Surgical stapling apparatus with staple sheath

Information

  • Patent Grant
  • 10925607
  • Patent Number
    10,925,607
  • Date Filed
    Thursday, February 1, 2018
    6 years ago
  • Date Issued
    Tuesday, February 23, 2021
    3 years ago
Abstract
A cartridge assembly for selective connection to a surgical stapling apparatus includes a body portion, a tissue contact surface defining staple retention slots, staples, a collar assembly and a staple sheath. Each of the staples is received in a respective one of the staple retention slots of the tissue contact surface. The collar assembly is movably mounted to the body portion. The staple sheath is coupled to the collar assembly and positioned to cover the staple retention slots. The staple sheath is selectively movable relative to the tissue contact surface.
Description
TECHNICAL FIELD

The present disclosure relates to surgical stapling apparatus for performing endoscopic surgical procedures and methods of use thereof.


BACKGROUND

Fasteners, e.g., staples or two-part fasteners, have traditionally been used to replace suturing when joining various body structures such as the bowel or bronchus, for instance. Surgical stapling apparatus employed to apply these fasteners are generally designed to clamp, cut and/or fasten tissue between opposing jaw structure. Circular surgical stapling apparatus, for example, generally include an annular fastener cartridge assembly that supports annular rows of fasteners in fastener retaining slots, an annular anvil assembly with fastener forming pockets for forming the fasteners of the fastener cartridge upon a firing of the circular surgical stapling apparatus, and an annular blade for cutting tissue. These circular surgical stapling apparatus sequentially or simultaneously apply these fasteners to tissue for the purpose of joining segments of tissue together and/or for the creation of anastomoses.


One challenge associated with anastomosis procedures includes maintaining the integrity of the anastomosis. During instrument insertion into a surgical site, there is a risk that contaminants in proximity to the surgical site could migrate into the fastener retaining slots of the fastener cartridge and contaminate the fasteners supported therein.


Accordingly, it would be advantageous to provide a surgical stapling apparatus that prevents fastener contamination for improving the integrity of an anastomosis.


SUMMARY

According to an aspect of the present disclosure, a surgical stapling apparatus is provided. The surgical stapling apparatus includes a first jaw member, staples, a second jaw member and a staple sheath. The first jaw member has staple retention slots. Each staple is received in a respective one of the staple retention slots. The second jaw member has staple pockets. Each staple pocket is configured to form a respective one of the staples of the plurality of staples as the surgical stapling apparatus is fired. The staple sheath is secured to the first jaw member and covers the staple retention slots. The staple sheath is movable relative to the first jaw member to uncover the staple retention slots in response to relative approximation of the first jaw member and the second jaw member.


In some embodiments, the staple sheath may be part of a staple sheath assembly including a collar assembly and the staple sheath coupled to the collar assembly.


In embodiments, the second jaw member may include a head assembly having a center rod assembly extending proximally from the head assembly. The center rod assembly may be selectively engagable with the collar assembly to move the staple sheath relative to the first jaw member to uncover the plurality of staple retention slots in response to relative approximation of the first jaw member and the second jaw member.


In some embodiments, the collar assembly may include one or more spokes and the first jaw member may define one or more elongated channels that extend axially along the first jaw member. The one or more spokes may be slidably movable through the one or more elongated channels to enable the staple sheath to move relative to the first jaw member.


In certain embodiments, the first jaw member may include a staple cartridge. The staple cartridge may define an annular groove configured to receive a distal end portion of the staple sheath assembly to selectively secure the staple sheath across the staple cartridge covering the staple retention slots while the first and second jaw members are unapproximated.


In some embodiments, the surgical stapling apparatus further includes an elongated shaft assembly that extends from a proximal end portion to a distal end portion. The first jaw member and the staple sheath assembly may be removably secured to the distal end portion of the elongated shaft assembly.


According to another aspect of the present disclosure, an end effector for a surgical stapling apparatus is provided. The end effector includes a cartridge assembly, staples, an anvil assembly, and a staple sheath. The cartridge assembly has staple retention slots. Each staple is received in a respective one of the staple retention slots. The anvil assembly has staple pockets. Each staple pocket is configured to form a respective one of the staples as the surgical stapling apparatus is fired. The anvil assembly is movable relative to the cartridge assembly between an unapproximated position and an approximated position. The staple sheath is secured to the cartridge assembly and positioned to cover the staple retention slots. The staple sheath is movable with the anvil assembly to uncover the plurality of staple retention slots and expose the plurality of staples.


In certain embodiments, the anvil assembly may include a head assembly and a center rod assembly that extends from the head assembly. The center rod assembly may be selectively engagable with the collar assembly to move the staple sheath relative to the cartridge assembly upon a movement of the anvil assembly relative to the cartridge assembly.


In embodiments, the collar assembly may include one or more spokes and the cartridge assembly defines one or more elongated channels extending axially along the cartridge assembly. The one or more spokes may be slidably movable through the one or more elongated channels to enable the staple sheath to move relative to the cartridge assembly.


In some embodiments, the cartridge assembly may include a staple cartridge defining an annular groove configured to receive a distal end portion of the staple sheath assembly to selectively secure the staple sheath in a position to cover the plurality of staple retention slots while the anvil and cartridge assemblies are in the unapproximated position.


In certain embodiments, the end effector further includes an elongated shaft assembly that extends from a proximal end portion to a distal end portion. The cartridge assembly and the staple sheath assembly may be removably secured to the distal end portion of the elongated shaft assembly.


According to yet another aspect of the present disclosure, a circular stapling apparatus is provided. The circular stapling apparatus includes an elongated shaft assembly, a cartridge assembly, staples, a collar assembly, and a staple sheath. The elongated shaft assembly has a distal end portion and defining a longitudinal axis. The cartridge assembly is secured to the distal end portion of the elongated shaft assembly and has a tissue contact surface. The tissue contact surface defines staple retention slots. Each staple is received in a respective one of the staple retention slots. The collar assembly is movable along the longitudinal axis between a distal position and a proximal position. The staple sheath is coupled to the collar assembly and positioned to cover the plurality of staple retention slots while the collar assembly is in the distal position. The staple sheath is movable with the collar assembly toward the proximal position to draw the staple sheath across the plurality of staple retention slots.


In some embodiments, the collar assembly may include one or more spokes and the cartridge assembly may define one or more elongated channels extending axially along the cartridge assembly. The one or more spokes may be slidably movable through the one or more elongated channels to enable the staple sheath to move relative to the cartridge assembly.


In certain embodiments, the cartridge assembly may include a staple cartridge defining an annular groove configured to receive a distal end portion of the staple sheath to selectively secure the staple sheath in a position to cover the staple retention slots.


In some embodiments, the cartridge assembly and the staple sheath assembly may be selectively removable from the distal end portion of the elongated shaft assembly.


In embodiments, the circular stapling apparatus may further include an anvil assembly selectively coupled to the elongated shaft assembly. The anvil assembly may be movable relative to the cartridge assembly to move the collar assembly from the distal position to the proximal position.


According to still another aspect of the present disclosure, a cartridge assembly for selective connection to a surgical stapling apparatus is provided. The cartridge assembly includes a body portion, a tissue contact surface, staples, a collar assembly, and a staple sheath. The tissue contact surface defines staple retention slots. Each staple is received in a respective one of the staple retention slots. The collar assembly is movably mounted to the body portion. The staple sheath is coupled to the collar assembly and positioned to cover the staple retention slots. The staple sheath is selectively movable relative to the tissue contact surface.


In some embodiments, the body portion defines one or more elongated channels. The collar assembly may include one or more spokes slidably movable through the one or more elongated channels to enable the staple sheath to move relative to the body portion.


In certain embodiments, the cartridge assembly further includes a staple cartridge coupled to the body portion. The staple cartridge may include the tissue contact surface and may support the staples. The staple cartridge may define an annular groove configured to receive a distal end portion of the staple sheath to selectively secure the staple sheath across the tissue contact surface of the staple cartridge.


In embodiments, the collar assembly may be is selectively movable between distal and proximal positions relative to the body portion to move the staple sheath relative to the tissue contact surface.


