Surgical stapling device including a buttress retention assembly

Information

  • Patent Grant
  • 11786248
  • Patent Number
    11,786,248
  • Date Filed
    Friday, July 9, 2021
    2 years ago
  • Date Issued
    Tuesday, October 17, 2023
    6 months ago
Abstract
A surgical kit includes a surgical stapling device and a loading assembly. The surgical stapling device includes a tool assembly and a buttress material. The tool assembly includes first and second jaw members. The first jaw member supports a staple cartridge that includes a retention assembly. The retention assembly includes a cam block including a pair of protrusions and a spring biasing the cam block towards the second jaw member. The buttress material includes proximal and distal portions. The proximal portion defines bores laterally spaced apart and configured to receive the pair of protrusions of the cam block. The distal portion defines a cavity to be placed over a distal end portion of the staple cartridge. The loading assembly includes a housing defining a chamber configured to receive a portion of the buttress material. The housing includes a proximal portion defining a slot configured to receive the buttress material therethrough and the pair of protrusions of the cam block.
Description
FIELD

The disclosure relates to surgical stapling devices, and more particularly, to assemblies and methods for detachably securing or retaining a staple line buttress assembly to a surgical stapling device.


BACKGROUND

Surgical stapling devices are employed by surgeons to sequentially or simultaneously apply one or more rows of fasteners, e.g., staples or two-part fasteners, to body tissue for the purpose of joining segments of body tissue together. When stapling relatively thin or fragile tissues, it is important to effectively seal the staple line against air or fluid leakage. Additionally, it is often necessary to reinforce the staple line against the tissue to inhibit tears in the tissue or pulling of the staples through the tissue. One method of inhibiting tears or pull through involves the placement of a biocompatible reinforcing material or “buttress” material between the staples and the underlying tissue. In this method, a layer of buttress assembly is placed against the tissue and the tissue is stapled in a conventional manner.


Accordingly, new systems and methods that enable easy and efficient attachment and removal of a buttress assembly to a surgical stapling device would be desirable.


SUMMARY

In accordance with the disclosure, a surgical kit includes a surgical stapling device and a loading assembly. The surgical stapling device includes a tool assembly and a buttress material. The tool assembly includes first and second jaw members that are transitionable between open and closed configurations. The first jaw member supports a staple cartridge that includes a retention assembly. The retention assembly includes a cam block including a pair of protrusions and a spring biasing the cam block towards the second jaw member. The buttress material includes proximal and distal portions. The proximal portion defines bores laterally spaced apart and configured to receive the pair of protrusions of the cam block. The distal portion defines a cavity to be placed over a distal end portion of the staple cartridge. The loading assembly includes a housing defining a chamber configured to receive a portion of the buttress material. The housing includes a proximal portion defining a slot configured to receive the buttress material therethrough and the pair of protrusions of the cam block.


In an aspect, the distal portion of the buttress material may have a weakened portion extending axially from the cavity.


In another aspect, the housing of the loading assembly may include a pair of lateral tabs on lateral sides of the housing. The staple cartridge may be positioned within the pair of lateral tabs.


In yet another aspect, the proximal portion of the housing may have a tapered surface.


In still yet another aspect, the tapered surface of the proximal portion of the housing may define an opening.


In still yet another aspect, the spring of the retention assembly may be a leaf spring.


In still yet another aspect, at least one protrusion of the pair of protrusions of the retention assembly may have a tapered portion.


In an aspect, at least one protrusion of the pair of protrusions may define a notch positioned to receive a portion of the buttress material.


In another aspect, the staple cartridge may include an inner wall defining a camming slot, and the cam block may include a camming portion configured to slidably engage the camming slot of the inner wall.


In yet another aspect, the buttress material may be formed of an elastic material and the buttress material may be in tension when secured to the staple cartridge.


In stilly yet another aspect, the pair of protrusions of the cam block may be secured to the buttress material via interference or friction fit.


In accordance with another aspect of the disclosure, a buttress assembly for use with a surgical stapling device includes a buttress material and a loading assembly. The buttress material includes proximal and distal portions. The proximal portion defines bores laterally spaced apart. The distal portion defines a cavity. The loading assembly includes a housing defining a chamber to receive a portion of the buttress material. The housing includes proximal and distal sections. The proximal section defines a slot configured to be in registration with the bores of the buttress material when the portion of the buttress material is received in the chamber of the loading assembly. The slot is dimensioned to receive the buttress material therethrough.


In an aspect, the housing may have tabs on lateral sides thereof.


In another aspect, the proximal section of the housing may have a tapered surface.


In yet another aspect, the tapered surface of the housing may have an opening.


In still yet another aspect, the buttress material may be bioabsorbable.


In still yet another aspect, the buttress material may have perforations along a central axis of the buttress material.


