The present disclosure relates to a surgical apparatus having a buttress material incorporated therewith. More particularly, the present disclosure relates to a surgical stapling apparatus including a detachable surgical buttress and/or an endoscopic surgical stapling apparatus that includes a detachable surgical buttress.
Surgical devices for grasping or clamping tissue between opposing jaw structure and then joining tissue by surgical fasteners are well known in the art. In some instruments a knife is provided to cut the tissue which has been joined by the fasteners. The fasteners are typically in the form of surgical staples but two-part polymeric fasteners can also be utilized.
Instruments for this purpose can include two elongated jaw members which are respectively used to capture or clamp tissue. In certain surgical staplers, one of the jaw members carries a staple cartridge which houses a plurality of staples arranged in at least two lateral rows while the other jaw member has an anvil that defines a surface for forming the staple legs as the staples are driven from the staple cartridge. The stapling operation is effected by cam members that travel longitudinally through the staple cartridge, with the cam members acting upon staple pushers to sequentially eject the staples from the staple cartridge. A knife can travel between the staple rows to longitudinally cut and/or open the stapled tissue between the rows of staples. Such instruments are disclosed, for example, in U.S. Pat. Nos. 3,079,606 and 3,490,675.
Another stapler disclosed in U.S. Pat. No. 3,499,591 also applies a double row of staples on each side of the incision. This patent discloses a surgical stapler that has a disposable loading unit in which a cam member moves through an elongate guide path between two sets of staggered staple carrying grooves. Staple drive members are located within the grooves and are positioned in such a manner so as to be contacted by the longitudinally moving cam member to effect ejection of the staples from the staple cartridge of the disposable loading unit. Other examples of such staplers are disclosed in U.S. Pat. Nos. 4,429,695 and 5,065,929.
Each of the instruments described above is designed for use in surgical procedures in which surgeons have direct manual access to the operative site. However, in endoscopic or laparoscopic procedures, surgery is performed through a small incision or through a narrow cannula inserted through small entrance wounds in the skin. In order to address the specific needs of endoscopic and/or laparoscopic surgical procedures, endoscopic surgical stapling devices have been developed and are disclosed in, for example, U.S. Pat. No. 5,040,715 (Green, et al.); U.S. Pat. No. 5,307,976 (Olson, et al.); U.S. Pat. No. 5,312,023 (Green, et al.); U.S. Pat. No. 5,318,221 (Green, et al.); U.S. Pat. No. 5,326,013 (Green, et al.); U.S. Pat. No. 5,332,142 (Robinson, et al.); and U.S. Pat. No. 6,241,139 (Milliman et al.), the entire contents of each of which are hereby incorporated herein by reference.
Tyco Healthcare Group, LP, the assignee of the present application, has manufactured and marketed endoscopic stapling instruments, such as the Multifire ENDO GIA™ 30 and Multifire ENDO GIA™ 60 instruments, for a number of years. These instruments include a surgical stapling apparatus and a loading unit. Typically, the loading unit is attached to the apparatus immediately prior to surgery. After use, the loading unit can be removed from the apparatus and a new loading unit can be fastened to the apparatus to perform additional stapling and/or cutting operations. These instruments have provided significant clinical benefits. Nonetheless, improvements to these instruments are still desirable.
When stapling relatively thin or fragile tissues, it is important to effectively seal the staple line against air or fluid leakage. Additionally, it is often necessary to reinforce the staple line against the tissue to prevent tears in the tissue or pulling of the staples through the tissue. One method of preventing tears or pull through involves the placement of a biocompatible fabric reinforcing material, or “buttress” material, between the staple and the underlying tissue. In this method, a layer of buttress material is placed against the tissue and the tissue is stapled in conventional manner. In another method, the buttress material is positioned on the stapling instrument itself prior to stapling the tissue. An exemplary example of this is disclosed in U.S. Pat. No. 5,542,594 to McKean et al., the entire content of which is incorporated herein by reference. In McKean et al., a tube of buttress material is slipped over the jaw of the stapler. The stapler is then actuated to staple the subject tissue and secure the buttress material between the tissue and staple line to reinforce the tissue and staple line.
In accordance with the present disclosure a surgical stapling apparatus is provided including a housing; a handle supported by the housing; an elongated body extending distally from the housing; and a tool assembly at the distal end of the elongated body. The tool assembly has a cartridge assembly including a cartridge having a plurality of surgical fasteners therein, and an anvil assembly, wherein at least one of the cartridge assembly and anvil assembly being movable in relation to the other of the cartridge assembly and anvil assembly, wherein the anvil assembly includes an anvil plate, and wherein each of the anvil plate and the staple cartridge define an elongate longitudinal slot. The surgical stapling apparatus further includes a surgical buttress releasably secured to a tissue contacting surface of at least one of the anvil plate and the staple cartridge, wherein each surgical buttress is secured to the at least one of the anvil assembly and the cartridge assembly by at least one anchor; a release assembly associated with the at least one of the anvil assembly and the cartridge assembly; and a drive assembly slidably translatable through the tool assembly from a proximal position to a distal position, wherein the drive assembly actuates the release assembly to thereby release the anchor and to free the surgical buttress from the at least one of the anvil assembly and cartridge assembly.
The release assembly may grip the at least one anchor prior to an actuation of the drive assembly.
The at least one of the anvil assembly and the cartridge assembly may define a side slot for receiving an end of the at least one anchor therein.
The release assembly may include a first bar extending across the longitudinal slot prior to an actuation of the drive assembly; and a second bar, connected to and actuatable by the first bar, having an end extending at least partially into the side slot, prior to an actuation of the drive assembly.
In use, as the drive assembly is advanced to the distal position, the drive assembly may actuate the first bar of the release assembly which in turn may actuate the second bar of the release assembly to release the anchor disposed within the side slot.
Each of the anvil assembly and the cartridge assembly may include a release assembly. Each of the anvil assembly and the cartridge assembly may define a side slot for receiving the anchor of each surgical buttress.
Each release assembly may include a first bar extending across the longitudinal slot prior to an actuation of the drive assembly; and a second bar, connected to and actuatable by the first bar, having an end extending at least partially into the side slot, prior to an actuation of the drive assembly. In use, as the drive assembly is advanced to the distal position, the drive assembly may actuate the first bar of each release assembly which in turn may actuate the second bar of each release assembly to release the anchor disposed within the each side slot.
At least one of the anvil assembly and the cartridge assembly may include a constricting, open-ended, side slot configured to grip an end of the anchor, and wherein the release assembly may push the end of the anchor out of the side slot, upon a distal advancement of the drive assembly.
The release assembly may include a pusher that is in operative association with the side slot retaining the end of the anchor. The pusher may be actuatable by a distally advancing drive member to push the end of the anchor out of the side slot.
The pusher of the release assembly may be one of pivotally connected to and slidably supported in at least one of the anvil assembly and the cartridge assembly.
The anchor may be a suture engaging the surgical buttress and the at least one of the cartridge assembly and the anvil assembly. The anchor may be an extension of the surgical buttress and engages the at least one of the cartridge assembly and the anvil assembly.
According to another aspect of the present application, a loading unit for use with a surgical stapling apparatus is provided and includes a tool assembly having a cartridge assembly including a cartridge having a plurality of surgical fasteners therein, and an anvil assembly, at least one of the cartridge assembly and the anvil assembly being movable in relation to the other of the cartridge assembly and anvil assembly, wherein the anvil assembly includes an anvil plate and, wherein each of the anvil plate and the staple cartridge define an elongate longitudinal slot; a surgical buttress releasably secured to a tissue contacting surface of at least one of the anvil plate and the staple cartridge, wherein each surgical buttress is secured to the at least one of the anvil assembly and the cartridge assembly by at least one anchor; a release assembly associated with the at least one of the anvil assembly and the cartridge assembly; and a drive assembly slidably translatable through the tool assembly from a proximal position to a distal position, the drive assembly actuating the release assembly to thereby release the anchor to free the surgical buttress from the at least one of the anvil assembly and cartridge assembly.
The release assembly may grip the at least one anchor prior to an actuation of the drive assembly.
At least one of the anvil assembly and the cartridge assembly may define a side slot for receiving an end of the at least one anchor therein.
The release assembly may include a first bar extending across the longitudinal slot prior to an actuation of the drive assembly; and a second bar, connected to and actuatable by the first bar, having an end extending at least partially into the side slot, prior to an actuation of the drive assembly.
In use, as the drive assembly is advanced to the distal position, drive assembly actuates the first bar of the release assembly which in turn actuates the second bar of the release assembly to release the grip on the end of the at least one anchor disposed within the side slot.
Each of the anvil assembly and the cartridge assembly may include a release assembly.
At least one of the anvil assembly and the cartridge assembly may include a constricting, open-ended, side slot configured to grip an end of the anchor disposed therein, and wherein the release assembly may push the end of the anchor out of the side slot, upon a distal advancement of the drive assembly.
Additional advantages will become apparent from the description which follows, taken in conjunction with the accompanying drawings.
The present disclosure will be further described with reference to the accompanying drawings, wherein like reference numerals refer to like parts in the several views, and wherein:
Embodiments of the presently disclosed surgical stapling apparatus and loading unit will now be described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views.
In the drawings and in the description that follows, the term “proximal”, as is traditional, will refer to the end of the stapling apparatus which is closest to the operator, while the term “distal” will refer to the end of the apparatus which is furthest from the operator.
Surgical stapling apparatus 10 is an endoscopic apparatus and includes a handle assembly 12 and an elongated body 14 extending from handle assembly 12. A loading unit 16 is releasably secured to the distal end of elongated body 14. Furthermore, the present disclosure contemplates surgical stapling apparatus that have a replaceable cartridge that is received in the jaws of the apparatus.
Loading unit 16 includes a tool assembly 17 having a cartridge assembly 18 housing a plurality of surgical fasteners or staples 84 (see
A rotatable member 28 is mounted on the forward end of barrel portion 26 to facilitate rotation of elongated body 14 and attached loading unit 16 with respect to handle assembly 12. An articulation lever 30 is also mounted on the forward end of barrel portion 26 adjacent rotatable member 28 to facilitate articulation of tool assembly 17. Preferably, a pair of knobs 32 are movably positioned along barrel portion 26. Knobs 32 are advanced distally to approximate or close cartridge and/or anvil assembly 18, 20, and retracted proximally to unapproximate or open cartridge and/or anvil assembly 18, 20.