Other aspects, features, and advantages will be apparent from the description, the drawings, and the claims that follow.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiment(s) given below, serve to explain the principles of the disclosure, wherein:



FIG. 1 is a perspective view of a surgical stapling apparatus in accordance with the principles of the present disclosure;



FIG. 2 is an enlarged, perspective view of an end effector of the surgical stapling apparatus of FIG. 1 with an anvil assembly of the end effector shown unapproximated from a cartridge assembly of the end effector;



FIG. 3 is a perspective view of the cartridge assembly of FIG. 2 with a staple sheath assembly of the cartridge assembly shown in a first position;



FIG. 4 is cross-sectional view of the cartridge assembly of FIG. 3 as taken along section line 4-4 of FIG. 3;



FIG. 5 is a perspective view of the staple sheath assembly shown in FIG. 3;



FIG. 6 is a cross-sectional view of the staple sheath assembly of FIG. 5 as taken along section line 6-6 of FIG. 5;



FIG. 7 is a perspective view of the anvil assembly of the end effector of FIG. 2;



FIG. 8 is an enlarged, perspective view of the indicated area of detail shown in FIG. 7;



FIG. 9 is a cross-sectional view of the end effector of FIG. 2 as taken along section line 8-8 shown in FIG. 2;



FIGS. 10 and 11 are enlarged, cross-sectional views of the indicated areas of detail shown in FIG. 9, respectively;



FIG. 12 is a cross-sectional view of the end effector of FIG. 2 as taken along line 8-8 shown in FIG. 2 with the anvil and cartridge assemblies of the end effector shown approximated and with the staple sheath assembly of the cartridge assembly shown in a second position; and



FIGS. 13 and 14 are enlarged, cross-sectional views of the indicated areas of detail shown in FIG. 12, respectively.





DETAILED DESCRIPTION

Embodiments of the presently disclosed surgical stapling apparatus are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “distal” refers to that portion of the apparatus, and/or component thereof, farther from the user, while the term “proximal” refers to that portion of the apparatus, and/or component thereof, closer to the user. As used herein, the term “clinician” refers to a doctor, nurse, or other care provider and may include support personnel. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.


Turning now to FIGS. 1 and 2, an electromechanical surgical stapling system or apparatus, generally referred to as 10, defines a centerline “CL” and includes a surgical device 100 in the form of a powered handheld electromechanical instrument. The electromechanical surgical stapling system 10 further includes an adapter assembly 200 that is selectively attachable to the surgical device 100. The adapter assembly 200 extends distally from the surgical device 100 and has an elongated body 202 that extends to a distal end. The distal end of the elongated body 202 supports an end effector 300. The end effector 300 includes a shell or cartridge assembly 310 and an anvil assembly 320 that are positionable between an unclamped or unapproximated position (see FIG. 1) and a clamped or approximated position (see FIG. 12) to selectively clamp tissue (not shown) for cutting and/or stapling the tissue. The surgical device 100 is configured for selective connection with the adapter assembly 200, and, in turn, the adapter assembly 200 is configured for selective connection with the end effector 300. Together, the surgical device 100 and the adapter assembly 200 cooperate to operate the end effector 300.


In some embodiments, the surgical device 100 of the electromechanical surgical stapling system 10 includes a handle housing 102 that defines a cavity “C” for selective removable receipt of a rechargeable battery 103. The battery 103 is configured to supply power to electrical components of the surgical device 100. The cavity “C” supports a controller or circuit board 105 configured to control various operations of the surgical device 100.


The electromechanical surgical stapling system 10 further includes a drive mechanism 106 configured to drive rotatable shafts and/or gear components (not shown) within the handle housing 102 in order to perform various operations of the electromechanical surgical stapling system 10. For instance, the drive mechanism 106 may be operable to selectively rotate the end effector 300 about, and/or relative to, the centerline “CL” of the electromechanical surgical stapling system 10; to selectively move the anvil assembly 320 relative to the cartridge assembly 310 to selectively clamp tissue; and/or to fire the electromechanical surgical stapling system 10 for fastening and/or cutting the clamped tissue. The battery 103, controller 105, and/or drive mechanism 106 may be operably coupled to one or more triggers 107a, 107b such as finger-actuated control buttons, rocker devices, and/or the like to effectuate various functions of the electromechanical surgical stapling system 10 such as those described above.


The drive mechanism 106 of the electromechanical surgical stapling system 10 includes an approximation mechanism 108 that extends distally through the elongated body 202 and includes an anvil retainer 108a (FIG. 9) supported on a distal end portion of the approximation mechanism 108. The anvil retainer 108a is configured to move along the centerline “CL” of the electromechanical surgical stapling system 10 between distal and proximal positions to selectively or removably couple to the anvil assembly 320 as described in U.S. Pat. No. 7,303,106, the entire contents of which are incorporated by reference herein. The anvil retainer 108a is also configured to move along the centerline “CL” of the electromechanical surgical stapling system 10 between the distal and proximal positions of the anvil retainer 108a to move the anvil assembly 320 between the approximated and unapproximated positions relative to the cartridge assembly 310 to selectively clamp and/or unclamp tissue.


Reference may be made to International Application No. PCT/US2008/077249, filed Sep. 22, 2008 (Inter. Pub. No. WO 2009/039506), U.S. Patent Application 2015/0157320, filed Nov. 21, 2014, and U.S. Patent Application Publication No. 2011/0121049, filed on Nov. 20, 2009, the entire contents of each of which are incorporated herein by reference, for a detailed description of the construction and operation of various exemplary electromechanical surgical systems, the components of which are combinable and/or interchangeable with one or more components of electromechanical surgical systems 10 described herein.


Although the surgical stapling apparatus is described as an electromechanically powered surgical stapling apparatus, the presently disclosed surgical stapling apparatus can be provided as a manually powered stapling apparatus. For a more detailed description of the construction and operation of an exemplary manually powered stapling apparatus, one or more components of which can be combined and/or interchanged with the electromechanically powered stapling apparatus described herein, reference can be made to U.S. Pat. No. 8,272,552, filed Jan. 30, 2012, the entire contents of which are incorporated by reference herein (see also U.S. Pat. No. 7,303,106 incorporated herein by reference above).


Turning now to FIGS. 3 and 4, the cartridge assembly 310 of the end effector 300 includes a shell 312, a pusher 313, a cylindrical knife 314, a staple cartridge 315, and a staple sheath assembly 316.


The shell 312 of the cartridge assembly 310 is secured to a distal end of the elongated body 202 of the adapter assembly 200 and includes an outer housing portion 312a configured to selectively receive the staple cartridge 315, an inner guide portion 312b configured to selectively receive the anvil assembly 320 of the end effector 300, and a coupling portion 312x configured to couple the cartridge assembly 310 to the elongated body 202 of the adapter assembly 200. The coupling portion 312x includes a proximal portion 3122, a distal portion 3124, and a flange 3126 that separates the proximal and distal portions 3122, 3124. The outer housing portion 312a defines elongated slots 312c at radially spaced locations around the shell 312 and which are configured to slidably support the staple sheath assembly 316. The outer housing portion 312a includes a housing collar assembly 312d configured to facilitate selective attachment of the cartridge assembly 310 to the elongated body 202 similar to that described in U.S. Patent Application Publication No. 2016/0192934, filed Oct. 19, 2015, the entire contents of which are incorporated by reference herein.


The pusher 313 of the cartridge assembly 310 is slidably positioned about the inner guide portion 312b of the shell 312 and defines a central throughbore 313a. The pusher 313 includes annular arrays of distally extending fingers 313b configured to support an array of staples 317. One or more of the fingers 313b and/or one or more of the staples 317 may include different heights. In some embodiments, one or more of the fingers 313b and/or one or more of the staples 317 may include the same height.


The cylindrical knife 314 of the cartridge assembly 310 is frictionally retained within the central throughbore 313a of the pusher 313 to fixedly secure the knife 314 in relation to the pusher 313. The distal end of the knife 314 includes a circular cutting edge 314a configured to severe tissue.


The staple cartridge 315 of the cartridge assembly 310 includes a tissue contact surface 315a in which annular arrays of slots 315b are formed. The annular arrays of slots 315b of the staple cartridge 315 are configured to support and slidably receive the annular arrays of staples 317 therein. The staple cartridge 315 includes an inner surface 315c and an outer surface 315d. The inner surface 315c defines a groove 315e therein. The groove 315e of the inner surface 315c of the staple cartridge 315 may have an annular configuration.


With reference to FIGS. 5 and 6, the staple sheath assembly 316 of the cartridge assembly 310 includes a collar assembly 316a coupled to a staple sheath 316b.


The staple sheath 316b of the staple sheath assembly 316 includes a proximal end portion 3162, a distal end portion 3164, and an opening 3166 defined through the proximal and distal end portions 3162, 3164 of the staple sheath 316b. The staple sheath 316b further includes an outer surface 3167 and an inner surface 3168. The proximal end portion 3162 of the staple sheath 316b is secured to the collar assembly 316a and the distal end portion 3164 of the staple sheath 316b is receivable within the groove 315e of the staple cartridge 315 to selectively or removably secure the distal end portion 3164 of the staple sheath 316b to the staple cartridge 315. The distal end portion 3164 of the staple sheath 316b may be folded over the tissue contact surface 315a of the staple cartridge 315 and/or folded into the groove 315e of the staple cartridge 315. The staple sheath 316b is configured to cover the tissue contact surface 315a, annular arrays of slots 315b, and annular arrays of staples 317 of the staple cartridge 315 while the distal end portion 3164 is secured to the groove 315e of the staple cartridge 315 to protect and maintain sterility of the staple cartridge 315 and staples 317. The staple sheath 316b is also configured to move relative to the staple cartridge 315 to separate the staple sheath 316b from the groove 315e and slide along the tissue contact surface 315a of the staple cartridge 315.


