The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Applicant of the present application owns the following U.S. Patent Applications that were filed on Feb. 21, 2019 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Provisional Patent Applications that were filed on Feb. 19, 2019 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Provisional Patent Applications, filed on Mar. 28, 2018, each of which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Provisional Patent Application, filed on Mar. 30, 2018, which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Patent Application, filed on Dec. 4, 2018, which is herein incorporated by reference in its entirety:
Applicant of the present application owns the following U.S. Patent Applications that were filed on Aug. 20, 2018 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Patent Applications and U.S. Patents that are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:
Applicant of the present application owns the following patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Dec. 31, 2015 which are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 9, 2016 which are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 12, 2016 which are each herein incorporated by reference in their respective entirety:
Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:
Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entirety:
Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entirety:
Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which the first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.
The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
The previous housing 1012 depicted in
Referring now to
Still referring to
An arm 1061 may extend from the closure release button 1062. A magnetic element 1063, such as a permanent magnet, for example, may be mounted to the arm 1061. When the closure release button 1062 is rotated from its first position to its second position, the magnetic element 1063 can move toward a circuit board 1100. The circuit board 1100 can include at least one sensor that is configured to detect the movement of the magnetic element 1063. In at least one embodiment, for example, a “Hall Effect” sensor (not shown) can be mounted to the bottom surface of the circuit board 1100. The Hall Effect sensor can be configured to detect changes in a magnetic field surrounding the Hall Effect sensor caused by the movement of the magnetic element 1063. The Hall Effect sensor can be in signal communication with a microcontroller, for example, which can determine whether the closure release button 1062 is in its first position, which is associated with the unactuated position of the closure trigger 1032 and the open configuration of the end effector, its second position, which is associated with the actuated position of the closure trigger 1032 and the closed configuration of the end effector, and/or any position between the first position and the second position.
In at least one form, the handle 1014 and the frame 1020 may operably support another drive system referred to herein as a firing drive system 1080 that is configured to apply firing motions to corresponding portions of the interchangeable shaft assembly attached thereto. The firing drive system 1080 may also be referred to herein as a “second drive system”. The firing drive system 1080 may employ an electric motor 1082 that is located in the pistol grip portion 1019 of the handle 1014. In various forms, the motor 1082 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor 1082 may be powered by a power source 1090 that in one form may comprise a removable power pack 1092. As can be seen in
As outlined above with respect to other various forms, the electric motor 1082 can include a rotatable shaft (not shown) that operably interfaces with a gear reducer assembly 1084 that is mounted in meshing engagement with a with a set, or rack, of drive teeth 1122 on a longitudinally-movable drive member 1120. In use, a voltage polarity provided by the power source 1090 can operate the electric motor 1082 in a clockwise direction wherein the voltage polarity applied to the electric motor by the battery can be reversed in order to operate the electric motor 1082 in a counter-clockwise direction. When the electric motor 1082 is rotated in one direction, the drive member 1120 will be axially driven in the distal direction “DD”. When the motor 82 is driven in the opposite rotary direction, the drive member 1120 will be axially driven in a proximal direction “PD”. The handle 1014 can include a switch which can be configured to reverse the polarity applied to the electric motor 1082 by the power source 1090. As with the other forms described herein, the handle 1014 can also include a sensor that is configured to detect the position of the drive member 1120 and/or the direction in which the drive member 1120 is being moved.
Actuation of the motor 1082 can be controlled by a firing trigger 1130 that is pivotally supported on the handle 1014. The firing trigger 1130 may be pivoted between an unactuated position and an actuated position. The firing trigger 1130 may be biased into the unactuated position by a spring 1132 or other biasing arrangement such that when the clinician releases the firing trigger 1130, it may be pivoted or otherwise returned to the unactuated position by the spring 1132 or biasing arrangement. In at least one form, the firing trigger 1130 can be positioned “outboard” of the closure trigger 1032 as was discussed above. In at least one form, a firing trigger safety button 1134 may be pivotally mounted to the closure trigger 1032 by the pin 1035. The safety button 1134 may be positioned between the firing trigger 1130 and the closure trigger 1032 and have a pivot arm 1136 protruding therefrom. When the closure trigger 1032 is in the unactuated position, the safety button 1134 is contained in the handle 1014 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 1130 and a firing position wherein the firing trigger 1130 may be fired. As the clinician depresses the closure trigger 1032, the safety button 1134 and the firing trigger 1130 pivot down wherein they can then be manipulated by the clinician.
As indicated above, in at least one form, the longitudinally movable drive member 1120 has a rack of teeth 1122 formed thereon for meshing engagement with a corresponding drive gear 1086 of the gear reducer assembly 1084. At least one form also includes a manually-actuatable “bailout” assembly 1140 that is configured to enable the clinician to manually retract the longitudinally movable drive member 1120 should the motor 1082 become disabled. The bailout assembly 1140 may include a lever or bailout handle assembly 1142 that is configured to be manually pivoted into ratcheting engagement with teeth 1124 also provided in the drive member 1120. Thus, the clinician can manually retract the drive member 1120 by using the bailout handle assembly 1142 to ratchet the drive member 1120 in the proximal direction “PD”. U.S. Pat. No. 8,608,045, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, discloses bailout arrangements and other components, arrangements and systems that may also be employed with the various instruments disclosed herein. U.S. Pat. No. 8,608,045, is hereby incorporated by reference herein in its entirety.
Turning now to
The interchangeable shaft assembly 1200 can further include a closure system or closure member assembly 3000 which can be utilized to close and/or open the anvil 2000 of the end effector 1300. The shaft assembly 1200 can include a spine 1210 that is configured to, one, slidably support a firing member therein and, two, slidably support the closure member assembly 3000 which extends around the spine 1210. As can be seen in
In the illustrated example, the surgical end effector 1300 is selectively articulatable about the articulation axis AA by an articulation system 2100. In one form, the articulation system 2100 includes proximal articulation driver 2102 that is pivotally coupled to an articulation link 2120. As can be most particularly seen in
In various circumstances, the spine 1210 can comprise a proximal end 1211 which is rotatably supported in a chassis 1240. In one arrangement, for example, the proximal end 1211 of the spine 1210 has a thread 1214 formed thereon for threaded attachment to a spine bearing 1216 configured to be supported within the chassis 1240. See
Referring primarily to
In at least one form, the interchangeable shaft assembly 1200 may further include an articulation joint 3020. Other interchangeable shaft assemblies, however, may not be capable of articulation. As can be seen in
As was also indicated above, the interchangeable shaft assembly 1200 further includes a firing member 1900 that is supported for axial travel within the spine 1210. The firing member 1900 includes an intermediate firing shaft portion 1222 that is configured for attachment to a distal cutting portion or knife bar 1910. The intermediate firing shaft portion 1222 may include a longitudinal slot 1223 in the distal end thereof which can be configured to receive a tab 1912 on the proximal end of the distal knife bar 1910. The longitudinal slot 1223 and the proximal end tab 1912 can be sized and configured to permit relative movement therebetween and can comprise a slip joint 1914. The slip joint 1914 can permit the intermediate firing shaft portion 1222 of the firing member 1900 to be moved to articulate the end effector 1300 without moving, or at least substantially moving, the knife bar 1910. Once the end effector 1300 has been suitably oriented, the intermediate firing shaft portion 1222 can be advanced distally until a proximal sidewall of the longitudinal slot 1223 comes into contact with the tab 1912 in order to advance the knife bar 1910 and fire the staple cartridge 4000 positioned within the channel 1310. The knife bar 1910 includes a knife portion 1920 that includes a blade or tissue cutting edge 1922 and includes an upper anvil engagement tab 1924 and lower channel engagement tabs 1926. Various firing member configurations and operations are disclosed in various other references incorporated herein by reference.
As can be seen in
As also illustrated in
As discussed above, the shaft assembly 1200 can include a proximal portion which is fixably mounted to the handle 1014 and a distal portion which is rotatable about a longitudinal axis. The rotatable distal shaft portion can be rotated relative to the proximal portion about the slip ring assembly 1600, as discussed above. The distal connector flange of the slip ring assembly 1600 can be positioned within the rotatable distal shaft portion. Moreover, further to the above, the switch drum 1500 can also be positioned within the rotatable distal shaft portion. When the rotatable distal shaft portion is rotated, the distal connector flange and the switch drum 1500 can be rotated synchronously with one another. In addition, the switch drum 1500 can be rotated between a first position and a second position relative to the distal connector flange. When the switch drum 1500 is in its first position, the articulation drive system may be operably disengaged from the firing drive system and, thus, the operation of the firing drive system may not articulate the end effector 1300 of the shaft assembly 1200. When the switch drum 1500 is in its second position, the articulation drive system may be operably engaged with the firing drive system and, thus, the operation of the firing drive system may articulate the end effector 1300 of the shaft assembly 1200. When the switch drum 1500 is moved between its first position and its second position, the switch drum 1500 is moved relative to distal connector flange. In various instances, the shaft assembly 1200 can comprise at least one sensor configured to detect the position of the switch drum 1500.
Referring again to
Various shaft assembly embodiments employ a latch system 1710 for removably coupling the shaft assembly 1200 to the housing 1012 and more specifically to the frame 1020. As can be seen in
When employing an interchangeable shaft assembly that includes an end effector of the type described herein that is adapted to cut and fasten tissue, as well as other types of end effectors, it may be desirable to prevent inadvertent detachment of the interchangeable shaft assembly from the housing during actuation of the end effector. For example, in use the clinician may actuate the closure trigger 1032 to grasp and manipulate the target tissue into a desired position. Once the target tissue is positioned within the end effector 1300 in a desired orientation, the clinician may then fully actuate the closure trigger 1032 to close the anvil 2000 and clamp the target tissue in position for cutting and stapling. In that instance, the first drive system 1030 has been fully actuated. After the target tissue has been clamped in the end effector 1300, it may be desirable to prevent the inadvertent detachment of the shaft assembly 1200 from the housing 1012. One form of the latch system 1710 is configured to prevent such inadvertent detachment.
As can be most particularly seen in
Attachment of the interchangeable shaft assembly 1200 to the handle 1014 will now be described. To commence the coupling process, the clinician may position the chassis 1240 of the interchangeable shaft assembly 1200 above or adjacent to the distal attachment flange 1700 of the frame 1020 such that the tapered attachment portions 1244 formed on the chassis 1240 are aligned with the dovetail slots 1702 in the frame 1020. The clinician may then move the shaft assembly 1200 along an installation axis that is perpendicular to the shaft axis SA to seat the attachment portions 1244 in “operable engagement” with the corresponding dovetail receiving slots 1702. In doing so, the shaft attachment lug 1226 on the intermediate firing shaft portion 1222 will also be seated in the cradle 1126 in the longitudinally movable drive member 1120 and the portions of the pin 1037 on the second closure link 1038 will be seated in the corresponding hooks 1252 in the closure shuttle 1250. As used herein, the term “operable engagement” in the context of two components means that the two components are sufficiently engaged with each other so that upon application of an actuation motion thereto, the components may carry out their intended action, function and/or procedure.
At least five systems of the interchangeable shaft assembly 1200 can be operably coupled with at least five corresponding systems of the handle 1014. A first system can comprise a frame system which couples and/or aligns the frame or spine of the shaft assembly 1200 with the frame 1020 of the handle 1014. Another system can comprise a closure drive system 1030 which can operably connect the closure trigger 1032 of the handle 1014 and the closure tube 1260 and the anvil 2000 of the shaft assembly 1200. As outlined above, the closure shuttle 1250 of the shaft assembly 1200 can be engaged with the pin 1037 on the second closure link 1038. Another system can comprise the firing drive system 1080 which can operably connect the firing trigger 1130 of the handle 1014 with the intermediate firing shaft portion 1222 of the shaft assembly 1200. As outlined above, the shaft attachment lug 1226 can be operably connected with the cradle 1126 of the longitudinal drive member 1120. Another system can comprise an electrical system which can signal to a controller in the handle 1014, such as microcontroller, for example, that a shaft assembly, such as shaft assembly 1200, for example, has been operably engaged with the handle 1014 and/or, two, conduct power and/or communication signals between the shaft assembly 1200 and the handle 1014. For instance, the shaft assembly 1200 can include an electrical connector 1810 that is operably mounted to the shaft circuit board 1610. The electrical connector 1810 is configured for mating engagement with a corresponding electrical connector 1800 on the handle control board 1100. Further details regaining the circuitry and control systems may be found in U.S. patent application Ser. No. 13/803,086, now U.S. Patent Application Publication No. 2014/0263541, and U.S. patent application Ser. No. 14/226,142, now U.S. Pat. No. 9,913,642, the entire disclosures of each which were previously incorporated by reference herein. The fifth system may consist of the latching system for releasably locking the shaft assembly 1200 to the handle 1014.
The anvil 2000 in the illustrated example includes an anvil body 2002 that terminates in an anvil mounting portion 2010. The anvil mounting portion 2010 is movably or pivotably supported on the elongate channel 1310 for selective pivotal travel relative thereto about a fixed anvil pivot axis PA that is transverse to the shaft axis SA. In the illustrated arrangement, a pivot member or anvil trunnion 2012 extends laterally out of each lateral side of the anvil mounting portion 2010 to be received in a corresponding trunnion cradle 1316 formed in the upstanding walls 1315 of the proximal end portion 1312 of the elongate channel 1310. The anvil trunnions 2012 are pivotally retained in their corresponding trunnion cradle 1316 by the channel cap or anvil retainer 1290. The channel cap or anvil retainer 1290 includes a pair of attachment lugs that are configured to be retainingly received within corresponding lug grooves or notches formed in the upstanding walls 1315 of the proximal end portion 1312 of the elongate channel 1310. See
Still referring to
The handle 5006 of the instrument 5010 may include a closure trigger 5018 and a firing trigger 5020 for actuating the end effector 5012. It will be appreciated that instruments having end effectors directed to different surgical tasks may have different numbers or types of triggers or other suitable controls for operating the end effector 5012. In one embodiment, a clinician or operator of the instrument 5010 may articulate the end effector 5012 relative to the shaft 5008 by utilizing the articulation control 5016, as described in more detail in pending U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, the entire disclosure of which is incorporated herein by reference. The end effector 5012 includes in this example, among other things, a staple channel 5022 and a pivotally translatable clamping member, such as an anvil 5024, which are maintained at a spacing that assures effective stapling and severing of tissue clamped in the end effector 5012. The handle 5006 includes a pistol grip 5026 toward which the closure trigger 5018 is pivotally drawn by the clinician to cause clamping or closing of the anvil 5024 towards the staple channel 5022 of the end effector 5012 to thereby clamp tissue positioned between the anvil 5024 and channel 5022.
In the arrangement depicted in
Still referring to
A bearing 5038, positioned at a distal end of the staple channel 5022, receives the helical screw shaft 5036, allowing the helical screw shaft 5036 to freely rotate with respect to the channel 5022. The helical screw shaft 5036 may interface a threaded opening (not shown) of the knife 5032 such that rotation of the helical screw shaft 5036 causes the knife 5032 to translate distally or proximately (depending on the direction of the rotation) through the staple channel 5022.
Turning next to
The handle 5006 may include a middle handle piece 5104 adjacent to the upper portion of the firing trigger 5020. The handle 5006 also may comprise a bias spring 5112 connected between posts on the middle handle piece 5104 and the firing trigger 5020. The bias spring 5112 may bias the firing trigger 5020 to its fully open position. In that way, when the operator releases the firing trigger 5020, the bias spring 5112 will pull the firing trigger 5020 to its open position. The distal end of the helical gear drum 5080 includes a distal drive shaft 5120 that drives a ring gear 5122, which mates with a pinion gear 5124. The pinion gear 5124 is connected to the main drive shaft 5048 of the main drive shaft assembly. In that way, rotation of the motor 5065 causes the main drive shaft assembly to rotate, which causes actuation of the end effector 5012. The ring 5084 threaded on the helical gear drum 5080 may include a post 5086 that is disposed within a slot 5088 of a slotted arm 5090. The slotted arm 5090 has an opening 5092 in its opposite end 5094 that receives a pivot pin 5096 that is connected between the handle exterior side pieces 5059, 5060. The pivot pin 5096 is also disposed through an opening 5100 in the firing trigger 5020 and an opening 5102 in the middle handle piece 5104.
The middle handle piece 5104 includes a backside shoulder 5106 that engages the slotted arm 5090. The middle handle piece 5104 also has a forward motion 5107 stop that engages the firing trigger 5020. The movement of the slotted arm 5090 is controlled by rotation of the motor 5065. When the slotted arm 5090 rotates counter clockwise as the ring 5084 travels from the proximate end of the helical gear drum 5080 to the distal end, the middle handle piece 5104 will be free to rotate counter clockwise. Thus, as the user draws in the firing trigger 5020, the firing trigger 5020 will engage the forward motion stop 5107 of the middle handle piece 5104, causing the middle handle piece 5104 to rotate counter clockwise. Due to the backside shoulder 5106 engaging the slotted arm 5090, however, the middle handle piece 5104 will only be able to rotate counter clockwise as far as the slotted arm 5090 permits. In that way, if the motor 5065 should stop rotating for some reason, the slotted arm 5090 will stop rotating, and the user will not be able to further draw in the firing trigger 5020 because the middle handle piece 5104 will not be free to rotate counter clockwise due to the slotted arm 5090.
Components of an exemplary closure system for closing (or clamping) the anvil 5024 of the end effector 5012 by retracting the closure trigger 5018 are also shown in
In operation, when the yoke 5250 rotates due to retraction of the closure trigger 5018, the closure brackets 5256, 5258 cause the proximal closure tube 5040 to move distally (i.e., away from the handle end of the instrument 5010), which causes the distal closure tube 5042 to move distally, which causes the anvil 5024 to rotate about the pivot pins 5025 into the clamped or closed position. When the closure trigger 5018 is unlocked from the locked position, the proximal closure tube 5040 is caused to slide proximately, which causes the distal closure tube 5042 to slide proximately, which, by virtue of the tab 5027 being inserted in the opening 5045 of the distal closure tube 5042, causes the anvil 5024 to pivot about the pivot pins 5025 into the open or unclamped position. In that way, by retracting and locking the closure trigger 5018, an operator may clamp tissue between the anvil 5024 and channel 5022, and may unclamp the tissue following the cutting/stapling operation by unlocking the closure trigger 5018 from the locked position. Further details concerning the construction and operation of the existing surgical instrument 5010 may be found in U.S. Pat. No. 7,845,537, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES, the entire disclosure of which is hereby incorporated by reference herein. Other rotary drive arrangements configured for use with various forms of robotic systems are disclosed in U.S. Patent Application Publication No. 2016/0287251, entitled STAPLING END EFFECTOR CONFIGURED TO COMPENSATE FOR AN UNEVEN GAP BETWEEN A FIRST JAW AND A SECOND JAW, the entire disclosure of which is hereby incorporated by reference herein.
Turning next to
As can be seen in
In the illustrated example, the surgical end effector 10300 is selectively articulatable about the articulation axis AA by an articulation system 10260. In one form, the articulation system 10260 includes an articulation motor 10262 that is operably supported in the nozzle assembly 10202, for example. See
In at least one arrangement, the surgical end effector 10300 includes a firing member that is axially movable within the surgical end effector 10300 between a starting position and an ending position. As will be discussed in further detail below, the firing member may be configured to sever tissue that is clamped between the anvil 10500 and a surgical staple cartridge 10400 that is operably supported in the elongate channel 10310. In one arrangement, the staple cartridge 10400 includes lines of surgical staples or fasteners that are operably supported on corresponding drivers that are movably supported in the cartridge. As the firing member is driven distally, the firing member cooperates with a sled or camming assembly that is supported in the staple cartridge that serves to advance the drivers in a direction toward the closed anvil which causes the staples or fasteners supported thereon to pierce through the clamped tissue into forming contact with the underside of the closed anvil. Once the firing member has been distally advanced from its proximal starting position to its ending position within the end effector, it may be retracted back to its starting position to permit the anvil to be opened to facilitate removal of the cut/stapled tissue from the end effector. In other arrangements, the firing member may be left at the ending position wherein it is permitted to disengage from the anvil to facilitate opening of the anvil.
In at least one arrangement, the surgical instrument 10010 also employs a firing system 10600 that is configured to apply rotary drive motions to the firing member to drive the firing member between the starting and end positions. In the example depicted in
In the example depicted in
In the illustrated example, the surgical end effector 10300 includes the anvil 10500 that includes a proximally-extending mounting tab 10510 that is configured to be pivotally attached to a distal insert portion 10334 of the insert assembly 10330. In alternative arrangements, the distal insert portion 10334 may be separate from the insert assembly 10330 and otherwise be attached to the proximal end portion 10312 of the elongate channel 10310 by welding, adhesive, fasteners, etc. In still other arrangements, the distal insert portion 10334 may actually comprise a portion of the elongate channel 10310 and be integrally formed therewith. In the illustrated arrangement, the anvil mounting tab 10510 includes a distal portion 10512 through which a transverse slot 10514 extends therethrough and is aligned with a transverse slot 10336 in the distal insert portion 10334 as well as a slot 10315 in the tubular portion 10314 of the elongate channel 10310. See
As can be seen in
The example illustrated in
The example illustrated in
As can be seen in
The example illustrated in
As can also be seen in
As was described above, the rotary closure drive shaft 10710 includes a closure drive gear 10715 that is centrally disposed between a right distal closure shaft 10830 and a left distal closure shaft 10840. See
As can be seen in
The closure rings in these embodiments essentially encircle the corresponding anvil and elongate channel portions. To facilitate opening of the anvil to a desired opening aperture or angle, the closure ring is permitted to move proximally to distally a small amount (e.g., 0.0″-0.1″) while being spring biased to the distal position. The ring does not induce closure but merely constrains the anvil and channel from moving apart vertically allowing a pivoting motion to occur between the two components. Such arrangement facilitates use of a thicker anvil particularly in the anvil mounting area which may improve anvil strength and reliability. This configuration may further enable the jaws (anvil and channel) to pivot in a fashion that improves the moment arm condition of the anvil proximal to the pivot location and facilitate opening of the end effector to greater opening angles. In various aspects, the rotary driven closure system 10700 may be actuated during the actuation of the rotary driven firing system 10600 such that the closure system 10700 continues to apply additional closure motions to the anvil as the firing member is axially driven through the staple cartridge.
Referring to
Turning next to
In the illustrated example, the surgical end effector 11000 includes an anvil closure member 11200 and a firing member 11300 that are each independently controlled and axially movable.
