This application is a National Stage Application of PCT/CN2014/073447 under 35 USC § 371(a), which claims benefit of and priority to Chinese Patent Application Serial No. 201310175344.1 filed Mar. 15, 2013, the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.
Technical Field
The present disclosure relates generally to a surgical stapling apparatus for applying surgical staples to body tissue and, more particularly, to a surgical stapling apparatus for performing circular anastomosis of hollow tissue structures which includes reusable components.
Background of Related Art
Anastomosis refers to the surgical joining of separate hollow tissue sections. Typically, an anastomosis procedure follows surgery in which a diseased or defective section of a hollow tissue structure is removed, thus requiring the joining of the remaining end sections of the tissue structure. Depending on the particular procedure being performed and/or other factors, the end sections of the tissue may be joined by circular anastomosis, e.g., end-to-end anastomosis, end-to-side anastomosis, or side-to-side anastomosis.
In a circular anastomosis procedure, two end sections of a tubular organ are joined using a stapling apparatus that drives a circular array of staples through each of the end sections to join the end sections to one another in end-to-end relation and simultaneously cores any tissue within the newly joined hollow tissue structure to clear the passage defined by the hollow tissue structure. A typical circular anastomosis apparatus includes an elongated shaft having a handle portion at a proximal end and a staple holding component at a distal end. An anvil assembly including an anvil rod and an attached anvil head is mounted to the distal end of the elongated shaft adjacent the staple holding component. In use, the end portions to be joined are clamped between the anvil head and the staple holding component. The clamped end portions are then joined to one another by driving one or more staples from the staple holding component, through the tissue, and into the anvil head to form the staples about the tissue. An example of such a circular anastomosis apparatus is described in U.S. Pat. No. 7,857,187 to Milliman, the entire contents of which is hereby incorporated by reference herein in its entirety.
Typically, surgical stapling apparatus for performing circular anastomosis procedures are disposable after a single use. Because of the high costs associated with the use of disposable surgical stapling apparatus, a need exists for a surgical stapling apparatus that includes reusable components and is configured to facilitate effective sterilization of the reusable components.
A surgical stapling apparatus provided in accordance with the present disclosure includes a handle portion, an elongated body portion, a firing assembly, and a stapling assembly. The elongated body portion extends distally from the handle portion. The elongated body portion includes an engagement member rotatably supported on a distal portion of the elongated body portion. The engagement member defines an engagement slot and is axially movable about the elongated body portion from a retracted position to an advanced position. The firing assembly includes a firing trigger, a firing link, and a pusher link. The pusher link extends through the elongated body portion and is configured for distal translation through the elongated body portion in response to actuation of the firing trigger. The stapling assembly is configured to house a plurality of surgical staples. The stapling assembly includes an outer shell having an engagement tab. The engagement member is rotatable relative to the elongated body portion and the stapling assembly to releasably engage the engagement tab within the engagement slot to releasably secure the stapling assembly at the distal end of the elongated body portion such that, in response to distal advancement of the firing pusher, the plurality of surgical staples are ejected from the stapling assembly.
In embodiments, the surgical stapling apparatus further includes an approximation assembly. The approximation assembly includes a drive member configured to extend distally from the elongated body potion and the stapling assembly. The distal end of the drive member is configured to releasably engage an anvil assembly.
In embodiments, the surgical stapling apparatus further includes an approximation knob extending from the handle portion. The approximation knob is coupled to the drive member and is selectively actuatable to move the anvil assembly between a spaced-apart position and an approximated position relative to the stapling assembly.
In embodiments, the drive member defines a helical channel and the approximation knob is coupled to a pin disposed within the helical channel such that rotation of the approximation knob effects translation of the drive member.
In embodiments, the handle portion includes an indicator window configured to permit visualization into the handle portion to confirm a position of the anvil assembly relative to the stapling assembly.
In embodiments, a biasing member is disposed about the elongated body portion and configured to bias the engagement member towards the retracted position. As such, the engagement tab is retained in engagement within the engagement slot under the bias of the biasing member.
In embodiments, the engagement tab further includes an engagement nub and the engagement slot further includes an engagement notch. The engagement nub is configured to engage the engagement notch to secure the stapling assembly at the distal end of the elongated body portion.
In embodiments, the stapling assembly includes a cartridge assembly disposed within the outer shell. The cartridge assembly may include a pusher including a plurality of pusher fingers configured to support the plurality of surgical staples and a staple guide member configured to guide ejection of the surgical staples from the stapling assembly.
In embodiments, the handle portion is formed from first and second handle sections movable relative to one another between a closed configuration and an open configuration. The handle portion may further include a chassis interconnecting the first and second handle sections. The chassis may also be configured to support a portion of the approximation assembly and/or a portion of the firing assembly.
In embodiments, the elongated body portion defines a curved configuration and the pusher link includes a plurality of link segments pivotably coupled to one another to facilitate translation of the pusher link through the curved elongated body portion. The link segments may be pivotably coupled to one another via a ball-and-socket joint(s).