In still yet another aspect, the cam block may have a generally U-shaped profile.


In accordance with yet another aspect of the disclosure, a tool assembly of a surgical device includes first and second jaw members and a clamping member. The second jaw member is movable between open and closed configurations in relation to the first jaw member. The second jaw member includes a spring to bias the second jaw member towards the open configuration. The clamping member is operatively coupled to the first and second jaw members such that axial displacement of the clamping member transitions the second jaw member between the open and closed configurations.


In an aspect, the spring may be disposed laterally of the clamping member.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects and features of this disclosure will become more apparent in view of the following detailed description when taken in conjunction with the accompanying drawings wherein like reference numerals identify similar or identical elements.



FIG. 1 is a perspective view of a surgical stapling device in accordance with the disclosure;



FIG. 2 is an enlarged view of the indicated area of detail of FIG. 1;



FIG. 3 is perspective view of a tool assembly of the surgical stapling device of FIG. 1, illustrating a staple cartridge separated from a jaw of the tool assembly;



FIG. 4 is a perspective view of the staple cartridge of FIG. 3, illustrating a buttress material mounted on the staple cartridge;



FIG. 5 is an enlarged view of the indicated area of detail of FIG. 4;



FIG. 6 is a perspective view from above of the staple cartridge of FIG. 3, illustrating a retention assembly configured to releasably support the buttress material on the staple cartridge;



FIG. 7 is an enlarged view of the indicated area of detail of FIG. 6;



FIG. 8 is a cross-sectional view of the tool assembly of FIG. 3, illustrating the retention assembly;



FIG. 9 is a perspective view of a buttress assembly for use with the surgical stapling device of FIG. 1, illustrating the buttress material separated from a loading assembly of the buttress assembly;



FIG. 10 is a perspective view of the buttress assembly of FIG. 9, illustrating the loading assembly mounted on the buttress material;



FIGS. 11 and 12 are perspective view of the staple cartridge of FIG. 6 and the buttress assembly of FIG. 10, illustrating mounting of the buttress assembly on the staple cartridge;



FIG. 13 a cross-sectional view of the staple cartridge and the buttress assembly of FIG. 12 taken along section line 13-13 of FIG. 12;



FIG. 14 a partial cross-sectional view of the staple cartridge and the buttress assembly of FIG. 12, illustrating mounting of the buttress assembly to the staple cartridge;



FIG. 15 is a cross-sectional view of the tool assembly of FIG. 3 taken along section line 15-15 of FIG. 14;



FIG. 16 is a partial cross-sectional view of the staple cartridge and the buttress assembly of FIG. 12, illustrating mounting of the buttress assembly to the staple cartridge;



FIGS. 17 and 18 are partial cross-sectional views of the staple cartridge and the buttress assembly of FIG. 16, illustrating removal of the loading assembly from the buttress material;



FIG. 19 is a partial cross-sectional view of a tool assembly in accordance with another aspect of the disclosure; and



FIG. 20 is a partial cross-sectional view of the tool assembly of FIG. 19, illustrating clamping of jaw members of the tool assembly.





DETAILED DESCRIPTION

The surgical stapling device including a buttress retention assembly disclosed herein is described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “distal” refers to the portion of the device that is being described which is farther from a user in a conventional use of the surgical stapling device, while the term “proximal” refers to the portion of the device that is being described which is closer to a user in a conventional use of the surgical stapling device. In addition, the terms parallel and perpendicular are understood to include relative configurations that are substantially parallel and substantially perpendicular up to about + or −10 degrees from true parallel and true perpendicular. Further, to the extent consistent, any or all of the aspects detailed herein may be used in conjunction with any or all of the other aspects detailed herein.


With reference to FIGS. 1 and 2, there is provided a surgical stapling device 200 for use in stapling tissue and applying a layer of buttress material 310 between staples and underlying tissue. The layer of buttress material 310 is configured to reinforce and seal staple lines applied to tissue by the surgical stapling device 200. The surgical stapling device 200 generally includes a handle 202 and an elongate tubular member 204 extending distally from the handle 202. A reload 106 is removably coupled to a distal end 105 of the elongate tubular member 204. The reload 106 includes a shaft portion 109 and a tool assembly 107 supported on the shaft portion 109. The tool assembly 107 includes first jaw member 108 and a second jaw member 110 that is movable in relation to the first jaw member 108 between an open configuration for positioning tissue between the first and second jaw members 108, 110 and a closed configuration for clamping tissue between the first and second jaw members 108, 110 and subsequently stapling tissue. The first jaw member 108 supports an anvil 111 and the second jaw member 110 releasably supports a staple cartridge 112. The buttress material 310 is mounted on the staple cartridge 112, as will be described. In order to secure the staples provided by the staple cartridge 112 to tissue and the buttress material 310, the anvil 111 is provided with longitudinally arranged rows of staple clinching or forming pockets (not shown). It is envisioned that the tool assembly 107 may be coupled to a mechanical or motorized handle, and the staple cartridge 112 may be removable and replaceable. It is also envisioned that the reload 106 may be part of a robotic surgical system.


