1
20080140115 Stopek Jun 2008 A1
20080161831 Bauman et al. Jul 2008 A1
20080161832 Bauman et al. Jul 2008 A1
20080169327 Shelton et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080200949 Hiles Aug 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080230583 Heinrich Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314960 Marczyk et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001123 Morgan et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001125 Hess et al. Jan 2009 A1
20090001126 Hess et al. Jan 2009 A1
20090001128 Weisenburgh, II et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090030452 Bauman et al. Jan 2009 A1
20090043334 Bauman et al. Feb 2009 A1
20090076510 Bell et al. Mar 2009 A1
20090076528 Sgro Mar 2009 A1
20090078739 Viola Mar 2009 A1
20090095791 Eskaros et al. Apr 2009 A1
20090095792 Bettuchi Apr 2009 A1
20090120994 Murray et al. May 2009 A1
20090134200 Tarinelli et al. May 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20090277947 Viola Nov 2009 A1
20090287230 D'Agostino et al. Nov 2009 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100065606 Stopek Mar 2010 A1
20100065607 Orban, III et al. Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100147923 D'Agostino et al. Jun 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100243711 Olson et al. Sep 2010 A1
20100249805 Olson et al. Sep 2010 A1
20100264195 Bettuchi Oct 2010 A1
20100282815 Bettuchi et al. Nov 2010 A1
20100331880 Stopek Dec 2010 A1
20110024476 Bettuchi et al. Feb 2011 A1
20110024481 Bettuchi et al. Feb 2011 A1
20110036894 Bettuchi Feb 2011 A1
20110042442 Viola et al. Feb 2011 A1
20110046650 Bettuchi Feb 2011 A1
20110057016 Bettuchi Mar 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110215132 Aranyi Sep 2011 A1
20110282446 Schulte Nov 2011 A1
20120074199 Olson Mar 2012 A1
20120080336 Shelton Apr 2012 A1
20120083723 Vitaris et al. Apr 2012 A1
20120187179 Gleiman Jul 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241499 Baxter Sep 2012 A1
20120273547 Hodgkinson et al. Nov 2012 A1
20130037596 Bear et al. Feb 2013 A1
20130105548 Hodgkinson et al. May 2013 A1
20130105553 Racenet May 2013 A1
20130112732 Aranyi May 2013 A1
20130112733 Aranyi May 2013 A1
20130123816 Hodgkinson et al. May 2013 A1
20130146641 Shelton Jun 2013 A1
20130153633 Casasanta Jun 2013 A1
20130153634 Carter Jun 2013 A1
20130153635 Hodgkinson Jun 2013 A1
20130153636 Shelton Jun 2013 A1
20130153639 Hodgkinson Jun 2013 A1
20130153640 Hodgkinson Jun 2013 A1
20130153641 Shelton Jun 2013 A1
20130161374 Swayze Jun 2013 A1
20130181031 Olson Jul 2013 A1
20130193186 Racenet Aug 2013 A1
20130193190 Carter Aug 2013 A1
20130193191 Stevenson Aug 2013 A1
20130193192 Casasanta Aug 2013 A1
20130209659 Racenet Aug 2013 A1
20130221062 Hodgkinson Aug 2013 A1
20130240600 Bettuchi Sep 2013 A1
20130240601 Bettuchi Sep 2013 A1
20130240602 Stopek Sep 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130277411 Hodgkinson Oct 2013 A1
20130306707 Viola Nov 2013 A1
20130310873 Prommersberger Nov 2013 A1
20130327807 Olson Dec 2013 A1
20140012317 Orban Jan 2014 A1
20140021242 Hodgkinson Jan 2014 A1
20140027490 Marczyk Jan 2014 A1
20140034704 Ingmanson Feb 2014 A1
20140048580 Merchant Feb 2014 A1
20140061280 Ingmanson Mar 2014 A1
20140061281 Hodgkinson Mar 2014 A1
20140084042 Stopek Mar 2014 A1
20140097224 Prior Apr 2014 A1
20140117066 Aranyi May 2014 A1