In some embodiments, the staple sheath 316b, or portions thereof, can be configured to be drawn across the staple cartridge 315 to expose the tissue contact surface 315a and the staples 317. In certain embodiments, the staple sheath 316b can be configured to be drawn partially across the tissue contact surface 315a of the staple cartridge 315. In some embodiments, the staple sheath 316, or portions thereof, may be configured to act as buttress material that remains coupled to the staple cartridge 315 until secured to tissue with the staples 317 upon a firing of the staples 317 from the staple cartridge 315. For example, the distal end portion 3164 of the staple sheath 316b may be separated from the groove 315e of the staple cartridge 315 and drawn across the tissue contact surface 315a such that the distal end portion 3164 covers the tissue contact surface 315a and acts as a buttress material for use with the staples 317.


In some embodiments, the distal end portion 3164 of the staple sheath 316 is configured to remain fixed to the groove 315e of the staple cartridge 315 such that movement of the staple sheath 316b relative to the staple cartridge 315 causes the staple sheath 316b to tear, dividing the staple sheath 316b into separate portions. In certain embodiments, the staple sheath 316, or portions thereof, may include perforations (e.g., an annular ring of perforations, not shown) or the like, to enable portions of the staple sheath 316 to separate from one another upon an application of separating force thereto. In certain embodiments, the staple sheath 316, or portions thereof, may be formed in bands, layers, and/or combinations thereof.


The staple sheath 316b, or portions thereof, may be formed of any suitable polymeric material. The polymeric material may be flexible. In some embodiments, the staple sheath 316b may include multiple materials. In embodiments, the staple sheath 316b, or portions thereof, may include biocompatible and/or biodegradable material. In some embodiments, the staple sheath 316b may include biologically acceptable additives such as plasticizers, antioxidants, dyes, dilutants, therapeutic agents, and the like, and/or combinations thereof, which can be coated thereon, and/or impregnated therein (e.g., during formation). For a more detailed description of suitable materials and/or additives for use with the staple sheath of the present disclosure, reference can be made to U.S. Pat. No. 8,453,910, the entire contents of which are incorporated by reference herein.


The collar assembly 316a of the staple sheath assembly 316 includes a first or proximal collar 318 coupled to a second or distal collar 319. The proximal collar 318 of the collar assembly 316a includes an outer member 318a, an inner member 318b coupled to the outer member 318a, and an annular flange 318c extending radially outward from a distal end of the outer member 318a to couple the proximal and distal collars 318, 319 together. An inner surface of the outer member 318a and an outer surface of the inner member 318b define an annular trough channel 318d configured to slidably receive a proximal portion of the coupling portion 312x of the shell 312. The distal collar 319 of the collar assembly 316a includes spokes 319a. The spokes 319a are annularly or radially spaced apart at predetermined arc lengths. The spokes 319a have a collar coupling portion 319b at a proximal end portion thereof that couple to the annular flange 318c of the proximal collar 318 and a ring coupling portion 319c that couple to a ring member 319e at a distal end portion thereof. Each of the spokes 319a includes a first arm 319f, a second arm 319g, and a third arm 319h that are coupled together and disposed at different angles relative to one another. The first and third arms 319f, 319h may be disposed transverse or even perpendicular relative to one another. The ring member 319e of the distal collar 319 is secured to the proximal end portion 3162 of the staple sheath 316b using any suitable securement technique such as adhesive, welding, fastening, etc. The ring member 319e may be secured to the inner surface 3168 of the staple sheath 316b.


With reference to FIGS. 7 and 8, the anvil assembly 320 of the end effector 300 includes an anvil head assembly 322 and an anvil center rod assembly 324. The anvil head assembly 322 includes a post 325, an anvil head 326, and an anvil 327. The anvil 327 of the anvil head assembly 322 is supported on the anvil head 326 of the anvil head assembly 322 and includes a tissue contact surface 327a that defines annular arrays of staple forming pockets 327b arranged to correspond to the annular arrays of slots 315b formed in the staple cartridge 315 of the end effector 300. The annular arrays of pockets 327b of the anvil 317 are arranged to receive and form the staples 317 of the end effector 300 when that staples 317 are ejected or fired from the slots 315b of the staple cartridge 315. The anvil center rod assembly 324 includes an anvil center rod 324a that defines a bore 324b and has flexible arms 324c, 324d, and 324e. The anvil retainer 108a of the approximation mechanism 108 of the electromechanical surgical stapling system 10 is received within the central bore 324b of the anvil center rod 324a such that the flexible or resilient radial arms 324c, 324d, 324e releasably engage the anvil retainer 108a of the approximation mechanism 108 and selectively couple the anvil retainer 108a to the center rod 324a of the anvil assembly 320. A pivot member or pin 328 secures the anvil head assembly 322 to the post 325 to enable the anvil head assembly 322 to pivot relative to the post 325, about the pivot member 328.


Referring now to FIGS. 9-14, in operation, with the anvil assembly 320 unapproximated from the cartridge assembly 310 and the staple sheath assembly 316 disposed in a distal position, the staple sheath 316b of the staple sheath assembly 316 is secured to the staple cartridge 315 so that the staple sheath 316b covers the staple cartridge 315 (FIGS. 9 and 11). In this distal position of the staple sheath assembly 316, the flexible arms 324c, 324d, 324e of the anvil assembly 320 are longitudinally spaced from the inner member 318b of the proximal collar 318 and the proximal portion 3122 of the coupling portion 312x of the cartridge assembly 310 is fully seated in the annular trough channel 318d of the proximal collar 318 of the staple sheath assembly 316 such that flange 318c of the proximal collar 318 of the staple sheath assembly 316 and the flange 3126 of the coupling portion 312x are engaged (FIG. 10). With the staple sheath assembly 316 in the distal position and the end effector 300 in the unapproximated position, the end effector 300 can be advanced to a surgical site with the staples 317 and/or the tissue contact surface 315a of the staple cartridge 315 protected from potential contaminants that could affect sterility of the staples 317 and/or the tissue contact surface 315a of the staple cartridge 315 during advancement to the surgical site (FIG. 11).


Once the end effector 300 of the electromechanical surgical stapling system 10 is positioned adjacent to the surgical site, the anvil assembly 320 of the end effector 300 can be approximated toward the cartridge assembly 310 of the end effector 300, as indicated by arrows “A” (FIG. 12). As the anvil assembly 320 is approximated toward the cartridge assembly 310, the flexible arms 324c, 324d, 324e of the anvil center rod assembly 324 engage the distal end of the inner member 318b of the proximal collar 318 of the staple sheath assembly 316 and advance or translate the staple sheath assembly 316 proximally, as indicated by arrows “B” (FIGS. 12 and 13). Continued proximal advancement of the staple sheath assembly 316 causes the proximal collar 318 thereof to slide along the coupling portion 312x of the cartridge assembly 310 relative to the centerline “CL” of the electromechanical surgical stapling system 10 (FIG. 1) and causes the staple sheath 316b of the staple sheath assembly 316 to separate from the staple cartridge 315. As the staple sheath assembly 316 moves proximally, the staple sheath 316b thereof draws across the staple cartridge 315, as indicated by arrows “D” (FIG. 14), and exposes the staple cartridge 315 so that once the anvil assembly 320 and the cartridge assembly 310 are approximated to clamp tissue in the end effector 300, the staples 317 can be fired from the cartridge assembly 310 and formed against the anvil assembly 320 (without having to penetrate the staple sheath 316b of the staple sheath assembly 316). The cylindrical knife 314 (FIG. 12) of the cartridge assembly 310 can also be fired to cut the clamped and fastened tissue supported by the end effector 300. For a more detailed description of firing, cutting, and/or fastening of staples, reference can be made to U.S. Pat. No. 7,303,106, incorporated herein by reference above.


Alternatively, or additionally, the staple sheath 316b, or portions thereof, can be configured to enable the staples 317 to be fired therethrough (e.g., such as where the staple sheath 316b, or portions thereof, act as buttress material as described above).


The anvil assembly 320 of the end effector 300 can then be unapproximated or separated from the cartridge assembly 310 of the end effector 300 to release the stapled tissue and remove the end effector 300 from the surgical site. The anvil and/or cartridge assemblies 310, 320 can be removed from the electromechanical surgical stapling system 10 and/or replaced as described in U.S. Pat. No. 7,303,106 and/or U.S. Patent Application Publication No. 2016/0192934, each of which are incorporated herein by reference above.


As can be appreciated, securement of any of the components of the presently disclosed devices can be effectuated using known securement techniques such welding, crimping, gluing, fastening, etc.