With continued reference to FIG. 1, the surgical stapling device 200 includes a stationary grip 222 and a rotation knob assembly 234. Buttons 26a, 26b on the stationary grip 222 of the handle 202 allow for actuation of the tool assembly 107. When the button 26a is pressed, the tool assembly 107 is transitioned from the open configuration to the closed configuration and subsequently actuates the surgical stapling device 200 to apply lines of staples to tissue. When the button 26b is pressed, a firing mechanism of the surgical stapling device 200 is retracted and the tool assembly 107 is transitioned from the closed configuration to the open configuration. In order to provide proper orientation of the tool assembly 107 relative to tissue to be stapled, the surgical stapling device 200 is additionally provided with the rotation knob assembly 234 mounted on the handle 202. Rotation of the rotation knob assembly 234 about a longitudinal axis “A-A” of the surgical stapling device 200 rotates the tool assembly 107 about the longitudinal axis “A-A.” The surgical stapling device 200 is illustrated as an electrically powered stapling device including the electrically powered handle 202 that may support one or more batteries (not shown). Examples of electrically powered surgical stapling devices can be found in U.S. Pat. Nos. 9,055,943 and 9,023,014. In addition, reference may be made to U.S. Pat. No. 9,717,498, the entire contents of which is incorporated herein by reference, for a detailed discussion of the construction and operation of the surgical stapling device 200.



FIGS. 3-5 illustrate the buttress material 310 for use with the surgical stapling device 200. The buttress material 310 is detachably secured to the tool assembly 107 of the surgical stapling device 200 to be in registration with the anvil 111 of the first jaw member 108 and the staple cartridge 112 of the second jaw member 110. The buttress material 310 is configured to reinforce and seal staple lines applied to tissue by the surgical stapling device 200. The buttress material 310 includes proximal and distal portions 310a, 310b that are detachably securable to the staple cartridge 112. In particular, the proximal portion 310a defines bores 312 that are laterally spaced apart and adjacent a proximal end 310c of the buttress material 310. The bores 312 releasably receive protrusions 502 of a cam block 500 (FIG. 8) of a retention assembly 550 of the staple cartridge 112, as will be described. The distal portion 310b of the buttress material 310 defines a cavity 314 configured to releasably receive a distal end portion 112b of the staple cartridge 112, as will be described. In an aspect, the distal end portion 112b is tapered. In another aspect, the buttress material 310 may be formed of an elastic material such that when the proximal portion 310a of the buttress material 310 is releasably secured to the cam block 500 of the retention assembly 550 of the staple cartridge 112 and the distal portion 310b of the buttress material 310 is releasably secured to the distal end portion 112b of the staple cartridge 112, the buttress material 310 is in tension to enhance securement with the staple cartridge 112. In another aspect, the buttress material 310 further includes a weakened portion 317 extending to the cavity 314 (best shown in FIG. 9). The weekend portion 317 may be centrally defined to be in alignment with a path of a knife member (not shown) of the tool assembly 107 (FIG. 1) such that the weakened portion 317 is aligned with a central axis “C-C” defined by the staple cartridge 112 or the buttress material 310. In an aspect, the weakened portion 317 may define perforations. Under such a configuration, when the knife member is advanced, the knife member cuts through the weakened portion 317 and the cavity 314 and releases the buttress material 310 from the staple cartridge 312.


The buttress material 310 is detachably securable to the tool assembly 107. To this end, the staple cartridge 112 includes the retention assembly 550 (FIG. 8) which is configured to releasably support the buttress material 310 on the staple cartridge 112. FIGS. 6-8 illustrate the retention assembly 550 which includes a cam block 550 and a spring 530 such as, e.g., a leaf spring, that biases the cam block 550 away from the second jaw member 110, i.e., towards the first jaw member 108. The cam block 500 may have a generally U-shaped profile. In an aspect, the cam block 500 is monolithically formed as a single construct and includes protrusions 502 that are laterally spaced apart. Each protrusion 502 includes a tapered portion 502a configured to facilitate sliding of a proximal portion 600a of the loading assembly 600 over the tapered portion 502a of the protrusion 502 such that the protrusions 502 are displaced into the slots 112d (FIG. 8) of the staple cartridge 112. In addition, each protrusion 502 defines a notch 502b to receive the buttress material 310, as will be described below. The spring 530 biases the cam block 500 such that the protrusions 502 of the cam block 500 extends through slots 112d defined in the staple cartridge 112. The cam block 500 further includes camming portions 504 that extend laterally outwards from lateral surfaces 513 of the cam block 500. The staple cartridge 112 includes inner walls 115 (FIG. 8). Each inner wall 115 defines a camming slot 115a that receives the corresponding camming portion 504 of the cam block 500. The camming portions 504 of the cam block 500 slides within the respective camming slots 115a of the staple cartridge 112. In this manner, the protrusions 502 of the cam block 500 are biased out of the respective slots 112d of the staple cartridge 112 by the spring 530 and guided by the camming portion 504 such that the protrusions 502 are substantially orthogonal to a buttress mounting surface 119 of the staple cartridge 112. However, when the tapered portion 502a (FIG. 7) of the protrusion 502 engages the proximal portion 600a (FIG. 9) of the loading assembly 600, the loading assembly 600 displaces the cam block 500 into the staple cartridge 112 such that the protrusions 502 of the cam block 500 are substantially flush with or beneath the buttress mounting surface 119, as will be described below.