Loading unit 16 is desirably selectively removably couplable to elongated body 14. Loading unit 16 includes a housing portion 36 having a proximal end adapted to releasably engage the distal end of elongated body 14. A mounting assembly 38 is pivotally secured at “P” to the distal end of housing portion 36, and is configured to receive the proximal end of tool assembly 17 such that pivotal movement of tool assembly 17 about an axis at “P”, perpendicular to the longitudinal axis of housing portion 36, effects articulation of tool assembly 17.
With general reference to
Proximal end 56 of drive beam 52 of drive assembly 50 includes a pair of resilient engagement fingers that receive a pusher. The pusher is dimensioned and configured to mountingly engage a drive member, e.g., a drive rod or control rod (not shown) when the proximal end of loading unit 16 is engaged with elongated body 14 of surgical stapling apparatus 10. The control rod functions to impart axial movement of drive assembly 50 from handle assembly 12.
Distal end 54 of drive beam 52 of drive assembly 50 includes a head 60 with a laterally extending upper portion 64a, a laterally extending lower portion 64b, and a central wall portion 62. A distal edge of central wall portion 62 defines a knife blade or the like 66.
As seen in
With continued reference to
As used herein the term anchor is understood to include and is not limited to sutures, threads, tethers, straps, bands, lines, wires, cables, fasteners, tacks or any other material suitable for the intended purpose disclosed herein. In certain embodiments, the anchor is an extension of the staple line reinforcement material discussed below. The anchor may comprise an integral part of the staple line reinforcement material, or may be formed from the same or a similar material and attached to the staple line reinforcement material.
As seen in
Surgical anvil buttress “B1” includes a proximal pair of notches formed in side edges aligned with the proximal pair of recesses 70d of anvil plate 70, a distal pair of notches formed in side edges thereof aligned with the distal pair of recesses 70e of anvil plate 70, and a proximal notch formed in a proximal edge thereof aligned with longitudinal slot 70b when surgical anvil buttress “B1” is secured to anvil assembly 20. Surgical anvil buttress “B1” further includes a tongue or tab extending from a distal edge thereof to facilitate with the attachment of surgical anvil buttress “B1” to anvil assembly 20 during the assembly process. It is contemplated that the tongue is removed from surgical anvil buttress “B1” following securement of surgical anvil buttress “B1” to anvil assembly 20 and prior to packaging or shipment.
As seen in
Release assembly 74 further includes a lock or anchor bar 76 pivotally connected to anvil plate 70 (as seen in
Suture release assembly 74 further includes an anchor bar actuation member 77 pivotally connected to anvil plate 70 (as seen in
As seen in
As seen in
Suture release assembly 74 is used by a manufacturer during the assembly process of surgical stapling apparatus 10 to secure, with a surgical suture or tether, a surgical anvil buttress “B” to a tissue contacting surface of the anvil plate 70, and by the end user of surgical stapling apparatus 10 to automatically release or free the surgical anvil buttress “B” from the tissue contacting surface of the anvil plate 70 upon a complete firing of the surgical stapling apparatus 10.
With reference to
With the second end of the surgical suture “S1” disposed in the pair of distal recesses 70e, and with the surgical suture “S1” pulled taught across the surgical anvil buttress “B”, a tool (not shown) is inserted through arcuate slot 75a of guide plate 75 and engaged with an opening provided in the pin 77d of release bar 77c. With reference to
In operation, with surgical anvil buttress “B1” secured against the lower surface of anvil plate 70, during firing of surgical stapling apparatus 10, as drive assembly 50 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 66 slices through a central section of the proximal suture “S2”, thereby freeing the proximal end of the surgical anvil buttress “B1” from anvil assembly 20. During use, as the firing stroke of surgical stapling apparatus 10 is nearing completion and as drive assembly 50 approaches a distal end of knife slot 70b of anvil plate 70, as seen in
As seen in
A central longitudinal slot 82c is formed in and extends along the length of staple cartridge 82 to facilitate passage of central wall portion 62 of head 60 therethrough. During operation of surgical stapler 10, actuation sled 90 translates through longitudinal slots 82b of staple cartridge 82 to advance cam wedges 90a into sequential contact with pushers 92, to cause pushers 92 to translate vertically within retention slots 82a and urge fasteners 84 (e.g., staples) from slots 82a into the staple forming cavities 70a of anvil plate 70 of anvil assembly 20.
With continued reference to
As seen in
In one particular embodiment, a first end of each anchor “S” includes a knot, stop or the like (not shown) sized so as to not pass through one recess of the proximal pair of recesses 82e and a second end of each anchor “S” passes over, and transversely across, surgical cartridge buttress “B2”, at least once, and back through the other recess of the proximal pair of recesses 82e. For example, the second end of each anchor “S” may be pinched or cinched in the other recess of the proximal pair of recesses 82e so as to anchor the second end of the anchor “S” and secure the surgical cartridge buttress “B2” against the tissue contacting surface of staple cartridge 82. Similarly, an anchor “S3” is used to extend transversely across surgical cartridge buttress “B2” and into engagement with the distal pair of recesses 82f.
In a further embodiment, the release assembly is arranged to cut the suture “S.” The arcuate slot 75a on the guide plate 75 extends in the opposite direction so that it is arranged to drive the anchor bar 95 toward the suture “S.” The surface of the anchor bar 76 that faces the suture S includes a sharpened edge and cuts the suture when actuated by the drive assembly.
Surgical cartridge buttress “B2” includes a proximal pair of notches formed in side edges aligned with the proximal pair of recesses 82e of staple cartridge 82, a distal pair of notches formed in side edges thereof aligned with the distal pair of recesses 82f of staple cartridge 82, and a proximal notch formed in a proximal edge thereof aligned with longitudinal slot 82c when surgical cartridge buttress “B2” is secured to staple cartridge 82. Surgical cartridge buttress “B2” further includes a tongue or tab extending from a distal edge thereof to facilitate with the attachment of surgical cartridge buttress “B2” to staple cartridge 82 during the assembly process. It is contemplated that a width of surgical cartridge buttress “B2” may be reduced in a proximal portion thereof. It is further contemplated that the tongue is removed from surgical cartridge buttress “B2” following securement of surgical cartridge buttress “B2” to staple cartridge 82 and prior to packaging or shipment.
As seen in
Release assembly 94 further includes an anchor bar actuation member 97 pivotally connected to anchor bar 95 (as seen in
In operation, rotation of actuation member 97 in a first direction, about its pivot point, results in second cam surface 97b pressing against a surface 82g (see
As seen in
As seen in
Suture release assembly 94 is used by a manufacturer during the assembly process of surgical stapling apparatus 10 to secure, with an anchor, surgical suture, or tether “S”, a surgical cartridge buttress “B2” (see
With reference to
As seen in
In operation, with surgical cartridge buttress “B1” secured against the tissue contacting surface of staple cartridge 82, during firing of surgical stapling apparatus 10, as drive assembly 50 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 66 slices through a central section of the proximal suture “S4”, thereby freeing the proximal end of the surgical cartridge buttress “B2” from staple cartridge 82. During use, as the firing stroke of surgical stapling apparatus 10 is nearing completion and as drive assembly 50 approaches a distal end of central longitudinal slot 82c of staple cartridge 82, as seen in
As drive assembly 50 is advanced from the proximal position to the distal position, knife blade 66 thereof slices or cuts longitudinally through both surgical anvil buttress “B1” and surgical cartridge buttress “B2”, thereby dividing the buttresses “B1, B2” substantially in half. Additionally, as drive assembly 50 is advanced from a proximal-most position to a distal-most position, upstanding cam wedges 90a of actuation sled 90 actuates pushers 92, to cause pushers 92 to translate vertically within retention slots 82a and urge fasteners 84 from slots 82a. As fasteners 84 (e.g., staples) are urged from slots 82a of staple cartridge 82, legs of fasteners 84 penetrate and pass through both surgical anvil buttress “B1” and surgical cartridge buttress “B2”, through any tissue (not shown) interposed between surgical anvil buttress “B1” and surgical cartridge buttress “B2”, and are formed against or within staple forming cavities 70a of anvil plate 70 of anvil assembly 20. Buttresses “B1, B2” preferably include perforations that divide the buttresses and facilitate removal of the apparatus from the tissue.
According to the present disclosure, surgical anvil buttress “B1” and/or surgical cartridge buttress “B2” is pre-loaded (i.e., from the manufacturer) onto anvil assembly 20 or cartridge assembly 18, respectively, of the loading unit 16. After the loading unit is fired, an additional unfired loading unit, with or without buttresses “B”, can be loaded onto the surgical apparatus. In certain embodiments, the replaceable loading unit is a removable cartridge that can be inserted into support channel of carrier 80. A buttress and release assembly may be pre-loaded onto the removable cartridge and means for the user of the surgical apparatus to load a buttress onto the anvil assembly can be provided. For example, a buttress having an adhesive can be used. Additional or replacement buttresses “B” for anvil assembly 20 and/or cartridge assembly 18 may be secured to either anvil assembly 20 or cartridge assembly 18 as needed or desired.
In a further embodiment, the release assembly may be arranged to cut the suture “S.” The cam surface 97b on the actuation member 97 may be arranged to cam the anchor bar 95 toward the suture “S.” The surface of the anchor bar 97 that faces the suture “S” may include a sharpened edge and may cut the suture when actuated by the drive assembly.
Turning now to
As seen in
Release assembly 174 further includes a pusher bar 177 pivotally connected to link arm 175 and slidably disposed between anvil plate 170 and cover plate 172. Pusher bar 177 includes a body portion 177a having a substantially rectangular configuration and a head 177b, extending from a corner of body portion 177a, and having a substantially circular or rounded configuration. Head 177b of pusher bar 177 is configured and dimensioned for pivotable and/or rotatable connection in pocket 175c of link arm 175.
As seen in
As seen in
With reference to
In operation, with a surgical anvil buttress (not shown) secured against the lower surface of anvil plate 170, during firing of the surgical stapling apparatus, as drive assembly 150 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 166 slices through a central section of the proximal suture (not shown), thereby freeing the proximal end of the surgical anvil buttress (not shown) from anvil assembly 120. During use, as the firing stroke of the surgical stapling apparatus is nearing completion and as drive assembly 150 approaches a distal-most end of knife slot 170b of anvil plate 170, as seen in
As seen in
Release assembly 194 further includes a pusher member 196 having a head portion 196a pivotally connected to boss 195b of retainer 195. Pusher member 196 further includes a first leg member 196b extending from head portion 196a and a second leg member 196c connected to a free end of first leg member 196b via a living hinge connection 196d. Pusher member 196 further includes piston 196e connected to a free end of second leg member 196c via a living hinge connection 196f. Piston 196e is slidably disposed and translatable within recess 195c of retainer 195. In certain other embodiments, the pusher is a linkage assembly having a first link pivotably connected to the cartridge at one end. The other end of the first link is pivotably connected to a first end of a second link. The opposite, second, end of the second link is confined in the recess of the retainer.