Also provided in accordance with the present disclosure is a method of surgery. The method includes providing a surgical stapling apparatus including a handle portion formed from first and second handle sections, an elongated body portion extending distally from the handle portion and having an engagement member coupled to a distal portion of the elongated body portion, a firing assembly, an approximation assembly, an anvil assembly disposed at a distal end of the approximation assembly, and a first stapling assembly housing a first plurality of surgical staples. The first stapling assembly is engaged to the engagement member of the elongated body portion. The surgical stapling apparatus may otherwise be configured similar to any of the embodiments described herein. The method further includes inserting the surgical stapling apparatus into an internal surgical site, actuating the approximation assembly to clamp tissue between the first stapling assembly and the anvil assembly, actuating the firing assembly to eject the first plurality of surgical staples from the first stapling assembly, through the clamped tissue, and into the anvil assembly to form the first plurality of surgical staples about the clamped tissue, removing the surgical stapling apparatus from the internal surgical site, and disengaging the first stapling assembly from the engagement member.
In embodiments, the method further includes moving the first and second handle sections relative to one another from a closed position to an open position, disengaging the handle portion, the elongated body portion, the anvil assembly, the firing assembly, and the approximation assembly from one another, sterilizing the handle portion, the elongated body portion, the anvil assembly, the firing assembly, and the approximation assembly, reengaging the handle portion, the elongated body portion, the anvil assembly, the firing assembly, and the approximation assembly to one another, moving the first and second handle sections relative to one another from the open position back to the closed position, and engaging a second stapling assembly with the engagement member. The second stapling assembly houses a second plurality of surgical staples.
In embodiments, the method further includes inserting the surgical stapling apparatus into an internal surgical site, actuating the approximation assembly to clamp tissue between the second stapling assembly and the anvil assembly, and actuating the firing assembly to eject the second plurality of surgical staples from the second stapling assembly, through the clamped tissue, and into the anvil assembly to form the second plurality of surgical staples about the clamped tissue. See also, for example, U.S. Pat. No. 7,857,187 to Milliman, previously incorporated by reference herein, U.S. Pat. No. 6,945,444 to Gresham et al., the entire contents of which are incorporated by reference herein, and U.S. Pat. No. 7,303,106 to Milliman et al., the entire contents of which are incorporated by reference herein.
Various embodiments of the presently disclosed surgical stapling apparatus are described herein with reference to the drawings wherein:
Embodiments of the presently disclosed surgical stapling apparatus will now be described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. Throughout this description, the term “proximal” will refer to the portion of the apparatus closest to the user and the term “distal” will refer to the portion of the apparatus farthest from the user.
With general reference to
With particular reference to
Distal head portion 40 of surgical stapling apparatus 10 includes an anvil assembly 400 (
The various components of surgical stapling apparatus 10 described hereinbelow are configured to facilitate the assembly and disassembly of surgical stapling apparatus 10, thus facilitating the disposal and replacement of those components that are disposable and the sterilization and reassembly of those components that are reusable. The materials used to form the various components of surgical stapling apparatus 10 will depend upon the strength requirements of the particular component and the use requirements of the particular component, e.g., whether the component is reusable or disposable. The reusable components, for example, may generally be formed from thermoplastics including polycarbonates, and metals including stainless steel and aluminum, that are suited to withstand repeated sterilization procedures, e.g., autoclaving.
Referring to
Referring to
With additional reference to
As shown in
With reference to
Referring to
With reference to
With additional reference to
Referring to
With additional reference to
Firing link 310 has a distal end pivotally secured to firing trigger 24 by a pivot member 312 and a proximal end that is pivotably secured to stationary handle 22. More specifically, the proximal end of firing link 310 defines a bifurcated configuration having first and second flanges 313, 315 that are configured to receive a pivot member 316 therethrough. Pivot member 316 extends between and outwardly from each of first and second flanges 313, 315 for receipt within vertical slots 28 (
Safety bar 390 is pivotably coupled to firing trigger 24 at a first end of safety bar 390 via a pivot member 392. Safety bar 390 is rotatable between a safe position (
With safety bar 390 disposed in the ready position (
Turning now to
Turning to
With particular reference to
Referring to
Referring also to
With reference to
The distal end of pusher 112 includes a plurality of distally-extending pusher fingers 129 dimensioned to be slidably received within slots 131 formed in staple guide cap 116. Staple guide cap 116 is supported within and engaged about the distal end of distal shell 142 via the positioning of tabs 133 within recesses 135, e.g., via snap-fit, welding, adhesion, etc. Each slot 131 formed within staple guide cap 116 is configured to retain a surgical staple 600 such that, upon advancement of pusher 112 within distal shell 142 via actuation of firing trigger 24, surgical staples 600 are ejected from slots 131 of staple guide cap 116, through tissue, and into anvil head 414 (
As shown in
With reference to
Support chassis 22c includes a central body portion 25 having first and second lateral flanges 25a, 25b that are configured for receipt and pivotable engagement within first and second recesses 22a′, 22b′ of handle sections 22a, 22b, respectively. Engagement pins 25c are provided at the proximal and distal ends of lateral flanges 25a, 25b and are configured for pivotable engagement within corresponding apertures defined within handle sections 22a, 22b adjacent recesses 22a′, 22b′. Pins 25c pivotably secure handle sections 22a and 22b to flanges 25a, 25b of support chassis 22c within recesses 22a′, 22b′. Pins 25c may be configured for snap-fit engagement within the apertures of handle sections 22a, 22b, although other pivotable securement mechanisms are also contemplated.