FIGS. 9 and 10 illustrate the loading assembly 600 that may be utilized in conjunction with the buttress material 310 to facilitate mounting of the buttress material 310 on the staple cartridge 112 (FIG. 6). In particular, the loading assembly 600 includes a housing 602 defining a chamber 607 (FIG. 13) configured to receive a portion of the buttress material 310 therein. The proximal portion 600a of the loading assembly 600 has a tapered portion 600c that defines an opening 601 to, e.g., visualize, placement of the buttress material 310 within the housing 602. In addition, the proximal portion 600a further defines a slot 609a dimensioned to receive the buttress material 310 therethrough. The slot 609a faces the buttress mounting surface 119 (FIG. 8) of the staple cartridge 112 when the loading assembly 600 is mounted on the staple cartridge 112. The housing 602 further includes a distal portion 602b defining a mouth 603 (FIG. 11) dimensioned to receive the buttress material 310 therethrough. The housing 602 includes a plurality of tabs 606 that are disposed on lateral sides 608 of the housing 602 to position the staple cartridge 112 within the tabs 606 and to facilitate axial displacement of the housing 602 along a length of the staple cartridge 112.


In use, the proximal portion 310a of the buttress material 310 is placed in the chamber 607 (FIG. 13) of the housing 602 of the loading assembly 600 through the mouth 603 (FIG. 11) of the housing 602 such that the bores 312 of the buttress material 310 are in registration with the slot 609a of the housing 602, as shown in FIG. 10. FIGS. 11 and 12 illustrate mounting of the buttress material 310 and the loading assembly 600 on the buttress mounting surface 119 such that the tapered portion 600c of the proximal portion 600a of the loading assembly 600 engages the tapered portion 502a (FIG. 7) of the protrusion 502 of the cam block 500 of the staple cartridge 512. As shown in FIGS. 14 and 15, the housing 602 along with the buttress material 310 is then displaced proximally in the direction of an arrow “P” such that the tapered portion 600c of the housing 602 displaces the protrusions 502 of the cam block 500 into the slot 112d of the staple cartridge 112. As the housing 602 is further displaced proximally in the direction of the arrow “P”, the protrusions 502 of the cam block 500 extend through the bores 312 of the buttress material 310 in the direction of an arrow “U” via the slot 609a of the housing 602. The protrusions 502 are received in the slot 609b of the housing 602. In this manner, the buttress material 310 is detachably secured to protrusions 502 of the cam block 500, as shown in FIG. 16. The notch 502b of the protrusion 502 further enhances securement of the buttress material 310 to the protrusion 502. In an aspect, the protrusions 502 may engage the buttress material 310 via friction or interference fit. At this time, the housing 602 may be pulled distally as shown in FIGS. 17 and 18, which, in turn, causes the proximal portion 310a of the buttress material 310 and the protrusions 502 to pass through the slot 609a of the housing 602, as shown in FIG. 18. In this manner, the loading assembly 600 may be detached from the second jaw member 110 and the buttress material 310, while the proximal portion 310a of the buttress material 310 is releasably secured to the protrusions 502 of the cam block 500. At this time, the cavity 314 (FIG. 9) of the distal portion 310b of the buttress material 310 may be placed over the distal end portion 112b (FIG. 6) of the staple cartridge 112. The staple cartridge 112 having the buttress material 310 now mounted thereon may be supported on the second jaw 110 (FIG. 3) of the tool assembly 107 for stapling and severing of tissue.


It is further contemplated that the buttress material 310 may be made from any biocompatible natural or synthetic material. The material from which the buttress material 310 is formed may be bioabsorbable or non-bioabsorbable. It should be understood that any combination of natural, synthetic, bioabsorbable and non-bioabsorbable materials may be used to form the buttress material 310.