The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the clinician and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the clinician during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of clinicians may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another clinician (or group of clinicians) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled clinician may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients. For a detailed description of exemplary medical work stations and/or components thereof, reference may be made to U.S. Patent Application Publication No. 2012/0116416, and PCT Application Publication No. WO2016/025132, the entire contents of each of which are incorporated by reference herein.


Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown or described in connection with certain embodiments may be combined with the elements and features of certain other embodiments without departing from the scope of the present disclosure, and that such modifications and variations are also included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not limited by what has been particularly shown and described.

Claims
  • 1. A surgical stapling apparatus, comprising: a first jaw member having an outer sidewall, an inner sidewall, and a tissue contact surface disposed between the inner and outer sidewalls, the tissue contact surface defining a plurality of staple retention slots;a plurality of staples, each staple of the plurality of staples received in a respective one of the plurality of staple retention slots;a second jaw member having a plurality of staple pockets, each staple pocket of the plurality of staple pockets configured to form a respective one of the staples of the plurality of staples as the surgical stapling apparatus is fired, the second jaw member includes a head assembly having a center rod assembly extending proximally from the head assembly; anda staple sheath having a distal end portion engaged with the tissue contact surface of the first jaw member to cover the plurality of staple retention slots, the distal end portion having a distal end removably secured to the inner sidewall of the first jaw member at a location proximal to the tissue contact surface, the staple sheath movable relative to the first jaw member to uncover the plurality of staple retention slots in response to relative approximation of the first jaw member and the second jaw member, the staple sheath being part of a staple sheath assembly including a collar assembly and the staple sheath coupled to the collar assembly, the center rod assembly selectively engagable with the collar assembly to move the staple sheath relative to the first jaw member to uncover the plurality of staple retention slots in response to relative approximation of the first jaw member and the second jaw member.
  • 2. A surgical stapling apparatus, comprising: a first jaw member having an outer sidewall, an inner sidewall, and a tissue contact surface disposed between the inner and outer sidewalls, the tissue contact surface defining a plurality of staple retention slots;a plurality of staples, each staple of the plurality of staples received in a respective one of the plurality of staple retention slots;a second jaw member having a plurality of staple pockets, each staple pocket of the plurality of staple pockets configured to form a respective one of the staples of the plurality of staples as the surgical stapling apparatus is fired; anda staple sheath having a distal end portion engaged with the tissue contact surface of the first jaw member to cover the plurality of staple retention slots, the distal end portion having a distal end removably secured to the inner sidewall of the first jaw member at a location proximal to the tissue contact surface, the staple sheath movable relative to the first jaw member to uncover the plurality of staple retention slots in response to relative approximation of the first jaw member and the second jaw member, the staple sheath being part of a staple sheath assembly including a collar assembly and the staple sheath coupled to the collar assembly, the collar assembly including at least one spoke and the first jaw member defining at least one elongated channel that extends axially along the first jaw member, the at least one spoke slidably movable through the at least one elongated channel to enable the staple sheath to move relative to the first jaw member.
  • 3. The surgical stapling apparatus of claim 1, wherein the first jaw member includes a staple cartridge that defines the outer sidewall and the inner sidewall, the staple cartridge defining an annular groove in the inner sidewall, the annular groove configured to receive the distal end of the staple sheath assembly to selectively secure the staple sheath across the staple cartridge covering the plurality of staple retention slots while the first and second jaw members are unapproximated.
  • 4. The surgical stapling apparatus of claim 1, further comprising an elongated shaft assembly that extends from a proximal end portion to a distal end portion, the first jaw member and the staple sheath assembly removably secured to the distal end portion of the elongated shaft assembly.
  • 5. An end effector for a surgical stapling apparatus, the end effector comprising: a cartridge assembly having an inner sidewall and a tissue contact surface, the cartridge assembly defining a plurality of staple retention slots that extends along the inner sidewall and through the tissue contact surface;a plurality of staples, each staple of the plurality of staples received in a respective one of the plurality of staple retention slots;an anvil assembly having a plurality of staple pockets, each staple pocket of the a plurality of staple pockets configured to form a respective one of the staples of the plurality of staples as the surgical stapling apparatus is fired, the anvil assembly movable relative to the cartridge assembly between an unapproximated position and an approximated position, the anvil assembly including a head assembly and a center rod assembly that extends from the head assembly; anda staple sheath having a distal end portion engaged with the tissue contact surface of the cartridge assembly and positioned to cover the plurality of staple retention slots, the distal end portion having a distal end received within and removably secured to the cartridge assembly at a location along the inner sidewall of the cartridge assembly that is proximal to the tissue contact surface of the cartridge assembly, the staple sheath movable with the anvil assembly to uncover the plurality of staple retention slots and expose the plurality of staples, the staple sheath being part of a staple sheath assembly including a collar assembly and the staple sheath coupled to the collar assembly, the center rod assembly selectively engagable with the collar assembly to move the staple sheath relative to the cartridge assembly upon a movement of the anvil assembly relative to the cartridge assembly.
  • 6. An end effector for a surgical stapling apparatus, the end effector comprising: a cartridge assembly having an inner sidewall and a tissue contact surface, the cartridge assembly defining a plurality of staple retention slots that extends along the inner sidewall and through the tissue contact surface;a plurality of staples, each staple of the plurality of staples received in a respective one of the plurality of staple retention slots;an anvil assembly having a plurality of staple pockets, each staple pocket of the a plurality of staple pockets configured to form a respective one of the staples of the plurality of staples as the surgical stapling apparatus is fired, the anvil assembly movable relative to the cartridge assembly between an unapproximated position and an approximated position; anda staple sheath having a distal end portion engaged with the tissue contact surface of the cartridge assembly and positioned to cover the plurality of staple retention slots, the distal end portion having a distal end received within and removably secured to the cartridge assembly at a location along the inner sidewall of the cartridge assembly that is proximal to the tissue contact surface of the cartridge assembly, the staple sheath movable with the anvil assembly to uncover the plurality of staple retention slots and expose the plurality of staples, the staple sheath being part of a staple sheath assembly including a collar assembly and the staple sheath coupled to the collar assembly, the collar assembly including at least one spoke and the cartridge assembly defining at least one elongated channel extending axially along the cartridge assembly, the at least one spoke slidably movable through the at least one elongated channel to enable the staple sheath to move relative to the cartridge assembly.