Central body portion 25 of support chassis 22c further includes an indicator window 25d through which visual indicators 278a, 278b may be viewed, and proximal and distal support rings 23a, 23b, respectively, for supporting collar 232 and screw 220, respectively, of approximation assembly 200. Indicator window 25b may be formed via a hole or aperture extending through central body portion 25 of support chassis 22c or may be formed from a transparent section of central body portion 25.
Handle sections 22a, 22b further include threaded distal extensions 22f, 22g that cooperate to define a generally annular threaded member for releasably engaging proximal bushing 34 of central body portion 30. Engagement between distal extensions 22f, 22g and proximal bushing 34 releasably secures outer tube 32 and handle portion 20 to one another and also secures handle sections 22a, 22b to one another at the distal ends thereof. A pin (not shown) extending from handle section 22a is configured for frictional receipt within an aperture 22d of handle section 22b to releasably secure handle sections 22a, 22b to one another at the proximal ends thereof. The securement of handle sections 22a, 22b to one another retains support chassis 22c in a fixed position relative to handle sections 22a, 22b, e.g., with handle sections 22a, 22b secured to one another, support chassis 22c is no longer permitted to pivot relative to handle sections 22a, 22b
The use of surgical stapling apparatus 10, disassembly of surgical stapling apparatus 10 for sterilization of the reusable components and replacement of the disposable components, and reassembly of surgical stapling apparatus 10 for subsequent use is now described in detail. With reference to
Referring also to
In one exemplary method of use, surgical stapling apparatus 10 is used to perform a circular anastomosis. Typically, circular anastomoses are required during procedures for removing a portion of a diseased vessel such as the colon or the intestine. During such a procedure, the diseased portion of the vessel is removed and the end portions of the remaining first and second vessel sections are joined together using the surgical stapling apparatus 10.
During such a procedure using the surgical stapling apparatus 10, prior to removing the diseased vessel portion from the diseased vessel, the anvil assembly 400 with a removable trocar (not shown) attached thereto is positioned in the first vessel section on a first side of the diseased portion. A removable trocar which is suitable for use with the anvil assembly 400 is disclosed in U.S. Pat. No. 6,945,444 to Gresham et al., which, as discussed above, is incorporated herein by reference in its entirety. After the diseased vessel portion is removed and the open ends of the first and second vessel sections have been sutured, the distal end of apparatus 10 is positioned in the second vessel section on the other side of the diseased vessel portion which has been removed. At this time, the removable trocar is pushed through the suture line in the end of the first vessel section and removed from the anvil assembly. Next, trocar tip 267 of anvil retainer 260 is pushed through the suture line in the second vessel section and is joined to the center rod of the anvil assembly 400. The surgical stapling apparatus 10 can now be approximated and fired in the manner discussed above to join the ends of the first and second vessel sections and core out any tissue obstructing the vessel lumen
At the completion of the stapling operation, surgical stapling apparatus 10 may be removed from the internal surgical site. More specifically, anvil assembly 400 may be configured to pivot to a low-profile configuration after firing and upon un-approximation of anvil assembly 400 relative to stapling assembly 100 to facilitate removal of surgical stapling apparatus 10 from the internal surgical site. A suitable tilting mechanism is described in U.S. Pat. No. 7,857,187 to Milliman or U.S. Pat. No. 6,945,444 to Gresham et al., previously incorporated by reference herein in their entirety. Alternatively, anvil assembly 400 need not have a pivotal head and may be removed from the surgical site in the same orientation as it was advanced into the surgical site.
Upon removal from the internal surgical site at the completion of the surgical procedure, surgical stapling apparatus 10 may be disassembled to facilitate sterilization of the reusable components and replacement of the disposable components. More specifically, and with reference to
Once anvil assembly 400 (
Once disengaged, stapling assembly 100 may then be removed from positioning about anvil retainer 260 and may be disposed of, although it is also contemplated that one or more components of stapling assembly 100 be sterilizable for reuse.
In order to disassemble handle portion 22 in preparation for sterilization, proximal bushing 34 is disengaged from the distal ends of handle sections 22a, 22b by rotating proximal bushing 34 relative to handle portion 22. Next, the lower ends of handle sections 22a, 22b are pivoted away from one another and relative to support chassis 22c to open handle portion 22, thus exposing approximation assembly 200 and firing assembly 300.
Once handle sections 22a, 22b have been pivoted relative to support chassis 22c to open handle portion 22, approximation assembly 200 and firing assembly 300 may be removed from support chassis 22c and handle portion 22. Thus, with handle portion 22 opened, and with approximation assembly 200 and firing assembly 300 removed from handle portion, sterilization of each of these components for reuse may be readily achieved. Alternatively, one or more of theses components may be configured as a disposable component and, thus, may be replaced with a new component rather than being sterilized.