As indicated above, the surgical end effector 11000 further includes an axially movable firing member 11300.
To close the anvil 11100, the closure drive shaft 10710 is rotated in an opposite direction to distally advance the closure member 11200 into a closed position. The firing drive shaft 10610 may also be simultaneously rotated to distally advance the firing member 11300 into a starting position. When the closure member 11200 and the firing member 11300 are in those positions, the anvil 11100 is closed and the firing member 11300 is ready to be fired. Thus, assuming that an unspent surgical staple cartridge has been first operably supported in the elongate channel 11010 and the end effector 11000 was manipulated to capture the target tissue between the staple cartridge and the anvil, the user may close the anvil 11100 onto the tissue in the above described manner to ready the end effector to be fired. During this closing process, the firing drive shaft 10610 is rotated to drive the firing member 11300 distally into the clamped tissue to cut the tissue and cause the staples stored in the staple cartridge to be formed into the cut tissue on both sides of the cut. During this process, the closure member 11200 may also be driven distally to apply additional closure motions to the anvil 11100 and elongate channel 11010. Depending upon the amount of resistance experienced by the firing member 11300, for example, the closure member 11200 can be advanced with the firing member 11300, stop and then go again. The closure member 11200 may be advanced distally at a different rate from the firing member's rate of distal advancement. The distance DC between the closure member 11200 and the firing member 11300 may be controlled to balance the loads experienced during the firing process. See
Returning to
One advantage that may be experienced when using the foregoing configuration is that the closure member 11200 can be moved away from the firing member 11300 to gain a significant amount of mechanical advantage during closure. The closure member 11200 does not need to travel the complete length of the firing stroke. For example, if the closure member 11200 were to be advanced about half way down the end effector, the relative stiffness of the anvil 11100 would reduce the amount of load being encountered by the firing member 11300. A control system employing sensors (e.g., strain gauges, etc.) for detecting amounts of loads being experienced by the firing system components and closure system components, as well as algorithms, can be used to balance the loads being encountered by both systems. For example, a maximum threshold of vertical load experienced by the firing member 11300 can be set in the controller based on the geometry and composition of that firing member component. When the load approaches that threshold, the algorithm can automatically advance the closure member 11200 so that it absorbs more of the load and reduces the amount of load being experienced by the firing member 11300. In various aspects, as the firing member 11300 is distally driven through the surgical staple cartridge, the firing member 11300, through the engagement of the anvil engagement tabs 11306 with the anvil 11100 and the engagement of the channel engagement tabs 11304 with the channel 11010, may serve to maintain a desired amount of tissue gap between a deck surface on the staple cartridge and a staple forming undersurface on the anvil 11100. Other closure control methods may also be employed in connection with opening and closing the surgical end effector 11000 such as those disclosed in U.S. patent application Ser. No. 16/105,081, entitled METHOD FOR OPERATING A POWERED ARTICULATABLE SURGICAL INSTRUMENT, the entire disclosure of which is hereby incorporated by reference herein.
In the illustrated example, the elongate shaft assembly 12100 includes an articulation joint 12120 that facilitates articulation of the surgical end effector 12200 about an articulation axis AA that is transverse to a longitudinal shaft axis LA. Other shaft assemblies, however, may not be capable of articulation. In the illustrated example, the shaft assembly 12100 comprises a proximal outer shaft tube or member 12110 that extends distally from a nozzle assembly 12014 as will be discussed in further detail below, the surgical end effector 12200 is operably attached to an end cap attachment feature 12400. In one arrangement, the end cap attachment feature 12400 comprises a tubular shape body 12402 that is similar in size to the proximal outer shaft tube 12110 and is coupled to the distal end 12112 of the proximal outer shaft tube 12110 to form an articulation joint 12120. The shaft assembly 12100 may also include an internal spine member (not shown) that is pivotally coupled to the end cap 12400. A proximal end of the internal spine member may be rotatably coupled to a chassis (not shown) within the nozzle assembly 12014 in the various manners disclosed herein, for example.
In the illustrated example, the surgical end effector 12200 is selectively articulatable about the articulation axis AA by an articulation system 12030. In one form, the articulation system 12030 includes an articulation motor 12032 that is operably supported in the nozzle assembly 12014, for example. See
The surgical end effector 12200 further includes an anvil 12300 that is selectively pivotable relative to the elongate channel 12210 between open and closed configurations by a closure system 12500. In one arrangement, for example, the anvil 12300 may be fabricated using various fabricating techniques described in U.S. patent application Ser. No. 16/105,101, entitled METHOD FOR FABRICATING SURGICAL STAPLER ANVILS, the entire disclosure of which is hereby incorporated by reference herein. In at least one arrangement, the surgical end effector 12200 also includes a firing member 12620 that is axially movable within the surgical end effector 12200 between a starting position and an ending position. See
In at least one arrangement, the surgical instrument 12000 also employs a firing system 12600 that is configured to apply rotary drive motions to the firing member 12620 to drive the firing member between the starting and ending positions. In the example depicted in
In the illustrated example, in addition, to a rotary driven firing system 12600, the surgical instrument 12000 also includes a rotary driven closure system 12500 that is configured to apply rotary closure motions to the anvil 12300. As can be seen in
As can be seen in
In one aspect, the anvil 12300 is pivotally coupled to the end cap 12400 by a rivet 12370 that extends through a passage 12360 in the anvil mounting portion 12312 of the anvil mounting tab 12310 and a corresponding passage 12406 in the pivot lug portion 12404 of the end cap 12400. In at least one arrangement, the rivet 12370 comprises a solid core rivet with a shank 12372 having diameter of, for example, 0.05″-0.1″ with an orbit formed head 12374 on one end and a machined end 12376 formed on the other end. See
As can be seen in
Turning now to
In the illustrated example, the axial movement of the closure shuttle 12520 is transferred to the anvil 12300 by a pivoting closure linkage assembly 12530. In one arrangement, the closure linkage assembly 12530 includes a first pivot arm 12540 and a second pivot arm 12550 that are each pivotally attached to the proximal end portion 12314 of the anvil mounting tab 12310 and suspended therefrom. As can be seen in
In the illustrated example, the shaft assembly 13100 includes an articulation joint 13120 that facilitates articulation of the surgical end effector 13200 about an articulation axis AA that is transverse to a longitudinal shaft axis LA. Other shaft assemblies, however, may not be capable of articulation. In accordance with one aspect, the shaft assembly 13100 comprises a proximal outer shaft tube or member 13110 that extends distally from a nozzle assembly 13014 as will be discussed in further detail below, the surgical end effector 13200 is operably attached to an end cap attachment feature 13400. In one arrangement, the end cap attachment feature 13400 comprises a tubular shape body 13402 that is similar in size to the proximal outer shaft tube 13110 and is coupled to a distal end 13112 of the proximal outer shaft tube 13110 to form the articulation joint 13120. The end cap 13400 may also comprise a proximal portion of the elongate channel 13210. The shaft assembly 13100 may also include an internal spine member (not shown) that is pivotally coupled to the end cap 13400. A proximal end of the internal spine member may be rotatably coupled to a chassis (not shown) within the nozzle assembly 13014 in the various manners disclosed herein, for example.
In the illustrated example, the surgical end effector 13200 is selectively articulatable about the articulation axis AA by an articulation system 13030. In one form, the articulation system 13030 includes an articulation motor 13032 that is operably supported in the nozzle assembly 13014, for example. See
As indicated above, the surgical end effector 13200 includes an anvil 13300 that is selectively movable relative to the elongate channel 13210 between open and closed configurations by a rotary driven closure system 13500. As can be seen in
As can be seen in
In the illustrated example, the axial movement of the closure shuttle 13520 is transferred to the anvil 13300 by a pivoting closure link assembly 13530. In one arrangement, the closure link assembly 13530 includes a pair of pivot arms 13540 (only one can be seen in
As also indicated above, the surgical end effector 13200 is configured to operably support a replaceable surgical staple cartridge 13700 therein. The staple cartridge 13700 includes an onboard firing member 13820 that is configured to be rotatably driven between a starting and ending position within the staple cartridge 13700. The firing member 13820 comprises a vertically extending firing member body 13822 that has a tissue cutting surface 13824 formed thereon or attached thereto. A pair of channel engagement tabs 13826 extend laterally from the bottom of the firing member body 13822 and a pair of anvil engagement tabs 13828 extend from the top portion of the firing member body 13822 such that the firing member 13820 resembles an I-beam configuration when viewed from an end thereof. As can be seen in
As can be seen in
In one example, at least one C-shaped clip 13890 may be journaled within the cartridge body 13702 such that a center portion 13892 of the clip 13890 extends through the elongate cartridge slot 13704 in the cartridge body 13702 such that an upper leg 13894 of the clip 13890 rides on an inside surface or ledge 13708 in the cartridge body 13702 adjacent the cartridge slot 13704. A lower leg 13896 of the clip 13890 rides on a bottom surface 13213 of the channel bottom 13212 as shown in
As can also be seen in
Returning to
The illustrated example also employs an anvil lockout assembly 13900 that is configured to prevent the closure of the anvil 13300 until the cartridge 13700 has been properly seated in the elongate channel 13210. In one arrangement, the anvil lockout assembly 13900 comprises an anvil lockout member 13910 that is movably supported in the elongate channel 13210. Turning to
In the illustrated arrangement, the cartridge body 13702 includes a key member 13760 that is configured to move the lockout member 13910 from the locked position LP to the unlocked position ULP when the cartridge 13700 has been properly seated within the elongate channel 13210. In one example, the key member 13760 comprises a proximally extending fin 13762 that is configured to contact the proximal key tab 13916 on the clip body 13912. When the cartridge 13700 has been operably seated in the elongate channel 13210, the fin 13762 moves the lockout member 13910 proximally from the locked position LP to the unlocked position ULP.
As can be seen in
As was discussed above, the rotary driven closure system 13500 comprises an axially movable closure shuttle 13520 that is threaded onto a threaded distal closure shaft segment 13512 that is configured to be drivingly coupled the closure drive shaft 13510 (
In the illustrated example, the axial movement of the closure shuttle 13520 is transferred to the anvil 14300 by a pivoting closure link assembly 13530. In one arrangement, the closure link assembly 13530 includes a pair of pivot arms 13540 (only one can be seen in
Unlike the surgical end effector 13200 wherein the firing member 13820 is contained within the replaceable surgical staple cartridge 13700, the surgical end effector 14200 employs a dedicated firing member 14820 that is permanently journaled on the rotary firing drive shaft 13810. In the illustrated example, the rotary firing drive shaft 13810 and the threaded distal closure shaft segment 13512 are rotatably supported in the elongate channel 14210. As will be discussed in further detail below, a portion of the rotary firing drive shaft 13810 that is distal to the threaded distal closure shaft segment 13512 includes a proximal threaded segment 13811, an unthreaded segment 13815, and a distal threaded segment 13817.
In this arrangement, the firing member 14820 includes a firing member lockout feature 14840 that is configured to prevent the distal advancement of the firing member 14820 from its starting position unless a fresh unfired staple cartridge has been properly seated in the elongate channel 14210. As can be seen in
A fresh, unfired surgical staple cartridge 14700 contains a camming assembly 14740 that is located in a starting position that is proximal to the lines of staple drivers that are supported in the cartridge body. As used herein, the terms “fresh, unfired” means that the staple cartridge has all of its intended staples or fasteners in their respective unfired positions and the camming assembly is in a proximal unfired starting position. When a fresh, unfired surgical staple cartridge 14700 has been properly seated within the elongate channel 14210, a proximally extending unlocking portion 14742 on the camming assembly 14740 engages the sled latch 14848 on the lockout feature 14840 to pivot the lockout feature 14840 into an unlocked position wherein the lockout feature 14840 does not extend into the firing lockout hole 14215 in the elongate channel.
In one example, the internal threads 14744 in the camming assembly 14740 are configured to only drive the camming assembly 14740 in the distal direction. For example, the internal threads 14744 may have a leading portion 14747 that is configured to facilitate threaded engagement with the threaded segment 13817 on the firing drive shaft 13810. However, the internal threads 14744 may have a trailing portion 14748 that is configured to prevent threaded engagement with the threads 13817 when the camming assembly 14740 has been driven to its ending position and the firing drive shaft 13810 is rotated in an opposite direction to drive the firing member 14820 back to the starting position. In
The end effector 14200 as depicted also includes an anvil lockout assembly 13900 that is configured to prevent the closure of the anvil 14300 unless a staple cartridge 14700 has been properly seated therein. Operation of the anvil lockout member 13910 was described above and will not be repeated for the sake of brevity.
As can be seen in
As can also be seen in
Various aspects of the subject matter described herein are set out in the following examples.
A surgical instrument comprising a channel, an anvil, a rotary driven closure system, a rotary driven firing drive shaft, and an axially movable firing member. The channel is configured to support a replaceable surgical staple cartridge therein. The anvil is movably supported on the channel and is configured to selectively move between an open position and a closed position. The rotary driven closure system operably interfaces with the anvil and is configured to move the anvil between the open position and the closed position upon application of rotary opening and closing motions thereto. The rotary driven firing drive shaft is independently operable from the rotary driven closure system. The axially movable firing member is in driving engagement with the rotary driven firing drive shaft and is configured for sliding engagement with the channel and the anvil upon application of rotary firing motions to the rotary driven firing drive shaft.
The surgical instrument of Example 1, wherein the axially movable firing member is supported in the replaceable surgical staple cartridge and is configured to removably interface with the rotary driven firing drive shaft when the replaceable surgical staple cartridge is operably seated in the channel.
The surgical instrument of Examples 1 or 2, wherein the rotary driven firing drive shaft comprises a proximal rotary drive shaft and an onboard cartridge drive shaft. The proximal rotary drive shaft is rotatably supported by the channel and operably interfaces with a source of rotary firing motions. The onboard cartridge drive shaft is rotatably supported in the replaceable surgical staple cartridge and is in threaded engagement with the axially movable firing member supported therein, such that rotation of the onboard cartridge drive shaft in a first rotary direction moves the axially movable firing member from a starting position to an ending position within the replaceable surgical staple cartridge and rotation of the onboard cartridge drive shaft in a second rotary direction moves the axially movable firing member from the ending position to the starting position. The onboard cartridge drive shaft comprises a coupler configured to removably drivingly engage the proximal rotary drive shaft when the replaceable surgical staple cartridge is operably seated in the channel.
The surgical instrument of Example 3, wherein the replaceable surgical staple cartridge comprises a camming assembly configured to drive surgical fasteners stored in the replaceable surgical staple cartridge into forming contact with the anvil when the camming assembly is moved from an unfired position to a completely fired position within the replaceable surgical staple cartridge.
The surgical instrument of Example 4, wherein the camming assembly is configured to threadably engage the onboard cartridge drive shaft.
The surgical instrument of Example 5, wherein the camming assembly is configured to threadably disengage the onboard cartridge drive shaft when the camming assembly has reached the completely fired position.
The surgical instrument of Examples 4, 5, or 6, wherein the onboard cartridge drive shaft further comprises a proximal segment of drive threads configured for driving engagement with corresponding firing member threads on the axially movable firing member, a distal segment of drive threads configured to drivingly engage the firing member threads and camming assembly threads in the camming assembly, and an unthreaded central segment of the onboard cartridge drive shaft located between the proximal segment of drive threads and the distal segment of drive threads.
The surgical instrument of Example 7, wherein when the camming assembly is in the unfired position, the camming assembly threads are located adjacent the unthreaded central segment of the onboard cartridge drive shaft.
The surgical instrument of Examples 7 or 8, wherein the onboard cartridge drive shaft comprises an unthreaded end portion distal to the distal segment of drive threads that corresponds to the completely fired position of the camming assembly.
The surgical instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, or 9, wherein the axially movable firing member comprises a tissue cutting surface.
The surgical instrument of Examples 3, 4, 5, 6, 7, 8, 9, or 10, wherein the replaceable surgical staple cartridge comprises a garage portion configured to support the axially movable firing member therein when the axially movable firing member is in the starting position.
The surgical instrument of Examples 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 11, further comprising an anvil lockout assembly operably supported in the channel and configured to prevent movement of the anvil from the open position to the closed position unless the replaceable surgical staple cartridge is operably seated in the channel.
The surgical instrument of Example 12, wherein the anvil lockout assembly comprises a lockout member movable from a locked position wherein the lockout member prevents the anvil from moving to the closed position and an unlocked position wherein the anvil is movable from the open position to the closed position, and wherein the replaceable surgical staple cartridge comprises a cartridge body operably storing a plurality of surgical fasteners therein and comprising an unlocking feature configured to move the lockout member from the locked position to the unlocked position when the replaceable surgical staple cartridge is operably seated in the channel.
The surgical instrument of Examples 4, 5, 6, 7, 8, or 9, further comprising a firing member lockout assembly movable from a first position wherein the firing member lockout assembly prevents the axially movable firing member from moving from the starting position to the ending position and a second position wherein the firing member lockout assembly permits the firing member to move from the starting position to the ending position, wherein the camming assembly is configured to move the firing member lockout assembly into the first position when the camming assembly is in the unfired position.
A surgical instrument comprising an elongate channel, an anvil, a rotary driven closure system, an axially movable firing member, a rotary driven firing system, an anvil lockout assembly, and a firing member lockout assembly. The elongate channel is configured to support a replaceable surgical staple cartridge therein. The anvil is movably supported on the elongate channel and is configured to selectively move between an open position and a closed position. The rotary driven closure system operably interfaces with the anvil and is configured to move the anvil between the open position and the closed position upon application of rotary opening and closing motions thereto. The axially movable firing member is supported for sliding engagement with the elongate channel and the anvil when the anvil is in the closed position. The rotary driven firing system operably interfaces with the axially movable firing member to move the axially movable firing member between a starting position and an ending position upon application of rotary firing and retraction motions thereto. The anvil lockout assembly is operably supported in the elongate channel and is configured to prevent movement of the anvil from the open position to the closed position unless the replaceable surgical staple cartridge is operably seated in the elongate channel. The firing member lockout assembly is movable from a first position wherein the firing member lockout assembly prevents the firing member from moving from the starting position to the ending position and a second position wherein the firing member lockout assembly permits the firing member to move from the starting position to the ending position.
The surgical instrument of Example 15, wherein the replaceable surgical staple cartridge comprises a cartridge body and a camming assembly. The cartridge body operably stores a plurality of surgical fasteners therein. The camming assembly is configured to drive the surgical fasteners stored in the cartridge body into forming contact with the anvil when the camming assembly is moved from an unfired position to a completely fired position within the cartridge body. The camming assembly is configured to move the firing member lockout assembly into the first position when the camming assembly is in the unfired position and the cartridge body is operably seated in the elongate channel.
The surgical instrument of Example 16, wherein the rotary driven firing system comprises a rotary firing drive shaft operably supported in the elongate channel and operably interfacing with a source of rotary drive motions, and wherein the rotary firing drive shaft threadably engages the firing member and the camming assembly.
The surgical instrument of Example 17, wherein the camming assembly is movably stored in the cartridge body and configured to threadably engage the rotary firing drive shaft when the cartridge body is operably seated in the elongate channel.
The surgical instrument of Examples 17 or 18, wherein the camming assembly is configured to threadably disengage the rotary firing drive shaft when the camming assembly has reached the completely fired position.
The surgical instrument of Examples 17, 18, or 19, wherein the rotary firing drive shaft further comprises a proximal segment of drive threads configured for driving engagement with corresponding firing member threads in the axially movable firing member, a distal segment of drive threads configured to drivingly engage the firing member threads and camming assembly threads on the camming assembly, and an unthreaded central segment located between the proximal segment of drive threads and the distal segment of drive threads.
Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail.
The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
The entire disclosures of:
Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one ore more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.