  • 7. The end effector of claim 5, wherein the cartridge assembly includes a staple cartridge defining an annular groove configured to receive the distal end of the staple sheath assembly to selectively secure the staple sheath in a position to cover the plurality of staple retention slots while the anvil and cartridge assemblies are in the unapproximated position.
  • 8. The end effector of claim 5, further comprising an elongated shaft assembly that extends from a proximal end portion to a distal end portion, the cartridge assembly and the staple sheath assembly removably secured to the distal end portion of the elongated shaft assembly.
  • 9. A circular stapling apparatus, comprising: an elongated shaft assembly having a distal end portion and defining a longitudinal axis;a cartridge assembly secured to the distal end portion of the elongated shaft assembly, the cartridge assembly having an inner sidewall and having a tissue contact surface, the tissue contact surface defining a plurality of staple retention slots;a plurality of staples, each staple of the plurality of staples received in a respective one of the plurality of staple retention slots;a collar assembly movable along the longitudinal axis between a distal position and a proximal position; anda staple sheath having a distal end portion engaged with the tissue contact surface of the cartridge assembly and a proximal end portion coupled to the collar assembly, the distal end portion positioned to cover the plurality of staple retention slots while the collar assembly is in the distal position, the distal end portion including a distal end received within and secured to the cartridge assembly when the collar assembly is in the distal position, the distal end secured to the inner sidewall of the cartridge assembly proximal to the tissue contact surface of the cartridge assembly, the staple sheath movable with the collar assembly toward the proximal position to separate the distal end of the staple sheath from the cartridge assembly and draw the distal end of the staple sheath across the plurality of staple retention slots, the collar assembly including at least one spoke and the cartridge assembly defining at least one elongated channel extending axially along the cartridge assembly, the at least one spoke slidably movable through the at least one elongated channel to enable the staple sheath to move relative to the cartridge assembly.
  • 10. The circular stapling apparatus of claim 9, wherein the cartridge assembly includes a staple cartridge defining an annular groove configured to receive the distal end of the staple sheath to selectively secure the staple sheath in a position to cover the plurality of staple retention slots.
  • 11. The circular stapling apparatus of claim 9, wherein the cartridge assembly and the staple sheath assembly are selectively removable from the distal end portion of the elongated shaft assembly.
  • 12. The circular stapling apparatus of claim 9, further comprising an anvil assembly selectively coupled to the elongated shaft assembly, the anvil assembly movable relative to the cartridge assembly to move the collar assembly from the distal position to the proximal position.
  • 13. A cartridge assembly for selective connection to a surgical stapling apparatus, the cartridge assembly comprising: a body portion having an inner sidewall defining a central opening therethrough, the body portion defining at least one elongated channel;a tissue contact surface defining a plurality of staple retention slots;a plurality of staples, each staple of the plurality of staples received in a respective one of the plurality of staple retention slots;a collar assembly movably mounted to the body portion, the collar assembly including at least one spoke; anda staple sheath having a proximal end portion coupled to the collar assembly and a distal end portion positioned to cover the plurality of staple retention slots, the distal end portion received within the central opening and having a distal end connected to the inner sidewall of the body portion at a location proximal to the tissue contact surface, the staple sheath selectively movable relative to the tissue contact surface to disconnect the distal end portion from the body portion, the at least one spoke slidably movable through the at least one elongated channel to enable the staple sheath to move relative to the body portion.
  • 14. The cartridge assembly of claim 13, further comprising a staple cartridge coupled to the body portion, the staple cartridge including the tissue contact surface and supporting the plurality of staples, and wherein the staple cartridge defines an annular groove configured to receive the distal end of the staple sheath to selectively secure the staple sheath across the tissue contact surface of the staple cartridge.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/464,627 filed Feb. 28, 2017, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (553)
Number Name Date Kind
3054406 Usher Sep 1962 A
3079606 Bobrov et al. Mar 1963 A
3124136 Usher Mar 1964 A
3364200 Ashton et al. Jan 1968 A
3490675 Green et al. Jan 1970 A
3499591 Green Mar 1970 A
3797494 Zaffaroni Mar 1974 A
3939068 Wendt et al. Feb 1976 A
3948666 Kitanishi et al. Apr 1976 A
4064062 Yurko Dec 1977 A
4166800 Fong Sep 1979 A
4282236 Broom Aug 1981 A
4347847 Usher Sep 1982 A
4354628 Green Oct 1982 A
4416698 McCorsley, III Nov 1983 A
4429695 Green Feb 1984 A
4452245 Usher Jun 1984 A
4505414 Filipi Mar 1985 A
4605730 Shalaby et al. Aug 1986 A
4626253 Broadnax, Jr. Dec 1986 A
4655221 Devereux Apr 1987 A
4834090 Moore May 1989 A
4838884 Dumican et al. Jun 1989 A
4927640 Dahlinder et al. May 1990 A
4930674 Barak Jun 1990 A
5002551 Linsky et al. Mar 1991 A
5014899 Presty et al. May 1991 A
5040715 Green et al. Aug 1991 A
5057334 Vail Oct 1991 A
5065929 Schulze et al. Nov 1991 A
5112496 Dhawan et al. May 1992 A
5162430 Rhee et al. Nov 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5263629 Trumbull et al. Nov 1993 A
5281197 Arias et al. Jan 1994 A
5307976 Olson et al. May 1994 A
5312023 Green et al. May 1994 A
5314471 Brauker et al. May 1994 A
5318221 Green et al. Jun 1994 A
5324775 Rhee et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5332142 Robinson et al. Jul 1994 A
5344454 Clarke et al. Sep 1994 A
5392979 Green et al. Feb 1995 A
5397324 Carroll et al. Mar 1995 A
5404870 Brinkerhoff Apr 1995 A
5405072 Zlock et al. Apr 1995 A
5410016 Hubbell et al. Apr 1995 A
5425745 Green et al. Jun 1995 A
5441193 Gravener Aug 1995 A
5441507 Wilk Aug 1995 A
5443198 Viola et al. Aug 1995 A
5468253 Bezwada et al. Nov 1995 A
5484913 Stilwell et al. Jan 1996 A
5503638 Cooper et al. Apr 1996 A
5514379 Weissleder et al. May 1996 A
5542594 McKean et al. Aug 1996 A
5543441 Rhee et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5550187 Rhee et al. Aug 1996 A
5575803 Cooper et al. Nov 1996 A
5645915 Kranzler et al. Jul 1997 A
5653756 Clarke et al. Aug 1997 A
5683809 Freeman et al. Nov 1997 A
5690675 Sawyer et al. Nov 1997 A
5702409 Rayburn et al. Dec 1997 A
5752965 Francis et al. May 1998 A
5752974 Rhee et al. May 1998 A
5762256 Mastri et al. Jun 1998 A
5766188 Igaki Jun 1998 A
5769892 Kingwell Jun 1998 A
5782396 Mastri et al. Jul 1998 A
5799857 Robertson et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5819350 Wang Oct 1998 A
5833695 Yoon Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5871135 Williamson, IV et al. Feb 1999 A
5874500 Rhee et al. Feb 1999 A
5895412 Tucker Apr 1999 A
5895415 Chow et al. Apr 1999 A
5902312 Frater et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5915616 Viola et al. Jun 1999 A
5931847 Bittner et al. Aug 1999 A
5957363 Heck Sep 1999 A
5964774 McKean et al. Oct 1999 A
5997895 Narotam et al. Dec 1999 A
6019791 Wood Feb 2000 A
6030392 Dakov Feb 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6063097 Oi et al. May 2000 A
6080169 Turtel Jun 2000 A
6093557 Pui et al. Jul 2000 A
6099551 Gabbay Aug 2000 A
6142933 Longo et al. Nov 2000 A
6149667 Hovland et al. Nov 2000 A
6152943 Sawhney Nov 2000 A
6155265 Hammerslag Dec 2000 A
6156677 Brown Reed et al. Dec 2000 A
6165201 Sawhney et al. Dec 2000 A
6179862 Sawhney Jan 2001 B1
6210439 Firmin et al. Apr 2001 B1
6214020 Mulhauser et al. Apr 2001 B1
6241139 Milliman et al. Jun 2001 B1
6258107 Balazs et al. Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6280453 Kugel et al. Aug 2001 B1