20140130330 Olson May 2014 A1
20140131418 Kostrzewski May 2014 A1
20140131419 Bettuchi May 2014 A1
20140138423 Whitfield May 2014 A1
20140151431 Hodgkinson Jun 2014 A1
20140155916 Hodgkinson Jun 2014 A1
20140158742 Stopek Jun 2014 A1
20140166721 Stevenson Jun 2014 A1
20140197224 Penna Jul 2014 A1
20140203061 Hodgkinson Jul 2014 A1
20140217147 Milliman Aug 2014 A1
20140217148 Penna Aug 2014 A1
20140239046 Milliman Aug 2014 A1
20140239047 Hodgkinson Aug 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20150001276 Hodgkinson et al. Jan 2015 A1
20150041347 Hodgkinson Feb 2015 A1
20150097018 Hodgkinson Apr 2015 A1
20150115015 Prescott et al. Apr 2015 A1
20150122872 Olson et al. May 2015 A1
20150164503 Stevenson et al. Jun 2015 A1
20150164506 Carter et al. Jun 2015 A1
20150164507 Carter et al. Jun 2015 A1
20150196297 (Prommersberger) Stopek et al. Jul 2015 A1
20150209033 Hodgkinson Jul 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150209048 Carter et al. Jul 2015 A1
Foreign Referenced Citations (70)
Number Date Country
2 667 434 May 2008 CA
101310680 Nov 2008 CN
101332110 Dec 2008 CN
1 99 24 311 Nov 2000 DE
199 24 311 Nov 2000 DE
0 594 148 Apr 1994 EP
0 327 022 Apr 1995 EP
0 667 119 Aug 1995 EP
1 064 883 Jan 2001 EP
1 256 317 Nov 2002 EP
1 256 318 Nov 2002 EP
1 520 525 Apr 2005 EP
1 621 141 Feb 2006 EP
1 702 570 Sep 2006 EP
1 759 640 Mar 2007 EP
1 815 804 Aug 2007 EP
1 825 820 Aug 2007 EP
1 929 958 Jun 2008 EP
1 994 890 Nov 2008 EP
2 005 894 Dec 2008 EP
2 005 895 Dec 2008 EP
2 008 595 Dec 2008 EP
2 039 308 Mar 2009 EP
2 090 231 Aug 2009 EP
2 090 244 Aug 2009 EP
2 090 252 Aug 2009 EP
2 163 211 Mar 2010 EP
2 189 121 May 2010 EP
2 198 787 Jun 2010 EP
2 236 098 Oct 2010 EP
2 236 099 Oct 2010 EP
2 258 282 Dec 2010 EP
2 292 276 Mar 2011 EP
2 311 386 Apr 2011 EP
2 436 348 Apr 2012 EP
2 462 880 Jun 2012 EP
2 497 431 Sep 2012 EP
2 517 637 Oct 2012 EP
2 586 380 May 2013 EP
2 604 195 Jun 2013 EP
2 604 197 Jun 2013 EP
2 620 105 Jul 2013 EP
2 620 106 Jul 2013 EP
2 630 922 Aug 2013 EP
2 644 125 Oct 2013 EP
2 762 091 Aug 2014 EP
2000-166933 Jun 2000 JP
2002-202213 Jul 2002 JP
07-124166 May 2007 JP
WO 9005489 May 1990 WO
WO 9516221 Jun 1995 WO
WO 9622055 Jul 1996 WO
WO 9701989 Jan 1997 WO
WO 9713463 Apr 1997 WO
WO 9817180 Apr 1998 WO
WO 9945849 Sep 1999 WO
WO 03082126 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03094743 Nov 2003 WO
WO 03105698 Dec 2003 WO
WO 2005079675 Sep 2005 WO
WO 2006023578 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006083748 Aug 2006 WO
WO 2007121579 Nov 2007 WO
WO 2008057281 May 2008 WO
WO 2008109125 Sep 2008 WO
WO 2010075298 Jul 2010 WO
WO 2011143183 Nov 2011 WO
WO 2012044848 Apr 2012 WO
Non-Patent Literature Citations (78)
Entry
“What is Ultrasonic Welding?”, http://www.dukane.com/us/PPL—whatisUPA.htm, Mar. 14, 2010.
International Search Report corresponding to European Application No. EP 05 02 2585.3, completed on Jan. 25, 2006 and mailed on Feb. 3, 2006; 4 pages.
International Search Report corresponding to European Application No. EP 06 00 4598, completed on Jun. 22, 2006; 2 pages.
International Search Report corresponding to European Application No. EP 06 01 6962.0, completed on Jan. 3, 2007 and mailed on Jan. 11, 2007; 10 pages.
International Search Report corresponding to International Application No. PCT/US05/36740, completed on Feb. 20, 2007 and mailed on Mar. 23, 2007; 8 pages.