As seen in
As seen in
With reference to
In operation, with surgical cartridge buttress (not shown) secured against the tissue contacting surface of staple cartridge 182, during firing of surgical stapling apparatus 10, as drive assembly 150 is advanced (i.e., moved from a proximal-most position to a distal-most position), knife blade 166 slices through a central section of a proximal suture (not shown), thereby freeing the proximal end of the surgical cartridge buttress from staple cartridge 182. During use, as the firing stroke of surgical stapling apparatus 10 is nearing completion and as drive assembly 150 approaches a distal end of central longitudinal slot 182c of staple cartridge 182, as seen in
Turning now to
As seen in
Release assembly 274 further includes a pusher 277 slidably disposed between anvil plate 270 and cover plate 272. As seen in
As seen in
As seen in
In operation, with an surgical anvil buttress (not shown) secured against the lower surface of anvil plate 270, during firing of the surgical stapling apparatus, as drive assembly 250 approaches a distal-most end of knife slot 270b of anvil plate 270, drive assembly 250 contacts pusher 277, thus driving pusher 277 distally. As pusher 277 is driven distally, as seen in
Turning now to
As seen in
As seen in
As seen in
In operation, with a surgical anvil buttress (not shown) secured against the lower surface of anvil plate 370, during firing of the surgical stapling apparatus, as drive assembly 350 approaches a distal-most end of knife slot 370b of anvil plate 370, as seen in
In a further embodiment, the driving head portion may include a sharpened edge instead of cam surface 374c. As the driving head portion is moved distally, the suture “S1” is caught between the sharpened edge of the driving head portion and the side of the distal recess 370e, severing the suture “S1.”
Turning now to
As seen in
Release assembly 494 further includes a cam member 496 having a head portion 496a pivotally connected to boss 495b of retainer 495. Cam member 496 further includes a body portion 496b extending from head portion 496a. Body portion 496b defines a first cam surface 496c and a second cam surface 496d each extending substantially tangentially to an axis of rotation of cam member 496.
Release assembly 494 further includes a sled 497 slidably disposed within channel 495c of retainer 495. Sled 497 includes a body portion 497a defining a cam surface 497b oriented to operatively engage second cam surface 496d of cam member 496, and a side wall 497c in registration with the one of the pair of distal recesses 482f of staple cartridge 482 that is in registration with recess 495c of retainer 495.
As seen in
As seen in
With reference to
In operation, with a surgical cartridge buttress (not shown) secured against the tissue contacting surface of staple cartridge 482, during firing of the surgical stapling apparatus, as drive assembly 450 approaches a distal end of central longitudinal slot 482c of staple cartridge 482, as seen in
As drive assembly 450 is further advanced distally, drive assembly 450 presses against first cam surface 496c of cam member 496, causing cam member 496 to rotate. As cam member 496 is rotated, second cam surface 496d thereof contacts and presses against cam surface 497b of sled 497 thus causing sled 497 to translate in recess 495c of retainer 495. As sled 497 is translated through recess 495c, side wall 497c of sled 497 engages the second end of suture “S3” and urges suture “S3” out of the distal recess 482f that is registration therewith to release the second end of suture “S3” therefrom. With the second end of surgical suture “S3” released or free from distal recess 482f, the distal end of the surgical cartridge buttress is free to separate from the tissue contacting surface of staple cartridge 482.
According to further embodiments of the present disclosure, it is contemplated that buttresses “B” may be provided or formed with integral wings or tabs extending therefrom for insertion and/or receipt into distal and/or proximal recesses of anvil assembly and/or cartridge assembly. It is further contemplated that sutures “S” may be affixed to, embedded in or other wise connected to buttresses “B.”
Exemplary surgical buttresses “B” for use with the surgical stapling devices disclosed herein are shown and described in commonly assigned U.S. Pat. Nos. 5,542,594; 5,908,427; 5,964,774; 6,045,560; 7,823,592; and 7,938,307, the entire contents of each of which is incorporated herein by reference.
The present application is directed to a variety of ways of retaining a surgical buttress on a surgical device, and allowing the release of the surgical buttress as needed by the surgeon. This can include an anchor for holding the surgical buttress to the surgical device, and the anchor can be severed by a blade, retained by grasping or cinching and later released by pushing or moving a retainer away from the anchor. The following patent applications are hereby incorporated by reference herein: application Ser. No. 12/414,943 (now U.S. Pat. No. 8,011,550), and Ser. No. 12/414,961 (Now U.S. Pat. No. 7,967,179).
Surgical buttresses “B” may be fabricated from a suitable biocompatible and bioabsorbable material. Surgical buttresses “B” may be fabricated from a non-absorbent material which does not retain fluid. Surgical buttresses “B” may be fabricated from “BIOSYN” made from GLYCOMER 631 (a block copolymer), a synthetic polyester composed of glycolide, dioxanone and trimethylene carbonate.
One block of the resulting copolymer contains randomly combined units derived from p-dioxanone (1,4-dioxan-2-one) and trimethylene carbonate (1,3-dioxan-2-one). The second block of the copolymer contains randomly combined units derived from glycolide and p-dioxanone. The resulting polyester is an ABA triblock terpolymer possessing about 60% glycolide, about 14% dioxanone, and about 26% trimethylene carbonate.
It will be understood that various modifications may be made to the embodiments disclosed herein. For example, the stapling apparatus need not apply staples but rather may apply two part fasteners as is known in the art. Further, the length of the linear row of staples or fasteners may be modified to meet the requirements of a particular surgical procedure. Thus, the length of a single stroke of the actuation shaft and/or the length of the linear row of staples and/or fasteners within a disposable loading unit may be varied accordingly. Therefore, the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended thereto.
The present application is a Continuation of U.S. patent application Ser. No. 15/338,520, filed on Oct. 31, 2016, which is a Continuation of U.S. patent application Ser. No. 14/597,541, filed on Jan. 15, 2015, (now U.S. Pat. No. 9,486,215), which is a Continuation-In-Part of U.S. patent application Ser. No. 14/161,027, filed on Jan. 22, 2014, (now U.S. Pat. No. 8,939,344), which is a Continuation Application of U.S. patent application Ser. No. 13/787,921, filed on Mar. 7, 2013, (now U.S. Pat. No. 8,757,466), which is a Continuation of U.S. patent application Ser. No. 13/223,519, filed on Sep. 1, 2011, (now U.S. Pat. No. 8,408,440), which is a Continuation of U.S. patent application Ser. No. 12/414,931, filed on Mar. 31, 2009, (now U.S. Pat. No. 8,016,178), and the disclosures of each of the above-identified applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3054406 | Usher | Sep 1962 | A |
3079606 | Bobrov et al. | Mar 1963 | A |
3124136 | Usher | Mar 1964 | A |
3364200 | Ashton et al. | Jan 1968 | A |
3490675 | Green et al. | Jan 1970 | A |
3499591 | Green | Mar 1970 | A |
3759376 | Lisowski | Sep 1973 | A |
3797494 | Zaffaroni | Mar 1974 | A |
3939068 | Wendt et al. | Feb 1976 | A |
3948666 | Kitanishi et al. | Apr 1976 | A |
4064062 | Yurko | Dec 1977 | A |
4166800 | Fong | Sep 1979 | A |
4282236 | Broom | Aug 1981 | A |
4347847 | Usher | Sep 1982 | A |
4354628 | Green | Oct 1982 | A |
4416698 | McCorsley, III | Nov 1983 | A |
4429695 | Green | Feb 1984 | A |
4452245 | Usher | Jun 1984 | A |
4605730 | Shalaby et al. | Aug 1986 | A |
4626253 | Broadnax, Jr. | Dec 1986 | A |
4655221 | Devereux | Apr 1987 | A |
4834090 | Moore | May 1989 | A |
4838884 | Dumican et al. | Jun 1989 | A |
4927640 | Dahlinder et al. | May 1990 | A |
4930674 | Barak | Jun 1990 | A |
5002551 | Linsky et al. | Mar 1991 | A |
5014899 | Presty et al. | May 1991 | A |
5040715 | Green et al. | Aug 1991 | A |
5057334 | Vail | Oct 1991 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5112496 | Dhawan et al. | May 1992 | A |
5162430 | Rhee et al. | Nov 1992 | A |
5205459 | Brinkerhoff et al. | Apr 1993 | A |
5263629 | Trumbull et al. | Nov 1993 | A |
5281197 | Arias et al. | Jan 1994 | A |
5307976 | Olson et al. | May 1994 | A |
5312023 | Green et al. | May 1994 | A |
5314471 | Brauker et al. | May 1994 | A |
5318221 | Green et al. | Jun 1994 | A |