6299631 Shalaby Oct 2001 B1
6309569 Farrar et al. Oct 2001 B1
6312457 DiMatteo et al. Nov 2001 B1
6312474 Francis et al. Nov 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6399362 Pui et al. Jun 2002 B1
6436030 Rehil Aug 2002 B2
6454780 Wallace Sep 2002 B1
6461368 Fogarty et al. Oct 2002 B2
6500777 Wiseman et al. Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6514283 DiMatteo et al. Feb 2003 B2
6514534 Sawhney Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551356 Rousseau Apr 2003 B2
6566406 Pathak et al. May 2003 B1
6568398 Cohen May 2003 B2
6590095 Schleicher et al. Jul 2003 B1
6592597 Grant et al. Jul 2003 B2
6605294 Sawhney Aug 2003 B2
6610006 Amid et al. Aug 2003 B1
6627749 Kumar Sep 2003 B1
6638285 Gabbay Oct 2003 B2
6652594 Francis et al. Nov 2003 B2
6656193 Grant et al. Dec 2003 B2
6656200 Li et al. Dec 2003 B2
6669735 Pelissier Dec 2003 B1
6673093 Sawhney Jan 2004 B1
6677258 Carroll et al. Jan 2004 B2
6685714 Rousseau Feb 2004 B2
6702828 Whayne Mar 2004 B2
6703047 Sawhney et al. Mar 2004 B2
6704210 Myers Mar 2004 B1
6723114 Shalaby Apr 2004 B2
6726706 Dominguez Apr 2004 B2
6736823 Darois et al. May 2004 B2
6736854 Vadurro et al. May 2004 B2
6746458 Cloud Jun 2004 B1
6746869 Pui et al. Jun 2004 B2
6764720 Pui et al. Jul 2004 B2
6773458 Brauker et al. Aug 2004 B1
6818018 Sawhney Nov 2004 B1
6843252 Harrison et al. Jan 2005 B2
6896684 Monassevitch et al. May 2005 B2
6927315 Heinecke et al. Aug 2005 B1
6939358 Palacios et al. Sep 2005 B2
6946196 Foss Sep 2005 B2
6953139 Milliman et al. Oct 2005 B2
6959851 Heinrich Nov 2005 B2
7009034 Pathak et al. Mar 2006 B2
7025772 Gellman et al. Apr 2006 B2
7060087 DiMatteo et al. Jun 2006 B2
7087065 Ulmsten et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7128253 Mastri et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7141055 Abrams et al. Nov 2006 B2
7147138 Shelton, IV Dec 2006 B2
7160299 Baily Jan 2007 B2
7179268 Roy et al. Feb 2007 B2
7210810 Iversen et al. May 2007 B1
7214727 Kwon et al. May 2007 B2
7232449 Sharkawy et al. Jun 2007 B2
7241300 Sharkawy et al. Jul 2007 B2
7247338 Pui et al. Jul 2007 B2
7279322 Pui et al. Oct 2007 B2
7303106 Milliman et al. Dec 2007 B2
7307031 Carroll et al. Dec 2007 B2
7308998 Mastri et al. Dec 2007 B2
7311720 Mueller et al. Dec 2007 B2
7328829 Arad et al. Feb 2008 B2
7347850 Sawhney Mar 2008 B2
7377928 Zubik et al. May 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7464849 Shelton, IV et al. Dec 2008 B2
7498063 Pui et al. Mar 2009 B2
7547312 Bauman et al. Jun 2009 B2
7559937 de la Torre et al. Jul 2009 B2
7571845 Viola Aug 2009 B2
7592418 Pathak et al. Sep 2009 B2
7594921 Browning Sep 2009 B2
7595392 Kumar et al. Sep 2009 B2
7604151 Hess et al. Oct 2009 B2
7611494 Campbell et al. Nov 2009 B2
7625209 Wade Dec 2009 B2
7635073 Heinrich Dec 2009 B2
7645874 Saferstein et al. Jan 2010 B2
7649089 Kumar et al. Jan 2010 B2
7655288 Bauman et al. Feb 2010 B2
7662409 Masters Feb 2010 B2
7662801 Kumar et al. Feb 2010 B2
7665646 Prommersberger Feb 2010 B2
7666198 Suyker et al. Feb 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7708180 Murray et al. May 2010 B2
7709631 Harris et al. May 2010 B2
7717313 Criscuolo et al. May 2010 B2
7722642 Williamson, IV et al. May 2010 B2
7735703 Morgan et al. Jun 2010 B2
7744627 Orban, III et al. Jun 2010 B2
7754002 Maase et al. Jul 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793813 Bettuchi Sep 2010 B2
7799026 Schechter et al. Sep 2010 B2
7823592 Bettuchi et al. Nov 2010 B2
7824420 Eldridge et al. Nov 2010 B2
7845533 Marczyk et al. Dec 2010 B2
7845536 Viola et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7892247 Conston et al. Feb 2011 B2
7909224 Prommersberger Mar 2011 B2
7909837 Crews et al. Mar 2011 B2
7938307 Bettuchi May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7950561 Aranyi May 2011 B2
7951166 Orban, III et al. May 2011 B2
7951248 Fallis et al. May 2011 B1
7967179 Olson et al. Jun 2011 B2
7988027 Olson et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8011555 Tarinelli et al. Sep 2011 B2
8016177 Bettuchi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8028883 Stopek Oct 2011 B2
8033483 Fortier et al. Oct 2011 B2
8033983 Chu et al. Oct 2011 B2
8038045 Bettuchi et al. Oct 2011 B2
8062330 Prommersberger et al. Nov 2011 B2
8062673 Figuly et al. Nov 2011 B2
8083119 Prommersberger Dec 2011 B2
8091756 Viola Jan 2012 B2
8123766 Bauman et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8133336 Kettlewell et al. Mar 2012 B2
8133559 Lee et al. Mar 2012 B2
8146791 Bettuchi et al. Apr 2012 B2
8152777 Campbell et al. Apr 2012 B2
8157149 Olson et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8167895 D'Agostino et al. May 2012 B2
8177797 Shimoji et al. May 2012 B2
8178746 Hildeberg et al. May 2012 B2
8192460 Orban, III et al. Jun 2012 B2
8201720 Hessler Jun 2012 B2
8210414 Bettuchi et al. Jul 2012 B2
8210453 Hull et al. Jul 2012 B2
8225799 Bettuchi Jul 2012 B2
8225981 Criscuolo et al. Jul 2012 B2
8231043 Tarinelli et al. Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8245901 Stopek Aug 2012 B2
8252339 Figuly et al. Aug 2012 B2
8252921 Vignon et al. Aug 2012 B2
8256654 Bettuchi et al. Sep 2012 B2
8257391 Orban, III et al. Sep 2012 B2
8272552 Holsten et al. Sep 2012 B2
8276800 Bettuchi Oct 2012 B2
8286849 Bettuchi Oct 2012 B2
8308042 Aranyi Nov 2012 B2
8308045 Bettuchi et al. Nov 2012 B2
8308046 Prommersberger Nov 2012 B2
8312885 Bettuchi et al. Nov 2012 B2
8313014 Bettuchi Nov 2012 B2
8317790 Bell et al. Nov 2012 B2
8322590 Patel et al. Dec 2012 B2
8348126 Olson et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8367089 Wan et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8371493 Aranyi et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8393517 Milo Mar 2013 B2
8408440 Olson et al. Apr 2013 B2
8408480 Hull et al. Apr 2013 B2
8413869 Heinrich Apr 2013 B2
8413871 Racenet et al. Apr 2013 B2
8418909 Kostrzewski Apr 2013 B2
8424742 Bettuchi Apr 2013 B2
8453652 Stopek Jun 2013 B2
8453904 Eskaros et al. Jun 2013 B2
8453909 Olson et al. Jun 2013 B2
8453910 Bettuchi et al. Jun 2013 B2
8464925 Hull et al. Jun 2013 B2
8470360 McKay Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479968 Hodgkinson et al. Jul 2013 B2
8485414 Criscuolo et al. Jul 2013 B2
8496683 Prommersberger et al. Jul 2013 B2
8511533 Viola et al. Aug 2013 B2
8512402 Marczyk et al. Aug 2013 B2
8518440 Blaskovich et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8551138 Orban, III et al. Oct 2013 B2
8556918 Bauman et al. Oct 2013 B2
8561873 Ingmanson et al. Oct 2013 B2
8579990 Priewe Nov 2013 B2
8584920 Hodgkinson Nov 2013 B2
8590762 Hess et al. Nov 2013 B2
8616430 (Prommersberger) Stopek et al. Dec 2013 B2
8617132 Golzarian et al. Dec 2013 B2
8631989 Aranyi et al. Jan 2014 B2
8646674 Schulte et al. Feb 2014 B2
8668129 Olson Mar 2014 B2
8678263 Viola Mar 2014 B2
8679137 Bauman et al. Mar 2014 B2
8684250 Bettuchi et al. Apr 2014 B2
8701958 Shelton, IV et al. Apr 2014 B2
8721703 Fowler May 2014 B2
8727197 Hess et al. May 2014 B2
8757466 Olson et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8814888 Sgro Aug 2014 B2
8820606 Hodgkinson Sep 2014 B2
8827133 Shelton, IV et al. Sep 2014 B2
8857694 Shelton, IV et al. Oct 2014 B2
8864009 Shelton, IV et al. Oct 2014 B2
8870050 Hodgkinson Oct 2014 B2
8920443 Hiles et al. Dec 2014 B2
8920444 Hiles et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8956390 Shah et al. Feb 2015 B2
8967448 Carter et al. Mar 2015 B2
9005243 Stopek et al. Apr 2015 B2
9010606 Aranyi et al. Apr 2015 B2
9010608 Casasanta, Jr. et al. Apr 2015 B2
9010609 Carter et al. Apr 2015 B2
9010610 Hodgkinson Apr 2015 B2
9010612 Stevenson et al. Apr 2015 B2
9016543 (Prommersberger) Stopek et al. Apr 2015 B2
9016544 Hodgkinson et al. Apr 2015 B2
9027817 Milliman et al. May 2015 B2
9044227 Shelton, IV et al. Jun 2015 B2
9055944 Hodgkinson et al. Jun 2015 B2
9084602 Gleiman Jul 2015 B2
9107665 Hodgkinson et al. Aug 2015 B2
9107667 Hodgkinson Aug 2015 B2
9113871 Milliman et al. Aug 2015 B2
9113873 Marczyk et al. Aug 2015 B2
9113885 Hodgkinson et al. Aug 2015 B2
9113893 Sorrentino et al. Aug 2015 B2
9161753 Prior Oct 2015 B2
9161757 Bettuchi Oct 2015 B2
9186140 Hiles et al. Nov 2015 B2
9186144 Stevenson et al. Nov 2015 B2
9192378 Aranyi et al. Nov 2015 B2
9192379 Aranyi et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192383 Milliman Nov 2015 B2
9192384 Bettuchi Nov 2015 B2
9198660 Hodgkinson Dec 2015 B2
9198663 Marczyk et al. Dec 2015 B1
9204881 Penna Dec 2015 B2
9220504 Viola et al. Dec 2015 B2
9226754 D'Agostino et al. Jan 2016 B2
9237892 Hodgkinson Jan 2016 B2
9237893 Carter et al. Jan 2016 B2