International Search Report corresponding to International Application No. PCT/US2007/022713, completed on Apr. 21, 2008 and mailed on May 15, 2008; 1 page.
International Search Report corresponding to International Application No. PCT/US2008/002981, completed on Jun. 9, 2008 and mailed on Jun. 26, 2008; 2 pages.
International Search Report corresponding to European Application No. EP 08 25 1779, completed on Jul. 14, 2008 and mailed on Jul. 23, 2008; 5 pages.
International Search Report corresponding to European Application No. EP 08 25 1989.3, completed on Mar. 11, 2010 and mailed on Mar. 24, 2010; 6 pages.
International Search Report corresponding to European Application No. EP 10 25 0639.1, completed on Jun. 17, 2010 and mailed on Jun. 28, 2010; 7 pages.
International Search Report corresponding to European Application No. EP 10 25 0715.9, completed on Jun. 30, 2010 and mailed on Jul. 20, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 05 80 4382.9, completed on Oct. 5, 2010 and mailed on Oct. 12, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 10 25 1437.9, completed on Nov. 22, 2010 and mailed on Dec. 16, 2010; 3 pages.
International Search Report corresponding to European Application No. EP 09 25 2897.5, completed on Feb. 7, 2011 and mailed on Feb. 15, 2011; 3 pages.
International Search Report corresponding to European Application No. EP 10 25 0642.5, completed on Mar. 25, 2011 and mailed on Apr. 4, 2011; 4 pages.
International Search Report corresponding to European Application No. EP 11 18 8309.6, completed on Dec. 15, 2011 and mailed on Jan. 12, 2012; 3 pages.
Extended European Search Report corresponding to EP No. 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages.
Extended European Search Report corresponding to EP No. 12 18 6175.1, completed Jan. 15, 2013 and mailed Jan. 23, 2013; 7 pages.
Extended European Search Report corresponding to EP No. 12 19 1114.3, completed Jan. 23, 2013 and mailed Jan. 31, 2013; 10 pages.
Extended European Search Report corresponding to EP No. 12 19 2224.9, completed Mar. 14, 2013 and mailed Mar. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP No. 12 19 6911.7, completed Apr. 18, 2013 and mailed Apr. 24, 2013; 8 pages.
International Search Report corresponding to European Application No. EP 12 15 2229.6, completed on Feb. 23, 2012 and mailed on Mar. 1, 2012; 4 pages.
International Search Report corresponding to European Application No. EP 12 15 0511.9, completed on Apr. 16, 2012 and mailed on Apr. 24, 2012; 7 pages.
International Search Report corresponding to European Application No. EP 12 15 2541.4, completed on Apr. 23, 2012 and mailed on May 3, 2012; 10 pages.
International Search Report corresponding to European Application No. EP 12 16 5609.4, completed on Jul. 5, 2012 and mailed on Jul. 13, 2012; 8 pages.
International Search Report corresponding to European Application No. EP 12 15 8861.0, completed on Jul. 17, 2012 and mailed on Jul. 24, 2012; 9 pages.
International Search Report corresponding to European Application No. EP 12 16 5878.5, completed on Jul. 24, 2012 and mailed on Aug. 6, 2012; 8 pages.
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and mailed Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and mailed Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 2123.1, completed Jan. 30, 2014 and mailed Feb. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and mailed Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and mailed Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and mailed Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and mailed Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and mailed Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and mailed Jan. 18, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and mailed Jul. 26, 2013; 8 pages.
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and mailed May 31, 2013; 8 pages.
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and mailed May 29, 2013; 7 pages.
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and mailed May 27, 2013; 8 pages.
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and mailed Jun. 13, 2013; 7 pages.
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and mailed Aug. 28, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and mailed Aug. 29, 2013; 7 pages.
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and mailed Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and mailed Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and mailed Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and mailed Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and mailed Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and mailed Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and mailed Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and mailed Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and mailed Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and mailed Jan. 31, 2014; (8 pp).
Extended European Search Report corresponding to EP 13180373.6, completed Oct. 31, 2013 and mailed Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and mailed Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and mailed Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and mailed Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and mailed Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and mailed Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and mailed Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and mailed Mar. 30, 2015; (6 pp).
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 4814.5 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015.
European Office Action corresponding to EP13 180 373.6 dated Jun. 19, 2015; 4 pp.
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 12 19 6912.5, dated Feb. 1, 2016.
Related Publications (1)
Number Date Country
20130153638 A1 Jun 2013 US