5324775 | Rhee et al. | Jun 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5332142 | Robinson et al. | Jul 1994 | A |
5344454 | Clarke et al. | Sep 1994 | A |
5392979 | Green et al. | Feb 1995 | A |
5397324 | Carroll et al. | Mar 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5410016 | Hubbell et al. | Apr 1995 | A |
5411481 | Allen | May 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5441193 | Gravener | Aug 1995 | A |
5441507 | Wilk | Aug 1995 | A |
5443198 | Viola et al. | Aug 1995 | A |
5468253 | Bezwada et al. | Nov 1995 | A |
5484913 | Stilwell et al. | Jan 1996 | A |
5503638 | Cooper et al. | Apr 1996 | A |
5514379 | Weissleder et al. | May 1996 | A |
5542594 | McKean | Aug 1996 | A |
5543441 | Rhee et al. | Aug 1996 | A |
5549628 | Cooper et al. | Aug 1996 | A |
5550187 | Rhee et al. | Aug 1996 | A |
5575803 | Cooper et al. | Nov 1996 | A |
5645915 | Kranzler et al. | Jul 1997 | A |
5653756 | Clarke et al. | Aug 1997 | A |
5683809 | Freeman et al. | Nov 1997 | A |
5690675 | Sawyer et al. | Nov 1997 | A |
5702409 | Rayburn et al. | Dec 1997 | A |
5752965 | Francis et al. | May 1998 | A |
5752974 | Rhee et al. | May 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5766188 | Igaki | Jun 1998 | A |
5769892 | Kingwell | Jun 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5810855 | Rayburn et al. | Sep 1998 | A |
5814057 | Oi et al. | Sep 1998 | A |
5819350 | Wang | Oct 1998 | A |
5833695 | Yoon | Nov 1998 | A |
5843096 | Igaki et al. | Dec 1998 | A |
5871135 | Williamson IV et al. | Feb 1999 | A |
5874500 | Rhee et al. | Feb 1999 | A |
5895412 | Tucker | Apr 1999 | A |
5895415 | Chow et al. | Apr 1999 | A |
5902312 | Frater | May 1999 | A |
5908427 | McKean | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5931847 | Bittner et al. | Aug 1999 | A |
5957363 | Heck | Sep 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6019791 | Wood | Feb 2000 | A |
6030392 | Dakov | Feb 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6063097 | Oi et al. | May 2000 | A |
6080169 | Turtel | Jun 2000 | A |
6093557 | Pui et al. | Jul 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6142933 | Longo et al. | Nov 2000 | A |
6149667 | Hovland et al. | Nov 2000 | A |
6152943 | Sawhney | Nov 2000 | A |
6155265 | Hammerslag | Dec 2000 | A |
6156677 | Brown Reed et al. | Dec 2000 | A |
6165201 | Sawhney et al. | Dec 2000 | A |
6179862 | Sawhney | Jan 2001 | B1 |
6210439 | Firmin et al. | Apr 2001 | B1 |
6214020 | Mulhauser et al. | Apr 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6258107 | Balazs et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6270530 | Eldridge et al. | Aug 2001 | B1 |
6273897 | Dalessandro | Aug 2001 | B1 |
6280453 | Kugel et al. | Aug 2001 | B1 |
6299631 | Shalaby | Oct 2001 | B1 |
6309569 | Farrar et al. | Oct 2001 | B1 |
6312457 | DiMatteo et al. | Nov 2001 | B1 |
6312474 | Francis et al. | Nov 2001 | B1 |
6325810 | Hamilton | Dec 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6399362 | Pui et al. | Jun 2002 | B1 |
6436030 | Rehil | Aug 2002 | B2 |
6454780 | Wallace | Sep 2002 | B1 |
6461368 | Fogarty et al. | Oct 2002 | B2 |
6500777 | Wiseman et al. | Dec 2002 | B1 |
6503257 | Grant et al. | Jan 2003 | B2 |
6514283 | DiMatteo et al. | Feb 2003 | B2 |
6514534 | Sawhney | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6551356 | Rousseau | Apr 2003 | B2 |
6566406 | Pathak et al. | May 2003 | B1 |
6568398 | Cohen | May 2003 | B2 |
6590095 | Schleicher et al. | Jul 2003 | B1 |
6592597 | Grant et al. | Jul 2003 | B2 |
6605294 | Sawhney | Aug 2003 | B2 |
6610006 | Amid et al. | Aug 2003 | B1 |
6627749 | Kumar | Sep 2003 | B1 |
6638285 | Gabbay | Oct 2003 | B2 |
6652594 | Francis et al. | Nov 2003 | B2 |
6656193 | Grant et al. | Dec 2003 | B2 |
6656200 | Li et al. | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6673093 | Sawhney | Jan 2004 | B1 |
6677258 | Carroll et al. | Jan 2004 | B2 |
6685714 | Rousseau | Feb 2004 | B2 |
6702828 | Whayne | Mar 2004 | B2 |
6703047 | Sawhney et al. | Mar 2004 | B2 |
6704210 | Myers | Mar 2004 | B1 |
6723114 | Shalaby | Apr 2004 | B2 |
6726706 | Dominguez | Apr 2004 | B2 |
6736823 | Darois et al. | May 2004 | B2 |
6736854 | Vadurro et al. | May 2004 | B2 |
6746458 | Cloud | Jun 2004 | B1 |
6746869 | Pui et al. | Jun 2004 | B2 |
6764720 | Pui et al. | Jul 2004 | B2 |
6773458 | Brauker et al. | Aug 2004 | B1 |
6818018 | Sawhney | Nov 2004 | B1 |
6843252 | Harrison et al. | Jan 2005 | B2 |
6896684 | Monassevitch et al. | May 2005 | B2 |
6927315 | Heinecke et al. | Aug 2005 | B1 |
6939358 | Palacios et al. | Sep 2005 | B2 |
6946196 | Foss | Sep 2005 | B2 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
7009034 | Pathak et al. | Mar 2006 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7060087 | DiMatteo et al. | Jun 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7108701 | Evens et al. | Sep 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128748 | Mooradian et al. | Oct 2006 | B2 |
7134438 | Makower et al. | Nov 2006 | B2 |
7141055 | Abrams et al. | Nov 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7160299 | Baily | Jan 2007 | B2 |
7179268 | Roy et al. | Feb 2007 | B2 |
7210810 | Iversen et al. | May 2007 | B1 |
7214727 | Kwon et al. | May 2007 | B2 |
7232449 | Sharkawy et al. | Jun 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7247338 | Pui et al. | Jul 2007 | B2 |
7279322 | Pui et al. | Oct 2007 | B2 |
7307031 | Carroll et al. | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7311720 | Mueller et al. | Dec 2007 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7347850 | Sawhney | Mar 2008 | B2 |
7377928 | Zubik et al. | May 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7498063 | Pui et al. | Mar 2009 | B2 |
7547312 | Bauman et al. | Jun 2009 | B2 |
7559937 | de la Torre et al. | Jul 2009 | B2 |
7571845 | Viola | Aug 2009 | B2 |
7592418 | Pathak et al. | Sep 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7595392 | Kumar et al. | Sep 2009 | B2 |
7604151 | Hess et al. | Oct 2009 | B2 |
7611494 | Campbell et al. | Nov 2009 | B2 |
7635073 | Heinrich | Dec 2009 | B2 |
7645874 | Saferstein et al. | Jan 2010 | B2 |
7649089 | Kumar et al. | Jan 2010 | B2 |
7655288 | Bauman et al. | Feb 2010 | B2 |
7662409 | Masters | Feb 2010 | B2 |
7662801 | Kumar et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7666198 | Suyker et al. | Feb 2010 | B2 |
7669747 | Weisenburgh, II et al. | Mar 2010 | B2 |
7673782 | Hess et al. | Mar 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7709631 | Harris et al. | May 2010 | B2 |
7717313 | Criscuolo et al. | May 2010 | B2 |
7722642 | Williamson, IV et al. | May 2010 | B2 |
7735703 | Morgan et al. | Jun 2010 | B2 |
7744627 | Orban, III et al. | Jun 2010 | B2 |
7754002 | Maase et al. | Jul 2010 | B2 |
7776060 | Mooradian et al. | Aug 2010 | B2 |
7789889 | Zubik et al. | Sep 2010 | B2 |
7793813 | Bettuchi | Sep 2010 | B2 |
7799026 | Schechter et al. | Sep 2010 | B2 |
7819896 | Racenet | Oct 2010 | B2 |
7823592 | Bettuchi et al. | Nov 2010 | B2 |
7824420 | Eldridge et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7845536 | Viola et al. | Dec 2010 | B2 |
7846149 | Jankowski | Dec 2010 | B2 |
7892247 | Conston et al. | Feb 2011 | B2 |
7909224 | Prommersberger | Mar 2011 | B2 |
7909837 | Crews et al. | Mar 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7942890 | D'Agostino et al. | May 2011 | B2 |
7950561 | Aranyi | May 2011 | B2 |
7951166 | Orban, III et al. | May 2011 | B2 |
7951248 | Fallis et al. | May 2011 | B1 |
7967179 | Olson et al. | Jun 2011 | B2 |
7988027 | Olson et al. | Aug 2011 | B2 |
8011550 | Aranyi | Sep 2011 | B2 |
8011555 | Tarinelli | Sep 2011 | B2 |
8016177 | Bettuchi et al. | Sep 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8033483 | Fortier et al. | Oct 2011 | B2 |
8033983 | Chu et al. | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8062673 | Figuly et al. | Nov 2011 | B2 |
8083119 | Prommersberger | Dec 2011 | B2 |
8091756 | Viola | Jan 2012 | B2 |
8123766 | Bauman et al. | Feb 2012 | B2 |
8123767 | Bauman et al. | Feb 2012 | B2 |
8127975 | Olson et al. | Mar 2012 | B2 |
8133336 | Kettlewell et al. | Mar 2012 | B2 |
8133559 | Lee et al. | Mar 2012 | B2 |
8146791 | Bettuchi et al. | Apr 2012 | B2 |
8152777 | Campbell et al. | Apr 2012 | B2 |
8157149 | Olson et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8167895 | D'Agostino et al. | May 2012 | B2 |
8177797 | Shimoji et al. | May 2012 | B2 |
8178746 | Hildeberg et al. | May 2012 | B2 |
8192460 | Orban, III et al. | Jun 2012 | B2 |
8201720 | Hessler | Jun 2012 | B2 |
8210414 | Bettuchi et al. | Jul 2012 | B2 |
8210453 | Hull et al. | Jul 2012 | B2 |
8225799 | Bettuchi | Jul 2012 | B2 |
8225981 | Criscuolo et al. | Jul 2012 | B2 |
8231043 | Tarinelli et al. | Jul 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8252339 | Figuly et al. | Aug 2012 | B2 |
8252921 | Vignon et al. | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8257391 | Orban, III et al. | Sep 2012 | B2 |
8276800 | Bettuchi | Oct 2012 | B2 |