Once the reusable components, e.g., handle sections 22a, 22b, support chassis 22c, approximation assembly 200, and firing assembly 300, have been sterilized and the replaceable components, e.g., stapling assembly 100, replaced, surgical stapling apparatus 10 may be reassembled for subsequent use. Initially, the distal end of approximation assembly 200 is inserted through coupling member 350 and pusher link assembly 330 of firing assembly 300. Next, approximation assembly 200, with firing assembly 300 disposed therein, is mounted within support rings 23a, 23b, of support chassis 22c such that a wing 274 of screw stop 270 is slidably received within channel 27 of handle section 22b, a wing 358 of coupling member 350 is slidably received within channel 29 of handle section 22b (see
Next, elongated central body portion 30 may be maneuvered into position such that outer tube 32 is disposed about pusher link assembly 330 of firing assembly 300, which is disposed about screw extensions 240, 250 of approximation assembly 200, with anvil retainer 260 extending distally from both pusher link 330 and outer tube 32. The proximal end of outer tube 32 may be secured relative to stationary handle 22 via threadingly engaging proximal bushing 34 about distal extensions 22f, 22g of handle sections 22a, 22b, respectively.
With reference to
With cartridge assembly 110 engaged at the distal end of pusher link assembly 330, engagement shell 36 is moved distally against the bias of biasing member 170 such that engagement tabs 151 of distal shell 142 are inserted through the open ends of engagement slots 165 of engagement shell 36. Once engagement tabs 151 of distal shell 142 are inserted into engagement slots 165 of engagement shell 36, engagement shell 36 is rotated relative to distal shell 142 such that engagement tabs 151 are translated along the transverse portions of engagement slots 165 and away from the open ends thereof. Once sufficiently rotated to the position shown in
With reference to
As can be appreciated, the above-described cycle of use, disassembly, sterilization and replacement, and reassembly, may be repeated for a plurality of usage cycles.
It will be understood that various modifications may be made to the embodiments of the surgical stapling apparatus disclosed herein. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2013 1 0175344 | Mar 2013 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2014/073447 | 3/14/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/139467 | 9/18/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3193165 | Akhalaya et al. | Jul 1965 | A |
3388847 | Kasulin et al. | Jun 1968 | A |
3552626 | Astafiev et al. | Jan 1971 | A |
3638652 | Kelley | Feb 1972 | A |
3771526 | Rudie | Nov 1973 | A |
4198982 | Fortner et al. | Apr 1980 | A |
4207898 | Becht | Jun 1980 | A |
4289133 | Rothfuss | Sep 1981 | A |
4304236 | Conta et al. | Dec 1981 | A |
4319576 | Rothfuss | Mar 1982 | A |
4350160 | Kolesov et al. | Sep 1982 | A |
4351466 | Noiles | Sep 1982 | A |
4379457 | Gravener et al. | Apr 1983 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4476863 | Kanshin et al. | Oct 1984 | A |
4485817 | Swiggett | Dec 1984 | A |
4488523 | Shichman | Dec 1984 | A |
4505272 | Utyamyshev et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4520817 | Green | Jun 1985 | A |
4550870 | Krumme et al. | Nov 1985 | A |
4573468 | Conta et al. | Mar 1986 | A |
4576167 | Noiles | Mar 1986 | A |
4592354 | Rothfuss | Jun 1986 | A |
4603693 | Conta et al. | Aug 1986 | A |
4606343 | Conta et al. | Aug 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4646745 | Noiles | Mar 1987 | A |
4665917 | Clanton et al. | May 1987 | A |
4667673 | Li | May 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4700703 | Resnick et al. | Oct 1987 | A |
4703887 | Clanton et al. | Nov 1987 | A |
4708141 | Inoue et al. | Nov 1987 | A |
4717063 | Ebihara | Jan 1988 | A |
4752024 | Green | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4776506 | Green | Oct 1988 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4873977 | Avant et al. | Oct 1989 | A |
4893622 | Green | Jan 1990 | A |
4893662 | Gervasi | Jan 1990 | A |
4903697 | Resnick | Feb 1990 | A |
4907591 | Vasconcellos et al. | Mar 1990 | A |
4917114 | Green et al. | Apr 1990 | A |
4957499 | Lipatov et al. | Sep 1990 | A |
4962877 | Hervas | Oct 1990 | A |
5005749 | Aranyi | Apr 1991 | A |
5042707 | Taheri | Aug 1991 | A |
5047039 | Avant et al. | Sep 1991 | A |
5104025 | Main et al. | Apr 1992 | A |
5119983 | Green et al. | Jun 1992 | A |