Some non-limiting examples of materials from which the buttress material 310 may be made include but are not limited to poly(lactic acid), poly (glycolic acid), poly (hydroxybutyrate), poly (phosphazine), polyesters, polyethylene glycols, polyethylene oxides, polyacrylamides, polyhydroxyethylmethylacrylate, polyvinylpyrrolidone, polyvinyl alcohols, polyacrylic acid, polyacetate, polycaprolactone, polypropylene, aliphatic polyesters, glycerols, poly(amino acids), copoly (ether-esters), polyalkylene oxalates, polyamides, poly (iminocarbonates), polyalkylene oxalates, polyoxaesters, polyorthoesters, polyphosphazenes and copolymers, block copolymers, homopolymers, blends and combinations thereof.


In aspects, natural biological polymers are used in forming the buttress material 310. Suitable natural biological polymers include, but are not limited to, collagen, gelatin, fibrin, fibrinogen, elastin, keratin, albumin, hydroxyethyl cellulose, cellulose, hydroxypropyl cellulose, carboxyethyl cellulose, chitan, chitosan, and combinations thereof. In addition, the natural biological polymers may be combined with any of the other polymeric materials described herein to produce the buttress material 310.


The buttress material 310 may be porous or non-porous, or combinations of porous and non-porous layers. Where the buttress material 310 is non-porous, the buttress material 310 may retard or inhibit tissue ingrowth from surrounding tissues thereby acting as an adhesion barrier and inhibiting the formation of unwanted scar tissue. Thus, in aspects, the buttress material 310 possesses anti-adhesion properties. Techniques for forming non-porous layers from such materials are within the purview of those skilled in the art and include, for example, casting, molding, and the like.


In aspects, the buttress material 310 is porous and possesses hemostatic properties. Where the buttress material 310 is porous, it has openings or pores over at least a portion of a surface thereof. Suitable materials for forming the porous layer include, but are not limited to foams (e.g., open or closed cell foams). In aspects, the pores may be in sufficient number and size so as to interconnect across the entire thickness of the porous layer. In other aspects, the pores do not interconnect across the entire thickness of the porous layer. In yet other aspects, the pores do not extend across the entire thickness of the porous layer, but rather are present at a portion of the surface thereof. In aspects, the openings or pores are located on a portion of the surface of the porous layer, with other portions of the porous layer having a non-porous texture. Those skilled in the art reading the disclosure will envision other pore distribution patterns and configurations for the porous layer.


Where the buttress material 310 is porous, the pores may be formed using any method suitable to forming a foam or sponge including, but not limited to the lyophilization or freeze-drying of a composition. Suitable techniques for making foams are within the purview of those skilled in the art. Porous buttress material 310 can be at least 0.2 cm thick, in aspects from about 0.3 to about 1.5 cm thick. Porous buttress material 310 can have a density of not more than about 75 mg/cm2 and, in aspects below about 20 mg/cm2. The size of the pores in the porous buttress material 310 can be from about 20 μm to about 300 μm, and in certain aspects from about 100 μm to about 200 μm.


The buttress material 310 may also include a reinforcement member. The reinforcement member may be associated with a porous or non-porous layer or may be positioned between a non-porous layer and a porous layer of the buttress material 310. Alternatively, the reinforcement member may be positioned entirely within one or more of the individual layers (e.g., embedded within the porous layer, the non-porous layer, or both) of the buttress material 310. It is also envisioned that the reinforcement member may be positioned at the surface of one of the layers making up the buttress material 310 and, in aspects, may be positioned at an exterior surface of the buttress material 310.


Some suitable non-limiting examples of reinforcement members include fabrics, meshes, monofilaments, multifilament braids, chopped fibers (sometimes referred to in the art as staple fibers) and combinations thereof. Where the reinforcement member is a mesh, it may be prepared using any technique known to those skilled in the art, such as knitting, weaving, tatting, knipling, or the like. Where monofilaments or multifilament braids are used as the reinforcement member, the monofilaments or multifilament braids may be oriented in any desired manner. For example, the monofilaments or multifilament braids may be randomly positioned with respect to each other within the buttress material 310. As another example, the monofilaments or multifilament braids may be oriented in a common direction within the buttress material 310. Where chopped fibers are used as the reinforcement member, the chopped fibers may be oriented in any desired manner. For example, the chopped fibers may be randomly oriented or may be oriented in a common direction. The chopped fibers can thus form a non-woven material, such as a mat or a felt. The chopped fibers may be joined together (e.g., by heat fusing) or they may be unattached to each other. The chopped fibers may be of any suitable length. For example, the chopped fibers may be from 0.1 mm to 100 mm in length, and in some aspects, 0.4 mm to 50 mm in length. In an aspect, the buttress material 310 has randomly oriented chopped fibers that have not been previously fused together and are embedded within in the buttress material 310.