8286849 | Bettuchi | Oct 2012 | B2 |
8308042 | Aranyi | Nov 2012 | B2 |
8308045 | Bettuchi et al. | Nov 2012 | B2 |
8308046 | Prommersberger | Nov 2012 | B2 |
8312885 | Bettuchi et al. | Nov 2012 | B2 |
8313014 | Bettuchi | Nov 2012 | B2 |
8317790 | Bell et al. | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8348126 | Olson et al. | Jan 2013 | B2 |
8348130 | Shah | Jan 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8367089 | Wan et al. | Feb 2013 | B2 |
8371491 | Huitema et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8371493 | Aranyi et al. | Feb 2013 | B2 |
8372094 | Bettuchi et al. | Feb 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8408440 | Olson et al. | Apr 2013 | B2 |
8408480 | Hull et al. | Apr 2013 | B2 |
8413869 | Heinrich | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8418909 | Kostrzewski | Apr 2013 | B2 |
8424742 | Bettuchi | Apr 2013 | B2 |
8453652 | Stopek | Jun 2013 | B2 |
8453904 | Eskaros et al. | Jun 2013 | B2 |
8453909 | Olson et al. | Jun 2013 | B2 |
8453910 | Bettuchi et al. | Jun 2013 | B2 |
8464925 | Hull et al. | Jun 2013 | B2 |
8470360 | McKay | Jun 2013 | B2 |
8474677 | Woodard, Jr. et al. | Jul 2013 | B2 |
8479968 | Hodgkinson et al. | Jul 2013 | B2 |
8485414 | Criscuolo et al. | Jul 2013 | B2 |
8496683 | Prommersberger et al. | Jul 2013 | B2 |
8511533 | Viola et al. | Aug 2013 | B2 |
8512402 | Marczyk et al. | Aug 2013 | B2 |
8518440 | Blaskovich et al. | Aug 2013 | B2 |
8529600 | Woodard, Jr. et al. | Sep 2013 | B2 |
8540128 | Shelton, IV et al. | Sep 2013 | B2 |
8540131 | Swayze | Sep 2013 | B2 |
8551138 | Orban, III et al. | Oct 2013 | B2 |
8556918 | Bauman et al. | Oct 2013 | B2 |
8561873 | Ingmanson et al. | Oct 2013 | B2 |
8579990 | Priewe | Nov 2013 | B2 |
8584920 | Hodgkinson | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8616430 | Stopek et al. | Dec 2013 | B2 |
8617132 | Golzarian et al. | Dec 2013 | B2 |
8631989 | Aranyi et al. | Jan 2014 | B2 |
8646674 | Schulte et al. | Feb 2014 | B2 |
8668129 | Olson | Mar 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8678263 | Viola | Mar 2014 | B2 |
8679137 | Bauman et al. | Mar 2014 | B2 |
8684250 | Bettuchi et al. | Apr 2014 | B2 |
8701958 | Shelton, IV et al. | Apr 2014 | B2 |
8721703 | Fowler | May 2014 | B2 |
8727197 | Hess et al. | May 2014 | B2 |
8757466 | Olson et al. | Jun 2014 | B2 |
8789737 | Hodgkinson et al. | Jul 2014 | B2 |
8814888 | Sgro | Aug 2014 | B2 |
8820606 | Hodgkinson | Sep 2014 | B2 |
8827133 | Shelton, IV et al. | Sep 2014 | B2 |
8857694 | Shelton, IV et al. | Oct 2014 | B2 |
8864009 | Shelton, IV et al. | Oct 2014 | B2 |
8870050 | Hodgkinson | Oct 2014 | B2 |
8920443 | Hiles et al. | Dec 2014 | B2 |
8920444 | Hiles et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8956390 | Shah et al. | Feb 2015 | B2 |
8967448 | Carter et al. | Mar 2015 | B2 |
9005243 | Stopek et al. | Apr 2015 | B2 |
9010606 | Aranyi et al. | Apr 2015 | B2 |
9010608 | Casasanta, Jr. et al. | Apr 2015 | B2 |
9010609 | Carter et al. | Apr 2015 | B2 |
9010610 | Hodgkinson | Apr 2015 | B2 |
9010612 | Stevenson et al. | Apr 2015 | B2 |
9016543 | Stopek et al. | Apr 2015 | B2 |
9016544 | Hodgkinson et al. | Apr 2015 | B2 |
9027817 | Milliman et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9055944 | Hodgkinson et al. | Jun 2015 | B2 |
9084602 | Gleiman | Jul 2015 | B2 |
9107665 | Hodgkinson et al. | Aug 2015 | B2 |
9107667 | Hodgkinson | Aug 2015 | B2 |
9113871 | Milliman et al. | Aug 2015 | B2 |
9113873 | Marczyk et al. | Aug 2015 | B2 |
9113885 | Hodgkinson et al. | Aug 2015 | B2 |
9113893 | Sorrentino et al. | Aug 2015 | B2 |
9161753 | Prior | Oct 2015 | B2 |
9161757 | Bettuchi | Oct 2015 | B2 |
9186140 | Hiles et al. | Nov 2015 | B2 |
9186144 | Stevenson et al. | Nov 2015 | B2 |
9192378 | Aranyi et al. | Nov 2015 | B2 |
9192379 | Aranyi et al. | Nov 2015 | B2 |
9192380 | Racenet et al. | Nov 2015 | B2 |
9192383 | Milliman | Nov 2015 | B2 |
9192384 | Bettuchi | Nov 2015 | B2 |
9198660 | Hodgkinson | Dec 2015 | B2 |
9198663 | Marczyk et al. | Dec 2015 | B1 |
9204881 | Penna | Dec 2015 | B2 |
9220504 | Viola et al. | Dec 2015 | B2 |
9226754 | D'Agostino et al. | Jan 2016 | B2 |
9237892 | Hodgkinson | Jan 2016 | B2 |
9237893 | Carter et al. | Jan 2016 | B2 |
9277922 | Carter et al. | Mar 2016 | B2 |
9295466 | Hodgkinson et al. | Mar 2016 | B2 |
9326768 | Shelton, IV | May 2016 | B2 |
9326773 | Casasanta, Jr. et al. | May 2016 | B2 |
9328111 | Zhou et al. | May 2016 | B2 |
9345479 | Racenet et al. | May 2016 | B2 |
9351729 | Orban, III et al. | May 2016 | B2 |
9351731 | Carter et al. | May 2016 | B2 |
9351732 | Hodgkinson | May 2016 | B2 |
9358005 | Shelton, IV et al. | Jun 2016 | B2 |
9364229 | D'Agostino et al. | Jun 2016 | B2 |
9364234 | Stopek et al. | Jun 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9402627 | Stevenson et al. | Aug 2016 | B2 |
9414839 | Penna | Aug 2016 | B2 |
9433412 | Bettuchi et al. | Sep 2016 | B2 |
9433413 | Stopek | Sep 2016 | B2 |
9433420 | Hodgkinson | Sep 2016 | B2 |
9445812 | Olson et al. | Sep 2016 | B2 |
9445817 | Bettuchi | Sep 2016 | B2 |
9463260 | Stopek | Oct 2016 | B2 |
9486215 | Olson et al. | Nov 2016 | B2 |
9492170 | Bear et al. | Nov 2016 | B2 |
9504470 | Milliman | Nov 2016 | B2 |
9517164 | Vitaris et al. | Dec 2016 | B2 |
9572576 | Hodgkinson et al. | Feb 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9597077 | Hodgkinson | Mar 2017 | B2 |
9610080 | Whitfield et al. | Apr 2017 | B2 |
9622745 | Ingmanson et al. | Apr 2017 | B2 |
9629626 | Soltz et al. | Apr 2017 | B2 |
9636850 | Stopek et al. | May 2017 | B2 |
9655620 | Prescott et al. | May 2017 | B2 |
9675351 | Hodgkinson et al. | Jun 2017 | B2 |
9681936 | Hodgkinson et al. | Jun 2017 | B2 |
9687262 | Rousseau et al. | Jun 2017 | B2 |
9693772 | Ingmanson et al. | Jul 2017 | B2 |
9708184 | Chan et al. | Jul 2017 | B2 |
9770245 | Swayze et al. | Sep 2017 | B2 |
9775617 | Carter et al. | Oct 2017 | B2 |
9775618 | Bettuchi et al. | Oct 2017 | B2 |
9782173 | Mozdzierz | Oct 2017 | B2 |
9844378 | Casasanta et al. | Dec 2017 | B2 |
9918713 | Zergiebel et al. | Mar 2018 | B2 |
9931116 | Racenet et al. | Apr 2018 | B2 |
10022125 | Stopek et al. | Jul 2018 | B2 |
10098639 | Hodgkinson | Oct 2018 | B2 |
10111659 | Racenet et al. | Oct 2018 | B2 |
10154840 | Viola et al. | Dec 2018 | B2 |
10231734 | Thompson | Mar 2019 | B2 |
10368869 | Olson et al. | Aug 2019 | B2 |
20020028243 | Masters | Mar 2002 | A1 |
20020086990 | Kumar et al. | Jul 2002 | A1 |
20020091397 | Chen | Jul 2002 | A1 |
20020151911 | Gabbay | Oct 2002 | A1 |
20020165559 | Grant et al. | Nov 2002 | A1 |
20020165563 | Grant | Nov 2002 | A1 |
20030065345 | Weadock | Apr 2003 | A1 |
20030078209 | Schmidt | Apr 2003 | A1 |
20030083676 | Wallace | May 2003 | A1 |
20030120284 | Palacios et al. | Jun 2003 | A1 |
20030125676 | Swenson et al. | Jul 2003 | A1 |
20030181927 | Wallace | Sep 2003 | A1 |
20030183671 | Mooradian et al. | Oct 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20040092912 | Jinno et al. | May 2004 | A1 |
20040107006 | Francis et al. | Jun 2004 | A1 |
20040131418 | Budde et al. | Jul 2004 | A1 |
20040254590 | Hoffman et al. | Dec 2004 | A1 |
20040260315 | Dell et al. | Dec 2004 | A1 |
20050002981 | Lahtinen et al. | Jan 2005 | A1 |
20050006429 | Wales et al. | Jan 2005 | A1 |
20050021085 | Abrams et al. | Jan 2005 | A1 |
20050059996 | Bauman et al. | Mar 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050070929 | Dalessandro et al. | Mar 2005 | A1 |
20050118435 | DeLucia et al. | Jun 2005 | A1 |
20050131225 | Kumar et al. | Jun 2005 | A1 |
20050149073 | Arani et al. | Jul 2005 | A1 |
20050154093 | Kwon et al. | Jul 2005 | A1 |
20050228446 | Mooradian et al. | Oct 2005 | A1 |
20050283256 | Sommerich et al. | Dec 2005 | A1 |
20060004407 | Hiles et al. | Jan 2006 | A1 |
20060008505 | Brandon | Jan 2006 | A1 |
20060025816 | Shelton | Feb 2006 | A1 |
20060093672 | Kumar et al. | May 2006 | A1 |
20060121266 | Fandel et al. | Jun 2006 | A1 |
20060135992 | Bettuchi et al. | Jun 2006 | A1 |
20060173470 | Oray et al. | Aug 2006 | A1 |
20060178683 | Shimoji et al. | Aug 2006 | A1 |
20060190027 | Downey | Aug 2006 | A1 |
20060212069 | Shelton, IV | Sep 2006 | A1 |
20060219752 | Arad et al. | Oct 2006 | A1 |
20060271104 | Viola et al. | Nov 2006 | A1 |
20070026031 | Bauman et al. | Feb 2007 | A1 |
20070034669 | de la Torre et al. | Feb 2007 | A1 |
20070049953 | Shimoji et al. | Mar 2007 | A2 |
20070054880 | Saferstein et al. | Mar 2007 | A1 |
20070123839 | Rousseau et al. | May 2007 | A1 |
20070179528 | Soltz et al. | Aug 2007 | A1 |
20070203509 | Bettuchi | Aug 2007 | A1 |
20070203510 | Bettuchi | Aug 2007 | A1 |
20070213522 | Harris et al. | Sep 2007 | A1 |
20070237741 | Figuly et al. | Oct 2007 | A1 |
20070237742 | Figuly et al. | Oct 2007 | A1 |
20070243227 | Gertner | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20080009811 | Cantor | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080110959 | Orban et al. | May 2008 | A1 |