While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/807,310, entitled METHODS FOR CONTROLLING A POWERED SURGICAL STAPLER THAT HAS SEPARATE ROTARY CLOSURE AND FIRING SYSTEMS, filed Feb. 19, 2019, of U.S. Provisional Patent Application Ser. No. 62/807,319, entitled SURGICAL STAPLING DEVICES WITH IMPROVED LOCKOUT SYSTEMS, filed Feb. 19, 2019, and of U.S. Provisional Patent Application Ser. No. 62/807,309, entitled SURGICAL STAPLING DEVICES WITH IMPROVED ROTARY DRIVEN CLOSURE SYSTEMS, filed Feb. 19, 2019, the disclosures of which are incorporated by reference herein in their entireties. This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/650,887, entitled SURGICAL SYSTEMS WITH OPTIMIZED SENSING CAPABILITIES, filed Mar. 30, 2018, the disclosure of which is incorporated by reference herein in its entirety. This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/649,302, entitled INTERACTIVE SURGICAL SYSTEMS WITH ENCRYPTED COMMUNICATION CAPABILITIES, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,294, entitled DATA STRIPPING METHOD TO INTERROGATE PATIENT RECORDS AND CREATE ANONYMIZED RECORD, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,300, entitled SURGICAL HUB SITUATIONAL AWARENESS, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,309, entitled SURGICAL HUB SPATIAL AWARENESS TO DETERMINE DEVICES IN OPERATING THEATER, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,310, entitled COMPUTER IMPLEMENTED INTERACTIVE SURGICAL SYSTEMS, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,291, entitled USE OF LASER LIGHT AND RED-GREEN-BLUE COLORATION TO DETERMINE PROPERTIES OF BACK SCATTERED LIGHT, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,296, entitled ADAPTIVE CONTROL PROGRAM UPDATES FOR SURGICAL DEVICES, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,333, entitled CLOUD-BASED MEDICAL ANALYTICS FOR CUSTOMIZATION AND RECOMMENDATIONS TO A USER, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,327, entitled CLOUD-BASED MEDICAL ANALYTICS FOR SECURITY AND AUTHENTICATION TRENDS AND REACTIVE MEASURES, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,315, entitled DATA HANDLING AND PRIORITIZATION IN A CLOUD ANALYTICS NETWORK, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,313, entitled CLOUD INTERFACE FOR COUPLED SURGICAL DEVICES, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,320, entitled DRIVE ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, filed Mar. 28, 2018, of U.S. Provisional Patent Application Ser. No. 62/649,307, entitled AUTOMATIC TOOL ADJUSTMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, filed Mar. 28, 2018, and of U.S. Provisional Patent Application Ser. No. 62/649,323, entitled SENSING ARRANGEMENTS FOR ROBOT-ASSISTED SURGICAL PLATFORMS, filed Mar. 28, 2018, the disclosures of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1853416 | Hall | Apr 1932 | A |
2222125 | Stehlik | Nov 1940 | A |
3082426 | Miles | Mar 1963 | A |
3503396 | Pierie et al. | Mar 1970 | A |
3584628 | Green | Jun 1971 | A |
3626457 | Duerr et al. | Dec 1971 | A |
3633584 | Farrell | Jan 1972 | A |
3759017 | Young | Sep 1973 | A |
3863118 | Lander et al. | Jan 1975 | A |
3898545 | Coppa et al. | Aug 1975 | A |
3912121 | Steffen | Oct 1975 | A |
3915271 | Harper | Oct 1975 | A |
3932812 | Milligan | Jan 1976 | A |
4041362 | Ichiyanagi | Aug 1977 | A |
4052649 | Greenwell et al. | Oct 1977 | A |
4087730 | Goles | May 1978 | A |
4157859 | Terry | Jun 1979 | A |
4412539 | Jarvik | Nov 1983 | A |
4448193 | Ivanov | May 1984 | A |
4523695 | Braun et al. | Jun 1985 | A |
4608160 | Zoch | Aug 1986 | A |
4614366 | North et al. | Sep 1986 | A |
4701193 | Robertson et al. | Oct 1987 | A |
4735603 | Goodson et al. | Apr 1988 | A |
4788977 | Farin et al. | Dec 1988 | A |
4892244 | Fox et al. | Jan 1990 | A |
5010341 | Huntley et al. | Apr 1991 | A |
5026387 | Thomas | Jun 1991 | A |
5035692 | Lyon et al. | Jul 1991 | A |
5042460 | Sakurai et al. | Aug 1991 | A |
5084057 | Green et al. | Jan 1992 | A |
5100402 | Fan | Mar 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5151102 | Kamiyama et al. | Sep 1992 | A |
5156315 | Green et al. | Oct 1992 | A |
5158585 | Saho et al. | Oct 1992 | A |
5171247 | Hughett et al. | Dec 1992 | A |
5197962 | Sansom et al. | Mar 1993 | A |
5242474 | Herbst et al. | Sep 1993 | A |
5253793 | Green et al. | Oct 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
RE34519 | Fox et al. | Jan 1994 | E |
5318516 | Cosmescu | Jun 1994 | A |
5322055 | Davison et al. | Jun 1994 | A |
5342349 | Kaufman | Aug 1994 | A |
5383880 | Hooven | Jan 1995 | A |
5396900 | Slater et al. | Mar 1995 | A |
5397046 | Savage et al. | Mar 1995 | A |
5403312 | Yates et al. | Apr 1995 | A |
5403327 | Thornton et al. | Apr 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5415335 | Knodell, Jr. | May 1995 | A |
5417699 | Klein et al. | May 1995 | A |
5439468 | Schulze et al. | Aug 1995 | A |
5445304 | Plyley et al. | Aug 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465895 | Knodel et al. | Nov 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5474566 | Alesi et al. | Dec 1995 | A |
5485947 | Olson et al. | Jan 1996 | A |
5496315 | Weaver et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5531743 | Nettekoven et al. | Jul 1996 | A |
5545148 | Wurster | Aug 1996 | A |
5552685 | Young et al. | Sep 1996 | A |
5560372 | Cory | Oct 1996 | A |
5584425 | Savage et al. | Dec 1996 | A |
5610379 | Muz et al. | Mar 1997 | A |
5610811 | Honda | Mar 1997 | A |
5613966 | Makower et al. | Mar 1997 | A |
5624452 | Yates | Apr 1997 | A |
5626587 | Bishop et al. | May 1997 | A |
5643291 | Pier et al. | Jul 1997 | A |
5654750 | Weil et al. | Aug 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5673842 | Bittner et al. | Oct 1997 | A |
5675227 | Roos et al. | Oct 1997 | A |
5693052 | Weaver | Dec 1997 | A |
5695502 | Pier et al. | Dec 1997 | A |
5697926 | Weaver | Dec 1997 | A |
5706998 | Plyley et al. | Jan 1998 | A |
5718359 | Palmer et al. | Feb 1998 | A |
5725536 | Oberlin et al. | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5735445 | Vidal et al. | Apr 1998 | A |
5735848 | Yates et al. | Apr 1998 | A |
5746209 | Yost et al. | May 1998 | A |
5749362 | Funda et al. | May 1998 | A |
5749893 | Vidal et al. | May 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5762255 | Chrisman et al. | Jun 1998 | A |
5766186 | Faraz et al. | Jun 1998 | A |
5769791 | Benaron et al. | Jun 1998 | A |
5775331 | Raymond et al. | Jul 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
D399561 | Ellingson | Oct 1998 | S |
5817093 | Williamson, IV et al. | Oct 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5833690 | Yates et al. | Nov 1998 | A |
5836849 | Mathiak et al. | Nov 1998 | A |
5836909 | Cosmescu | Nov 1998 | A |
5843080 | Fleenor et al. | Dec 1998 | A |
5846237 | Nettekoven | Dec 1998 | A |
5849022 | Sakashita et al. | Dec 1998 | A |
5873873 | Smith et al. | Feb 1999 | A |
5878938 | Bittner et al. | Mar 1999 | A |
5893849 | Weaver | Apr 1999 | A |
5906625 | Bito et al. | May 1999 | A |
5942333 | Arnett et al. | Aug 1999 | A |
5947996 | Logeman | Sep 1999 | A |
5968032 | Sleister | Oct 1999 | A |
5980510 | Tsonton et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5997528 | Bisch et al. | Dec 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6030437 | Gourrier et al. | Feb 2000 | A |
6036637 | Kudo | Mar 2000 | A |
6039734 | Goble | Mar 2000 | A |
6039735 | Greep | Mar 2000 | A |
6059799 | Aranyi et al. | May 2000 | A |
6066137 | Greep | May 2000 | A |
6079606 | Milliman et al. | Jun 2000 | A |
6090107 | Borgmeier et al. | Jul 2000 | A |
6099537 | Sugai et al. | Aug 2000 | A |
6109500 | Alli et al. | Aug 2000 | A |
6113598 | Baker | Sep 2000 | A |
6126592 | Proch et al. | Oct 2000 | A |
6126658 | Baker | Oct 2000 | A |
6155473 | Tompkins et al. | Dec 2000 | A |
6214000 | Fleenor et al. | Apr 2001 | B1 |
6258105 | Hart et al. | Jul 2001 | B1 |
6273887 | Yamauchi et al. | Aug 2001 | B1 |
6301495 | Gueziec et al. | Oct 2001 | B1 |
6302881 | Farin | Oct 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6325808 | Bernard et al. | Dec 2001 | B1 |
6325811 | Messerly | Dec 2001 | B1 |
6341164 | Dilkie et al. | Jan 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6434416 | Mizoguchi et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6451015 | Rittman, III et al. | Sep 2002 | B1 |
6454781 | Witt et al. | Sep 2002 | B1 |
6457625 | Tormala et al. | Oct 2002 | B1 |
6461352 | Morgan et al. | Oct 2002 | B2 |
6466817 | Kaula et al. | Oct 2002 | B1 |
6480796 | Wiener | Nov 2002 | B2 |
6524307 | Palmerton et al. | Feb 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6551243 | Bocionek et al. | Apr 2003 | B2 |
6569109 | Sakurai et al. | May 2003 | B2 |
6582424 | Fleenor et al. | Jun 2003 | B2 |
6585791 | Garito et al. | Jul 2003 | B1 |
6618626 | West, Jr. et al. | Sep 2003 | B2 |
6648223 | Boukhny et al. | Nov 2003 | B2 |
6678552 | Pearlman | Jan 2004 | B2 |
6679899 | Wiener et al. | Jan 2004 | B2 |
6685704 | Greep | Feb 2004 | B2 |
6699187 | Webb et al. | Mar 2004 | B2 |
6742895 | Robin | Jun 2004 | B2 |
6752816 | Culp et al. | Jun 2004 | B2 |
6760616 | Hoey et al. | Jul 2004 | B2 |
6770072 | Truckai et al. | Aug 2004 | B1 |
6773444 | Messerly | Aug 2004 | B2 |
6775575 | Bommannan et al. | Aug 2004 | B2 |
6778846 | Martinez et al. | Aug 2004 | B1 |
6781683 | Kacyra et al. | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6783525 | Greep et al. | Aug 2004 | B2 |
6793663 | Kneifel et al. | Sep 2004 | B2 |
6824539 | Novak | Nov 2004 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6852219 | Hammond | Feb 2005 | B2 |
6863650 | Irion | Mar 2005 | B1 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869435 | Blake, III | Mar 2005 | B2 |
6911033 | de Guillebon et al. | Jun 2005 | B2 |
6937892 | Leyde et al. | Aug 2005 | B2 |
6945981 | Donofrio et al. | Sep 2005 | B2 |
6951559 | Greep | Oct 2005 | B1 |
6962587 | Johnson et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7030146 | Baynes et al. | Apr 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7041941 | Faries, Jr. et al. | May 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044911 | Drinan et al. | May 2006 | B2 |
7048775 | Jornitz et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7055730 | Ehrenfels et al. | Jun 2006 | B2 |
7073765 | Newkirk | Jul 2006 | B2 |
7077853 | Kramer et al. | Jul 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7081096 | Brister et al. | Jul 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7103688 | Strong | Sep 2006 | B2 |
7104949 | Anderson et al. | Sep 2006 | B2 |
7118564 | Ritchie et al. | Oct 2006 | B2 |
7121460 | Parsons et al. | Oct 2006 | B1 |
7137980 | Buysse et al. | Nov 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7155316 | Sutherland et al. | Dec 2006 | B2 |
7164940 | Hareyama et al. | Jan 2007 | B2 |
7169145 | Isaacson et al. | Jan 2007 | B2 |
7177533 | McFarlin et al. | Feb 2007 | B2 |
7182775 | Guillebon et al. | Feb 2007 | B2 |
7208005 | Frecker et al. | Apr 2007 | B2 |
7230529 | Ketcherside, Jr. et al. | Jun 2007 | B2 |
7232447 | Gellman et al. | Jun 2007 | B2 |
7236817 | Papas et al. | Jun 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7294106 | Birkenbach et al. | Nov 2007 | B2 |
7294116 | Ellman et al. | Nov 2007 | B1 |
7296724 | Green et al. | Nov 2007 | B2 |
7317955 | McGreevy | Jan 2008 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7343565 | Ying et al. | Mar 2008 | B2 |
7362228 | Nycz et al. | Apr 2008 | B2 |
7371227 | Zeiner | May 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7383088 | Spinelli et al. | Jun 2008 | B2 |
7391173 | Schena | Jun 2008 | B2 |
7407074 | Ortiz et al. | Aug 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7423972 | Shaham et al. | Sep 2008 | B2 |
7457804 | Uber, III et al. | Nov 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7515961 | Germanson et al. | Apr 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7597731 | Palmerton et al. | Oct 2009 | B2 |
7617137 | Kreiner et al. | Nov 2009 | B2 |
7621192 | Conti et al. | Nov 2009 | B2 |
7621898 | Lalomia et al. | Nov 2009 | B2 |
7637410 | Marczyk | Dec 2009 | B2 |
7641092 | Kruszynski et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7667592 | Ohyama et al. | Feb 2010 | B2 |
7667839 | Bates | Feb 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7694865 | Scirica | Apr 2010 | B2 |
7699860 | Huitema et al. | Apr 2010 | B2 |
7720306 | Gardiner et al. | May 2010 | B2 |
7721934 | Shelton, IV et al. | May 2010 | B2 |
7721936 | Shalton, IV et al. | May 2010 | B2 |
7736357 | Lee, Jr. et al. | Jun 2010 | B2 |
7742176 | Braunecker et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7753245 | Boudreaux et al. | Jul 2010 | B2 |
7766207 | Mather et al. | Aug 2010 | B2 |
7766905 | Paterson et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7771429 | Ballard et al. | Aug 2010 | B2 |
7776037 | Odom | Aug 2010 | B2 |
7782789 | Stultz et al. | Aug 2010 | B2 |
7784663 | Shelton, IV | Aug 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7818041 | Kim et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7832612 | Baxter, III et al. | Nov 2010 | B2 |
7833219 | Tashiro et al. | Nov 2010 | B2 |
7836085 | Petakov et al. | Nov 2010 | B2 |
7837079 | Holsten et al. | Nov 2010 | B2 |
7837680 | Isaacson et al. | Nov 2010 | B2 |
7841980 | Minosawa et al. | Nov 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7862560 | Marion | Jan 2011 | B2 |
7862579 | Ortiz et al. | Jan 2011 | B2 |
7865236 | Cory et al. | Jan 2011 | B2 |
7884735 | Newkirk | Feb 2011 | B2 |
7887530 | Zemlok et al. | Feb 2011 | B2 |
7892337 | Palmerton et al. | Feb 2011 | B2 |
7907166 | Lamprecht et al. | Mar 2011 | B2 |
7913891 | Doll et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7918377 | Measamer et al. | Apr 2011 | B2 |
7920706 | Asokan et al. | Apr 2011 | B2 |
7927014 | Dehler | Apr 2011 | B2 |
7942300 | Rethy et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7955322 | Devengenzo et al. | Jun 2011 | B2 |
7956620 | Gilbert | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7966269 | Bauer et al. | Jun 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
7976553 | Shelton, IV et al. | Jul 2011 | B2 |
7979157 | Anvari | Jul 2011 | B2 |
7980443 | Scheib et al. | Jul 2011 | B2 |
7982776 | Dunki-Jacobs et al. | Jul 2011 | B2 |
7988028 | Farascioni et al. | Aug 2011 | B2 |
7993140 | Sakezles | Aug 2011 | B2 |
7995045 | Dunki-Jacobs | Aug 2011 | B2 |
8005947 | Morris et al. | Aug 2011 | B2 |
8007494 | Taylor et al. | Aug 2011 | B1 |
8007513 | Nalagatla et al. | Aug 2011 | B2 |
8010180 | Quaid et al. | Aug 2011 | B2 |
8012170 | Whitman et al. | Sep 2011 | B2 |
8015976 | Shah | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8027710 | Dannan | Sep 2011 | B1 |
8035685 | Jensen | Oct 2011 | B2 |
8038686 | Huitema et al. | Oct 2011 | B2 |
8038693 | Allen | Oct 2011 | B2 |
8043560 | Okumoto et al. | Oct 2011 | B2 |
8054184 | Cline et al. | Nov 2011 | B2 |
8054752 | Druke et al. | Nov 2011 | B2 |
8062306 | Nobis et al. | Nov 2011 | B2 |
8062330 | Prommersberger et al. | Nov 2011 | B2 |
8066721 | Kortenbach et al. | Nov 2011 | B2 |
8074861 | Ehrenfels et al. | Dec 2011 | B2 |
8075571 | Vitali et al. | Dec 2011 | B2 |
8096459 | Ortiz et al. | Jan 2012 | B2 |
8118206 | Zand et al. | Feb 2012 | B2 |
8120301 | Goldberg et al. | Feb 2012 | B2 |
8123764 | Meade et al. | Feb 2012 | B2 |
8128625 | Odom | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8136712 | Zingman | Mar 2012 | B2 |
8147486 | Honour et al. | Apr 2012 | B2 |
8155479 | Hoffman et al. | Apr 2012 | B2 |
8157145 | Shelton, IV et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8160098 | Yan et al. | Apr 2012 | B1 |
8160690 | Wilfley et al. | Apr 2012 | B2 |
8161977 | Shelton, IV et al. | Apr 2012 | B2 |
8170396 | Kuspa et al. | May 2012 | B2 |
8172836 | Ward | May 2012 | B2 |
8181839 | Beetel | May 2012 | B2 |
8185409 | Putnam et al. | May 2012 | B2 |
8206345 | Abboud et al. | Jun 2012 | B2 |
8208707 | Mendonca et al. | Jun 2012 | B2 |
8210411 | Yates et al. | Jul 2012 | B2 |
8214007 | Baker et al. | Jul 2012 | B2 |
8216849 | Petty | Jul 2012 | B2 |
8220688 | Laurent et al. | Jul 2012 | B2 |
8225643 | Abboud et al. | Jul 2012 | B2 |
8225979 | Farascioni et al. | Jul 2012 | B2 |
8229549 | Whitman et al. | Jul 2012 | B2 |
8231042 | Hessler et al. | Jul 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8255045 | Gharib et al. | Aug 2012 | B2 |
8257387 | Cunningham | Sep 2012 | B2 |
8260016 | Maeda et al. | Sep 2012 | B2 |
8262560 | Whitman | Sep 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8295902 | Salahieh et al. | Oct 2012 | B2 |
8308040 | Huang et al. | Nov 2012 | B2 |
8321581 | Katis et al. | Nov 2012 | B2 |
8322590 | Patel et al. | Dec 2012 | B2 |
8328065 | Shah | Dec 2012 | B2 |