It is envisioned that the reinforcement member may be formed from any bioabsorbable, non-bioabsorbable, natural, or synthetic material previously described herein and combinations thereof. Where monofilaments or multifilament braids are used as the reinforcement member, any commercially available suture material may advantageously be employed as the reinforcement member.


In aspects, at least one bioactive agent may be combined with the buttress material 310 and/or any of the individual components (the porous layer, the non-porous layer and/or the reinforcement member) used to construct the buttress material 310. In aspects, the buttress material 310 can also serve as a vehicle for delivery of the bioactive agent. The term “bioactive agent”, as used herein, is used in its broadest sense and includes any substance or mixture of substances that have clinical use. Consequently, bioactive agents may or may not have pharmacological activity per se, e.g., a dye, or fragrance. Alternatively, a bioactive agent could be any agent which provides a therapeutic or prophylactic effect such as a compound that affects or participates in tissue growth, cell growth, or cell differentiation.


Examples of classes of bioactive agents which may be utilized in accordance with the disclosure include anti-adhesives, antimicrobials, analgesics, antipyretics, anesthetics, antiepileptics, antihistamines, anti-inflammatories, cardiovascular drugs, diagnostic agents, sympathomimetics, cholinomimetics, antimuscarinics, antispasmodics, hormones, growth factors, muscle relaxants, adrenergic neuron blockers, antineoplastics, immunogenic agents, immunosuppressants, gastrointestinal drugs, diuretics, steroids, lipids, lipopolysaccharides, polysaccharides, and enzymes. It is also intended that combinations of bioactive agents may be used.


Anti-adhesive or anti-adhesion agents can be used to inhibit adhesions from forming between the buttress material 310 and the surrounding tissues opposite the target tissue. Some examples of these agents include, but are not limited to poly (vinyl pyrrolidone), carboxymethyl cellulose, hyaluronic acid, polyethylene oxide, poly vinyl alcohols and combinations thereof.


Suitable antimicrobial agents which may be included as a bioactive agent in the buttress material 310 of the disclosure include triclosan, also known as 2,4,4′-trichloro-2′-hydroxydiphenyl ether, chlorhexidine and its salts, including chlorhexidine acetate, chlorhexidine gluconate, chlorhexidine hydrochloride, and chlorhexidine sulfate, silver and its salts, including silver acetate, silver benzoate, silver carbonate, silver citrate, silver iodate, silver iodide, silver lactate, silver laurate, silver nitrate, silver oxide, silver palmitate, silver protein, and silver sulfadiazine, polymyxin, tetracycline, aminoglycosides, such as tobramycin and gentamicin, rifampicin, bacitracin, neomycin, chloramphenicol, miconazole, quinolones such as oxolinic acid, norfloxacin, nalidixic acid, pefloxacin, enoxacin and ciprofloxacin, penicillins such as oxacillin and pipracil, nonoxynol 9, fusidic acid, cephalosporins, and combinations thereof. In addition, antimicrobial proteins and peptides such as bovine lactoferrin and lactoferricin B may be included as a bioactive agent in the bioactive coating of the disclosure.


Other bioactive agents which may be included as a bioactive agent in the buttress material 310 in accordance with the disclosure include: local anesthetics; non-steroidal antifertility agents; parasympathomimetic agents; psychotherapeutic agents; tranquilizers; decongestants; sedative hypnotics; steroids; sulfonamides; sympathomimetic agents; vaccines; vitamins; antimalarials; anti-migraine agents; anti-parkinson agents such as L-dopa; anti-spasmodics; anticholinergic agents (e.g. oxybutynin); antitussives; bronchodilators; cardiovascular agents such as coronary vasodilators and nitroglycerin; alkaloids; analgesics; narcotics such as codeine, dihydrocodeinone, meperidine, morphine and the like; non-narcotics such as salicylates, aspirin, acetaminophen, d-propoxyphene and the like; opioid receptor antagonists, such as naltrexone and naloxone; anti-cancer agents; anti-convulsants; anti-emetics; antihistamines; anti-inflammatory agents such as hormonal agents, hydrocortisone, prednisolone, prednisone, non-hormonal agents, allopurinol, indomethacin, phenylbutazone and the like; prostaglandins and cytotoxic drugs; estrogens; antibacterials; antibiotics; anti-fungals; anti-virals; anticoagulants; anticonvulsants; antidepressants; antihistamines; and immunological agents.