9277922 Carter et al. Mar 2016 B2
9295466 Hodgkinson et al. Mar 2016 B2
9326768 Shelton, IV May 2016 B2
9326773 Casasanta, Jr. et al. May 2016 B2
9328111 Zhou et al. May 2016 B2
9345479 (Tarinelli) Racenet et al. May 2016 B2
9351729 Orban, III et al. May 2016 B2
9351731 Carter et al. May 2016 B2
9351732 Hodgkinson May 2016 B2
9358005 Shelton, IV et al. Jun 2016 B2
9364229 D'Agostino et al. Jun 2016 B2
9364234 (Prommersberger) Stopek et al. Jun 2016 B2
9386988 Baxter, III et al. Jul 2016 B2
9402627 Stevenson et al. Aug 2016 B2
9414839 Penna Aug 2016 B2
9433412 Bettuchi et al. Sep 2016 B2
9433413 Stopek Sep 2016 B2
9433420 Hodgkinson Sep 2016 B2
9445812 Olson et al. Sep 2016 B2
9445817 Bettuchi Sep 2016 B2
9463260 Stopek Oct 2016 B2
9486215 Olson et al. Nov 2016 B2
9492170 Bear et al. Nov 2016 B2
9504470 Milliman Nov 2016 B2
9517164 Vitaris et al. Dec 2016 B2
9572576 Hodgkinson et al. Feb 2017 B2
9585657 Shelton, IV et al. Mar 2017 B2
9597077 Hodgkinson Mar 2017 B2
9610080 Whitfield et al. Apr 2017 B2
9622745 Ingmanson et al. Apr 2017 B2
9629626 Soltz et al. Apr 2017 B2
9636850 Stopek (nee Prommersberger) et al. May 2017 B2
9642642 Lim May 2017 B2
9655620 Prescott et al. May 2017 B2
9675351 Hodgkinson et al. Jun 2017 B2
9681936 Hodgkinson et al. Jun 2017 B2
9687262 Rousseau et al. Jun 2017 B2
9693772 Ingmanson et al. Jul 2017 B2
9708184 Chan et al. Jul 2017 B2
9770245 Swayze et al. Sep 2017 B2
9775617 Carter et al. Oct 2017 B2
9775618 Bettuchi et al. Oct 2017 B2
9782173 Mozdzierz Oct 2017 B2
9844378 Casasanta et al. Dec 2017 B2
20010041899 Foster Nov 2001 A1
20020091397 Chen Jul 2002 A1
20020151911 Gabbay Oct 2002 A1
20030065345 Weadock Apr 2003 A1
20030078209 Schmidt Apr 2003 A1
20030083676 Wallace May 2003 A1
20030125676 Swenson et al. Jul 2003 A1
20030181927 Wallace Sep 2003 A1
20030183671 Mooradian Oct 2003 A1
20030208231 Williamson et al. Nov 2003 A1
20030225419 Lippitt Dec 2003 A1
20040092912 Jinno et al. May 2004 A1
20040107006 Francis et al. Jun 2004 A1
20040131418 Budde et al. Jul 2004 A1
20040254590 Hoffman et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20050002981 Lahtinen et al. Jan 2005 A1
20050021085 Abrams et al. Jan 2005 A1
20050059996 Bauman et al. Mar 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050118435 DeLucia et al. Jun 2005 A1
20050149073 Arani et al. Jul 2005 A1
20050187576 Whitman Aug 2005 A1
20050283256 Sommerich et al. Dec 2005 A1
20060008505 Brandon Jan 2006 A1
20060121266 Fandel et al. Jun 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060190027 Downey Aug 2006 A1
20060229643 Nolan Oct 2006 A1
20070034669 de la Torre et al. Feb 2007 A1
20070051375 Milliman Mar 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070243227 Gertner Oct 2007 A1
20070246505 Pace-Floridia et al. Oct 2007 A1
20080009811 Cantor Jan 2008 A1
20080029570 Shelton et al. Feb 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080169328 Shelton Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080216855 Nasca Sep 2008 A1
20080220047 Sawhney et al. Sep 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090031842 Kawai et al. Feb 2009 A1
20090204108 Steffen Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090277944 Dalessandro et al. Nov 2009 A9
20100016855 Ramstein et al. Jan 2010 A1
20100016888 Calabrese et al. Jan 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100147921 Olson Jun 2010 A1
20100147922 Olson Jun 2010 A1
20100163598 Belzer Jul 2010 A1
20100174253 Cline et al. Jul 2010 A1
20100203151 Hiraoka Aug 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100249805 Olson Sep 2010 A1
20100331859 Omori Dec 2010 A1
20110034910 Ross et al. Feb 2011 A1
20110087279 Shah Apr 2011 A1
20110089220 Ingmanson et al. Apr 2011 A1
20110114699 Baxter, III et al. May 2011 A1
20110118761 Baxter, III May 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110166673 Patel et al. Jul 2011 A1
20110230897 Palermo Sep 2011 A1
20110248067 Takei Oct 2011 A1
20110293690 Griffin et al. Dec 2011 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120116416 Neff et al. May 2012 A1
20120197272 Oray et al. Aug 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20130153634 Carter Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153639 Hodgkinson Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130209659 Racenet et al. Aug 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20140048580 Merchant et al. Feb 2014 A1
20140131418 Kostrzewski May 2014 A1
20140217148 Penna Aug 2014 A1
20140224686 Aronhalt Aug 2014 A1
20140239047 Hodgkinson et al. Aug 2014 A1
20140252062 Mozdzierz Sep 2014 A1
20150041347 Hodgkinson Feb 2015 A1
20150133995 Shelton, IV et al. May 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150173757 Williams Jun 2015 A1
20150209045 Hodgkinson et al. Jul 2015 A1
20150327864 Hodgkinson et al. Nov 2015 A1
20160022268 Prior Jan 2016 A1
20160045200 Milliman Feb 2016 A1
20160100834 Viola et al. Apr 2016 A1
20160106430 Carter et al. Apr 2016 A1
20160157857 Hodgkinson et al. Jun 2016 A1
20160174988 D'Agostino et al. Jun 2016 A1
20160192934 Williams et al. Jul 2016 A1
20160206315 Olson Jul 2016 A1
20160220257 Casasanta et al. Aug 2016 A1
20160249923 Hodgkinson et al. Sep 2016 A1
20160256166 (Prommersberger) Stopek et al. Sep 2016 A1
20160270793 Carter et al. Sep 2016 A1
20160310143 Bettuchi Oct 2016 A1
20160324525 Scheib Nov 2016 A1
20160338704 Penna Nov 2016 A1
20160367252 Olson et al. Dec 2016 A1
20160367253 Hodgkinson Dec 2016 A1
20160367257 Stevenson et al. Dec 2016 A1
20170042540 Olson et al. Feb 2017 A1
20170049452 Milliman Feb 2017 A1
20170150967 Hodgkinson et al. Jun 2017 A1
20170172575 Hodgkinson Jun 2017 A1
20170231629 Stopek et al. Aug 2017 A1
20170238931 Prescott et al. Aug 2017 A1
20170281328 Hodgkinson et al. Oct 2017 A1
20170296188 Ingmanson et al. Oct 2017 A1
20170354415 Casasanta, Jr. et al. Dec 2017 A1
20190343521 Williams Nov 2019 A1
Foreign Referenced Citations (21)
Number Date Country
2282761 Sep 1998 CA
1602563 Mar 1950 DE
19924311 Nov 2000 DE
0 327 022 Aug 1989 EP
0 594 148 Apr 1994 EP
2 491 867 Aug 2012 EP
2730237 May 2014 EP
2000-166933 Jun 2000 JP
2002-202213 Jul 2002 JP
2007-124166 May 2007 JP
2010-214132 Sep 2010 JP
9005489 May 1990 WO
9516221 Jun 1995 WO
9838923 Sep 1998 WO
9926826 Jun 1999 WO
0010456 Mar 2000 WO
0016684 Mar 2000 WO
2009039506 Mar 2009 WO
2010075298 Jul 2010 WO
2011087848 Jul 2011 WO
2016025132 Feb 2016 WO
Non-Patent Literature Citations (160)
Entry
Australian Examination Report No. 1 corresponding to AU 2014200793 dated Sep. 2, 2017.
Extended European Search Report corresponding to EP 17 17 8528.0 dated Oct. 13, 2017.
Australian Examination Report No. 1 corresponding to AU 2013234420 dated Oct. 24, 2017.
Japanese Office Action corresponding to JP 2013-175379 dated Oct. 20, 2017.
Japanese Office Action corresponding to JP 2013-147701 dated Oct. 27, 2017.
Extended European Search Report corresponding to EP 17 17 5656.2 dated Nov. 7, 2017.
Japanese Office Action corresponding to JP 2014-009738 dated Nov. 14, 2017.
European Office Action corresponding to EP 13 17 3986.4 dated Nov. 29, 2017.
Japanese Office Action corresponding to JP 2017-075975 dated Dec. 4, 2017.
European Office Action corresponding to EP 13 19 7958.5 dated Dec. 11, 2017.
European Office Action corresponding to EP 14 17 2681.0 dated May 13, 2016.
Extended European Search Report corresponding to EP 16 15 3647.9 dated Jun. 3, 2016.
Chinese Office Action corresponding to CN 201210545228 dated Jun. 29, 2016.
Japanese Office Action corresponding to JP 2012-250058 dated Jun. 29, 2016.
European Office Action corresponding to EP 14 15 7997.9 dated Jun. 29, 2016.
Canadian Office Action corresponding to CA 2,712,617 dated Jun. 30, 2016.
Chinese First Office Action corresponding to CN 2013103036903 dated Jun. 30, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012250278 dated Jul. 10, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012244382 dated Jul. 10, 2016.
Japanese Office Action corresponding to 2012-255242 dated Jul. 26, 2016.
Japanese Office Action corresponding to JP 2012-268668 dated Jul. 27, 2016.
European Office Action corresponding to EP 14 15 2060.1 dated Aug. 4, 2016.
European Office Action corresponding to EP 12 16 5609.4 dated Aug. 5, 2016.
European Office Action corresponding to EP 15 15 2392.5 dated Aug. 8, 2016.
Japanese Office Action corresponding to JP 2013-003624 dated Aug. 25, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012261752 dated Sep. 6, 2016.
Japanese Office Action corresponding to JP 2014-252703 dated Sep. 26, 2016.
European Office Action corresponding to EP 12 19 8776.2 dated Sep. 12, 2016.