20080125812 | Zubik et al. | May 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080161831 | Bauman et al. | Jul 2008 | A1 |
20080161832 | Bauman et al. | Jul 2008 | A1 |
20080164440 | Maase et al. | Jul 2008 | A1 |
20080169327 | Shelton et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080194805 | Vignon et al. | Aug 2008 | A1 |
20080200949 | Hiles et al. | Aug 2008 | A1 |
20080214695 | Pathak et al. | Sep 2008 | A1 |
20080216855 | Nasca | Sep 2008 | A1 |
20080220047 | Sawhney et al. | Sep 2008 | A1 |
20080230583 | Heinrich | Sep 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090030452 | Bauman et al. | Jan 2009 | A1 |
20090031842 | Kawai et al. | Feb 2009 | A1 |
20090043334 | Bauman et al. | Feb 2009 | A1 |
20090076510 | Bell et al. | Mar 2009 | A1 |
20090076528 | Sgro | Mar 2009 | A1 |
20090078739 | Viola | Mar 2009 | A1 |
20090095791 | Eskaros et al. | Apr 2009 | A1 |
20090095792 | Bettuchi | Apr 2009 | A1 |
20090120994 | Murray et al. | May 2009 | A1 |
20090134200 | Tarinelli et al. | May 2009 | A1 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090220560 | Wan et al. | Sep 2009 | A1 |
20090263441 | McKay | Oct 2009 | A1 |
20090277944 | Dalessandro et al. | Nov 2009 | A9 |
20090277947 | Viola | Nov 2009 | A1 |
20090287230 | D'Agostino et al. | Nov 2009 | A1 |
20100012704 | Racenet et al. | Jan 2010 | A1 |
20100016855 | Ramstein et al. | Jan 2010 | A1 |
20100016888 | Calabrese et al. | Jan 2010 | A1 |
20100065606 | Stopek | Mar 2010 | A1 |
20100065607 | Orban, III et al. | Mar 2010 | A1 |
20100065660 | Hull et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100087840 | Ebersole et al. | Apr 2010 | A1 |
20100096481 | Hull et al. | Apr 2010 | A1 |
20100147921 | Olson | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100147923 | D'Agostino et al. | Jun 2010 | A1 |
20100174253 | Cline et al. | Jul 2010 | A1 |
20100198235 | Pierce | Aug 2010 | A1 |
20100203151 | Hiraoka | Aug 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243711 | Olson et al. | Sep 2010 | A1 |
20100249805 | Olson et al. | Sep 2010 | A1 |
20100264195 | Bettuchi | Oct 2010 | A1 |
20100282815 | Bettuchi et al. | Nov 2010 | A1 |
20100282820 | Kasvikis | Nov 2010 | A1 |
20100331859 | Omori | Dec 2010 | A1 |
20100331880 | Stopek | Dec 2010 | A1 |
20110024476 | Bettuchi et al. | Feb 2011 | A1 |
20110024481 | Bettuchi et al. | Feb 2011 | A1 |
20110034910 | Ross et al. | Feb 2011 | A1 |
20110036894 | Bettuchi | Feb 2011 | A1 |
20110042442 | Viola et al. | Feb 2011 | A1 |
20110046650 | Bettuchi | Feb 2011 | A1 |
20110057016 | Bettuchi | Mar 2011 | A1 |
20110082427 | Golzarian et al. | Apr 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110089220 | Ingmanson et al. | Apr 2011 | A1 |
20110089375 | Chan et al. | Apr 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110166673 | Patel et al. | Jul 2011 | A1 |
20110215132 | Aranyi et al. | Sep 2011 | A1 |
20110270235 | Olson et al. | Nov 2011 | A1 |
20110278346 | Hull et al. | Nov 2011 | A1 |
20110278347 | Olson et al. | Nov 2011 | A1 |
20110284615 | Tarinelli et al. | Nov 2011 | A1 |
20110293690 | Griffin et al. | Dec 2011 | A1 |
20110315742 | Olson et al. | Dec 2011 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120083723 | Vitaris et al. | Apr 2012 | A1 |
20120145767 | Shah et al. | Jun 2012 | A1 |
20120156289 | Blaskovich et al. | Jun 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120197272 | Oray et al. | Aug 2012 | A1 |
20120241491 | Aldridge et al. | Sep 2012 | A1 |
20120241493 | Baxter, III et al. | Sep 2012 | A1 |
20120241499 | Baxter, III et al. | Sep 2012 | A1 |
20120253298 | Henderson et al. | Oct 2012 | A1 |
20120273547 | Hodgkinson et al. | Nov 2012 | A1 |
20130037596 | Bear et al. | Feb 2013 | A1 |
20130105548 | Hodgkinson et al. | May 2013 | A1 |
20130105553 | Racenet et al. | May 2013 | A1 |
20130112732 | Aranyi et al. | May 2013 | A1 |
20130112733 | Aranyi et al. | May 2013 | A1 |
20130112734 | Aranyi et al. | May 2013 | A1 |
20130146641 | Shelton, IV et al. | Jun 2013 | A1 |
20130153633 | Casasanta, Jr. et al. | Jun 2013 | A1 |
20130153634 | Carter et al. | Jun 2013 | A1 |
20130153635 | Hodgkinson | Jun 2013 | A1 |
20130153636 | Shelton, IV et al. | Jun 2013 | A1 |
20130153638 | Carter et al. | Jun 2013 | A1 |
20130153639 | Hodgkinson et al. | Jun 2013 | A1 |
20130153640 | Hodgkinson | Jun 2013 | A1 |
20130153641 | Shelton, IV et al. | Jun 2013 | A1 |
20130161374 | Swayze et al. | Jun 2013 | A1 |
20130181031 | Olson et al. | Jul 2013 | A1 |
20130193186 | Racenet et al. | Aug 2013 | A1 |
20130193190 | Carter et al. | Aug 2013 | A1 |
20130193191 | Stevenson et al. | Aug 2013 | A1 |
20130193192 | Casasanta, Jr. et al. | Aug 2013 | A1 |
20130209659 | Racenet et al. | Aug 2013 | A1 |
20130214030 | Aronhalt et al. | Aug 2013 | A1 |
20130221062 | Hodgkinson | Aug 2013 | A1 |
20130240600 | Bettuchi | Sep 2013 | A1 |
20130240601 | Bettuchi et al. | Sep 2013 | A1 |
20130240602 | Stopek | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130256380 | Schmid et al. | Oct 2013 | A1 |
20130274722 | Kostrzewski et al. | Oct 2013 | A1 |
20130277411 | Hodgkinson et al. | Oct 2013 | A1 |
20130306707 | Viola et al. | Nov 2013 | A1 |
20130310873 | Stopek et al. | Nov 2013 | A1 |
20130327807 | Olson et al. | Dec 2013 | A1 |
20140012317 | Orban et al. | Jan 2014 | A1 |
20140021242 | Hodgkinson et al. | Jan 2014 | A1 |
20140027490 | Marczyk et al. | Jan 2014 | A1 |
20140034704 | Ingmanson et al. | Feb 2014 | A1 |
20140048580 | Merchant et al. | Feb 2014 | A1 |
20140061280 | Ingmanson et al. | Mar 2014 | A1 |
20140061281 | Hodgkinson | Mar 2014 | A1 |
20140084042 | Stopek et al. | Mar 2014 | A1 |
20140097224 | Prior | Apr 2014 | A1 |
20140117066 | Aranyi et al. | May 2014 | A1 |
20140130330 | Olson et al. | May 2014 | A1 |
20140131418 | Kostrzewski | May 2014 | A1 |
20140131419 | Bettuchi | May 2014 | A1 |
20140138423 | Whitfield et al. | May 2014 | A1 |
20140151431 | Hodgkinson et al. | Jun 2014 | A1 |
20140155916 | Hodgkinson et al. | Jun 2014 | A1 |
20140158741 | Woodard, Jr. | Jun 2014 | A1 |
20140158742 | Stopek et al. | Jun 2014 | A1 |
20140166721 | Stevenson et al. | Jun 2014 | A1 |
20140197224 | Penna | Jul 2014 | A1 |
20140203061 | Hodgkinson | Jul 2014 | A1 |
20140217147 | Milliman | Aug 2014 | A1 |
20140217148 | Penna | Aug 2014 | A1 |
20140224686 | Aronhalt et al. | Aug 2014 | A1 |
20140239046 | Milliman | Aug 2014 | A1 |
20140239047 | Hodgkinson et al. | Aug 2014 | A1 |
20140252062 | Mozdzierz | Sep 2014 | A1 |
20150001276 | Hodgkinson et al. | Jan 2015 | A1 |
20150041347 | Hodgkinson | Feb 2015 | A1 |
20150097018 | Hodgkinson | Apr 2015 | A1 |
20150115015 | Prescott et al. | Apr 2015 | A1 |
20150122872 | Olson et al. | May 2015 | A1 |
20150133995 | Shelton, IV et al. | May 2015 | A1 |
20150157321 | Zergiebel et al. | Jun 2015 | A1 |
20150164503 | Stevenson et al. | Jun 2015 | A1 |
20150164506 | Carter et al. | Jun 2015 | A1 |
20150164507 | Carter et al. | Jun 2015 | A1 |
20150196297 | Stopek et al. | Jul 2015 | A1 |
20150209033 | Hodgkinson | Jul 2015 | A1 |
20150209045 | Hodgkinson et al. | Jul 2015 | A1 |
20150209048 | Carter et al. | Jul 2015 | A1 |
20150230796 | Calderoni | Aug 2015 | A1 |
20150231409 | Racenet et al. | Aug 2015 | A1 |
20150327864 | Hodgkinson et al. | Nov 2015 | A1 |
20150351758 | Shelton, IV et al. | Dec 2015 | A1 |
20160022268 | Prior | Jan 2016 | A1 |
20160045200 | Milliman | Feb 2016 | A1 |
20160100834 | Viola et al. | Apr 2016 | A1 |
20160106430 | Carter et al. | Apr 2016 | A1 |
20160128694 | Baxter, III et al. | May 2016 | A1 |
20160157857 | Hodgkinson et al. | Jun 2016 | A1 |
20160174988 | D'Agostino et al. | Jun 2016 | A1 |
20160206315 | Olson | Jul 2016 | A1 |
20160220257 | Casasanta et al. | Aug 2016 | A1 |
20160249923 | Hodgkinson et al. | Sep 2016 | A1 |
20160256166 | Stopek et al. | Sep 2016 | A1 |
20160270793 | Carter et al. | Sep 2016 | A1 |
20160310143 | Bettuchi | Oct 2016 | A1 |
20160338704 | Penna | Nov 2016 | A1 |
20160345977 | Bettuchi | Dec 2016 | A1 |
20160367252 | Olson et al. | Dec 2016 | A1 |
20160367253 | Hodgkinson | Dec 2016 | A1 |
20160367257 | Stevenson et al. | Dec 2016 | A1 |
20170042540 | Olson et al. | Feb 2017 | A1 |
20170049452 | Milliman | Feb 2017 | A1 |
20170056018 | Zeiner | Mar 2017 | A1 |
20170119390 | Schellin et al. | May 2017 | A1 |
20170150967 | Hodgkinson et al. | Jun 2017 | A1 |
20170172575 | Hodgkinson | Jun 2017 | A1 |
20170231629 | Stopek et al. | Aug 2017 | A1 |
20170238931 | Prescott et al. | Aug 2017 | A1 |
20170281328 | Hodgkinson et al. | Oct 2017 | A1 |
20170296188 | Ingmanson et al. | Oct 2017 | A1 |
20170354415 | Casasanta, Jr. et al. | Dec 2017 | A1 |
20180125491 | Aranyi | May 2018 | A1 |
20180140301 | Milliman | May 2018 | A1 |
20180168654 | Hodgkinson et al. | Jun 2018 | A1 |
20180214147 | Merchant et al. | Aug 2018 | A1 |
20180229054 | Racenet et al. | Aug 2018 | A1 |
20180250000 | Hodgkinson et al. | Sep 2018 | A1 |
20180256164 | Aranyi | Sep 2018 | A1 |