Other examples of suitable bioactive agents which may be included in the coating composition include viruses and cells, peptides, polypeptides and proteins, analogs, muteins, and active fragments thereof, such as immunoglobulins, antibodies, cytokines (e.g. lymphokines, monokines, chemokines), blood clotting factors, hemopoietic factors, interleukins (IL-2, IL-3, IL-4, IL-6), interferons (β-IFN, (α-IFN and γ-IFN), erythropoietin, nucleases, tumor necrosis factor, colony stimulating factors (e.g., GCSF, GM-CSF, MCSF), insulin, anti-tumor agents and tumor suppressors, blood proteins, gonadotropins (e.g., FSH, LH, CG, etc.), hormones and hormone analogs (e.g., growth hormone), vaccines (e.g., tumoral, bacterial and viral antigens); somatostatin; antigens; blood coagulation factors; growth factors (e.g., nerve growth factor, insulin-like growth factor); protein inhibitors, protein antagonists, and protein agonists; nucleic acids, such as antisense molecules, DNA and RNA; oligonucleotides; polynucleotides; and ribozymes.



FIG. 19 illustrates a tool assembly 1107 in accordance with another aspect of the disclosure. The tool assembly 1107 includes a first jaw member 1108 and a second jaw member 1110 that is transitionable between an open configuration and a closed configuration in relation to the first jaw member 1108. Axial displacement of a clamping member 1300 transitions the second jaw member 1110 between the open and closed configurations. In particular, the second jaw member 1110 includes a spring 1200 that biases the second jaw member 1110 to the open configuration when the clamping member 1300 is in a proximal-most position. However, as the clamping member 1300 is advanced in the direction of an arrow “Y”, the clamping force created by the clamping member 1300 overcomes the biasing force and transitions the second jaw member 1110 to the closed configuration, as shown in FIG. 20. In use, the clamping member 1300 is operatively coupled to the handle 202 such that when the button 26a (FIG. 1) is pressed, the clamping member 1300 is advanced distally. In an aspect, the spring 1200 may be disposed laterally of the clamping member 1300. In another aspect, the spring 1200 may include bifurcated arms to receive the clamping member 1300 between the bifurcated arms.