8335590 | Costa et al. | Dec 2012 | B2 |
8343065 | Bartol et al. | Jan 2013 | B2 |
8346392 | Walser et al. | Jan 2013 | B2 |
8360299 | Zemlok et al. | Jan 2013 | B2 |
8364222 | Cook et al. | Jan 2013 | B2 |
8365975 | Manoux et al. | Feb 2013 | B1 |
8388652 | Viola | Mar 2013 | B2 |
8393514 | Shelton, IV et al. | Mar 2013 | B2 |
8397972 | Kostrzewski | Mar 2013 | B2 |
8398541 | DiMaio et al. | Mar 2013 | B2 |
8403944 | Pain et al. | Mar 2013 | B2 |
8403945 | Whitfield et al. | Mar 2013 | B2 |
8403946 | Whitfield et al. | Mar 2013 | B2 |
8406859 | Zuzak et al. | Mar 2013 | B2 |
8411034 | Boillot et al. | Apr 2013 | B2 |
8413871 | Racenet et al. | Apr 2013 | B2 |
8422035 | Hinderling et al. | Apr 2013 | B2 |
8423182 | Robinson et al. | Apr 2013 | B2 |
8428722 | Verhoef et al. | Apr 2013 | B2 |
8439910 | Greep et al. | May 2013 | B2 |
8444663 | Houser et al. | May 2013 | B2 |
8452615 | Abri | May 2013 | B2 |
8454506 | Rothman et al. | Jun 2013 | B2 |
8461744 | Wiener et al. | Jun 2013 | B2 |
8468030 | Stroup et al. | Jun 2013 | B2 |
8469973 | Meade et al. | Jun 2013 | B2 |
8472630 | Konrad et al. | Jun 2013 | B2 |
8476227 | Kaplan et al. | Jul 2013 | B2 |
8489235 | Moll et al. | Jul 2013 | B2 |
8499992 | Whitman et al. | Aug 2013 | B2 |
8500756 | Papa et al. | Aug 2013 | B2 |
8503759 | Greer et al. | Aug 2013 | B2 |
8505801 | Ehrenfels et al. | Aug 2013 | B2 |
8506478 | Mizuyoshi | Aug 2013 | B2 |
8512325 | Mathonnet | Aug 2013 | B2 |
8512365 | Wiener et al. | Aug 2013 | B2 |
8515520 | Brunnett et al. | Aug 2013 | B2 |
8517239 | Scheib et al. | Aug 2013 | B2 |
8521331 | Itkowitz | Aug 2013 | B2 |
8523043 | Ullrich et al. | Sep 2013 | B2 |
8546996 | Messerly et al. | Oct 2013 | B2 |
8554697 | Claus et al. | Oct 2013 | B2 |
8560047 | Haider et al. | Oct 2013 | B2 |
8561870 | Baxter, III et al. | Oct 2013 | B2 |
8562598 | Falkenstein et al. | Oct 2013 | B2 |
8566115 | Moore | Oct 2013 | B2 |
8571598 | Valavi | Oct 2013 | B2 |
8573459 | Smith et al. | Nov 2013 | B2 |
8573465 | Shelton, IV | Nov 2013 | B2 |
8585694 | Amoah et al. | Nov 2013 | B2 |
8590762 | Hess et al. | Nov 2013 | B2 |
8591536 | Robertson | Nov 2013 | B2 |
8595607 | Nekoomaram et al. | Nov 2013 | B2 |
8596513 | Olson et al. | Dec 2013 | B2 |
8596515 | Okoniewski | Dec 2013 | B2 |
8604709 | Jalbout et al. | Dec 2013 | B2 |
8608044 | Hueil et al. | Dec 2013 | B2 |
8608045 | Smith et al. | Dec 2013 | B2 |
8616431 | Timm et al. | Dec 2013 | B2 |
8620055 | Barratt et al. | Dec 2013 | B2 |
8620473 | Diolaiti et al. | Dec 2013 | B2 |
8623027 | Price et al. | Jan 2014 | B2 |
8627483 | Rachlin et al. | Jan 2014 | B2 |
8627993 | Smith et al. | Jan 2014 | B2 |
8627995 | Smith et al. | Jan 2014 | B2 |
8628518 | Blumenkranz et al. | Jan 2014 | B2 |
8628545 | Cabrera et al. | Jan 2014 | B2 |
8631987 | Shelton, IV et al. | Jan 2014 | B2 |
8632525 | Kerr et al. | Jan 2014 | B2 |
8636190 | Zemlok et al. | Jan 2014 | B2 |
8636736 | Yates et al. | Jan 2014 | B2 |
8641621 | Razzaque et al. | Feb 2014 | B2 |
8652086 | Gerg et al. | Feb 2014 | B2 |
8652121 | Quick et al. | Feb 2014 | B2 |
8652128 | Ward | Feb 2014 | B2 |
8657176 | Shelton, IV et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8663220 | Wiener et al. | Mar 2014 | B2 |
8666544 | Moll et al. | Mar 2014 | B2 |
8679114 | Chapman et al. | Mar 2014 | B2 |
8682049 | Zhao et al. | Mar 2014 | B2 |
8682489 | Itkowitz et al. | Mar 2014 | B2 |
8685056 | Evans et al. | Apr 2014 | B2 |
8688188 | Heller et al. | Apr 2014 | B2 |
8690864 | Hoarau | Apr 2014 | B2 |
8701962 | Kostrzewski | Apr 2014 | B2 |
8719061 | Birchall | May 2014 | B2 |
8720766 | Hess et al. | May 2014 | B2 |
8733613 | Huitema et al. | May 2014 | B2 |
8740840 | Foley et al. | Jun 2014 | B2 |
8740866 | Reasoner et al. | Jun 2014 | B2 |
8747238 | Shelton, IV et al. | Jun 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8757465 | Woodard, Jr. et al. | Jun 2014 | B2 |
8761717 | Buchheit | Jun 2014 | B1 |
8763879 | Shelton, IV et al. | Jul 2014 | B2 |
8768251 | Claus et al. | Jul 2014 | B2 |
8771270 | Burbank | Jul 2014 | B2 |
8775196 | Simpson et al. | Jul 2014 | B2 |
8779648 | Giordano et al. | Jul 2014 | B2 |
8790253 | Sunagawa et al. | Jul 2014 | B2 |
8794497 | Zingman | Aug 2014 | B2 |
8799008 | Johnson et al. | Aug 2014 | B2 |
8799009 | Mellin et al. | Aug 2014 | B2 |
8800838 | Shelton, IV | Aug 2014 | B2 |
8801703 | Gregg et al. | Aug 2014 | B2 |
8814996 | Giurgiutiu et al. | Aug 2014 | B2 |
8818556 | Sanchez et al. | Aug 2014 | B2 |
8820603 | Shelton, IV et al. | Sep 2014 | B2 |
8820608 | Miyamoto | Sep 2014 | B2 |
8827134 | Viola et al. | Sep 2014 | B2 |
8840003 | Morgan et al. | Sep 2014 | B2 |
8851354 | Swensgard et al. | Oct 2014 | B2 |
8852174 | Burbank | Oct 2014 | B2 |
8875973 | Whitman | Nov 2014 | B2 |
8882662 | Charles | Nov 2014 | B2 |
8886790 | Harrang et al. | Nov 2014 | B2 |
8893949 | Shelton, IV et al. | Nov 2014 | B2 |
8899479 | Cappuzzo et al. | Dec 2014 | B2 |
8905977 | Shelton et al. | Dec 2014 | B2 |
8912746 | Reid et al. | Dec 2014 | B2 |
8914098 | Brennan et al. | Dec 2014 | B2 |
8918207 | Prisco | Dec 2014 | B2 |
8920414 | Stone et al. | Dec 2014 | B2 |
8920433 | Barrier et al. | Dec 2014 | B2 |
8930203 | Kiaie et al. | Jan 2015 | B2 |
8930214 | Woolford | Jan 2015 | B2 |
8931679 | Kostrzewski | Jan 2015 | B2 |
8936614 | Allen, IV | Jan 2015 | B2 |
8945095 | Blumenkranz et al. | Feb 2015 | B2 |
8945163 | Voegele et al. | Feb 2015 | B2 |
8955732 | Zemlok et al. | Feb 2015 | B2 |
8956581 | Rosenbaum et al. | Feb 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8960520 | McCuen | Feb 2015 | B2 |
8962062 | Podhajsky et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8967455 | Zhou | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968309 | Roy et al. | Mar 2015 | B2 |
8968312 | Marczyk et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8968358 | Reschke | Mar 2015 | B2 |
8974429 | Gordon et al. | Mar 2015 | B2 |
8979890 | Boudreaux | Mar 2015 | B2 |
8986302 | Aldridge et al. | Mar 2015 | B2 |
8989903 | Weir et al. | Mar 2015 | B2 |
8991678 | Wellman et al. | Mar 2015 | B2 |
8992565 | Brisson et al. | Mar 2015 | B2 |
8998797 | Omori | Apr 2015 | B2 |
9002518 | Manzo et al. | Apr 2015 | B2 |
9010611 | Ross et al. | Apr 2015 | B2 |
9011366 | Dean et al. | Apr 2015 | B2 |
9011427 | Price et al. | Apr 2015 | B2 |
9016539 | Kostrzewski et al. | Apr 2015 | B2 |
9017326 | DiNardo et al. | Apr 2015 | B2 |
9020240 | Pettersson et al. | Apr 2015 | B2 |
9023071 | Miller et al. | May 2015 | B2 |
9027431 | Tang et al. | May 2015 | B2 |
9028494 | Shelton, IV et al. | May 2015 | B2 |
9035568 | Ganton et al. | May 2015 | B2 |
9038882 | Racenet et al. | May 2015 | B2 |
9043027 | Durant et al. | May 2015 | B2 |
9044227 | Shelton, IV et al. | Jun 2015 | B2 |
9044244 | Ludwin et al. | Jun 2015 | B2 |
9044261 | Houser | Jun 2015 | B2 |
9050063 | Roe et al. | Jun 2015 | B2 |
9050083 | Yates et al. | Jun 2015 | B2 |
9050120 | Swarup et al. | Jun 2015 | B2 |
9052809 | Vesto | Jun 2015 | B2 |
9055035 | Porsch et al. | Jun 2015 | B2 |
9060770 | Shelton, IV et al. | Jun 2015 | B2 |
9060775 | Wiener et al. | Jun 2015 | B2 |
9066650 | Sekiguchi | Jun 2015 | B2 |
9072523 | Houser et al. | Jul 2015 | B2 |
9072535 | Shelton, IV et al. | Jul 2015 | B2 |
9072536 | Shelton, IV et al. | Jul 2015 | B2 |
9078653 | Leimbach et al. | Jul 2015 | B2 |
9078727 | Miller | Jul 2015 | B2 |
9084606 | Greep | Jul 2015 | B2 |
9089360 | Messerly et al. | Jul 2015 | B2 |
9095362 | Dachs, II et al. | Aug 2015 | B2 |
9095367 | Olson et al. | Aug 2015 | B2 |
9099863 | Smith et al. | Aug 2015 | B2 |
9101358 | Kerr et al. | Aug 2015 | B2 |
9101359 | Smith et al. | Aug 2015 | B2 |
9101374 | Hoch et al. | Aug 2015 | B1 |
9106270 | Puterbaugh et al. | Aug 2015 | B2 |
9107573 | Birnkrant | Aug 2015 | B2 |
9107662 | Kostrzewski | Aug 2015 | B2 |
9107684 | Ma | Aug 2015 | B2 |
9107688 | Kimball et al. | Aug 2015 | B2 |
9107689 | Robertson et al. | Aug 2015 | B2 |
9107694 | Hendriks et al. | Aug 2015 | B2 |
9111548 | Nandy et al. | Aug 2015 | B2 |
9113880 | Zemlok et al. | Aug 2015 | B2 |
9114494 | Mah | Aug 2015 | B1 |
9116597 | Gulasky | Aug 2015 | B1 |
9119617 | Souls et al. | Sep 2015 | B2 |
9119655 | Bowling et al. | Sep 2015 | B2 |
9119657 | Shelton, IV et al. | Sep 2015 | B2 |
9123155 | Cunningham et al. | Sep 2015 | B2 |
9125644 | Lane et al. | Sep 2015 | B2 |
9129054 | Nawana et al. | Sep 2015 | B2 |
9137254 | Bilbrey et al. | Sep 2015 | B2 |
9138129 | Diolaiti | Sep 2015 | B2 |
9138225 | Huang et al. | Sep 2015 | B2 |
9149322 | Knowlton | Oct 2015 | B2 |
9155503 | Cadwell | Oct 2015 | B2 |
9161803 | Yates et al. | Oct 2015 | B2 |
9168054 | Turner et al. | Oct 2015 | B2 |
9168104 | Dein | Oct 2015 | B2 |
9179912 | Yates et al. | Nov 2015 | B2 |
9183723 | Sherman et al. | Nov 2015 | B2 |
9186143 | Timm et al. | Nov 2015 | B2 |
9192375 | Skinlo et al. | Nov 2015 | B2 |
9192447 | Choi et al. | Nov 2015 | B2 |
9192707 | Gerber et al. | Nov 2015 | B2 |
9202078 | Abuelsaad et al. | Dec 2015 | B2 |
9204830 | Zand et al. | Dec 2015 | B2 |
9204879 | Shelton, IV | Dec 2015 | B2 |
9204995 | Scheller et al. | Dec 2015 | B2 |
9216062 | Duque et al. | Dec 2015 | B2 |
9218053 | Komuro et al. | Dec 2015 | B2 |
9220502 | Zemlok et al. | Dec 2015 | B2 |
9226689 | Jacobsen et al. | Jan 2016 | B2 |
9226751 | Shelton, IV | Jan 2016 | B2 |
9226766 | Aldridge et al. | Jan 2016 | B2 |
9226767 | Stulen et al. | Jan 2016 | B2 |
9232883 | Ozawa et al. | Jan 2016 | B2 |
9237891 | Shelton, IV | Jan 2016 | B2 |
9237921 | Messerly et al. | Jan 2016 | B2 |
9241728 | Price et al. | Jan 2016 | B2 |
9241730 | Babaev | Jan 2016 | B2 |
9241731 | Boudreaux et al. | Jan 2016 | B2 |
9247996 | Merana et al. | Feb 2016 | B1 |
9250172 | Harris et al. | Feb 2016 | B2 |
9255907 | Heanue et al. | Feb 2016 | B2 |
9265585 | Wingardner et al. | Feb 2016 | B2 |
9272406 | Aronhalt et al. | Mar 2016 | B2 |
9277956 | Zhang | Mar 2016 | B2 |
9280884 | Schultz et al. | Mar 2016 | B1 |
9282962 | Schmid et al. | Mar 2016 | B2 |
9282974 | Shelton, IV | Mar 2016 | B2 |
9283045 | Rhee et al. | Mar 2016 | B2 |
9283054 | Morgan et al. | Mar 2016 | B2 |
9289211 | Williams et al. | Mar 2016 | B2 |
9289212 | Shelton, IV et al. | Mar 2016 | B2 |
9295514 | Shelton, IV et al. | Mar 2016 | B2 |
9301691 | Hufnagel et al. | Apr 2016 | B2 |
9301753 | Aldridge et al. | Apr 2016 | B2 |
9301759 | Spivey et al. | Apr 2016 | B2 |
9301810 | Amiri et al. | Apr 2016 | B2 |
9302213 | Manahan et al. | Apr 2016 | B2 |
9307894 | von Grunberg et al. | Apr 2016 | B2 |
9307914 | Fahey | Apr 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9314246 | Shelton, IV et al. | Apr 2016 | B2 |
9314308 | Parihar et al. | Apr 2016 | B2 |
9320563 | Brustad et al. | Apr 2016 | B2 |
9325732 | Stickle et al. | Apr 2016 | B1 |
9326767 | Koch et al. | May 2016 | B2 |
9331422 | Nazzaro et al. | May 2016 | B2 |
9332987 | Leimbach et al. | May 2016 | B2 |
9333042 | Diolaiti et al. | May 2016 | B2 |
9336385 | Spencer et al. | May 2016 | B1 |
9341704 | Picard et al. | May 2016 | B2 |
9345481 | Hall et al. | May 2016 | B2 |
9345490 | Ippisch | May 2016 | B2 |
9345546 | Toth et al. | May 2016 | B2 |
9351726 | Leimbach et al. | May 2016 | B2 |
9351727 | Leimbach et al. | May 2016 | B2 |
9358003 | Hall et al. | Jun 2016 | B2 |
9358685 | Meier et al. | Jun 2016 | B2 |
9360449 | Duric | Jun 2016 | B2 |
9364231 | Wenchell | Jun 2016 | B2 |
9364249 | Kimball et al. | Jun 2016 | B2 |
9364294 | Razzaque et al. | Jun 2016 | B2 |
9370400 | Parihar | Jun 2016 | B2 |
9375282 | Nau, Jr. et al. | Jun 2016 | B2 |
9375539 | Stearns et al. | Jun 2016 | B2 |
9381003 | Todor et al. | Jul 2016 | B2 |
9381058 | Houser et al. | Jul 2016 | B2 |
9386984 | Aronhalt et al. | Jul 2016 | B2 |
9386988 | Baxter, III et al. | Jul 2016 | B2 |
9387295 | Mastri et al. | Jul 2016 | B1 |
9393017 | Flanagan et al. | Jul 2016 | B2 |
9393037 | Olson et al. | Jul 2016 | B2 |
9398905 | Martin | Jul 2016 | B2 |
9398911 | Auld | Jul 2016 | B2 |
9402629 | Ehrenfels et al. | Aug 2016 | B2 |
9414776 | Sillay et al. | Aug 2016 | B2 |
9419018 | Sasagawa et al. | Aug 2016 | B2 |
9421014 | Ingmanson et al. | Aug 2016 | B2 |
9433470 | Choi | Sep 2016 | B2 |
9439622 | Case et al. | Sep 2016 | B2 |
9439668 | Timm et al. | Sep 2016 | B2 |
9439736 | Olson | Sep 2016 | B2 |
9445764 | Gross et al. | Sep 2016 | B2 |
9445813 | Shelton, IV et al. | Sep 2016 | B2 |
9450701 | Do et al. | Sep 2016 | B2 |
9451949 | Gorek et al. | Sep 2016 | B2 |
9451958 | Shelton, IV et al. | Sep 2016 | B2 |
9463022 | Swayze et al. | Oct 2016 | B2 |
9468438 | Baber et al. | Oct 2016 | B2 |
9480492 | Aranyi et al. | Nov 2016 | B2 |
9485475 | Speier et al. | Nov 2016 | B2 |
9492146 | Kostrzewski et al. | Nov 2016 | B2 |
9492237 | Kang et al. | Nov 2016 | B2 |
9493807 | Little et al. | Nov 2016 | B2 |
9498182 | Case et al. | Nov 2016 | B2 |
9498215 | Duque et al. | Nov 2016 | B2 |
9498231 | Haider et al. | Nov 2016 | B2 |
9516239 | Blanquart et al. | Dec 2016 | B2 |
9519753 | Gerdeman et al. | Dec 2016 | B1 |
9522003 | Weir et al. | Dec 2016 | B2 |
9526407 | Hoeg et al. | Dec 2016 | B2 |
9526499 | Kostrzewski et al. | Dec 2016 | B2 |
9526587 | Zhao et al. | Dec 2016 | B2 |
9532845 | Dossett et al. | Jan 2017 | B1 |
9539007 | Dhakad et al. | Jan 2017 | B2 |
9539020 | Conlon et al. | Jan 2017 | B2 |
9542481 | Halter et al. | Jan 2017 | B2 |
9546662 | Shener-Irmakoglu et al. | Jan 2017 | B2 |
9554692 | Levy | Jan 2017 | B2 |
9554794 | Baber et al. | Jan 2017 | B2 |
9554854 | Yates et al. | Jan 2017 | B2 |
9561038 | Shelton, IV et al. | Feb 2017 | B2 |
9561045 | Hinman et al. | Feb 2017 | B2 |
9566708 | Kurnianto | Feb 2017 | B2 |
9572592 | Price et al. | Feb 2017 | B2 |
9579503 | McKinney et al. | Feb 2017 | B2 |
9585657 | Shelton, IV et al. | Mar 2017 | B2 |
9592095 | Panescu et al. | Mar 2017 | B2 |
9597081 | Swayze et al. | Mar 2017 | B2 |
9600138 | Thomas et al. | Mar 2017 | B2 |
9603024 | Wang et al. | Mar 2017 | B2 |
9610114 | Baxter, III et al. | Apr 2017 | B2 |
9622684 | Wybo | Apr 2017 | B2 |
9622808 | Beller et al. | Apr 2017 | B2 |
9628501 | Datta Ray et al. | Apr 2017 | B2 |
9629560 | Joseph | Apr 2017 | B2 |
9629623 | Lytle, IV et al. | Apr 2017 | B2 |
9629628 | Aranyi | Apr 2017 | B2 |
9629629 | Leimbach et al. | Apr 2017 | B2 |
9630318 | Ibarz Gabardos et al. | Apr 2017 | B2 |
9636188 | Gattani et al. | May 2017 | B2 |
9636239 | Durand et al. | May 2017 | B2 |
9636825 | Penn et al. | May 2017 | B2 |
9641596 | Unagami et al. | May 2017 | B2 |
9641815 | Richardson et al. | May 2017 | B2 |
9642620 | Baxter, III et al. | May 2017 | B2 |
9643022 | Mashiach et al. | May 2017 | B2 |
9649110 | Parihar et al. | May 2017 | B2 |
9649111 | Shelton, IV et al. | May 2017 | B2 |
9649126 | Robertson et al. | May 2017 | B2 |
9649169 | Cinquin et al. | May 2017 | B2 |
9652655 | Satish et al. | May 2017 | B2 |
9655616 | Aranyi | May 2017 | B2 |
9656092 | Golden | May 2017 | B2 |
9662116 | Smith et al. | May 2017 | B2 |
9662177 | Weir et al. | May 2017 | B2 |
9668729 | Williams et al. | Jun 2017 | B2 |
9668732 | Patel et al. | Jun 2017 | B2 |
9668765 | Grace et al. | Jun 2017 | B2 |
9671860 | Ogawa et al. | Jun 2017 | B2 |
9675264 | Acquista et al. | Jun 2017 | B2 |
9675354 | Weir et al. | Jun 2017 | B2 |
9681870 | Baxter, III et al. | Jun 2017 | B2 |
9686306 | Chizeck et al. | Jun 2017 | B2 |
9687230 | Leimbach et al. | Jun 2017 | B2 |
9690362 | Leimbach et al. | Jun 2017 | B2 |
9700292 | Nawana et al. | Jul 2017 | B2 |
9700309 | Jaworek et al. | Jul 2017 | B2 |
9700312 | Kostrzewski et al. | Jul 2017 | B2 |
9700320 | Dinardo et al. | Jul 2017 | B2 |
9706993 | Hessler et al. | Jul 2017 | B2 |
9710214 | Lin et al. | Jul 2017 | B2 |
9710644 | Reybok et al. | Jul 2017 | B2 |
9713424 | Spaide | Jul 2017 | B2 |
9717141 | Tegg | Jul 2017 | B1 |
9717498 | Aranyi et al. | Aug 2017 | B2 |
9717525 | Ahluwalia et al. | Aug 2017 | B2 |
9717548 | Couture | Aug 2017 | B2 |
9724094 | Baber et al. | Aug 2017 | B2 |
9724100 | Scheib et al. | Aug 2017 | B2 |
9724118 | Schulte et al. | Aug 2017 | B2 |
9733663 | Leimbach et al. | Aug 2017 | B2 |
9737301 | Baber et al. | Aug 2017 | B2 |
9737310 | Whitfield et al. | Aug 2017 | B2 |
9737335 | Butler et al. | Aug 2017 | B2 |
9737355 | Yates et al. | Aug 2017 | B2 |
9740826 | Raghavan et al. | Aug 2017 | B2 |
9743016 | Nestares et al. | Aug 2017 | B2 |
9743929 | Leimbach et al. | Aug 2017 | B2 |
9743946 | Faller et al. | Aug 2017 | B2 |
9743947 | Price et al. | Aug 2017 | B2 |
9750499 | Leimbach et al. | Sep 2017 | B2 |
9750500 | Malkowski | Sep 2017 | B2 |
9750522 | Scheib et al. | Sep 2017 | B2 |
9750523 | Tsubuku | Sep 2017 | B2 |
9753135 | Bosch | Sep 2017 | B2 |
9753568 | McMillen | Sep 2017 | B2 |
9757126 | Cappola | Sep 2017 | B2 |
9757128 | Baber et al. | Sep 2017 | B2 |
9757142 | Shimizu | Sep 2017 | B2 |
9757152 | Ogilvie et al. | Sep 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9764164 | Wiener et al. | Sep 2017 | B2 |