5122156 | Granger et al. | Jun 1992 | A |
5139513 | Segato | Aug 1992 | A |
5158222 | Green et al. | Oct 1992 | A |
5188638 | Tzakis | Feb 1993 | A |
5193731 | Aranyi | Mar 1993 | A |
5197648 | Gingold | Mar 1993 | A |
5197649 | Bessler et al. | Mar 1993 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5221036 | Takase | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5261920 | Main et al. | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5275322 | Brinkerhoff et al. | Jan 1994 | A |
5282810 | Allen et al. | Feb 1994 | A |
5285944 | Green et al. | Feb 1994 | A |
5285945 | Brinkerhoff et al. | Feb 1994 | A |
5292053 | Bilotti et al. | Mar 1994 | A |
5309927 | Welch | May 1994 | A |
5312024 | Grant et al. | May 1994 | A |
5314435 | Green et al. | May 1994 | A |
5314436 | Wilk | May 1994 | A |
5330486 | Wilk | Jul 1994 | A |
5333773 | Main et al. | Aug 1994 | A |
5344059 | Green et al. | Sep 1994 | A |
5346115 | Perouse et al. | Sep 1994 | A |
5348259 | Blanco et al. | Sep 1994 | A |
5350104 | Main et al. | Sep 1994 | A |
5355897 | Pietrafitta et al. | Oct 1994 | A |
5360154 | Green | Nov 1994 | A |
5368215 | Green et al. | Nov 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5395030 | Kuramoto et al. | Mar 1995 | A |
5403333 | Kaster et al. | Apr 1995 | A |
5404870 | Brinkerhoff et al. | Apr 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5425738 | Gustafson et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5437684 | Calabrese et al. | Aug 1995 | A |
5439156 | Grant et al. | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5447514 | Gerry et al. | Sep 1995 | A |
5454825 | Van Leeuwen et al. | Oct 1995 | A |
5464415 | Chen | Nov 1995 | A |
5470006 | Rodak | Nov 1995 | A |
5474223 | Viola et al. | Dec 1995 | A |
5497934 | Brady et al. | Mar 1996 | A |
5503635 | Sauer et al. | Apr 1996 | A |
5522534 | Viola et al. | Jun 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5609285 | Grant et al. | Mar 1997 | A |
5626591 | Kockerling et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5641111 | Ahrens et al. | Jun 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5669918 | Balazs et al. | Sep 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5709335 | Heck | Jan 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5720755 | Dakov | Feb 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5749896 | Cook | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5814055 | Knodel et al. | Sep 1998 | A |
5833698 | Hinchliffe et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5855312 | Toledano | Jan 1999 | A |
5860581 | Robertson et al. | Jan 1999 | A |
5868760 | McGuckin, Jr. | Feb 1999 | A |
5881943 | Heck et al. | Mar 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5947363 | Bolduc et al. | Sep 1999 | A |
5951576 | Wakabayashi | Sep 1999 | A |
5957363 | Heck | Sep 1999 | A |
5993468 | Rygaard | Nov 1999 | A |
6024748 | Manzo et al. | Feb 2000 | A |
6050472 | Shibata | Apr 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6068636 | Chen | May 2000 | A |
6083241 | Longo et al. | Jul 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6117148 | Ravo et al. | Sep 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6176413 | Heck et al. | Jan 2001 | B1 |
6179195 | Adams et al. | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6203553 | Robertson et al. | Mar 2001 | B1 |
6209773 | Bolduc et al. | Apr 2001 | B1 |
6241140 | Adams et al. | Jun 2001 | B1 |
6253984 | Heck et al. | Jul 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6269997 | Balazs et al. | Aug 2001 | B1 |
6273897 | Dalessandro et al. | Aug 2001 | B1 |
6279809 | Nicolo | Aug 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6387105 | Gifford, III et al. | May 2002 | B1 |
6398795 | McAlister et al. | Jun 2002 | B1 |
6402008 | Lucas | Jun 2002 | B1 |
6439446 | Perry et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6450390 | Heck et al. | Sep 2002 | B2 |
6478210 | Adams et al. | Nov 2002 | B2 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6494877 | Odell et al. | Dec 2002 | B2 |
6503259 | Huxel et al. | Jan 2003 | B2 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6520398 | Nicolo | Feb 2003 | B2 |
6533157 | Whitman | Mar 2003 | B1 |
6551334 | Blatter et al. | Apr 2003 | B2 |
6578751 | Hartwick | Jun 2003 | B2 |
6585144 | Adams et al. | Jul 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6592596 | Geitz | Jul 2003 | B1 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6605078 | Adams | Aug 2003 | B2 |
6605098 | Nobis et al. | Aug 2003 | B2 |