20180296214 | Hodgkinson et al. | Oct 2018 | A1 |
20180310937 | Stopek et al. | Nov 2018 | A1 |
20190021734 | Hodgkinson | Jan 2019 | A1 |
20190059878 | Racenet et al. | Feb 2019 | A1 |
20190083087 | Viola et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
2282761 | Sep 1998 | CA |
2 667 434 | May 2008 | CA |
101310680 | Nov 2008 | CN |
101332110 | Dec 2008 | CN |
1602563 | Mar 1950 | DE |
19924311 | Nov 2000 | DE |
0327022 | Aug 1989 | EP |
0594148 | Apr 1994 | EP |
0597148 | May 1994 | EP |
0667119 | Aug 1995 | EP |
1064883 | Jan 2001 | EP |
1256317 | Nov 2002 | EP |
1256318 | Nov 2002 | EP |
1520525 | Apr 2005 | EP |
1621141 | Feb 2006 | EP |
1702570 | Sep 2006 | EP |
1759640 | Mar 2007 | EP |
1815804 | Aug 2007 | EP |
1825820 | Aug 2007 | EP |
1929958 | Jun 2008 | EP |
1994890 | Nov 2008 | EP |
2005894 | Dec 2008 | EP |
2005895 | Dec 2008 | EP |
2039308 | Mar 2009 | EP |
2090231 | Aug 2009 | EP |
2090244 | Aug 2009 | EP |
2090252 | Aug 2009 | EP |
2163211 | Mar 2010 | EP |
2189121 | May 2010 | EP |
2236098 | Oct 2010 | EP |
2236099 | Oct 2010 | EP |
2258282 | Dec 2010 | EP |
2292276 | Mar 2011 | EP |
2311386 | Apr 2011 | EP |
2436348 | Apr 2012 | EP |
2462880 | Jun 2012 | EP |
2491867 | Aug 2012 | EP |
2497431 | Sep 2012 | EP |
2517637 | Oct 2012 | EP |
2586380 | May 2013 | EP |
2604195 | Jun 2013 | EP |
2604197 | Jun 2013 | EP |
2620105 | Jul 2013 | EP |
2620106 | Jul 2013 | EP |
2630922 | Aug 2013 | EP |
2644125 | Oct 2013 | EP |
2762091 | Aug 2014 | EP |
2008595 | Apr 2016 | EP |
2198787 | Mar 2017 | EP |
2000166933 | Jun 2000 | JP |
2002202213 | Jul 2002 | JP |
2007124166 | May 2007 | JP |
2010214132 | Sep 2010 | JP |
9005489 | May 1990 | WO |
9516221 | Jun 1995 | WO |
9622055 | Jul 1996 | WO |
9701989 | Jan 1997 | WO |
9713463 | Apr 1997 | WO |
9817180 | Apr 1998 | WO |
9838923 | Sep 1998 | WO |
9926826 | Jun 1999 | WO |
9945849 | Sep 1999 | WO |
0010456 | Mar 2000 | WO |
0016684 | Mar 2000 | WO |
03082126 | Oct 2003 | WO |
03088845 | Oct 2003 | WO |
03094743 | Nov 2003 | WO |
03105698 | Dec 2003 | WO |
2005079675 | Sep 2005 | WO |
2006023578 | Mar 2006 | WO |
2006044490 | Apr 2006 | WO |
2006083748 | Aug 2006 | WO |
2007121579 | Nov 2007 | WO |
2008057281 | May 2008 | WO |
2008109125 | Sep 2008 | WO |
WO-2008109125 | Sep 2008 | WO |
2010075298 | Jul 2010 | WO |
2011143183 | Nov 2011 | WO |
2012044848 | Apr 2012 | WO |
Entry |
---|
European Office Action dated Sep. 21, 2020 corresponding to counterpart Patent Application EP 16198277.2. |
Chinese First Office Action corresponding to Patent Application CN 201410588811.8 dated Dec. 5, 2017. |
European Office Action corresponding to Patent Application EP 16 16 6367.9 dated Dec. 11, 2017. |
Chinese First Office Action corresponding to Patent Application CN 201610279682.3 dated Jan. 10, 2018. |
Japanese Office Action corresponding to Patent Application JP 2013-154561 dated Jan. 15, 2018. |
Australian Examination Report No. 1 corresponding to Patent Application AU 2017225037 dated Jan. 23, 2018. |
Japanese Office Action corresponding to Patent Application JP 2013-229471 dated May 1, 2018. |
Canadian Office Action corresponding to Patent Application CA 2,790,743 dated May 14, 2018. |
European Office Action corresponding to Patent Application EP 14 15 7195.0 dated Jun. 12, 2018. |
Extended European Search Report corresponding to EP 14 16 9739.1, completed Aug. 19, 2014 and dated Aug. 29, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 15 7997.9, completed Sep. 9, 2014 and dated Sep. 17, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 16 8904.2, completed Sep. 10, 2014 and dated Sep. 18, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Oct. 13, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 15 4571.7, completed Oct. 10, 2014 and dated Oct. 20, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 18 1125.7, completed Oct. 16, 2014 and dated Oct. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 14 18 1127.3, completed Oct. 16, 2014 and dated Nov. 10, 2014; (8 pp). |
Extended European Search Report corresponding to EP 14 19 0419.3, completed Mar. 24, 2015 and dated Mar. 30, 2015; (6 pp). |
European Search Report corresponding to EP 05 02 2585.3, completed Jan. 25, 2006 and dated Feb. 3, 2006; (4 pp). |
European Search Report corresponding to EP 06 00 4598, completed Jun. 22, 2006; (2 pp). |
European Search Report corresponding to EP 06 01 6962.0, completed Jan. 3, 2007 and dated Jan. 11, 2007; (10 pp). |
International Search Report corresponding to International Application No. PCT/US2005/036740, completed Feb. 20, 2007 and dated Mar. 23, 2007; (8 pp). |
International Search Report corresponding to International Application No. PCT/US2007/022713, completed Apr. 21, 2008 and dated May 15, 2008; (1 p). |
International Search Report corresponding to International Application No. PCT/US2008/002981, completed Jun. 9, 2008 and dated Jun. 26, 2008; (2 pp). |
European Search Report corresponding to EP 08 25 1779, completed Jul. 14, 2008 and dated Jul. 23, 2008; (5 pp). |
European Search Report corresponding to EP 08 25 1989.3, completed Mar. 11, 2010 and dated Mar. 24, 2010; (6 pp). |
European Search Report corresponding to EP 10 25 0639.1, completed Jun. 17, 2010 and dated Jun. 28, 2010; (7 pp). |
European Search Report corresponding to EP 10 25 0715.9, completed Jun. 30, 2010 and dated Jul. 20, 2010; (3 pp). |
European Search Report corresponding to EP 05 80 4382.9, completed Oct. 5, 2010 and dated Oct. 12, 2010; (3 pp). |
European Search Report corresponding to EP 10 25 1437.9, completed Nov. 22, 2010 and dated Dec. 16, 2010; (3 pp). |
European Search Report corresponding to EP 09 25 2897.5, completed Feb. 7, 2011 and dated Feb. 15, 2011; (3 pp). |
European Search Report corresponding to EP 10 25 0642.5, completed Mar. 25, 2011 and dated Apr. 4, 2011; (4 pp). |
European Search Report corresponding to EP 11 18 8309.6, completed Dec. 15, 2011 and dated Jan. 12, 2012; (3 pp). |
European Search Report corresponding to EP 12 15 2229.6, completed Feb. 23, 2012 and dated Mar. 1, 2012; (4 pp). |
European Search Report corresponding to EP 12 15 0511.9, completed Apr. 16, 2012 and dated Apr. 24, 2012; (7 pp). |
European Search Report corresponding to EP 12 15 2541 4, completed Apr. 23, 2012 and dated May 3, 2012; (10 pp). |
European Search Report corresponding to EP 12 16 5609.4, completed Jul. 5, 2012 and dated Jul. 13, 2012; (8 pp). |
European Search Report corresponding to EP 12 15 8861.0, completed Jul. 17, 2012 and dated Jul. 24, 2012; (9 pp). |
European Search Report corresponding to EP 12 16 5878.5, completed Jul. 24, 2012 and dated Aug. 6, 2012; (8 pp). |
Extended European Search Report corresponding to EP 12 19 1035.0, completed Jan. 11, 2013 and dated Jan. 18, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 18 6175.1, completed Jan. 15, 2013 and dated Jan. 23, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 19 1114.3, completed Jan. 23, 2013 and dated Jan. 31, 2013; (10 pp). |
Extended European Search Report corresponding to EP 12 19 2224.9, completed Mar. 14, 2013 and dated Mar. 26, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 6904.2, completed Mar. 28, 2013 and dated Jul. 26, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 6911.7, completed Apr. 18, 2013 and dated Apr. 24, 2013; (8 pp). |
Extended European Search Report corresponding to EP 07 00 5842.5, completed May 13, 2013 and dated May 29, 2013; (7 pp). |
Extended European Search Report corresponding to EP 12 19 8776.2, completed May 16, 2013 and dated May 27, 2013; (8 pp). |
Extended European Search Report corresponding to EP 12 19 8749.9, completed May 21, 2013 and dated May 31, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 15 6297.7, completed Jun. 4, 2013 and dated Jun. 13, 20131; (7 pp). |
Extended European Search Report corresponding to EP 13 17 3985.6, completed Aug. 19, 2013 and dated Aug. 28, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 3986.4, completed Aug. 20, 2013 and dated Aug. 29, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 7437.4, completed Sep. 11, 2013 and dated Sep. 19, 2013; 6 pages. |
Extended European Search Report corresponding to EP 13 17 7441.6, completed Sep. 11, 2013 and dated Sep. 19, 2013; (6 pp). |
Extended European Search Report corresponding to EP 07 86 1534.1, completed Sep. 20, 2013 and dated Sep. 30, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 3876.5, completed Oct. 14, 2013 and dated Oct. 24, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 17 1856.1, completed Oct. 29, 2013 and dated Nov. 7, 2013; (8 pp). |
Extended European Search Report corresponding to EP 13 18 0373.6, completed Oct. 31, 2013 and dated Nov. 13, 2013; (7 pp). |
Extended European Search Report corresponding to EP 13 18 0881.8, completed Nov. 5, 2013 and dated Nov. 14, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 17 6895.4, completed Nov. 29, 2013 and dated Dec. 12, 2013; (5 pp). |