9770541 | Carr et al. | Sep 2017 | B2 |
9775611 | Kostrzewski | Oct 2017 | B2 |
9777913 | Talbert et al. | Oct 2017 | B2 |
9782164 | Mumaw et al. | Oct 2017 | B2 |
9782169 | Kimsey et al. | Oct 2017 | B2 |
9782212 | Wham et al. | Oct 2017 | B2 |
9782214 | Houser et al. | Oct 2017 | B2 |
9788835 | Morgan et al. | Oct 2017 | B2 |
9788836 | Overmyer et al. | Oct 2017 | B2 |
9788851 | Dannaher et al. | Oct 2017 | B2 |
9788902 | Inoue et al. | Oct 2017 | B2 |
9788907 | Alvi et al. | Oct 2017 | B1 |
9795436 | Yates et al. | Oct 2017 | B2 |
9797486 | Zergiebel et al. | Oct 2017 | B2 |
9801531 | Morita et al. | Oct 2017 | B2 |
9801626 | Parihar et al. | Oct 2017 | B2 |
9801627 | Harris et al. | Oct 2017 | B2 |
9801679 | Trees et al. | Oct 2017 | B2 |
9802033 | Hibner et al. | Oct 2017 | B2 |
9804618 | Leimbach et al. | Oct 2017 | B2 |
9805472 | Chou et al. | Oct 2017 | B2 |
9808244 | Leimbach et al. | Nov 2017 | B2 |
9808245 | Richard et al. | Nov 2017 | B2 |
9808246 | Shelton, IV et al. | Nov 2017 | B2 |
9808248 | Hoffman | Nov 2017 | B2 |
9808249 | Shelton, IV | Nov 2017 | B2 |
9814457 | Martin et al. | Nov 2017 | B2 |
9814460 | Kimsey et al. | Nov 2017 | B2 |
9814462 | Woodard, Jr. et al. | Nov 2017 | B2 |
9814463 | Williams et al. | Nov 2017 | B2 |
9820699 | Bingley et al. | Nov 2017 | B2 |
9820738 | Lytle, IV et al. | Nov 2017 | B2 |
9820741 | Kostrzewski | Nov 2017 | B2 |
9826976 | Parihar | Nov 2017 | B2 |
9826977 | Leimbach et al. | Nov 2017 | B2 |
9827054 | Richmond et al. | Nov 2017 | B2 |
9827059 | Robinson et al. | Nov 2017 | B2 |
9830424 | Dixon et al. | Nov 2017 | B2 |
9833241 | Huitema et al. | Dec 2017 | B2 |
9839419 | Deck et al. | Dec 2017 | B2 |
9839424 | Zergiebel et al. | Dec 2017 | B2 |
9839428 | Baxter, III et al. | Dec 2017 | B2 |
9839470 | Gilbert et al. | Dec 2017 | B2 |
9839487 | Dachs, II | Dec 2017 | B2 |
9844368 | Boudreaux et al. | Dec 2017 | B2 |
9844369 | Huitema et al. | Dec 2017 | B2 |
9844374 | Lytle, IV et al. | Dec 2017 | B2 |
9844375 | Overmyer et al. | Dec 2017 | B2 |
9844379 | Shelton, IV et al. | Dec 2017 | B2 |
9848058 | Johnson et al. | Dec 2017 | B2 |
9848877 | Shelton, IV et al. | Dec 2017 | B2 |
9861354 | Saliman et al. | Jan 2018 | B2 |
9861363 | Chen et al. | Jan 2018 | B2 |
9861428 | Trees et al. | Jan 2018 | B2 |
9864839 | Baym et al. | Jan 2018 | B2 |
9867612 | Parihar et al. | Jan 2018 | B2 |
9867651 | Wham | Jan 2018 | B2 |
9867914 | Bonano et al. | Jan 2018 | B2 |
9872609 | Levy | Jan 2018 | B2 |
9872683 | Hopkins et al. | Jan 2018 | B2 |
9877718 | Weir et al. | Jan 2018 | B2 |
9877721 | Schellin et al. | Jan 2018 | B2 |
9883860 | Leimbach | Feb 2018 | B2 |
9888864 | Rondon et al. | Feb 2018 | B2 |
9888914 | Martin et al. | Feb 2018 | B2 |
9888919 | Leimbach et al. | Feb 2018 | B2 |
9888921 | Williams et al. | Feb 2018 | B2 |
9888975 | Auld | Feb 2018 | B2 |
9895148 | Shelton, IV et al. | Feb 2018 | B2 |
9900787 | Ou | Feb 2018 | B2 |
9901342 | Shelton, IV et al. | Feb 2018 | B2 |
9901406 | State et al. | Feb 2018 | B2 |
9905000 | Chou et al. | Feb 2018 | B2 |
9907550 | Sniffin et al. | Mar 2018 | B2 |
9913642 | Leimbach et al. | Mar 2018 | B2 |
9913645 | Zerkle et al. | Mar 2018 | B2 |
9918730 | Trees et al. | Mar 2018 | B2 |
9918778 | Walberg et al. | Mar 2018 | B2 |
9918788 | Paul et al. | Mar 2018 | B2 |
9922304 | DeBusk et al. | Mar 2018 | B2 |
9924941 | Burbank | Mar 2018 | B2 |
9924944 | Shelton, IV et al. | Mar 2018 | B2 |
9924961 | Shelton, IV et al. | Mar 2018 | B2 |
9931040 | Homyk et al. | Apr 2018 | B2 |
9931118 | Shelton, IV et al. | Apr 2018 | B2 |
9931124 | Gokharu | Apr 2018 | B2 |
9936863 | Tesar | Apr 2018 | B2 |
9936942 | Chin et al. | Apr 2018 | B2 |
9936955 | Miller et al. | Apr 2018 | B2 |
9936961 | Chien et al. | Apr 2018 | B2 |
9937012 | Hares et al. | Apr 2018 | B2 |
9937014 | Bowling et al. | Apr 2018 | B2 |
9937626 | Rockrohr | Apr 2018 | B2 |
9938972 | Walley | Apr 2018 | B2 |
9943230 | Kaku et al. | Apr 2018 | B2 |
9943309 | Shelton, IV et al. | Apr 2018 | B2 |
9943312 | Posada et al. | Apr 2018 | B2 |
9943377 | Yates et al. | Apr 2018 | B2 |
9943379 | Gregg, II et al. | Apr 2018 | B2 |
9943918 | Grogan et al. | Apr 2018 | B2 |
9949785 | Price et al. | Apr 2018 | B2 |
9962157 | Sapre | May 2018 | B2 |
9968355 | Shelton, IV et al. | May 2018 | B2 |
9980140 | Spencer et al. | May 2018 | B1 |
9980769 | Trees et al. | May 2018 | B2 |
9980778 | Ohline et al. | May 2018 | B2 |
9987000 | Shelton, IV et al. | Jun 2018 | B2 |
9990856 | Kuchenbecker et al. | Jun 2018 | B2 |
9993248 | Shelton, IV et al. | Jun 2018 | B2 |
9993258 | Shelton, IV et al. | Jun 2018 | B2 |
9993305 | Andersson | Jun 2018 | B2 |
10004491 | Martin et al. | Jun 2018 | B2 |
10004497 | Overmyer et al. | Jun 2018 | B2 |
10004500 | Shelton, IV et al. | Jun 2018 | B2 |
10004501 | Shelton, IV et al. | Jun 2018 | B2 |
10004527 | Gee et al. | Jun 2018 | B2 |
10004557 | Gross | Jun 2018 | B2 |
D822206 | Shelton, IV et al. | Jul 2018 | S |
10010322 | Shelton, IV et al. | Jul 2018 | B2 |
10010324 | Huitema et al. | Jul 2018 | B2 |
10013049 | Leimbach et al. | Jul 2018 | B2 |
10016199 | Baber et al. | Jul 2018 | B2 |
10021318 | Hugosson et al. | Jul 2018 | B2 |
10022090 | Whitman | Jul 2018 | B2 |
10022120 | Martin et al. | Jul 2018 | B2 |
10022391 | Chen et al. | Jul 2018 | B2 |
10022568 | Messerly et al. | Jul 2018 | B2 |
10028744 | Shelton, IV et al. | Jul 2018 | B2 |
10028761 | Leimbach et al. | Jul 2018 | B2 |
10028788 | Kang | Jul 2018 | B2 |
10034704 | Asher et al. | Jul 2018 | B2 |
10037641 | Hyde et al. | Jul 2018 | B2 |
10037715 | Toly et al. | Jul 2018 | B2 |
D826405 | Shelton, IV et al. | Aug 2018 | S |
10039546 | Williams et al. | Aug 2018 | B2 |
10039564 | Hibner et al. | Aug 2018 | B2 |
10039565 | Vezzu | Aug 2018 | B2 |
10041822 | Zemlok | Aug 2018 | B2 |
10044791 | Kamen et al. | Aug 2018 | B2 |
10045704 | Fagin et al. | Aug 2018 | B2 |
10045776 | Shelton, IV et al. | Aug 2018 | B2 |
10045779 | Savage et al. | Aug 2018 | B2 |
10045781 | Cropper et al. | Aug 2018 | B2 |
10045813 | Mueller | Aug 2018 | B2 |
10048379 | Markendorf et al. | Aug 2018 | B2 |
10052044 | Shelton, IV et al. | Aug 2018 | B2 |
10052102 | Baxter, III et al. | Aug 2018 | B2 |
10052104 | Shelton, IV et al. | Aug 2018 | B2 |
10054441 | Schorr et al. | Aug 2018 | B2 |
10058393 | Bonutti et al. | Aug 2018 | B2 |
10069633 | Gulati et al. | Sep 2018 | B2 |
10076326 | Yates et al. | Sep 2018 | B2 |
10080618 | Marshall et al. | Sep 2018 | B2 |
10084833 | McDonnell et al. | Sep 2018 | B2 |
D831209 | Huitema et al. | Oct 2018 | S |
10085748 | Morgan et al. | Oct 2018 | B2 |
10085749 | Cappola et al. | Oct 2018 | B2 |
10095942 | Mentese et al. | Oct 2018 | B2 |
10097578 | Baldonado et al. | Oct 2018 | B2 |
10098527 | Weisenburgh, II et al. | Oct 2018 | B2 |
10098635 | Burbank | Oct 2018 | B2 |
10098642 | Baxter, III et al. | Oct 2018 | B2 |
10098705 | Brisson et al. | Oct 2018 | B2 |
10105140 | Malinouskas et al. | Oct 2018 | B2 |
10105142 | Baxter, III et al. | Oct 2018 | B2 |
10111658 | Chowaniec et al. | Oct 2018 | B2 |
10111665 | Aranyi et al. | Oct 2018 | B2 |
10111679 | Baber et al. | Oct 2018 | B2 |
10117649 | Baxter et al. | Nov 2018 | B2 |
10117651 | Whitman et al. | Nov 2018 | B2 |
10117702 | Danziger et al. | Nov 2018 | B2 |
10118119 | Sappoketai. | Nov 2018 | B2 |
10130359 | Hess et al. | Nov 2018 | B2 |
10130360 | Olson et al. | Nov 2018 | B2 |
10130361 | Yates et al. | Nov 2018 | B2 |
10130367 | Cappola et al. | Nov 2018 | B2 |
10133248 | Fitzsimmons et al. | Nov 2018 | B2 |
10135242 | Baber et al. | Nov 2018 | B2 |
10136887 | Shelton, IV et al. | Nov 2018 | B2 |
10136891 | Shelton, IV et al. | Nov 2018 | B2 |
10136949 | Felder et al. | Nov 2018 | B2 |
10143526 | Walker et al. | Dec 2018 | B2 |
10143948 | Bonitas et al. | Dec 2018 | B2 |
10149680 | Parihar et al. | Dec 2018 | B2 |
10152789 | Carnes et al. | Dec 2018 | B2 |
10154841 | Weaner et al. | Dec 2018 | B2 |
10159044 | Hrabak | Dec 2018 | B2 |
10159481 | Whitman et al. | Dec 2018 | B2 |
10159483 | Beckman et al. | Dec 2018 | B2 |
10164466 | Calderoni | Dec 2018 | B2 |
10166025 | Leimbach et al. | Jan 2019 | B2 |
10169862 | Andre et al. | Jan 2019 | B2 |
10172687 | Garbus et al. | Jan 2019 | B2 |
10175096 | Dickerson | Jan 2019 | B2 |
10175127 | Collins et al. | Jan 2019 | B2 |
10178992 | Wise et al. | Jan 2019 | B2 |
10179413 | Rockrohr | Jan 2019 | B2 |
10180463 | Beckman et al. | Jan 2019 | B2 |
10182814 | Okoniewski | Jan 2019 | B2 |
10182816 | Shelton, IV et al. | Jan 2019 | B2 |
10182818 | Hensel et al. | Jan 2019 | B2 |
10188385 | Kerr et al. | Jan 2019 | B2 |
10189157 | Schlegel et al. | Jan 2019 | B2 |
10190888 | Hryb et al. | Jan 2019 | B2 |
10194891 | Jeong et al. | Feb 2019 | B2 |
10194907 | Marczyk et al. | Feb 2019 | B2 |
10194913 | Nalagatla et al. | Feb 2019 | B2 |
10194972 | Yates et al. | Feb 2019 | B2 |
10197803 | Badiali et al. | Feb 2019 | B2 |
10198965 | Hart | Feb 2019 | B2 |
10201311 | Chou et al. | Feb 2019 | B2 |
10201349 | Leimbach et al. | Feb 2019 | B2 |
10201364 | Leimbach et al. | Feb 2019 | B2 |
10201365 | Boudreaux et al. | Feb 2019 | B2 |
10205708 | Fletcher et al. | Feb 2019 | B1 |
10206605 | Shelton, IV et al. | Feb 2019 | B2 |
10206752 | Hares et al. | Feb 2019 | B2 |
10213201 | Shelton, IV et al. | Feb 2019 | B2 |
10213203 | Swayze et al. | Feb 2019 | B2 |
10213266 | Zemlok et al. | Feb 2019 | B2 |
10213268 | Dachs, II | Feb 2019 | B2 |
10219491 | Stiles, Jr. et al. | Mar 2019 | B2 |
10220522 | Rockrohr | Mar 2019 | B2 |
10222750 | Bang et al. | Mar 2019 | B2 |
10226249 | Jaworek et al. | Mar 2019 | B2 |
10226250 | Beckman et al. | Mar 2019 | B2 |
10226302 | Lacal et al. | Mar 2019 | B2 |
10231634 | Zand et al. | Mar 2019 | B2 |
10231733 | Ehrenfels et al. | Mar 2019 | B2 |
10231775 | Shelton, IV et al. | Mar 2019 | B2 |
10238413 | Hibner et al. | Mar 2019 | B2 |
10245027 | Shelton, IV et al. | Apr 2019 | B2 |
10245028 | Shelton, IV et al. | Apr 2019 | B2 |
10245029 | Hunter et al. | Apr 2019 | B2 |
10245030 | Hunter et al. | Apr 2019 | B2 |
10245033 | Overmyer et al. | Apr 2019 | B2 |
10245037 | Conklin et al. | Apr 2019 | B2 |
10245038 | Hopkins et al. | Apr 2019 | B2 |
10251661 | Collings et al. | Apr 2019 | B2 |
10251725 | Valentine et al. | Apr 2019 | B2 |
10258331 | Shelton, IV et al. | Apr 2019 | B2 |
10258359 | Kapadia | Apr 2019 | B2 |
10258362 | Conlon | Apr 2019 | B2 |
10258363 | Worrell et al. | Apr 2019 | B2 |
10258415 | Harrah et al. | Apr 2019 | B2 |
10258418 | Shelton, IV et al. | Apr 2019 | B2 |
10258425 | Mustufa et al. | Apr 2019 | B2 |
10263171 | Wiener et al. | Apr 2019 | B2 |
10265035 | Fehre et al. | Apr 2019 | B2 |
10265068 | Harris et al. | Apr 2019 | B2 |
10265072 | Shelton, IV et al. | Apr 2019 | B2 |
10265090 | Ingmanson et al. | Apr 2019 | B2 |
10265130 | Hess et al. | Apr 2019 | B2 |
10271840 | Sapre | Apr 2019 | B2 |
10271844 | Valentine et al. | Apr 2019 | B2 |
10271850 | Williams | Apr 2019 | B2 |
10271851 | Shelton, IV et al. | Apr 2019 | B2 |
D847989 | Shelton, IV et al. | May 2019 | S |
10278698 | Racenet | May 2019 | B2 |
10278778 | State et al. | May 2019 | B2 |
10283220 | Azizian et al. | May 2019 | B2 |
10285694 | Viola et al. | May 2019 | B2 |
10285698 | Cappola et al. | May 2019 | B2 |
10285700 | Scheib | May 2019 | B2 |
10285705 | Shelton, IV et al. | May 2019 | B2 |
10292704 | Harris et al. | May 2019 | B2 |
10292707 | Shelton, IV et al. | May 2019 | B2 |
10292758 | Boudreaux et al. | May 2019 | B2 |
10292771 | Wood et al. | May 2019 | B2 |
10293129 | Fox et al. | May 2019 | B2 |
10299792 | Huitema et al. | May 2019 | B2 |
10299870 | Connolly et al. | May 2019 | B2 |
10305926 | Mihan et al. | May 2019 | B2 |
D850617 | Shelton, IV et al. | Jun 2019 | S |
10307159 | Harris et al. | Jun 2019 | B2 |
10307170 | Parfett et al. | Jun 2019 | B2 |
10307199 | Farritor et al. | Jun 2019 | B2 |
10311036 | Hussam et al. | Jun 2019 | B1 |
10313137 | Aarnio et al. | Jun 2019 | B2 |
10314577 | Laurent et al. | Jun 2019 | B2 |
10314582 | Shelton, IV et al. | Jun 2019 | B2 |
10321907 | Shelton, IV et al. | Jun 2019 | B2 |
10321964 | Grover et al. | Jun 2019 | B2 |
10327764 | Harris et al. | Jun 2019 | B2 |
10335147 | Rector et al. | Jul 2019 | B2 |
10335149 | Baxter, III et al. | Jul 2019 | B2 |
10335180 | Johnson et al. | Jul 2019 | B2 |
10335227 | Heard | Jul 2019 | B2 |
10342543 | Shelton, IV et al. | Jul 2019 | B2 |
10342602 | Strobl et al. | Jul 2019 | B2 |
10342623 | Huelman et al. | Jul 2019 | B2 |
10343102 | Reasoner et al. | Jul 2019 | B2 |
10349824 | Claude et al. | Jul 2019 | B2 |
10349941 | Marczyk | Jul 2019 | B2 |
10350016 | Burbank et al. | Jul 2019 | B2 |
10357246 | Shelton, IV et al. | Jul 2019 | B2 |
10357247 | Shelton, IV et al. | Jul 2019 | B2 |
10362179 | Harris | Jul 2019 | B2 |
10363032 | Scheib et al. | Jul 2019 | B2 |
10363037 | Aronhalt et al. | Jul 2019 | B2 |
10368861 | Baxter, III et al. | Aug 2019 | B2 |
10368865 | Harris et al. | Aug 2019 | B2 |
10368867 | Harris et al. | Aug 2019 | B2 |
10368876 | Bhatnagar et al. | Aug 2019 | B2 |
10368894 | Madan et al. | Aug 2019 | B2 |
10368903 | Morales et al. | Aug 2019 | B2 |
10376263 | Morgan et al. | Aug 2019 | B2 |
10376305 | Yates et al. | Aug 2019 | B2 |
10376337 | Kilroy et al. | Aug 2019 | B2 |
10376338 | Taylor et al. | Aug 2019 | B2 |
10378893 | Mankovskii | Aug 2019 | B2 |
10383518 | Abu-Tarif et al. | Aug 2019 | B2 |
10383699 | Kilroy et al. | Aug 2019 | B2 |
10384021 | Koeth et al. | Aug 2019 | B2 |
10390718 | Chen et al. | Aug 2019 | B2 |
10390794 | Kuroiwa et al. | Aug 2019 | B2 |
10390825 | Shelton, IV et al. | Aug 2019 | B2 |
10390831 | Holsten et al. | Aug 2019 | B2 |
10390895 | Henderson et al. | Aug 2019 | B2 |
10398348 | Osadchy et al. | Sep 2019 | B2 |
10398434 | Shelton, IV et al. | Sep 2019 | B2 |
10398517 | Eckert et al. | Sep 2019 | B2 |
10398521 | Itkowitz et al. | Sep 2019 | B2 |
10404521 | McChord et al. | Sep 2019 | B2 |
10404801 | Martch | Sep 2019 | B2 |
10405857 | Shelton, IV et al. | Sep 2019 | B2 |
10405863 | Wise et al. | Sep 2019 | B2 |
10413291 | Worthington et al. | Sep 2019 | B2 |
10413293 | Shelton, IV et al. | Sep 2019 | B2 |
10413297 | Harris et al. | Sep 2019 | B2 |
10417446 | Takeyama | Sep 2019 | B2 |
10420552 | Shelton, IV et al. | Sep 2019 | B2 |
10420558 | Nalagatla et al. | Sep 2019 | B2 |
10420559 | Marczyk et al. | Sep 2019 | B2 |
10420620 | Rockrohr | Sep 2019 | B2 |
10420865 | Reasoner et al. | Sep 2019 | B2 |
10422727 | Pliskin | Sep 2019 | B2 |
10426466 | Contini et al. | Oct 2019 | B2 |
10426467 | Miller et al. | Oct 2019 | B2 |
10426468 | Contini et al. | Oct 2019 | B2 |
10426471 | Shelton, IV et al. | Oct 2019 | B2 |
10426481 | Aronhalt et al. | Oct 2019 | B2 |
10433837 | Worthington et al. | Oct 2019 | B2 |
10433844 | Shelton, IV et al. | Oct 2019 | B2 |
10433849 | Shelton, IV et al. | Oct 2019 | B2 |
10433918 | Shelton, IV et al. | Oct 2019 | B2 |
10441279 | Shelton, IV et al. | Oct 2019 | B2 |
10441345 | Aldridge et al. | Oct 2019 | B2 |
10448948 | Shelton, IV et al. | Oct 2019 | B2 |
10448950 | Shelton, IV et al. | Oct 2019 | B2 |
10456137 | Vendely et al. | Oct 2019 | B2 |
10456140 | Shelton, IV et al. | Oct 2019 | B2 |
10456193 | Yates et al. | Oct 2019 | B2 |
10463365 | Williams | Nov 2019 | B2 |
10463367 | Kostrzewski et al. | Nov 2019 | B2 |
10463371 | Kostrzewski | Nov 2019 | B2 |
10463436 | Jackson et al. | Nov 2019 | B2 |
10470762 | Leimbach et al. | Nov 2019 | B2 |
10470764 | Baxter, III et al. | Nov 2019 | B2 |
10470768 | Harris et al. | Nov 2019 | B2 |
10470791 | Houser | Nov 2019 | B2 |
10471254 | Sano et al. | Nov 2019 | B2 |
10478181 | Shelton, IV et al. | Nov 2019 | B2 |
10478189 | Bear et al. | Nov 2019 | B2 |
10478190 | Miller et al. | Nov 2019 | B2 |
10478544 | Friederichs et al. | Nov 2019 | B2 |
10485450 | Gupta et al. | Nov 2019 | B2 |
10485542 | Shelton, IV et al. | Nov 2019 | B2 |
10485543 | Shelton, IV et al. | Nov 2019 | B2 |
10492783 | Shelton, IV et al. | Dec 2019 | B2 |
10492784 | Beardsley | Dec 2019 | B2 |
10492785 | Overmyer et al. | Dec 2019 | B2 |
10496788 | Amarasingham et al. | Dec 2019 | B2 |
10498269 | Zemlok et al. | Dec 2019 | B2 |
10499891 | Chaplin et al. | Dec 2019 | B2 |
10499914 | Huang et al. | Dec 2019 | B2 |
10499915 | Aranyi | Dec 2019 | B2 |
10499994 | Luks et al. | Dec 2019 | B2 |
10507068 | Kopp et al. | Dec 2019 | B2 |
10512461 | Gupta et al. | Dec 2019 | B2 |
10512499 | McHenry et al. | Dec 2019 | B2 |
10512514 | Nowlin et al. | Dec 2019 | B2 |
10517588 | Gupta et al. | Dec 2019 | B2 |
10517595 | Hunter et al. | Dec 2019 | B2 |
10517596 | Hunter et al. | Dec 2019 | B2 |
10517686 | Vokrot et al. | Dec 2019 | B2 |
10524789 | Swayze et al. | Jan 2020 | B2 |
10531874 | Morgan et al. | Jan 2020 | B2 |
10531929 | Widenhouse et al. | Jan 2020 | B2 |
10532330 | Diallo et al. | Jan 2020 | B2 |