While the disclosure has been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A surgical kit comprising: a surgical stapling device including: a tool assembly including first and second jaw members that are transitionable between open and closed configurations, the first jaw member supporting a staple cartridge that includes a retention assembly, the retention assembly including: a cam block including a pair of protrusions; anda spring biasing the cam block towards the second jaw member; anda buttress material including proximal and distal portions, the proximal portion defining bores laterally spaced apart and configured to receive the pair of protrusions of the cam block, the distal portion defining a cavity to be placed over a distal end portion of the staple cartridge; anda loading assembly including a housing defining a chamber configured to receive a portion of the buttress material, the housing including a proximal portion defining a slot configured to receive the buttress material therethrough and the pair of protrusions of the cam block.
  • 2. The surgical kit according to claim 1, wherein the distal portion of the buttress material has a weakened portion extending axially from the cavity.
  • 3. The surgical kit according to claim 1, wherein the housing of the loading assembly includes a pair of lateral tabs on lateral sides of the housing, the staple cartridge positioned within the pair of lateral tabs.
  • 4. The surgical kit according to claim 1, wherein the proximal portion of the housing has a tapered surface.
  • 5. The surgical kit according to claim 4, wherein the tapered surface of the proximal portion of the housing defines an opening.
  • 6. The surgical kit according to claim 1, wherein the spring of the retention assembly is a leaf spring.
  • 7. The surgical kit according to claim 1, wherein at least one protrusion of the pair of protrusions of the retention assembly has a tapered portion.
  • 8. The surgical kit according to claim 1, wherein at least one protrusion of the pair of protrusions defines a notch positioned to receive a portion of the buttress material.
  • 9. The surgical kit according to claim 1, wherein the staple cartridge includes an inner wall defining a camming slot, and the cam block includes a camming portion configured to slidably engage the camming slot of the inner wall.
  • 10. The surgical kit according to claim 1, wherein the buttress material is formed of an elastic material and the buttress material is in tension when secured to the staple cartridge.
  • 11. The surgical kit according to claim 1, wherein the pair of protrusions of the cam block is secured to the buttress material via interference or friction fit.
  • 12. A buttress assembly for use with a surgical stapling device comprising: a buttress material including proximal and distal portions, the proximal portion defining bores laterally spaced apart, the distal portion defining a cavity; anda loading assembly including a housing defining a chamber to receive a portion of the buttress material, the housing including proximal and distal sections, the proximal section defining a slot configured to be in registration with the bores of the buttress material when the portion of the buttress material is received in the chamber of the loading assembly, the slot dimensioned to receive the buttress material therethrough.
  • 13. The buttress assembly according to claim 12, wherein the housing has tabs on lateral sides thereof.
  • 14. The buttress assembly according to claim 12, wherein the proximal section of the housing has a tapered surface.
  • 15. The buttress assembly according to claim 14, wherein the tapered surface of the housing has an opening.
  • 16. The buttress assembly according to claim 12, wherein the buttress material is bioabsorbable.
  • 17. The buttress assembly according to claim 12, wherein the buttress material has perforations along a central axis of the buttress material.
  • 18. The buttress assembly according to claim 12, wherein the cam block has a generally U-shaped profile.
  • 19. A tool assembly of a surgical device comprising: a first jaw member;a second jaw member movable between open and closed configurations in relation to the first jaw member, the second jaw member including a spring to bias the second jaw member towards the open configuration, the spring being parallel to the second jaw member when the second jaw member is in the closed configuration; anda clamping member operatively coupled to the first and second jaw members such that axial displacement of the clamping member transitions the second jaw member between the open and closed configurations.
  • 20. The tool assembly according to claim 19, wherein the spring is disposed laterally of the clamping member.
US Referenced Citations (461)
Number Name Date Kind
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5626587 Bishop et al. May 1997 A
5632432 Schulze et al. May 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792573 Pitzen et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6860892 Tanaka et al. Mar 2005 B1
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7252660 Kunz Aug 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7726537 Olson Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7950561 Aranyi May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8602287 Yates et al. Dec 2013 B2
8623000 Humayun et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652121 Quick et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715306 Faller et al. May 2014 B2
8752749 Moore et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8905289 Patel et al. Dec 2014 B2
8919630 Milliman Dec 2014 B2
8931680 Milliman Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9033868 Whitman et al. May 2015 B2
9055943 Zemlok et al. Jun 2015 B2
9064653 Prest et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9113847 Whitman et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113899 Garrison et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9241712 Zemlok et al. Jan 2016 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
9717498 Aranyi et al. Aug 2017 B2
9814463 Williams Nov 2017 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040034369 Sauer et al. Feb 2004 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050125027 Knodel et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070270784 Smith et al. Nov 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100023022 Zeiner et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100147922 Olson Jun 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174009 Iizuka et al. Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130093149 Saur et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140365235 DeBoer et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150014392 Williams et al. Jan 2015 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150112381 Richard Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150133224 Whitman et al. May 2015 A1
20150150547 Ingmanson et al. Jun 2015 A1
20150150574 Richard et al. Jun 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150201931 Zergiebel et al. Jul 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
20160206315 Olson Jul 2016 A1
20180125491 Aranyi May 2018 A1
20210177411 Williams Jun 2021 A1
Foreign Referenced Citations (26)
Number Date Country
2451558 Jan 2003 CA
1547454 Nov 2004 CN
1957854 May 2007 CN
101495046 Jul 2009 CN
101856251 Oct 2010 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0705571 Apr 1996 EP
1563793 Aug 2005 EP
1759652 Mar 2007 EP
1769754 Apr 2007 EP
1908412 Apr 2008 EP
1917929 May 2008 EP
1952769 Aug 2008 EP
2090247 Aug 2009 EP
2245994 Nov 2010 EP
2316345 May 2011 EP
2377472 Oct 2011 EP
2668910 Dec 2013 EP
2815705 Dec 2014 EP
2333509 Feb 2010 ES
2861574 May 2005 FR
2005125075 May 2005 JP
20120022521 Mar 2012 KR
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (44)
Entry
Extended European Search Report corresponding to International Application No. EP 14 18 4882.0 dated May 12, 2015.
Canadian Office Action corresponding to International Application No. CA 2640399 dated May 7, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-197365 dated Mar. 23, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated May 20, 2015.
Japanese Office Action corresponding to International Application No. JP 2014-148482 dated Jun. 2, 2015.
Extended European Search Report corresponding to International Application No. EP 14 18 9358.6 dated Jul. 8, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 6148.2 dated Apr. 23, 2015.
Partial European Search Report corresponding to International Application No. EP 14 19 6704.2 dated May 11, 2015.
Australian Office Action corresponding to International Application No. AU 2010241367 dated Aug. 20, 2015.
Partial European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Sep. 3, 2015.
Extended European Search Report corresponding to International Application No. EP 15 16 9962.6 dated Sep. 14, 2015.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201310369318.2 dated Jun. 28, 2016.
Chinese Office Action (with English translation), dated Jul. 4, 2016, corresponding to Chinese Patent Application No. 2015101559718; 23 total pages.
European Search Report EP 15 156 035.6 dated Aug. 10, 2016.
European Search Report corresponding to EP 15 184 915.5-1654 dated Sep. 16, 2016.
Australian Examination Report No. 1 corresponding to International Application No. AU 2013205872 dated Oct. 19, 2016.
Australian Examination Report from Appl. No. AU 2013205840 dated Nov. 3, 2016.
Notification of Transmittal of the International Search Report and The Written Opinion of the International Searching Authority issued in corresponding application No. PCT/US2016/027042 dated Jul. 12, 2016.
International Search Report and Written Opinion dated Nov. 28, 2022, issued in corresponding international application No. PCT/IB2022/056050, 16 pages.
Related Publications (1)
Number Date Country
20230011980 A1 Jan 2023 US