6626921 | Blatter et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6631837 | Heck | Oct 2003 | B1 |
6632227 | Adams | Oct 2003 | B2 |
6632237 | Ben-David et al. | Oct 2003 | B2 |
6652542 | Blatter et al. | Nov 2003 | B2 |
6659327 | Heck et al. | Dec 2003 | B2 |
6676671 | Robertson et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6685079 | Sharma et al. | Feb 2004 | B2 |
6695198 | Adams et al. | Feb 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716222 | McAlister et al. | Apr 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6726697 | Nicholas et al. | Apr 2004 | B2 |
6742692 | Hartwick | Jun 2004 | B2 |
6743244 | Blatter et al. | Jun 2004 | B2 |
6763993 | Bolduc et al. | Jul 2004 | B2 |
6769590 | Vresh et al. | Aug 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6820791 | Adams | Nov 2004 | B2 |
6821282 | Perry et al. | Nov 2004 | B2 |
6827246 | Sullivan et al. | Dec 2004 | B2 |
6840423 | Adams et al. | Jan 2005 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6852122 | Rush | Feb 2005 | B2 |
6866178 | Adams et al. | Mar 2005 | B2 |
6872214 | Sonnenschein et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6905504 | Vargas | Jun 2005 | B1 |
6938814 | Sharma et al. | Sep 2005 | B2 |
6942675 | Vargas | Sep 2005 | B1 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6957758 | Aranyi | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6981979 | Nicolo | Jan 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7059331 | Adams et al. | Jun 2006 | B2 |
7059510 | Orban, III | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7086267 | Dworak et al. | Aug 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7118528 | Piskun | Oct 2006 | B1 |
7122044 | Bolduc et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7179267 | Nolan et al. | Feb 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7195142 | Orban, III | Mar 2007 | B2 |
7207168 | Doepker et al. | Apr 2007 | B2 |
7220237 | Gannoe et al. | May 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7235089 | McGuckin, Jr. | Jun 2007 | B1 |
RE39841 | Bilotti et al. | Sep 2007 | E |
7285125 | Viola | Oct 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7309341 | Ortiz et al. | Dec 2007 | B2 |
7322994 | Nicholas et al. | Jan 2008 | B2 |
7325713 | Aranyi | Feb 2008 | B2 |
7334718 | McAlister et al. | Feb 2008 | B2 |
7335212 | Edoga et al. | Feb 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7399305 | Csiky et al. | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7401722 | Hur | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7422137 | Manzo | Sep 2008 | B2 |
7422138 | Bilotti et al. | Sep 2008 | B2 |
7431191 | Milliman | Oct 2008 | B2 |
7438718 | Milliman et al. | Oct 2008 | B2 |
7455676 | Holsten et al. | Nov 2008 | B2 |
7455682 | Viola | Nov 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7494038 | Milliman | Feb 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7516877 | Aranyi | Apr 2009 | B2 |
7527185 | Harari et al. | May 2009 | B2 |
7537602 | Whitman | May 2009 | B2 |
7546939 | Adams et al. | Jun 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7559451 | Sharma et al. | Jul 2009 | B2 |
7585306 | Abbott et al. | Sep 2009 | B2 |
7588174 | Holsten et al. | Sep 2009 | B2 |
7600663 | Green | Oct 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7635385 | Milliman et al. | Dec 2009 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7686201 | Csiky | Mar 2010 | B2 |
7694864 | Okada et al. | Apr 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7708181 | Cole et al. | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7721932 | Cole et al. | May 2010 | B2 |
7726539 | Holsten et al. | Jun 2010 | B2 |
7743958 | Orban, III | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7770776 | Chen et al. | Aug 2010 | B2 |
7771440 | Ortiz et al. | Aug 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837080 | Schwemberger | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7845538 | Whitman | Dec 2010 | B2 |
7857187 | Milliman | Dec 2010 | B2 |
7886951 | Hessler | Feb 2011 | B2 |
7896215 | Adams et al. | Mar 2011 | B2 |
7900806 | Chen et al. | Mar 2011 | B2 |
7909039 | Hur | Mar 2011 | B2 |
7909219 | Cole et al. | Mar 2011 | B2 |
7909222 | Cole et al. | Mar 2011 | B2 |
7909223 | Cole et al. | Mar 2011 | B2 |
7913892 | Cole et al. | Mar 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7922062 | Cole et al. | Apr 2011 | B2 |
7922743 | Heinrich et al. | Apr 2011 | B2 |
7931183 | Orban, III | Apr 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942302 | Roby et al. | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7959050 | Smith et al. | Jun 2011 | B2 |