10536617 | Liang et al. | Jan 2020 | B2 |
10537324 | Shelton, IV et al. | Jan 2020 | B2 |
10537325 | Bakos et al. | Jan 2020 | B2 |
10537351 | Shelton, IV et al. | Jan 2020 | B2 |
10542978 | Chowaniec et al. | Jan 2020 | B2 |
10542979 | Shelton, IV et al. | Jan 2020 | B2 |
10542982 | Beckman et al. | Jan 2020 | B2 |
10542991 | Shelton, IV et al. | Jan 2020 | B2 |
10548504 | Shelton, IV et al. | Feb 2020 | B2 |
10548612 | Martinez et al. | Feb 2020 | B2 |
10548673 | Harris et al. | Feb 2020 | B2 |
10552574 | Sweeney | Feb 2020 | B2 |
10555675 | Satish et al. | Feb 2020 | B2 |
10555748 | Yates et al. | Feb 2020 | B2 |
10555750 | Conlon et al. | Feb 2020 | B2 |
10555769 | Worrell et al. | Feb 2020 | B2 |
10561422 | Schellin et al. | Feb 2020 | B2 |
10561471 | Nichogi | Feb 2020 | B2 |
10568625 | Harris et al. | Feb 2020 | B2 |
10568626 | Shelton, IV et al. | Feb 2020 | B2 |
10568632 | Miller et al. | Feb 2020 | B2 |
10568704 | Savaii et al. | Feb 2020 | B2 |
10575868 | Hall et al. | Mar 2020 | B2 |
10582928 | Hunter et al. | Mar 2020 | B2 |
10582931 | Mujawar | Mar 2020 | B2 |
10582964 | Weinberg et al. | Mar 2020 | B2 |
10586074 | Rose et al. | Mar 2020 | B2 |
10588625 | Weaner et al. | Mar 2020 | B2 |
10588629 | Malinouskas et al. | Mar 2020 | B2 |
10588630 | Shelton, IV et al. | Mar 2020 | B2 |
10588631 | Shelton, IV et al. | Mar 2020 | B2 |
10588632 | Shelton, IV et al. | Mar 2020 | B2 |
10588711 | DiCarlo et al. | Mar 2020 | B2 |
10592067 | Merdan et al. | Mar 2020 | B2 |
10595844 | Nawana et al. | Mar 2020 | B2 |
10595882 | Parfett et al. | Mar 2020 | B2 |
10595887 | Shelton, IV et al. | Mar 2020 | B2 |
10595930 | Scheib et al. | Mar 2020 | B2 |
10595952 | Forrest et al. | Mar 2020 | B2 |
10602848 | Magana | Mar 2020 | B2 |
10603036 | Hunter et al. | Mar 2020 | B2 |
10603128 | Zergiebel et al. | Mar 2020 | B2 |
10610223 | Wellman et al. | Apr 2020 | B2 |
10610224 | Shelton, IV et al. | Apr 2020 | B2 |
10610286 | Wiener et al. | Apr 2020 | B2 |
10610313 | Bailey et al. | Apr 2020 | B2 |
10617414 | Shelton, IV et al. | Apr 2020 | B2 |
10617482 | Houser et al. | Apr 2020 | B2 |
10617484 | Kilroy et al. | Apr 2020 | B2 |
10624635 | Harris et al. | Apr 2020 | B2 |
10624691 | Wiener et al. | Apr 2020 | B2 |
10631858 | Burbank | Apr 2020 | B2 |
10631912 | McFarlin et al. | Apr 2020 | B2 |
10631916 | Horner et al. | Apr 2020 | B2 |
10631917 | Ineson | Apr 2020 | B2 |
10631939 | Dachs, II et al. | Apr 2020 | B2 |
10639027 | Shelton, IV et al. | May 2020 | B2 |
10639034 | Harris et al. | May 2020 | B2 |
10639035 | Shelton, IV et al. | May 2020 | B2 |
10639036 | Yates et al. | May 2020 | B2 |
10639037 | Shelton, IV et al. | May 2020 | B2 |
10639039 | Vendely et al. | May 2020 | B2 |
10639098 | Cosman et al. | May 2020 | B2 |
10639111 | Kopp | May 2020 | B2 |
10639185 | Agrawal et al. | May 2020 | B2 |
10653413 | Worthington et al. | May 2020 | B2 |
10653476 | Ross | May 2020 | B2 |
10653489 | Kopp | May 2020 | B2 |
10656720 | Holz | May 2020 | B1 |
10660705 | Piron et al. | May 2020 | B2 |
10667809 | Bakos et al. | Jun 2020 | B2 |
10667810 | Shelton, IV et al. | Jun 2020 | B2 |
10667811 | Harris et al. | Jun 2020 | B2 |
10667877 | Kapadia | Jun 2020 | B2 |
10674897 | Levy | Jun 2020 | B2 |
10675021 | Harris et al. | Jun 2020 | B2 |
10675024 | Shelton, IV et al. | Jun 2020 | B2 |
10675025 | Swayze et al. | Jun 2020 | B2 |
10675026 | Harris et al. | Jun 2020 | B2 |
10675035 | Zingman | Jun 2020 | B2 |
10675104 | Kapadia | Jun 2020 | B2 |
10677764 | Ross et al. | Jun 2020 | B2 |
10679758 | Fox et al. | Jun 2020 | B2 |
10682136 | Harris et al. | Jun 2020 | B2 |
10682138 | Shelton, IV et al. | Jun 2020 | B2 |
10686805 | Reybok, Jr. et al. | Jun 2020 | B2 |
10687806 | Shelton, IV et al. | Jun 2020 | B2 |
10687810 | Shelton, IV et al. | Jun 2020 | B2 |
10687884 | Wiener et al. | Jun 2020 | B2 |
10687905 | Kostrzewski | Jun 2020 | B2 |
10695081 | Shelton, IV et al. | Jun 2020 | B2 |
10695134 | Barral et al. | Jun 2020 | B2 |
10702270 | Shelton, IV et al. | Jul 2020 | B2 |
10709446 | Harris et al. | Jul 2020 | B2 |
10716489 | Kalvoy et al. | Jul 2020 | B2 |
10716615 | Shelton, IV et al. | Jul 2020 | B2 |
10716639 | Kapadia et al. | Jul 2020 | B2 |
10717194 | Griffiths et al. | Jul 2020 | B2 |
10722222 | Aranyi | Jul 2020 | B2 |
10722292 | Arya et al. | Jul 2020 | B2 |
D893717 | Messerly et al. | Aug 2020 | S |
10729458 | Stoddard et al. | Aug 2020 | B2 |
10729509 | Shelton, IV et al. | Aug 2020 | B2 |
10733267 | Pedersen | Aug 2020 | B2 |
10736219 | Seow et al. | Aug 2020 | B2 |
10736616 | Scheib et al. | Aug 2020 | B2 |
10736628 | Yates et al. | Aug 2020 | B2 |
10736629 | Shelton, IV et al. | Aug 2020 | B2 |
10736636 | Baxter, III et al. | Aug 2020 | B2 |
10736705 | Scheib et al. | Aug 2020 | B2 |
10743872 | Leimbach et al. | Aug 2020 | B2 |
10748115 | Laster et al. | Aug 2020 | B2 |
10751052 | Stokes et al. | Aug 2020 | B2 |
10751136 | Farritor et al. | Aug 2020 | B2 |
10751768 | Hersey et al. | Aug 2020 | B2 |
10755813 | Shelton, IV et al. | Aug 2020 | B2 |
D896379 | Shelton, IV et al. | Sep 2020 | S |
10758229 | Shelton, IV et al. | Sep 2020 | B2 |
10758230 | Shelton, IV et al. | Sep 2020 | B2 |
10758294 | Jones | Sep 2020 | B2 |
10758310 | Shelton, IV et al. | Sep 2020 | B2 |
10765376 | Brown, III et al. | Sep 2020 | B2 |
10765424 | Baxter, III et al. | Sep 2020 | B2 |
10765427 | Shelton, IV et al. | Sep 2020 | B2 |
10765470 | Yates et al. | Sep 2020 | B2 |
10772630 | Wixey | Sep 2020 | B2 |
10772651 | Shelton, IV et al. | Sep 2020 | B2 |
10772688 | Peine et al. | Sep 2020 | B2 |
10779818 | Zemlok et al. | Sep 2020 | B2 |
10779821 | Harris et al. | Sep 2020 | B2 |
10779823 | Shelton, IV et al. | Sep 2020 | B2 |
10779897 | Rockrohr | Sep 2020 | B2 |
10779900 | Pedros et al. | Sep 2020 | B2 |
10783634 | Nye et al. | Sep 2020 | B2 |
10786298 | Johnson | Sep 2020 | B2 |
10786317 | Zhou et al. | Sep 2020 | B2 |
10786327 | Anderson et al. | Sep 2020 | B2 |
10792118 | Prpa et al. | Oct 2020 | B2 |
10792422 | Douglas et al. | Oct 2020 | B2 |
10799304 | Kapadia et al. | Oct 2020 | B2 |
10803977 | Sanmugalingham | Oct 2020 | B2 |
10806445 | Penna et al. | Oct 2020 | B2 |
10806454 | Kopp | Oct 2020 | B2 |
10806506 | Gaspredes et al. | Oct 2020 | B2 |
10806532 | Grubbs et al. | Oct 2020 | B2 |
10813638 | Shelton, IV et al. | Oct 2020 | B2 |
10813703 | Swayze et al. | Oct 2020 | B2 |
10818383 | Sedeh et al. | Oct 2020 | B2 |
10828028 | Harris et al. | Nov 2020 | B2 |
10828030 | Weir et al. | Nov 2020 | B2 |
10835245 | Swayze et al. | Nov 2020 | B2 |
10835246 | Shelton, IV et al. | Nov 2020 | B2 |
10835247 | Shelton, IV | Nov 2020 | B2 |
10842473 | Scheib et al. | Nov 2020 | B2 |
10842490 | DiNardo et al. | Nov 2020 | B2 |
10842492 | Shelton, IV et al. | Nov 2020 | B2 |
10842522 | Messerly et al. | Nov 2020 | B2 |
10842523 | Shelton, IV et al. | Nov 2020 | B2 |
10842575 | Panescu et al. | Nov 2020 | B2 |
10842897 | Schwartz et al. | Nov 2020 | B2 |
10849697 | Yates et al. | Dec 2020 | B2 |
10849700 | Kopp et al. | Dec 2020 | B2 |
10856768 | Osadchy et al. | Dec 2020 | B2 |
10856867 | Shelton, IV et al. | Dec 2020 | B2 |
10856868 | Shelton, IV et al. | Dec 2020 | B2 |
10856870 | Harris et al. | Dec 2020 | B2 |
10864037 | Mun et al. | Dec 2020 | B2 |
10864050 | Tabandeh et al. | Dec 2020 | B2 |
10872684 | McNutt et al. | Dec 2020 | B2 |
10881399 | Shelton, IV et al. | Jan 2021 | B2 |
10881401 | Baber et al. | Jan 2021 | B2 |
10881446 | Strobl | Jan 2021 | B2 |
10881464 | Odermatt et al. | Jan 2021 | B2 |
10888321 | Shelton, IV et al. | Jan 2021 | B2 |
10888322 | Morgan et al. | Jan 2021 | B2 |
10892899 | Shelton, IV et al. | Jan 2021 | B2 |
10892995 | Shelton, IV et al. | Jan 2021 | B2 |
10893863 | Shelton, IV et al. | Jan 2021 | B2 |
10893864 | Harris et al. | Jan 2021 | B2 |
10893884 | Stoddard et al. | Jan 2021 | B2 |
10898183 | Shelton, IV et al. | Jan 2021 | B2 |
10898186 | Bakos et al. | Jan 2021 | B2 |
10898280 | Kopp | Jan 2021 | B2 |
10898622 | Shelton, IV et al. | Jan 2021 | B2 |
10902944 | Casey et al. | Jan 2021 | B1 |
10903685 | Yates et al. | Jan 2021 | B2 |
10905415 | DiNardo et al. | Feb 2021 | B2 |
10905418 | Shelton, IV et al. | Feb 2021 | B2 |
10905420 | Jasemian et al. | Feb 2021 | B2 |
10912559 | Harris et al. | Feb 2021 | B2 |
10912580 | Green et al. | Feb 2021 | B2 |
10912619 | Jarc et al. | Feb 2021 | B2 |
10918385 | Overmyer et al. | Feb 2021 | B2 |
10930400 | Robbins et al. | Feb 2021 | B2 |
10932705 | Muhsin et al. | Mar 2021 | B2 |
10932772 | Shelton, IV et al. | Mar 2021 | B2 |
10932784 | Mozdzierz et al. | Mar 2021 | B2 |
10932804 | Scheib et al. | Mar 2021 | B2 |
10932806 | Shelton, IV et al. | Mar 2021 | B2 |
10932872 | Shelton, IV et al. | Mar 2021 | B2 |
10939313 | Eom et al. | Mar 2021 | B2 |
10943454 | Shelton, IV et al. | Mar 2021 | B2 |
10944728 | Wiener et al. | Mar 2021 | B2 |
10945727 | Shelton, IV et al. | Mar 2021 | B2 |
10952708 | Scheib et al. | Mar 2021 | B2 |
10954935 | O'Shea et al. | Mar 2021 | B2 |
10959727 | Hunter et al. | Mar 2021 | B2 |
10959729 | Ehrenfels et al. | Mar 2021 | B2 |
10959744 | Shelton, IV et al. | Mar 2021 | B2 |
10959788 | Grover et al. | Mar 2021 | B2 |
10960150 | Zergiebel et al. | Mar 2021 | B2 |
10966791 | Harris et al. | Apr 2021 | B2 |
10966798 | Tesar et al. | Apr 2021 | B2 |
10973516 | Shelton, IV et al. | Apr 2021 | B2 |
10973517 | Wixey | Apr 2021 | B2 |
10973520 | Shelton, IV et al. | Apr 2021 | B2 |
10973682 | Vezzu et al. | Apr 2021 | B2 |
10980536 | Weaner et al. | Apr 2021 | B2 |
10980537 | Shelton, IV et al. | Apr 2021 | B2 |
10980560 | Shelton, IV et al. | Apr 2021 | B2 |
10980610 | Rosenberg et al. | Apr 2021 | B2 |
10987102 | Gonzalez et al. | Apr 2021 | B2 |
10987178 | Shelton, IV et al. | Apr 2021 | B2 |
10992698 | Patel et al. | Apr 2021 | B2 |
10993715 | Shelton, IV et al. | May 2021 | B2 |
10998098 | Greene et al. | May 2021 | B2 |
20020049551 | Friedman et al. | Apr 2002 | A1 |
20020072746 | Lingenfelder et al. | Jun 2002 | A1 |
20030009111 | Cory et al. | Jan 2003 | A1 |
20030093503 | Yamaki et al. | May 2003 | A1 |
20030114851 | Truckai et al. | Jun 2003 | A1 |
20030210812 | Khamene et al. | Nov 2003 | A1 |
20030223877 | Anstine et al. | Dec 2003 | A1 |
20040078236 | Stoodley et al. | Apr 2004 | A1 |
20040199180 | Knodel et al. | Oct 2004 | A1 |
20040199659 | Ishikawa et al. | Oct 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040243148 | Wasielewski | Dec 2004 | A1 |
20040243435 | Williams | Dec 2004 | A1 |
20050020909 | Moctezuma de la Barrera et al. | Jan 2005 | A1 |
20050023324 | Doll et al. | Feb 2005 | A1 |
20050063575 | Ma et al. | Mar 2005 | A1 |
20050065438 | Miller | Mar 2005 | A1 |
20050131390 | Heinrich et al. | Jun 2005 | A1 |
20050143759 | Kelly | Jun 2005 | A1 |
20050149001 | Uchikubo et al. | Jul 2005 | A1 |
20050149356 | Cyr et al. | Jul 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050222631 | Dalal et al. | Oct 2005 | A1 |
20050236474 | Onuma et al. | Oct 2005 | A1 |
20050277913 | McCary | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060025816 | Shelton | Feb 2006 | A1 |
20060059018 | Shiobara et al. | Mar 2006 | A1 |
20060079874 | Faller et al. | Apr 2006 | A1 |
20060116908 | Dew et al. | Jun 2006 | A1 |
20060184160 | Ozaki et al. | Aug 2006 | A1 |
20060241399 | Fabian | Oct 2006 | A1 |
20070010838 | Shelton et al. | Jan 2007 | A1 |
20070016235 | Tanaka et al. | Jan 2007 | A1 |
20070027459 | Horvath et al. | Feb 2007 | A1 |
20070049947 | Menn et al. | Mar 2007 | A1 |
20070078678 | DiSilvestro et al. | Apr 2007 | A1 |
20070125828 | Rethy | Jun 2007 | A1 |
20070167702 | Hasser et al. | Jul 2007 | A1 |
20070168461 | Moore | Jul 2007 | A1 |
20070173803 | Wham et al. | Jul 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070179482 | Anderson | Aug 2007 | A1 |
20070191713 | Eichmann et al. | Aug 2007 | A1 |
20070225556 | Ortiz et al. | Sep 2007 | A1 |
20070225690 | Sekiguchi et al. | Sep 2007 | A1 |
20070244478 | Bahney | Oct 2007 | A1 |
20070249990 | Cosmescu | Oct 2007 | A1 |
20070270660 | Caylor et al. | Nov 2007 | A1 |
20070282333 | Fortson et al. | Dec 2007 | A1 |
20070293218 | Meylan et al. | Dec 2007 | A1 |
20080013460 | Allen et al. | Jan 2008 | A1 |
20080015664 | Podhajsky | Jan 2008 | A1 |
20080015912 | Rosenthal et al. | Jan 2008 | A1 |
20080033404 | Romoda et al. | Feb 2008 | A1 |
20080040151 | Moore | Feb 2008 | A1 |
20080059658 | Williams | Mar 2008 | A1 |
20080077158 | Haider et al. | Mar 2008 | A1 |
20080083414 | Messerges | Apr 2008 | A1 |
20080177258 | Govari et al. | Jul 2008 | A1 |
20080177362 | Phillips et al. | Jul 2008 | A1 |
20080200940 | Eichmann et al. | Aug 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080281301 | DeBoer et al. | Nov 2008 | A1 |
20080281678 | Keuls et al. | Nov 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080306759 | Ilkin et al. | Dec 2008 | A1 |
20080312953 | Claus | Dec 2008 | A1 |
20090036750 | Weinstein et al. | Feb 2009 | A1 |
20090036794 | Stubhaug et al. | Feb 2009 | A1 |
20090043253 | Podaima | Feb 2009 | A1 |
20090046146 | Hoyt | Feb 2009 | A1 |
20090048589 | Takashino et al. | Feb 2009 | A1 |
20090076409 | Wu et al. | Mar 2009 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099866 | Newman | Apr 2009 | A1 |
20090182577 | Squilla et al. | Jul 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090217932 | Voegele | Sep 2009 | A1 |
20090234352 | Behnke et al. | Sep 2009 | A1 |
20090259149 | Tahara et al. | Oct 2009 | A1 |
20090259221 | Tahara et al. | Oct 2009 | A1 |
20090307681 | Armado et al. | Dec 2009 | A1 |
20090326321 | Jacobsen et al. | Dec 2009 | A1 |
20090326336 | Lemke et al. | Dec 2009 | A1 |
20100065604 | Weng | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100070417 | Flynn et al. | Mar 2010 | A1 |
20100132334 | Duclos et al. | Jun 2010 | A1 |
20100137845 | Ramstein et al. | Jun 2010 | A1 |
20100168561 | Anderson | Jul 2010 | A1 |
20100179831 | Brown et al. | Jul 2010 | A1 |
20100191100 | Anderson et al. | Jul 2010 | A1 |
20100198248 | Vakharia | Aug 2010 | A1 |
20100217991 | Choi | Aug 2010 | A1 |
20100235689 | Tian et al. | Sep 2010 | A1 |
20100250571 | Pierce et al. | Sep 2010 | A1 |
20100292535 | Paskar | Nov 2010 | A1 |
20100292684 | Cybulski et al. | Nov 2010 | A1 |
20110022032 | Zemlok et al. | Jan 2011 | A1 |
20110071530 | Carson | Mar 2011 | A1 |
20110077512 | Boswell | Mar 2011 | A1 |
20110087238 | Wang et al. | Apr 2011 | A1 |
20110105895 | Kornblau et al. | May 2011 | A1 |
20110118708 | Burbank et al. | May 2011 | A1 |
20110119075 | Dhoble | May 2011 | A1 |
20110125149 | El-Galley et al. | May 2011 | A1 |
20110152712 | Cao et al. | Jun 2011 | A1 |
20110166883 | Palmer et al. | Jul 2011 | A1 |
20110237883 | Chun | Sep 2011 | A1 |
20110264000 | Paul et al. | Oct 2011 | A1 |
20110306840 | Allen et al. | Dec 2011 | A1 |
20120022519 | Huang et al. | Jan 2012 | A1 |
20120059684 | Hampapur et al. | Mar 2012 | A1 |
20120078247 | Worrell et al. | Mar 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120116265 | Houser et al. | May 2012 | A1 |
20120116381 | Houser et al. | May 2012 | A1 |
20120130217 | Kauphusman et al. | May 2012 | A1 |
20120145714 | Farascioni et al. | Jun 2012 | A1 |
20120172696 | Kallback et al. | Jul 2012 | A1 |
20120191091 | Allen | Jul 2012 | A1 |
20120203785 | Awada | Aug 2012 | A1 |
20120211542 | Racenet | Aug 2012 | A1 |
20120245958 | Lawrence et al. | Sep 2012 | A1 |
20120265555 | Cappuzzo et al. | Oct 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120319859 | Taub et al. | Dec 2012 | A1 |
20130024213 | Poon | Jan 2013 | A1 |
20130046182 | Hegg et al. | Feb 2013 | A1 |
20130046279 | Niklewski et al. | Feb 2013 | A1 |
20130066647 | Andrie et al. | Mar 2013 | A1 |
20130090526 | Suzuki et al. | Apr 2013 | A1 |
20130093829 | Rosenblatt et al. | Apr 2013 | A1 |
20130116218 | Kaplan et al. | May 2013 | A1 |
20130165776 | Blomqvist | Jun 2013 | A1 |
20130178853 | Hyink et al. | Jul 2013 | A1 |
20130206813 | Nalagatla | Aug 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130248577 | Leimbach | Sep 2013 | A1 |
20130253480 | Kimball et al. | Sep 2013 | A1 |
20130256373 | Schmid et al. | Oct 2013 | A1 |
20130267874 | Marcotte et al. | Oct 2013 | A1 |
20130277410 | Fernandez et al. | Oct 2013 | A1 |
20130317837 | Ballantyne et al. | Nov 2013 | A1 |
20130321425 | Greene et al. | Dec 2013 | A1 |
20130325809 | Kim et al. | Dec 2013 | A1 |
20130331873 | Ross et al. | Dec 2013 | A1 |
20130331875 | Ross et al. | Dec 2013 | A1 |
20140001231 | Shelton, IV et al. | Jan 2014 | A1 |
20140001234 | Shelton, IV et al. | Jan 2014 | A1 |
20140005640 | Shelton, IV et al. | Jan 2014 | A1 |
20140006132 | Barker | Jan 2014 | A1 |
20140013565 | MacDonald et al. | Jan 2014 | A1 |
20140029411 | Nayak et al. | Jan 2014 | A1 |
20140033926 | Fassel et al. | Feb 2014 | A1 |
20140035762 | Shelton, IV et al. | Feb 2014 | A1 |