Extended European Search Report corresponding to EP 13 18 2911.1, completed Dec. 2, 2013 and dated Dec. 16, 2013; (8 pp). |
European Office Action corresponding to counterpart European Appln. No. EP 15 17 4146.9 dated May 15, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-154561 dated May 23, 2017. |
European Office Action corresponding to counterpart European Appln. No. EP 12 19 4784.0 dated May 29, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-169083 dated May 31, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013213767 dated Jun. 29, 2017. |
Australian Examination Report No. 2 corresponding to counterpart Australian Appln. No. AU 2012261752 dated Jul. 7, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013266989 dated Jul. 10, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3609.4 dated Jul. 14, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234418 dated Jul. 14, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 14 15 3610.2 dated Jul. 17, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200109 dated Jul. 20, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200074 dated Jul. 20, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-250857 dated Aug. 17, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-229471 dated Aug. 17, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2014200793 dated Sep. 2, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 8528.0 dated Oct. 13, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Australian Appln. No. AU 2013234420 dated Oct. 24, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-175379 dated Oct. 20, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2013-147701 dated Oct. 27, 2017. |
Extended European Search Report corresponding to counterpart European Appln. No. EP 17 17 5656.2 dated Nov. 7, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2014-009738 dated Nov. 14, 2017. |
European Office Action corresponding to counterpart European Appln. No. EP 13 17 3986.4 dated Nov. 29, 2017. |
Japanese Office Action corresponding to counterpart Japanese Appln. No. JP 2017-075975 dated Dec. 4, 2017. |
European Office Action corresponding to counterpart European Appln. No. EP 13 19 7958.5 dated Dec. 11, 2017. |
Extended European Search Report corresponding to EP 10 25 1795.0, completed Dec. 11, 2013 and dated Dec. 20, 2013; (6 pp). |
Extended European Search Report corresponding to EP 13 18 7911.6, completed Jan. 22, 2014 and dated Jan. 31, 2014; (8 pp). |
Extended European Search Report corresponding to EP 13 19 2111.6, completed Feb. 13, 2014 and dated Feb. 27, 2014; (10 pp). |
Extended European Search Report corresponding to EP 13 19 5919.9, completed Feb. 10, 2014 and dated Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 08 72 6500.5, completed Feb. 20, 2014 and dated Mar. 3, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 5019.8, completed Mar. 14, 2014 and dated Mar. 24, 2014; (7 pp). |
Extended European Search Report corresponding to EP 13 19 6816.6, completed Mar. 28, 2014 and dated Apr. 9, 2014; (9 pp). |
Extended European Search Report corresponding to EP 13 19 7958.5, completed Apr. 4, 2014 and dated Apr. 15, 2014; (8 pp). |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 198 776.2 dated Apr. 7, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 156 297.7 dated Apr. 10, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2011250822 dated May 18, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 12 186 175.1 dated Jun. 1, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201010517292.8 dated Jun. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 17 4814.5 dated Jun. 9, 2015. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln No. AU 2014200584 dated Jun. 15, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 13 180 881.8 dated Jun. 19, 2015. |
European Office Action corresponding to counterpart Int'l Appln No. EP 14 157 195.0 dated Jul. 2, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 12 19 6902.6 dated Aug. 6, 2015. |
Extended European Search Report corresponding to counterpart Int'l Appln No. EP 14 15 2060.1 dated Aug. 14, 2015. |
Chinese Office Action corresponding to counterpart Int'l Appln No. CN 201210129787.2 dated Aug. 24, 2015. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,696,419 dated Jan. 14, 2016. |
Extended European Search Report corresponding to EP 13 19 4995.0, completed Jun. 5, 2014 and dated Jun. 16, 2014; (5 pp). |
Extended European Search Report corresponding to EP 14 15 7195.0, completed Jun. 5, 2014 and dated Jun. 18, 2014; (9 pp). |
Extended European Search Report corresponding to EP 14 15 6342.9, completed Jul. 22, 2014 and dated Jul. 29, 2014; (8 pp). |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410449019.4 dated Mar. 30, 2016. |
Australian Patent Examination Report dated Oct. 28, 2016 in Australian Patent Application No. 2014268180, 5 pages. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013107068710 dated Dec. 16, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201310646606.8 dated Dec. 23, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Jan. 4, 2017. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 16 6367.9 dated Jan. 16, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206777 dated Feb. 1, 2017. |
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Feb. 23, 2017. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-175379 dated Mar. 1, 2017. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410028462.4 dated Mar. 2, 2017. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 201410084070 dated Mar. 13, 2017. |
Extended European Search Report corresponding to counterpart Int'l Appln. No. EP 16 19 6549.6 dated Mar. 17, 2017. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-147701 dated Mar. 21, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013206804 dated Mar. 21, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2013211499 dated May 4, 2017. |
Australian Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2014201008 dated May 23, 2017. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 17 2681.0 dated May 13, 2016. |
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201210545228 dated Jun. 29, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-250058 dated Jun. 29, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 7997.9 dated Jun. 29, 2016. |
Canadian Office Action corresponding to counterpart Int'l Appln. No. CA 2,712,617 dated Jun. 30, 2016. |
Chinese First Office Action corresponding to counterpart Int'l Appln. No. CN 2013103036903 dated Jun. 30, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012250278 dated Jul. 10, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012244382 dated Jul. 10, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-255242 dated Jul. 26, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2012-268668 dated Jul. 27, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 14 15 2060.4 dated Aug. 4, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 16 5609.4 dated Aug. 5, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 15 15 2392.5 dated Aug. 8, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-003624 dated Aug. 25, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012261752 dated Sep. 6, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2014-252703 dated Sep. 26, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 19 8776.2 dated Sep. 12, 2016. |
Japanese Office Action corresponding to counterpart Int'l Appln. No. JP 2013-000321 dated Sep. 13, 2016. |
Chinese Second Office Action corresponding to counterpart Int'l Appln. No. CN 201310353628.5 dated Sep. 26, 2016. |
European Office Action corresponding to counterpart Int'l Appln. No. EP 12 15 2541.4 dated Sep. 27, 2016. |
Australian Patent Examination Report No. 1 corresponding to counterpart Int'l Appln. No. AU 2012268923 dated Sep. 28, 2016. |
Extended European Search Report corresponding to Patent Application EP 12196912.5 dated Feb. 1, 2016. |
Chinese Second Office Action corresponding to Patent Application CN 201610279682.3 dated Aug. 8, 2018. |
Chinese Second Office Action corresponding to Patent Application CN 201410588811.8 dated Aug. 27, 2018. |
Extended European Search Report corresponding to Patent Application EP 18160809.2 dated Sep. 18, 2018. |
Extended European Search Report corresponding to Patent Application EP 18192317.8 dated Dec. 20, 2018. |
Extended European Search Report corresponding to Patent Application EP 18190154.7 dated Feb. 4, 2019. |
Number | Date | Country | |
---|---|---|---|
20190336129 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15338520 | Oct 2016 | US |
Child | 16509546 | US | |
Parent | 14597541 | Jan 2015 | US |
Child | 15338520 | US | |
Parent | 13787921 | Mar 2013 | US |
Child | 14161027 | US | |
Parent | 13223519 | Sep 2011 | US |
Child | 13787921 | US | |
Parent | 12414931 | Mar 2009 | US |
Child | 13223519 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14161027 | Jan 2014 | US |
Child | 14597541 | US |