Japanese Office Action corresponding to JP 2013-000321 dated Sep. 13, 2016.
Chinese Second Office Action corresponding to CN 201310353628.5 dated Sep. 26, 2016.
European Office Action corresponding to EP 12 15 2541.4 dated Sep. 27, 2016.
Australian Patent Examination Report No. 1 corresponding to AU 2012268923 dated Sep. 28, 2016.
Chinese First Office Action corresponding to CN 2013107068710 dated Dec. 16, 2016.
Chinese First Office Action corresponding to CN 201310646606.8 dated Dec. 23, 2016.
Japanese Office Action corresponding to JP 2013-000321 dated Jan. 4, 2017.
Extended European Search Report corresponding to EP 16 16 6367.9 dated Jan. 16, 2017.
Australian Examination Report No. 1 corresponding to AU 2013206777 dated Feb. 1, 2017.
Chinese Second Office Action corresponding to CN 2013103036903 dated Feb. 23, 2017.
Japanese Office Action corresponding to JP 2013-175379 dated Mar. 1, 2017.
Chinese First Office Action corresponding to CN 201410028462.4 dated Mar. 2, 2017.
Chinese First Office Action corresponding to CN 201410084070 dated Mar. 13, 2017.
Extended European Search Report corresponding to EP 16 19 6549.6 dated Mar. 17, 2017.
Japanese Office Action corresponding to JP 2013-147701 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to AU 2013206804 dated Mar. 21, 2017.
Australian Examination Report No. 1 corresponding to AU 2013211499 dated May 4, 2017.
Australian Examination Report No. 1 corresponding to AU 2014201008 dated May 23, 2017.
European Office Action corresponding to EP 15 17 4146.9 dated May 15, 2017.
Japanese Office Action corresponding to JP 2013-154561 dated May 23, 2017.
European Office Action corresponding to EP 12 19 4784.0 dated May 29, 2017.
Japanese Office Action corresponding to JP 2013-169083 dated May 31, 2017.
Australian Examination Report No. 1 corresponding to AU 2013213767 dated Jun. 29, 2017.
Australian Examination Report No. 2 corresponding to AU 2012261752 dated Jul. 7, 2017.
Australian Examination Report No. 1 corresponding to AU 2013266989 dated Jul. 10, 2017.
Extended European Search Report corresponding to EP 14 15 3609.4 dated Jul. 14, 2017.
Australian Examination Report No. 1 corresponding to AU 2013234418 dated Jul. 14, 2017.
Extended European Search Report corresponding to EP 14 15 3610.2 dated Jul. 17, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200109 dated Jul. 20, 2017.
Australian Examination Report No. 1 corresponding to AU 2014200074 dated Jul. 20, 2017.
Japanese Office Action corresponding to JP 2013-250857 dated Aug. 17, 2017.
Japanese Office Action corresponding to JP 2013-229471 dated Aug. 17, 2017.
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp).
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; (10 pp).
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; (8 pp).
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; (1 p).
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; (2 pp).
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; (5 pp).
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; (6 pp).
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; (7 pp).
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; (3 pp).
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; (3 pp).
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; (3 pp).
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; (4 pp).
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; (4 pp).
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; (7 pp).
European Search Report corresponding to EP 12 15 2541.4, completed Apr. 23, 2012 and dated May 3, 2012; (10 pp).
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; (8 pp).
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; (9 pp).
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; (8 pp).
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; (10 pp).
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; (8 pp).
Extended European Search Report corresponding to EP 07 00 58425, completed May 13, 2013 and dated May 29, 2013; (7 pp).
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp).
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages.
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp).
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp).
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp).
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp).
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp).
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp).
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp).
Extended European Search corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp).
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp).
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp).
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and Aug. 29, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp).
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp).
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp).
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp).
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp).
European Office Action corresponding to EP 12 198 776.2 dated Apr. 7, 2015.
European Office Action corresponding to EP 13 156 297.7 dated Apr. 10, 2015.
Australian Examination Report No. 1 corresponding to AU 2011250822 dated May 18, 2015.
European Office Action corresponding to EP 12 186 175.1 dated Jun. 1, 2015.
Chinese Office Action corresponding to CN 201010517292.8 dated Jun. 2, 2015.
Extended European Search Report corresponding to EP 14 17 4814.5 dated Jun. 9, 2015.
Australian Examination Report No. 1 corresponding to AU 2014200584 dated Jun. 15, 2015.
European Office Action corresponding to EP 13 180 881.8 dated Jun. 19, 2015.
European Office Action corresponding to EP 14 157 195.0 dated Jul. 2, 2015.
Extended European Search Report corresponding to EP 12 19 6902.6 dated Aug. 6, 2015.
Extended European Search Report corresponding to EP 14 15 2060.1 dated Aug. 14, 2015.
Chinese Office Action corresponding to CN 201210129787.2 dated Aug. 24, 2015.
Canadian Office Action corresponding to CA 2,665,206 dated Nov. 19, 2013.
Chinese Notification of Reexamination corresponding to CN 201010517292.8 dated Jun. 2, 2015.
Japanese Office Action corresponding to JP 2014-216989 dated Sep. 11, 2015.
Canadian First Office Action corresponding to CA 2,686,105 dated Sep. 17, 2015.
Japanese Office Action corresponding to JP 2012-040188 dated Oct. 21, 2015.
European Communication corresponding to EP 13 17 6895.4 dated Nov. 5, 2015.
Chinese First Office Action corresponding to CN 201210544552 dated Nov. 23, 2015.
Chinese First Office Action corresponding to CN 201210545228 dated Nov. 30, 2015.
Extended European Search Report corresponding to EP 15 18 0491.1 dated Dec. 9, 2015.
Extended European Search Report corresponding to EP 15 18 3819.0 dated Dec. 11, 2015.
Canadian Office Action corresponding to CA 2,697,819 dated Jan. 6, 2016.
Canadian Office Action corresponding to CA 2,696,419 dated Jan. 14, 2016.
European Office Action corresponding to EP 12 19 8776.2 dated Jan. 19, 2016.
Extended European Search Report corresponding to EP 15 17 4146.9 dated Jan. 20, 2016.
Chinese First Office Action corresponding to CN 201310353628.5 dated Jan. 25, 2016.
Extended European Search Report corresponding to EP 12 19 6912.5 dated Feb. 1, 2016.
Japanese Office Action corresponding to JP 2012-098903 dated Feb. 22, 2016.
Extended European Search Report corresponding to EP 12 19 8753.1 dated Feb. 24, 2016.
Chinese First Office Action corresponding to CN 201410449019.4 dated Mar. 30, 2016.
Extended European Search Report corresponding to EP 16 15 0232.3 dated Apr. 12, 2016.
European Office Action corresponding to EP 11 18 3256.4 dated Apr. 20, 2016.
Australian Examination Report No. 1 corresponding to AU 2012244169 dated May 10, 2016.
European Office Action corresponding to EP 10 25 0715.9 dated May 12, 2016.
Chinese First Office Action corresponding to CN 201410778512.0 dated May 13, 2016.
Australian Examination Report No. 1 corresponding to AU 2012227358 dated May 16, 2016.
Japanese Office Action corresponding to JP 2012-040188 dated May 17, 2016.
Australian Examination Report No. 1 corresponding to AU 2012244380 dated May 20, 2016.
Australian Examination Report No. 1 corresponding to AU 2014227480 dated May 21, 2016.
Australian Examination Report No. 1 corresponding to AU 2012254977 dated May 30, 2016.
Partial European Search Report issued in European Application No. 18158993.8 dated Oct. 16, 2018.
Related Publications (1)
Number Date Country
20180242975 A1 Aug 2018 US
Provisional Applications (1)
Number Date Country
62464627 Feb 2017 US