20140066700 | Wilson et al. | Mar 2014 | A1 |
20140081255 | Johnson et al. | Mar 2014 | A1 |
20140081659 | Nawana et al. | Mar 2014 | A1 |
20140084949 | Smith et al. | Mar 2014 | A1 |
20140087999 | Kaplan et al. | Mar 2014 | A1 |
20140092089 | Kasuya et al. | Apr 2014 | A1 |
20140107697 | Patani et al. | Apr 2014 | A1 |
20140108035 | Akbay et al. | Apr 2014 | A1 |
20140108983 | William et al. | Apr 2014 | A1 |
20140148729 | Schmitz et al. | May 2014 | A1 |
20140166724 | Schellin et al. | Jun 2014 | A1 |
20140187856 | Holoien et al. | Jul 2014 | A1 |
20140194864 | Martin et al. | Jul 2014 | A1 |
20140204190 | Rosenblatt, III et al. | Jul 2014 | A1 |
20140243799 | Parihar | Aug 2014 | A1 |
20140243809 | Gelfand et al. | Aug 2014 | A1 |
20140246475 | Hall et al. | Sep 2014 | A1 |
20140249557 | Koch et al. | Sep 2014 | A1 |
20140252064 | Mozdzierz et al. | Sep 2014 | A1 |
20140263541 | Leimbach et al. | Sep 2014 | A1 |
20140263552 | Hall et al. | Sep 2014 | A1 |
20140303660 | Boyden et al. | Oct 2014 | A1 |
20140305987 | Parihar | Oct 2014 | A1 |
20150006201 | Pait et al. | Jan 2015 | A1 |
20150025549 | Kilroy et al. | Jan 2015 | A1 |
20150032150 | Ishida et al. | Jan 2015 | A1 |
20150051452 | Ciaccio | Feb 2015 | A1 |
20150051617 | Takemura et al. | Feb 2015 | A1 |
20150053737 | Leimbach et al. | Feb 2015 | A1 |
20150066000 | An et al. | Mar 2015 | A1 |
20150070187 | Wiesner et al. | Mar 2015 | A1 |
20150108198 | Estrella | Apr 2015 | A1 |
20150133945 | Dushyant et al. | May 2015 | A1 |
20150196295 | Shelton, IV et al. | Jul 2015 | A1 |
20150199109 | Lee | Jul 2015 | A1 |
20150272557 | Overmyer et al. | Oct 2015 | A1 |
20150272571 | Leimbach et al. | Oct 2015 | A1 |
20150272580 | Leimbach et al. | Oct 2015 | A1 |
20150272582 | Leimbach et al. | Oct 2015 | A1 |
20150297200 | Fitzsimmons et al. | Oct 2015 | A1 |
20150297222 | Huitema et al. | Oct 2015 | A1 |
20150297228 | Huitema et al. | Oct 2015 | A1 |
20150297233 | Huitema et al. | Oct 2015 | A1 |
20150297311 | Tesar | Oct 2015 | A1 |
20150302157 | Collar et al. | Oct 2015 | A1 |
20150310174 | Coudert et al. | Oct 2015 | A1 |
20150313538 | Bechtel et al. | Nov 2015 | A1 |
20150317899 | Dumbauld et al. | Nov 2015 | A1 |
20150324114 | Hurley et al. | Nov 2015 | A1 |
20150332003 | Stamm et al. | Nov 2015 | A1 |
20150332196 | Stiller et al. | Nov 2015 | A1 |
20160000437 | Giordano et al. | Jan 2016 | A1 |
20160015471 | Piron et al. | Jan 2016 | A1 |
20160034648 | Mohlenbrock et al. | Feb 2016 | A1 |
20160038253 | Piron et al. | Feb 2016 | A1 |
20160066913 | Swayze et al. | Mar 2016 | A1 |
20160106516 | Mesallum | Apr 2016 | A1 |
20160106934 | Hiraga et al. | Apr 2016 | A1 |
20160158468 | Tang et al. | Jun 2016 | A1 |
20160180045 | Syed | Jun 2016 | A1 |
20160192960 | Bueno et al. | Jul 2016 | A1 |
20160206202 | Frangioni | Jul 2016 | A1 |
20160224760 | Petak et al. | Aug 2016 | A1 |
20160235303 | Fleming et al. | Aug 2016 | A1 |
20160249910 | Shelton, IV et al. | Sep 2016 | A1 |
20160256160 | Shelton, IV et al. | Sep 2016 | A1 |
20160278841 | Panescu et al. | Sep 2016 | A1 |
20160287912 | Warnking | Oct 2016 | A1 |
20160296246 | Schaller | Oct 2016 | A1 |
20160302210 | Thornton et al. | Oct 2016 | A1 |
20160310055 | Zand et al. | Oct 2016 | A1 |
20160321400 | Durrant et al. | Nov 2016 | A1 |
20160323283 | Kang et al. | Nov 2016 | A1 |
20160342753 | Feazell | Nov 2016 | A1 |
20160342916 | Arceneaux et al. | Nov 2016 | A1 |
20160345857 | Jensrud et al. | Dec 2016 | A1 |
20160350490 | Martinez et al. | Dec 2016 | A1 |
20160361070 | Ardel et al. | Dec 2016 | A1 |
20160374723 | Frankhouser et al. | Dec 2016 | A1 |
20160374762 | Case et al. | Dec 2016 | A1 |
20170000516 | Stulen et al. | Jan 2017 | A1 |
20170000553 | Wiener et al. | Jan 2017 | A1 |
20170027603 | Pandey | Feb 2017 | A1 |
20170068792 | Reiner | Mar 2017 | A1 |
20170079730 | Azizian et al. | Mar 2017 | A1 |
20170086829 | Vendely et al. | Mar 2017 | A1 |
20170086930 | Thompson et al. | Mar 2017 | A1 |
20170105754 | Boudreaux et al. | Apr 2017 | A1 |
20170116873 | Lendvay et al. | Apr 2017 | A1 |
20170132374 | Lee et al. | May 2017 | A1 |
20170132785 | Wshah et al. | May 2017 | A1 |
20170143284 | Sehnert et al. | May 2017 | A1 |
20170164997 | Johnson et al. | Jun 2017 | A1 |
20170165012 | Chaplin et al. | Jun 2017 | A1 |
20170172565 | Heneveld | Jun 2017 | A1 |
20170172614 | Scheib et al. | Jun 2017 | A1 |
20170177807 | Fabian | Jun 2017 | A1 |
20170196583 | Sugiyama | Jul 2017 | A1 |
20170196637 | Shelton, IV et al. | Jul 2017 | A1 |
20170202591 | Shelton, IV et al. | Jul 2017 | A1 |
20170202607 | Shelton, IV et al. | Jul 2017 | A1 |
20170224332 | Hunter et al. | Aug 2017 | A1 |
20170224334 | Worthington et al. | Aug 2017 | A1 |
20170224428 | Kopp | Aug 2017 | A1 |
20170231627 | Shelton, IV et al. | Aug 2017 | A1 |
20170231628 | Shelton, IV et al. | Aug 2017 | A1 |
20170245809 | Ma et al. | Aug 2017 | A1 |
20170249432 | Grantcharov | Aug 2017 | A1 |
20170262604 | Francois | Sep 2017 | A1 |
20170265864 | Hessler et al. | Sep 2017 | A1 |
20170273715 | Piron et al. | Sep 2017 | A1 |
20170281171 | Shelton, IV et al. | Oct 2017 | A1 |
20170281173 | Shelton, IV et al. | Oct 2017 | A1 |
20170281186 | Shelton, IV et al. | Oct 2017 | A1 |
20170281189 | Nalagatla et al. | Oct 2017 | A1 |
20170290585 | Shelton, IV et al. | Oct 2017 | A1 |
20170290586 | Wellman | Oct 2017 | A1 |
20170296169 | Yates et al. | Oct 2017 | A1 |
20170296173 | Shelton, IV et al. | Oct 2017 | A1 |
20170296185 | Swensgard et al. | Oct 2017 | A1 |
20170296213 | Swensgard et al. | Oct 2017 | A1 |
20170303419 | Collins et al. | Oct 2017 | A1 |
20170303984 | Malackowski | Oct 2017 | A1 |
20170304020 | Ng et al. | Oct 2017 | A1 |
20170312456 | Phillips | Nov 2017 | A1 |
20170325813 | Aranyi et al. | Nov 2017 | A1 |
20170325876 | Nakadate et al. | Nov 2017 | A1 |
20170325878 | Messerly et al. | Nov 2017 | A1 |
20170360438 | Cappola | Dec 2017 | A1 |
20170360439 | Chen et al. | Dec 2017 | A1 |
20170360499 | Greep et al. | Dec 2017 | A1 |
20170367583 | Black et al. | Dec 2017 | A1 |
20170367695 | Shelton, IV et al. | Dec 2017 | A1 |
20170367754 | Narisawa | Dec 2017 | A1 |
20170367771 | Tako et al. | Dec 2017 | A1 |
20170367772 | Gunn et al. | Dec 2017 | A1 |
20170370710 | Chen et al. | Dec 2017 | A1 |
20180008359 | Randle | Jan 2018 | A1 |
20180011983 | Zuhars et al. | Jan 2018 | A1 |
20180050196 | Pawsey et al. | Feb 2018 | A1 |
20180055529 | Messerly et al. | Mar 2018 | A1 |
20180065248 | Barral et al. | Mar 2018 | A1 |
20180078170 | Panescu et al. | Mar 2018 | A1 |
20180098816 | Govari et al. | Apr 2018 | A1 |
20180110523 | Shelton, IV | Apr 2018 | A1 |
20180116662 | Shelton, IV et al. | May 2018 | A1 |
20180116735 | Tierney et al. | May 2018 | A1 |
20180122506 | Grantcharov et al. | May 2018 | A1 |
20180125485 | Beardsley | May 2018 | A1 |
20180125590 | Giordano et al. | May 2018 | A1 |
20180132895 | Silver | May 2018 | A1 |
20180144243 | Hsieh et al. | May 2018 | A1 |
20180153574 | Faller et al. | Jun 2018 | A1 |
20180153632 | Tokarchuk et al. | Jun 2018 | A1 |
20180154297 | Maletich et al. | Jun 2018 | A1 |
20180161716 | Li et al. | Jun 2018 | A1 |
20180168575 | Simms et al. | Jun 2018 | A1 |
20180168577 | Aronhalt et al. | Jun 2018 | A1 |
20180168578 | Aronhalt et al. | Jun 2018 | A1 |
20180168579 | Aronhalt et al. | Jun 2018 | A1 |
20180168584 | Harris et al. | Jun 2018 | A1 |
20180168590 | Overmyer et al. | Jun 2018 | A1 |
20180168592 | Overmyer et al. | Jun 2018 | A1 |
20180168597 | Fanelli et al. | Jun 2018 | A1 |
20180168598 | Shelton, IV et al. | Jun 2018 | A1 |
20180168606 | Shelton, IV et al. | Jun 2018 | A1 |
20180168608 | Shelton, IV et al. | Jun 2018 | A1 |
20180168609 | Fanelli et al. | Jun 2018 | A1 |
20180168610 | Shelton, IV et al. | Jun 2018 | A1 |
20180168614 | Shelton, IV et al. | Jun 2018 | A1 |
20180168615 | Shelton, IV et al. | Jun 2018 | A1 |
20180168618 | Scott et al. | Jun 2018 | A1 |
20180168619 | Scott et al. | Jun 2018 | A1 |
20180168621 | Shelton, IV et al. | Jun 2018 | A1 |
20180168623 | Simms et al. | Jun 2018 | A1 |
20180168625 | Posada et al. | Jun 2018 | A1 |
20180168633 | Shelton, IV et al. | Jun 2018 | A1 |
20180168646 | Shelton, IV | Jun 2018 | A1 |
20180168647 | Shelton, IV et al. | Jun 2018 | A1 |
20180168648 | Shelton, IV et al. | Jun 2018 | A1 |
20180168649 | Shelton, IV et al. | Jun 2018 | A1 |
20180168650 | Shelton, IV et al. | Jun 2018 | A1 |
20180177383 | Noonan et al. | Jun 2018 | A1 |
20180206884 | Beaupre | Jul 2018 | A1 |
20180206905 | Batchelor et al. | Jul 2018 | A1 |
20180214025 | Homyk et al. | Aug 2018 | A1 |
20180221598 | Silver | Aug 2018 | A1 |
20180228557 | Darisse et al. | Aug 2018 | A1 |
20180233222 | Daley et al. | Aug 2018 | A1 |
20180235719 | Jarc | Aug 2018 | A1 |
20180242967 | Meade | Aug 2018 | A1 |
20180263710 | Sakaguchi et al. | Sep 2018 | A1 |
20180268320 | Shekhar | Sep 2018 | A1 |
20180271520 | Shelton, IV et al. | Sep 2018 | A1 |
20180271603 | Nir et al. | Sep 2018 | A1 |
20180296286 | Peine et al. | Oct 2018 | A1 |
20180303552 | Ryan et al. | Oct 2018 | A1 |
20180304471 | Tokuchi | Oct 2018 | A1 |
20180310986 | Batchelor et al. | Nov 2018 | A1 |
20180317915 | McDonald, II | Nov 2018 | A1 |
20180344318 | Nicholas | Dec 2018 | A1 |
20180360456 | Shelton, IV et al. | Dec 2018 | A1 |
20180368930 | Esterberg et al. | Dec 2018 | A1 |
20190000478 | Messerly et al. | Jan 2019 | A1 |
20190000565 | Shelton, IV et al. | Jan 2019 | A1 |
20190000569 | Crawford et al. | Jan 2019 | A1 |
20190001079 | Zergiebel et al. | Jan 2019 | A1 |
20190005641 | Yamamoto | Jan 2019 | A1 |
20190006047 | Gorek et al. | Jan 2019 | A1 |
20190025040 | Andreason et al. | Jan 2019 | A1 |
20190036688 | Wasily et al. | Jan 2019 | A1 |
20190038335 | Mohr et al. | Feb 2019 | A1 |
20190038364 | Enoki | Feb 2019 | A1 |
20190053801 | Wixey et al. | Feb 2019 | A1 |
20190053866 | Seow et al. | Feb 2019 | A1 |
20190069949 | Vrba et al. | Mar 2019 | A1 |
20190069964 | Hagn | Mar 2019 | A1 |
20190070550 | Lalomia et al. | Mar 2019 | A1 |
20190070731 | Bowling et al. | Mar 2019 | A1 |
20190087544 | Peterson | Mar 2019 | A1 |
20190104919 | Shelton, IV et al. | Apr 2019 | A1 |
20190115108 | Hegedus et al. | Apr 2019 | A1 |
20190125320 | Shelton, IV et al. | May 2019 | A1 |
20190125321 | Shelton, IV et al. | May 2019 | A1 |
20190125324 | Scheib et al. | May 2019 | A1 |
20190125335 | Shelton, IV et al. | May 2019 | A1 |
20190125336 | Deck et al. | May 2019 | A1 |
20190125338 | Shelton, IV et al. | May 2019 | A1 |
20190125339 | Shelton, IV et al. | May 2019 | A1 |
20190125347 | Stokes et al. | May 2019 | A1 |
20190125348 | Shelton, IV et al. | May 2019 | A1 |
20190125352 | Shelton, IV et al. | May 2019 | A1 |
20190125353 | Shelton, IV et al. | May 2019 | A1 |
20190125354 | Deck et al. | May 2019 | A1 |
20190125355 | Shelton, IV et al. | May 2019 | A1 |
20190125356 | Shelton, IV et al. | May 2019 | A1 |
20190125357 | Shelton, IV et al. | May 2019 | A1 |
20190125358 | Shelton, IV et al. | May 2019 | A1 |
20190125359 | Shelton, IV et al. | May 2019 | A1 |
20190125360 | Shelton, IV et al. | May 2019 | A1 |
20190125361 | Shelton, IV et al. | May 2019 | A1 |
20190125377 | Shelton, IV | May 2019 | A1 |
20190125378 | Shelton, IV et al. | May 2019 | A1 |
20190125379 | Shelton, IV et al. | May 2019 | A1 |
20190125380 | Hunter et al. | May 2019 | A1 |
20190125384 | Scheib et al. | May 2019 | A1 |
20190125387 | Parihar et al. | May 2019 | A1 |
20190125388 | Shelton, IV et al. | May 2019 | A1 |
20190125389 | Shelton, IV et al. | May 2019 | A1 |
20190125430 | Shelton, IV et al. | May 2019 | A1 |
20190125431 | Shelton, IV et al. | May 2019 | A1 |
20190125432 | Shelton, IV et al. | May 2019 | A1 |
20190125454 | Stokes et al. | May 2019 | A1 |
20190125455 | Shelton, IV et al. | May 2019 | A1 |
20190125456 | Shelton, IV et al. | May 2019 | A1 |
20190125457 | Parihar et al. | May 2019 | A1 |
20190125458 | Shelton, IV et al. | May 2019 | A1 |
20190125459 | Shelton, IV et al. | May 2019 | A1 |
20190125476 | Shelton, IV et al. | May 2019 | A1 |
20190133703 | Seow et al. | May 2019 | A1 |
20190142535 | Seow et al. | May 2019 | A1 |
20190145942 | Dutriez et al. | May 2019 | A1 |
20190150975 | Kawasaki et al. | May 2019 | A1 |
20190159778 | Shelton, IV et al. | May 2019 | A1 |
20190192157 | Scott et al. | Jun 2019 | A1 |
20190192236 | Shelton, IV et al. | Jun 2019 | A1 |
20190200844 | Shelton, IV et al. | Jul 2019 | A1 |
20190200863 | Shelton, IV et al. | Jul 2019 | A1 |
20190200905 | Shelton, IV et al. | Jul 2019 | A1 |
20190200906 | Shelton, IV et al. | Jul 2019 | A1 |
20190200977 | Shelton, IV et al. | Jul 2019 | A1 |
20190200980 | Shelton, IV et al. | Jul 2019 | A1 |
20190200981 | Harris et al. | Jul 2019 | A1 |
20190200984 | Shelton, IV et al. | Jul 2019 | A1 |
20190200985 | Shelton, IV et al. | Jul 2019 | A1 |
20190200986 | Shelton, IV et al. | Jul 2019 | A1 |
20190200987 | Shelton, IV et al. | Jul 2019 | A1 |
20190200988 | Shelton, IV | Jul 2019 | A1 |
20190200996 | Shelton, IV et al. | Jul 2019 | A1 |
20190200997 | Shelton, IV et al. | Jul 2019 | A1 |
20190200998 | Shelton, IV et al. | Jul 2019 | A1 |
20190201020 | Shelton, IV et al. | Jul 2019 | A1 |
20190201021 | Shelton, IV et al. | Jul 2019 | A1 |
20190201023 | Shelton, IV et al. | Jul 2019 | A1 |
20190201024 | Shelton, IV et al. | Jul 2019 | A1 |
20190201025 | Shelton, IV et al. | Jul 2019 | A1 |
20190201026 | Shelton, IV et al. | Jul 2019 | A1 |
20190201027 | Shelton, IV et al. | Jul 2019 | A1 |
20190201028 | Shelton, IV et al. | Jul 2019 | A1 |
20190201029 | Shelton, IV et al. | Jul 2019 | A1 |
20190201030 | Shelton, IV et al. | Jul 2019 | A1 |
20190201033 | Yates et al. | Jul 2019 | A1 |
20190201034 | Shelton, IV et al. | Jul 2019 | A1 |
20190201036 | Nott et al. | Jul 2019 | A1 |
20190201037 | Houser et al. | Jul 2019 | A1 |
20190201038 | Yates et al. | Jul 2019 | A1 |
20190201039 | Widenhouse et al. | Jul 2019 | A1 |
20190201040 | Messerly et al. | Jul 2019 | A1 |
20190201041 | Kimball et al. | Jul 2019 | A1 |
20190201042 | Nott et al. | Jul 2019 | A1 |
20190201043 | Shelton, IV et al. | Jul 2019 | A1 |
20190201044 | Shelton, IV et al. | Jul 2019 | A1 |
20190201045 | Yates et al. | Jul 2019 | A1 |
20190201046 | Shelton, IV et al. | Jul 2019 | A1 |
20190201047 | Yates et al. | Jul 2019 | A1 |
20190201073 | Nott et al. | Jul 2019 | A1 |
20190201074 | Yates et al. | Jul 2019 | A1 |
20190201075 | Shelton, IV et al. | Jul 2019 | A1 |
20190201077 | Yates et al. | Jul 2019 | A1 |
20190201079 | Shelton, IV et al. | Jul 2019 | A1 |
20190201080 | Messerly et al. | Jul 2019 | A1 |
20190201081 | Shelton, IV et al. | Jul 2019 | A1 |
20190201082 | Shelton, IV et al. | Jul 2019 | A1 |
20190201083 | Shelton, IV et al. | Jul 2019 | A1 |
20190201084 | Shelton, IV et al. | Jul 2019 | A1 |
20190201085 | Shelton, IV et al. | Jul 2019 | A1 |
20190201086 | Shelton, IV et al. | Jul 2019 | A1 |
20190201087 | Shelton, IV et al. | Jul 2019 | A1 |
20190201090 | Shelton, IV et al. | Jul 2019 | A1 |
20190201091 | Yates et al. | Jul 2019 | A1 |
20190201092 | Yates et al. | Jul 2019 | A1 |
20190201102 | Shelton, IV et al. | Jul 2019 | A1 |
20190201104 | Shelton, IV et al. | Jul 2019 | A1 |
20190201105 | Shelton, IV et al. | Jul 2019 | A1 |
20190201111 | Shelton, IV et al. | Jul 2019 | A1 |
20190201112 | Wiener et al. | Jul 2019 | A1 |
20190201113 | Shelton, IV et al. | Jul 2019 | A1 |
20190201114 | Shelton, IV et al. | Jul 2019 | A1 |
20190201115 | Shelton, IV et al. | Jul 2019 | A1 |
20190201116 | Shelton, IV et al. | Jul 2019 | A1 |
20190201118 | Shelton, IV et al. | Jul 2019 | A1 |
20190201120 | Shelton, IV et al. | Jul 2019 | A1 |
20190201123 | Shelton, IV et al. | Jul 2019 | A1 |
20190201124 | Shelton, IV et al. | Jul 2019 | A1 |
20190201125 | Shelton, IV et al. | Jul 2019 | A1 |
20190201126 | Shelton, IV et al. | Jul 2019 | A1 |
20190201127 | Shelton, IV et al. | Jul 2019 | A1 |
20190201128 | Yates et al. | Jul 2019 | A1 |
20190201129 | Shelton, IV et al. | Jul 2019 | A1 |
20190201130 | Shelton, IV et al. | Jul 2019 | A1 |
20190201135 | Shelton, IV et al. | Jul 2019 | A1 |
20190201136 | Shelton, IV et al. | Jul 2019 | A1 |
20190201137 | Shelton, IV et al. | Jul 2019 | A1 |
20190201138 | Yates et al. | Jul 2019 | A1 |
20190201139 | Shelton, IV et al. | Jul 2019 | A1 |
20190201140 | Yates et al. | Jul 2019 | A1 |
20190201141 | Shelton, IV et al. | Jul 2019 | A1 |
20190201142 | Shelton, IV et al. | Jul 2019 | A1 |
20190201145 | Shelton, IV et al. | Jul 2019 | A1 |
20190201146 | Shelton, IV et al. | Jul 2019 | A1 |
20190201158 | Shelton, IV et al. | Jul 2019 | A1 |
20190201159 | Shelton, IV et al. | Jul 2019 | A1 |
20190201594 | Shelton, IV et al. | Jul 2019 | A1 |
20190201597 | Shelton, IV et al. | Jul 2019 | A1 |
20190204201 | Shelton, IV et al. | Jul 2019 | A1 |
20190205001 | Messerly et al. | Jul 2019 | A1 |
20190205441 | Shelton, IV et al. | Jul 2019 | A1 |