7967181 | Viola et al. | Jun 2011 | B2 |
7975895 | Milliman | Jul 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8006701 | Bilotti et al. | Aug 2011 | B2 |
8006889 | Adams et al. | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011554 | Milliman | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016858 | Whitman | Sep 2011 | B2 |
8020741 | Cole et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028885 | Smith et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
8043207 | Adams | Oct 2011 | B2 |
8066167 | Measamer et al. | Nov 2011 | B2 |
8066169 | Viola | Nov 2011 | B2 |
8070035 | Holsten et al. | Dec 2011 | B2 |
8070037 | Csiky | Dec 2011 | B2 |
8096458 | Hessler | Jan 2012 | B2 |
8109426 | Milliman et al. | Feb 2012 | B2 |
8109427 | Orban, III | Feb 2012 | B2 |
8113406 | Holsten et al. | Feb 2012 | B2 |
8113407 | Holsten et al. | Feb 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8128645 | Sonnenschein et al. | Mar 2012 | B2 |
8132703 | Milliman et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8146790 | Milliman | Apr 2012 | B2 |
8146791 | Bettuchi et al. | Apr 2012 | B2 |
8181838 | Milliman et al. | May 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8203782 | Brueck et al. | Jun 2012 | B2 |
8211130 | Viola | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231041 | Marczyk et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8267301 | Milliman et al. | Sep 2012 | B2 |
8272552 | Holsten et al. | Sep 2012 | B2 |
8276802 | Kostrzewski | Oct 2012 | B2 |
8281975 | Criscuolo et al. | Oct 2012 | B2 |
8286845 | Perry et al. | Oct 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8317073 | Milliman et al. | Nov 2012 | B2 |
8317074 | Ortiz et al. | Nov 2012 | B2 |
8317075 | Milliman et al. | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8328060 | Jankowski et al. | Dec 2012 | B2 |
8328062 | Viola | Dec 2012 | B2 |
8328063 | Milliman et al. | Dec 2012 | B2 |
8343185 | Milliman et al. | Jan 2013 | B2 |
8353438 | Baxter, III et al. | Jan 2013 | B2 |
8353439 | Baxter, III et al. | Jan 2013 | B2 |
8353930 | Heinrich et al. | Jan 2013 | B2 |
8360295 | Milliman et al. | Jan 2013 | B2 |
8365974 | Milliman | Feb 2013 | B2 |
8403942 | Milliman et al. | Mar 2013 | B2 |
8408441 | Wenchell et al. | Apr 2013 | B2 |
8413870 | Pastorelli et al. | Apr 2013 | B2 |
8413872 | Patel | Apr 2013 | B2 |
8418905 | Milliman | Apr 2013 | B2 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424535 | Hessler et al. | Apr 2013 | B2 |
8424741 | McGuckin, Jr. et al. | Apr 2013 | B2 |
8430291 | Heinrich et al. | Apr 2013 | B2 |
8430292 | Patel et al. | Apr 2013 | B2 |
8453910 | Bettuchi et al. | Jun 2013 | B2 |
8453911 | Milliman et al. | Jun 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8490853 | Criscuolo et al. | Jul 2013 | B2 |
8511533 | Viola et al. | Aug 2013 | B2 |
8551138 | Orban, III et al. | Oct 2013 | B2 |
8567655 | Nalagatla et al. | Oct 2013 | B2 |
8579178 | Holsten et al. | Nov 2013 | B2 |
8590763 | Milliman | Nov 2013 | B2 |
8590764 | Hartwick et al. | Nov 2013 | B2 |
8608047 | Holsten et al. | Dec 2013 | B2 |
8616428 | Milliman et al. | Dec 2013 | B2 |
8616429 | Viola | Dec 2013 | B2 |
8622275 | Baxter, III et al. | Jan 2014 | B2 |
8631993 | Kostrzewski | Jan 2014 | B2 |
8636187 | Hueil et al. | Jan 2014 | B2 |
8640940 | Ohdaira | Feb 2014 | B2 |
8662370 | Takei | Mar 2014 | B2 |
8663258 | Bettuchi et al. | Mar 2014 | B2 |
8672931 | Goldboss et al. | Mar 2014 | B2 |
8678264 | Racenet et al. | Mar 2014 | B2 |
8684248 | Milliman | Apr 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8684251 | Rebuffat et al. | Apr 2014 | B2 |
8684252 | Patel et al. | Apr 2014 | B2 |
8733611 | Milliman | May 2014 | B2 |
20030111507 | Nunez | Jun 2003 | A1 |
20050023325 | Gresham | Feb 2005 | A1 |
20050051597 | Toledano | Mar 2005 | A1 |
20050107813 | Gilete Garcia | May 2005 | A1 |
20060000869 | Fontayne | Jan 2006 | A1 |
20060011698 | Okada et al. | Jan 2006 | A1 |
20060201989 | Ojeda | Sep 2006 | A1 |
20070027473 | Vresh et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070060952 | Roby et al. | Mar 2007 | A1 |
20090236392 | Cole et al. | Sep 2009 | A1 |
20090236398 | Cole et al. | Sep 2009 | A1 |
20090236401 | Cole et al. | Sep 2009 | A1 |
20100019016 | Edoga et al. | Jan 2010 | A1 |
20100051668 | Milliman et al. | Mar 2010 | A1 |
20100084453 | Hu | Apr 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100224668 | Fontayne et al. | Sep 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20100237132 | Measamer | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100327041 | Milliman et al. | Dec 2010 | A1 |