20190205566 | Shelton, IV et al. | Jul 2019 | A1 |
20190205567 | Shelton, IV et al. | Jul 2019 | A1 |
20190206003 | Harris et al. | Jul 2019 | A1 |
20190206004 | Shelton, IV et al. | Jul 2019 | A1 |
20190206050 | Yates et al. | Jul 2019 | A1 |
20190206542 | Shelton, IV et al. | Jul 2019 | A1 |
20190206551 | Yates et al. | Jul 2019 | A1 |
20190206555 | Morgan et al. | Jul 2019 | A1 |
20190206556 | Shelton, IV et al. | Jul 2019 | A1 |
20190206561 | Shelton, IV et al. | Jul 2019 | A1 |
20190206562 | Shelton, IV et al. | Jul 2019 | A1 |
20190206563 | Shelton, IV et al. | Jul 2019 | A1 |
20190206564 | Shelton, IV et al. | Jul 2019 | A1 |
20190206565 | Shelton, IV | Jul 2019 | A1 |
20190206569 | Shelton, IV et al. | Jul 2019 | A1 |
20190206576 | Shelton, IV et al. | Jul 2019 | A1 |
20190208641 | Yates et al. | Jul 2019 | A1 |
20190254759 | Azizian | Aug 2019 | A1 |
20190261984 | Nelson et al. | Aug 2019 | A1 |
20190269476 | Bowling et al. | Sep 2019 | A1 |
20190272917 | Couture et al. | Sep 2019 | A1 |
20190274662 | Rockman et al. | Sep 2019 | A1 |
20190274705 | Sawhney et al. | Sep 2019 | A1 |
20190274706 | Nott et al. | Sep 2019 | A1 |
20190274707 | Sawhney et al. | Sep 2019 | A1 |
20190274708 | Boudreaux | Sep 2019 | A1 |
20190274709 | Scoggins | Sep 2019 | A1 |
20190274710 | Black | Sep 2019 | A1 |
20190274711 | Scoggins et al. | Sep 2019 | A1 |
20190274712 | Faller et al. | Sep 2019 | A1 |
20190274713 | Scoggins et al. | Sep 2019 | A1 |
20190274714 | Cut et al. | Sep 2019 | A1 |
20190274716 | Nott et al. | Sep 2019 | A1 |
20190274717 | Nott et al. | Sep 2019 | A1 |
20190274718 | Denzinger et al. | Sep 2019 | A1 |
20190274719 | Stulen | Sep 2019 | A1 |
20190274720 | Gee et al. | Sep 2019 | A1 |
20190274749 | Brady et al. | Sep 2019 | A1 |
20190274750 | Jayme et al. | Sep 2019 | A1 |
20190274752 | Denzinger et al. | Sep 2019 | A1 |
20190290389 | Kopp | Sep 2019 | A1 |
20190298340 | Shelton, IV et al. | Oct 2019 | A1 |
20190298341 | Shelton, IV et al. | Oct 2019 | A1 |
20190298342 | Shelton, IV et al. | Oct 2019 | A1 |
20190298343 | Shelton, IV et al. | Oct 2019 | A1 |
20190298347 | Shelton, IV et al. | Oct 2019 | A1 |
20190298350 | Shelton, IV et al. | Oct 2019 | A1 |
20190298352 | Shelton, IV et al. | Oct 2019 | A1 |
20190298353 | Shelton, IV et al. | Oct 2019 | A1 |
20190298354 | Shelton, IV et al. | Oct 2019 | A1 |
20190298355 | Shelton, IV et al. | Oct 2019 | A1 |
20190298356 | Shelton, IV et al. | Oct 2019 | A1 |
20190298357 | Shelton, IV et al. | Oct 2019 | A1 |
20190298464 | Abbott | Oct 2019 | A1 |
20190307520 | Peine et al. | Oct 2019 | A1 |
20190311802 | Kokubo et al. | Oct 2019 | A1 |
20190314015 | Shelton, IV et al. | Oct 2019 | A1 |
20190314016 | Huitema et al. | Oct 2019 | A1 |
20190321117 | Itkowitz et al. | Oct 2019 | A1 |
20190333626 | Mansi et al. | Oct 2019 | A1 |
20190343594 | Garcia Kilroy et al. | Nov 2019 | A1 |
20190374140 | Tucker et al. | Dec 2019 | A1 |
20200000470 | Du et al. | Jan 2020 | A1 |
20200046353 | Deck et al. | Feb 2020 | A1 |
20200054317 | Pisarnwongs et al. | Feb 2020 | A1 |
20200054320 | Harris et al. | Feb 2020 | A1 |
20200054321 | Harris et al. | Feb 2020 | A1 |
20200054322 | Harris et al. | Feb 2020 | A1 |
20200054323 | Harris et al. | Feb 2020 | A1 |
20200054326 | Harris et al. | Feb 2020 | A1 |
20200054328 | Harris et al. | Feb 2020 | A1 |
20200054330 | Harris et al. | Feb 2020 | A1 |
20200078096 | Barbagli et al. | Mar 2020 | A1 |
20200100830 | Henderson et al. | Apr 2020 | A1 |
20200162896 | Su et al. | May 2020 | A1 |
20200178971 | Harris et al. | Jun 2020 | A1 |
20200261075 | Boudreaux et al. | Aug 2020 | A1 |
20200261076 | Boudreaux et al. | Aug 2020 | A1 |
20200261077 | Shelton, IV et al. | Aug 2020 | A1 |
20200261078 | Bakos et al. | Aug 2020 | A1 |
20200261080 | Bakos et al. | Aug 2020 | A1 |
20200261081 | Boudreaux et al. | Aug 2020 | A1 |
20200261082 | Boudreaux et al. | Aug 2020 | A1 |
20200261083 | Bakos et al. | Aug 2020 | A1 |
20200261084 | Bakos et al. | Aug 2020 | A1 |
20200261085 | Boudreaux et al. | Aug 2020 | A1 |
20200261086 | Zeiner et al. | Aug 2020 | A1 |
20200261087 | Timm et al. | Aug 2020 | A1 |
20200261088 | Harris et al. | Aug 2020 | A1 |
20200261089 | Shelton, IV et al. | Aug 2020 | A1 |
20200275928 | Shelton, IV | Sep 2020 | A1 |
20200275930 | Harris et al. | Sep 2020 | A1 |
20200281665 | Kopp | Sep 2020 | A1 |
20200405375 | Shelton, IV et al. | Dec 2020 | A1 |
20210000555 | Shelton, IV et al. | Jan 2021 | A1 |
20210007760 | Reisin | Jan 2021 | A1 |
20210015568 | Liao et al. | Jan 2021 | A1 |
20210022731 | Eisinger | Jan 2021 | A1 |
20210022738 | Weir et al. | Jan 2021 | A1 |
20210022809 | Crawford et al. | Jan 2021 | A1 |
20210059674 | Shelton, IV et al. | Mar 2021 | A1 |
20210153889 | Nott et al. | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2015201140 | Mar 2015 | AU |
2795323 | May 2014 | CA |
101617950 | Jan 2010 | CN |
104490448 | Mar 2017 | CN |
206097107 | Apr 2017 | CN |
108652695 | Oct 2018 | CN |
3824913 | Feb 1990 | DE |
4002843 | Apr 1991 | DE |
102005051367 | Apr 2007 | DE |
102016207666 | Nov 2017 | DE |
0000756 | Oct 1981 | EP |
2732772 | May 2014 | EP |
2942023 | Nov 2015 | EP |
3047806 | Jul 2016 | EP |
3056923 | Aug 2016 | EP |
3095399 | Nov 2016 | EP |
3120781 | Jan 2017 | EP |
3135225 | Mar 2017 | EP |
3141181 | Mar 2017 | EP |
2037167 | Jul 1980 | GB |
2509523 | Jul 2014 | GB |
S5373315 | Jun 1978 | JP |
2017513561 | Jun 2017 | JP |
20140104587 | Aug 2014 | KR |
101587721 | Jan 2016 | KR |
WO-9734533 | Sep 1997 | WO |
WO-0024322 | May 2000 | WO |
WO-0108578 | Feb 2001 | WO |
WO-0112089 | Feb 2001 | WO |
WO-0120892 | Mar 2001 | WO |
WO-03079909 | Oct 2003 | WO |
WO-2007137304 | Nov 2007 | WO |
WO-2008056618 | May 2008 | WO |
WO-2008069816 | Jun 2008 | WO |
WO-2008147555 | Dec 2008 | WO |
WO-2011112931 | Sep 2011 | WO |
WO-2013143573 | Oct 2013 | WO |
WO-2014134196 | Sep 2014 | WO |
WO-2015129395 | Sep 2015 | WO |
WO-2016100719 | Jun 2016 | WO |
WO-2016206015 | Dec 2016 | WO |
WO-201 7011382 | Jan 2017 | WO |
WO-201 7011646 | Jan 2017 | WO |
WO-2017058695 | Apr 2017 | WO |
WO-2017151996 | Sep 2017 | WO |
WO-2017189317 | Nov 2017 | WO |
WO-2017205308 | Nov 2017 | WO |
WO-2017210499 | Dec 2017 | WO |
WO-2017210501 | Dec 2017 | WO |
WO-2018152141 | Aug 2018 | WO |
WO-2018176414 | Oct 2018 | WO |
Entry |
---|
US 10,504,709 B2, 12/2019, Karancsi et al. (withdrawn) |
Engel et al. “A safe robot system for craniofacial surgery”, 2013 IEEE International Conference on Robotics and Automation (ICRA); May 6-10, 2013; Karlsruhe, Germany, vol. 2, Jan. 1, 2001, pp. 2020-2024. |
Slocinski et al., “Distance measure for impedance spectra for quantified evaluations,” Lecture Notes on Impedance Spectroscopy, vol. 3, Taylor and Francis Group (Jul. 2012)—Book Not Attached. |
Zoccali, Bruno, “A Method for Approximating Component Temperatures at Altitude Conditions Based on CFD Analysis at Sea Level Conditions,” (white paper), www.tdmginc.com, Dec. 2018 (9 pages). |
Flores et al., “Large-scale Offloading in the Internet of Things,” 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), IEEE, pp. 479-484, Mar. 13, 2017. |
Kalantarian et al., “Computation Offloading for Real-Time Health-Monitoring Devices,” 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EBMC), IEEE, pp. 4971-4974, Aug. 16, 2016. |
Yuyi Mao et al., “A Survey on Mobile Edge Computing: The Communication Perspective,” IEEE Communications Surveys & Tutorials, pp. 2322-2358, Jun. 13, 2017. |
Khazaei et al., “Health Informatics for Neonatal Intensive Care Units: An Analytical Modeling Perspective,” IEEE Journal of Translational Engineering in Health and Medicine, vol. 3, pp. 1-9, Oct. 21, 2015. |
Benkmann et al., “Concept of iterative optimization of minimally invasive surgery,” 2017 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE pp. 443-446, Aug. 28, 2017. |
Trautman, Peter, “Breaking the Human-Robot Deadlock: Surpassing Shared Control Performance Limits with Sparse Human-Robot Interaction,” Robotics: Science and Systems XIIII, pp. 1-10, Jul. 12, 2017. |
Miksch et al., “Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants,” Artificial Intelligence in Medicine, vol. 8, No. 6, pp. 543-576 (1996). |
Horn et al., “Effective data validation of high-frequency data: Time-point-time-interval-, and trendbased methods,” Computers in Biology and Medic, New York, NY, vol. 27, No. 5, pp. 389-409 (1997). |
Stacey et al., “Temporal abstraction in intelligent clinical data analysis: A survey,” Artificial Intelligence in Medicine, vol. 39, No. 1, pp. 1-24 (2006). |
Yang et al., “A dynamic stategy for packet scheduling and bandwidth allocation based on channel quality in IEEE 802.16e OFDMA system,” Journal of Network and Computer Applications, vol. 39, pp. 52-60, May 2, 2013. |
Bonaci et al., “To Make a Robot Secure: An Experimental Analysis of Cyber Security Threats Against Teleoperated Surgical Robots,” May 13, 2015. Retrieved from the Internet: URL:https://arxiv.org/pdf/1504.04339v2.pdf [retrieved on Aug. 24, 2019]. |
Homa Alemzadeh et al., “Targeted Attacks on Teleoperated Surgical Robots: Dynamic Model-Based Detection and Mitigation,” 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), IEEE, Jun. 28, 2016, pp. 395-406. |
Staub et al., “Contour-based Surgical Instrument Tracking Supported by Kinematic Prediction,” Proceedings of the 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Sep. 1, 2010, pp. 746-752. |
Phumzile Malindi, “5. QoS in Telemedicine,” “Telemedicine,” Jun. 20, 2011, IntechOpen, pp. 119-138. |
Allan et al., “3-D Pose Estimation of Articulated Instruments in Robotic Minimally Invasive Surgery,” IEEE Transactions on Medical Imaging, vol. 37, No. 5, May 1, 2018, pp. 1204-1213. |
Kassahun et al., “Surgical Robotics Beyond Enhanced Dexterity Instrumentation: A Survey of the Machine Learning Techniques and their Role in Intelligent and Autonomous Surgical Actions.” International Journal of Computer Assisted Radiology and Surgery, vol. 11, No. 4, Oct. 2015, pp. 553-568. |
Weede et al. “An Intelligent and Autonomous Endoscopic Guidance System for Minimally Invasive Surgery,” 2013 IEEE International Conference on Robotics ad Automation (ICRA), May 6-10, 2013. Karlsruhe, Germany, May 1, 2011, pp. 5762-5768. |
Altenberg et al., “Genes of Glycolysis are Ubiquitously Overexpressed in 24 Cancer Classes,” Genomics, vol. 84, pp. 1014-1020 (2004). |
Takahashi et al., “Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation,” Surgical Endoscopy, vol. 27, No. 8, pp. 2980-2987, Feb. 23, 2013. |
Harold I. Brandon and V. Leroy Young, Mar. 1997, Surgical Services Management vol. 3 No. 3. retrieved from the internet <https://www.surgimedics.com/Research%20Articles/Electrosurgical%20Plume/Characterization%20And%20Removal%20Of%20Electrosurgical%20Smoke.pdf> (Year: 1997). |
Marshall Brain, How Microcontrollers Work, 2006, retrieved from the internet <https://web.archive.org/web/20060221235221/http://electronics.howstuffworks.com/microcontroller.htm/printable> (Year: 2006). |
CRC Press, “The Measurement, Instrumentation and Sensors Handbook,” 1999, Section VII, Chapter 41, Peter O'Shea, “Phase Measurement,” pp. 1303-1321, ISBN 0-8493-2145-X. |
Jiang, “‘Sound of Silence’: a secure indoor wireless ultrasonic communication system,” Article, 2014, pp. 46-50, Snapshots of Doctoral Research at University College Cork, School of Engineering—Electrical & Electronic Engineering, UCC, Cork, Ireland. |
Li, et al., “Short-range ultrasonic communications in air using quadrature modulation,” Journal, Oct. 30, 2009, pp. 2060-2072, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, No. 10, IEEE. |
Salamon, “AI Detects Polyps Better Than Colonoscopists” Online Article, Jun. 3, 2018, Medscape Medical News, Digestive Disease Week (DDW) 2018: Presentation 133. |
Misawa, et al. “Artificial Intelligence-Assisted Polyp Detection for Colonoscopy: Initial Experience,” Article, Jun. 2018, pp. 2027-2029, vol. 154, Issue 8, American Gastroenterolgy Association. |
Dottorato, “Analysis and Design of the Rectangular Microstrip Patch Antennas for TM0n0 operating mode,”Article, Oct. 8, 2010, pp. 1-9, Microwave Journal. |
Miller, et al., “Impact of Powered and Tissue-Specific Endoscopic Stapling Technology on Clinical and Economic Outcomes of Video-Assisted Thoracic Surgery Lobectomy Procedures: A Retrospective, Observational Study,” Article, Apr. 2018, pp. 707-723, vol. 35 (Issue 5), Advances in Therapy. |
Hsiao-Wei Tang, “ARCM”, Video, Sep. 2012, YouTube, 5 screenshots, Retrieved fromInternet: <https://www.youtube.com/watch?v=UIdQaxb3fRw&feature=youtu.be>. |
Giannios, et al., “Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies,” Article, Jun. 14, 2016, pp. 1-10, Scientific Reports 6, Article No. 27910, Nature. |
Vander Heiden, et al., “Understanding the Warburg effect: the metabolic requirements of cell proliferation,” Article, May 22, 2009, pp. 1-12, vol. 324, Issue 5930, Science. |
Hirayama et al., “Quantitative Metabolome Profiling of Colon and Stomach Cancer Microenvironment by Capillary Electrophoresis Time-of-Flight Mass Spectrometry,” Article, Jun. 2009, pp. 4918-4925, vol. 69, Issue 11, Cancer Research. |
Cengiz, et al., “A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring,” Article, Jun. 2009, pp. S11-S16, vol. 11, Supplement 1, Diabetes Technology & Therapeutics. |
Shen, et al., “An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor,” Article, Feb. 3, 2007, pp. 106-113, vol. 125, Issue 1, Sensors and Actuators B: Chemical, Science Direct. |
“ATM-MPLS Network Interworking Version 2.0, af-aic-0178.001” ATM Standard, The ATM Forum Technical Committee, published Aug. 2003. |
IEEE Std 802.3-2012 (Revision of IEEE Std 802.3-2008, published Dec. 28, 2012. |
IEEE Std No. 177, “Standard Definitions and Methods of Measurement for Piezoelectric Vibrators,” published May 1966, The Institute of Electrical and Electronics Engineers, Inc., New York, N.Y. |
Shi et al., An intuitive control console for robotic syrgery system, 2014, IEEE, p. 404-407 (Year: 2014). |
Choi et al., A haptic augmented reality surgeon console for a laparoscopic surgery robot system, 2013, IEEE, p. 355-357 (Year: 2013). |
Xie et al., Development of stereo vision and master-slave controller for a compact surgical robot system, 2015, IEEE, p. 403-407 (Year: 2015). |
Sun et al., Innovative effector design for simulation training in robotic surgery, 2010, IEEE, p. 1735-1759 (Year: 2010). |
Anonymous, “Internet of Things Powers Connected Surgical Device Infrastructure Case Study”, Dec. 31, 2016 (Dec. 31, 2016), Retrieved from the Internet: URL:https://www.cognizant.com/services-resources/150110_IoT_connected_surgical_devices.pdf. |
Draijer, Matthijs et al., “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science, Springer-Verlag, LO, vol. 24, No. 4, Dec. 3, 2008, pp. 639-651. |
Roy D Cullum, “Handbook of Engineering Design”, ISBN: 9780408005586, Jan. 1, 1988 (Jan. 1, 1988), XP055578597, ISBN: 9780408005586, 10-20, Chapter6, p. 138, right-hand column, paragraph 3. |
“Surgical instrumentation: the true cost of instrument trays and a potential strategy for optimization”; Mhlaba et al.; Sep. 23, 2015 (Year: 2015). |
Nabil Simaan et al., “Intelligent Surgical Robots with Situational Awareness: From Good to Great Surgeons”, DOI: 10.1115/1.2015-Sep-6 external link, Sep. 2015 (Sep. 2015), p. 3-6, Retrieved from the Internet: URL:http://memagazineselect.asmedigitalcollection.asme.org/data/journals/meena/936888/me-2015-sep6.pdf XP055530863. |
Anonymous: “Titanium Key Chain Tool 1.1, Ultralight Multipurpose Key Chain Tool, Forward Cutting Can Opener—Vargo Titanium,” vargooutdoors.com, Jul. 5, 2014 (Jul. 5, 2014), retrieved from the internet: https://vargooutdoors.com/titanium-key-chain-tool-1-1.html. |
Anonymous: “Screwdriver—Wikipedia”, en.wikipedia.org, Jun. 23, 2019, XP055725151, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?title=Screwdriver&oldid=903111203 [retrieved on Mar. 20, 2021]. |
Nordlinger, Christopher, “The Internet of Things and the Operating Room of the Future,” May 4, 2015, https://medium.com/@chrisnordlinger/the-internet-of-things-and-the-operating-room-of-the-future-8999a143d7b1, retrieved from the internet on Apr. 27, 2021, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20190298346 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
62807309 | Feb 2019 | US | |
62807310 | Feb 2019 | US | |
62807319 | Feb 2019 | US | |
62650887 | Mar 2018 | US | |
62649327 | Mar 2018 | US | |
62649320 | Mar 2018 | US | |
62649309 | Mar 2018 | US | |
62649291 | Mar 2018 | US | |
62649315 | Mar 2018 | US | |
62649313 | Mar 2018 | US | |
62649294 | Mar 2018 | US | |
62649310 | Mar 2018 | US | |
62649333 | Mar 2018 | US | |
62649307 | Mar 2018 | US | |
62649300 | Mar 2018 | US | |
62649296 | Mar 2018 | US | |
62649323 | Mar 2018 | US | |
62649302 | Mar 2018 | US |