20110011916 | Levine | Jan 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110144640 | Heinrich et al. | Jun 2011 | A1 |
20110147432 | Heinrich et al. | Jun 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20120123457 | Milliman et al. | May 2012 | A1 |
20120145755 | Kahn | Jun 2012 | A1 |
20120193395 | Pastorelli et al. | Aug 2012 | A1 |
20120193398 | Williams et al. | Aug 2012 | A1 |
20120232339 | Csiky | Sep 2012 | A1 |
20120273548 | Ma et al. | Nov 2012 | A1 |
20120325888 | Qiao et al. | Dec 2012 | A1 |
20130015232 | Smith et al. | Jan 2013 | A1 |
20130020372 | Jankowski et al. | Jan 2013 | A1 |
20130020373 | Smith et al. | Jan 2013 | A1 |
20130032628 | Li et al. | Feb 2013 | A1 |
20130056516 | Viola | Mar 2013 | A1 |
20130060258 | Giacomantonio | Mar 2013 | A1 |
20130105544 | Mozdzierz et al. | May 2013 | A1 |
20130105546 | Milliman et al. | May 2013 | A1 |
20130105551 | Zingman | May 2013 | A1 |
20130126580 | Smith et al. | May 2013 | A1 |
20130153630 | Miller et al. | Jun 2013 | A1 |
20130153631 | Vasudevan et al. | Jun 2013 | A1 |
20130153633 | Casasanta, Jr. et al. | Jun 2013 | A1 |
20130153634 | Carter et al. | Jun 2013 | A1 |
20130153638 | Carter et al. | Jun 2013 | A1 |
20130153639 | Hodgkinson et al. | Jun 2013 | A1 |
20130175315 | Milliman | Jul 2013 | A1 |
20130175318 | Felder et al. | Jul 2013 | A1 |
20130175319 | Felder et al. | Jul 2013 | A1 |
20130175320 | Mandakolathur Vasudevan et al. | Jul 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130181036 | Olson et al. | Jul 2013 | A1 |
20130186930 | Wenchell et al. | Jul 2013 | A1 |
20130193185 | Patel | Aug 2013 | A1 |
20130193187 | Milliman | Aug 2013 | A1 |
20130193190 | Carter et al. | Aug 2013 | A1 |
20130193191 | Stevenson et al. | Aug 2013 | A1 |
20130193192 | Casasanta, Jr. et al. | Aug 2013 | A1 |
20130200131 | Racenet et al. | Aug 2013 | A1 |
20130206816 | Penna | Aug 2013 | A1 |
20130214027 | Hessler et al. | Aug 2013 | A1 |
20130214028 | Patel et al. | Aug 2013 | A1 |
20130228609 | Kostrzewski | Sep 2013 | A1 |
20130240597 | Milliman et al. | Sep 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130248581 | Smith et al. | Sep 2013 | A1 |
20130277411 | Hodgkinson et al. | Oct 2013 | A1 |
20130277412 | Gresham et al. | Oct 2013 | A1 |
20130284792 | Ma | Oct 2013 | A1 |
20130292449 | Bettuchi et al. | Nov 2013 | A1 |
20130299553 | Mozdzierz | Nov 2013 | A1 |
20130299554 | Mozdzierz | Nov 2013 | A1 |
20130306701 | Olson | Nov 2013 | A1 |
20130306707 | Viola et al. | Nov 2013 | A1 |
20140008413 | Williams | Jan 2014 | A1 |
20140012317 | Orban et al. | Jan 2014 | A1 |
20150115014 | Matonick et al. | Apr 2015 | A1 |
20150122869 | Aronhalt et al. | May 2015 | A1 |
20150129635 | Williams et al. | May 2015 | A1 |
20150129636 | Mulreed | May 2015 | A1 |
20160143641 | Sapienza | May 2016 | A1 |
20160192938 | Sgroi, Jr. | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
908529 | Aug 1972 | CA |
2604982 | Apr 2008 | CA |
2717990 | Apr 2011 | CA |
1742684 | Mar 2006 | CN |
102652001 | Aug 2012 | CN |
1057729 | May 1959 | DE |
3301713 | Jul 1984 | DE |
0152382 | Aug 1985 | EP |
0173451 | Mar 1986 | EP |
0190022 | Aug 1986 | EP |
0282157 | Sep 1988 | EP |
0503689 | Sep 1992 | EP |
1354560 | Oct 2003 | EP |
2505148 | Oct 2012 | EP |
2524656 | Nov 2012 | EP |
1136020 | May 1957 | FR |
1461464 | Feb 1966 | FR |
1588250 | Apr 1970 | FR |
2443239 | Jul 1980 | FR |
1185292 | Mar 1970 | GB |
2016991 | Sep 1979 | GB |
2038692 | Jul 1980 | GB |
2070499 | Sep 1981 | GB |
2004-524121 | Aug 2004 | JP |
57-57135 | Jul 2015 | JP |
7711347 | Apr 1979 | NL |
1509052 | Sep 1989 | SU |
8706448 | Nov 1987 | WO |
8900406 | Jan 1989 | WO |
9006085 | Jun 1990 | WO |
2001054594 | Aug 2001 | WO |
02080781 | Oct 2002 | WO |
2008107918 | Sep 2008 | WO |
Entry |
---|
Examination Report No. 1 issued in corresponding Australian application No. 2014231439 dated Jan. 30, 2018, 4 pages. |
First Chinese office action issued in corresponding application No. 201310175344.1 dated Mar. 20, 2017. |
Japanese Office Action issued in corresponding Japanese application No. 2015-561929 dated Nov. 24, 2017. |
European search report issued in corresponding application No. 14765246.5 dated Oct. 20, 2016. |
Second Chinese office action issued in corresponding application No. 201310175344.1 dated Nov. 15, 2017. |
International Search Report for PCT/CN2014/073447 date of completion is May 21, 2014 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20150351769 A1 | Dec 2015 | US |