Surgical stapling head assembly with firing lockout for a surgical stapler

Information

  • Patent Grant
  • 8360296
  • Patent Number
    8,360,296
  • Date Filed
    Thursday, September 9, 2010
    14 years ago
  • Date Issued
    Tuesday, January 29, 2013
    12 years ago
Abstract
In various embodiments, a surgical stapling head is provided that may comprise a staple cartridge for supporting one or more staples, a core movable relative to the staple cartridge, at least one staple driver extending from the core, and a casing configured to at least partially hold the staple cartridge and movably receive the core and the staple driver(s). The casing may further comprise at least one retention member that is configured to move from a first position to a second position when sufficient external force is applied to the retention member, such as that provided by a shaft of a surgical stapler during insertion of the stapling head assembly into the shaft. When the retention member(s) are at the second position, the staple driver(s) may be prevented from driving staples from the staple cartridge, thereby providing a firing lockout feature to the stapling head assembly during insertion into at least a portion of a surgical stapler.
Description
BACKGROUND

The embodiments relate, in general, to surgical staplers, and, more particularly, to a circular stapler including a discrete staple height adjustment.


In certain types of surgical procedures, the use of surgical staples has become the preferred method of joining tissue and, as such, specially configured surgical staplers have been developed for these applications. For example, intra-luminal or circular staplers have been developed for use in a surgical procedure known as an anastomosis. Circular staplers useful for performing an anastomosis are disclosed, for example, in U.S. Pat. Nos. 5,104,025; 5,205,459; 5,285,945; and 5,309,927, and in U.S. patent application Ser. No. 12/408,905, which are each herein incorporated by reference in their respective entireties.


One form of an anastomosis comprises a surgical procedure wherein sections of intestine are joined together after a diseased portion has been excised. The procedure requires re-joining the ends of the two tubular sections together to form a continuous tubular pathway. Previously, this surgical procedure was a laborious and time consuming operation. The surgeon had to precisely cut and align the ends of the intestine and maintain the alignment while joining the ends with numerous suture stitches. The development of circular staplers has greatly simplified the anastomosis procedure and also decreased the time required to perform an anastomosis.


In general, a conventional circular stapler typically consists of an elongated shaft that has a proximal actuating mechanism and a distal stapling mechanism mounted to the shaft. The distal stapling mechanism commonly consists of a fixed stapling cartridge that contains a plurality of staples configured in a concentric circular array. A round cutting knife is concentrically mounted in the cartridge interior to the staples for axial travel therein. Extending axially from the center of the cartridge is a movable trocar shaft that is adapted to have a staple anvil removably coupled thereto. The anvil is configured to form the ends of the staples as they are driven into it. The distance between a distal face of the staple cartridge and the staple anvil is controlled by an adjustment mechanism mounted to the proximal end of the stapler shaft for controlling the axial movement of the trocar. Tissue clamped between the staple cartridge and the staple anvil is simultaneously stapled and cut when the actuating mechanism is activated by the surgeon.


Generally, in the performance of a surgical anastomotic stapling operation, two pieces of lumen or tubular tissue, e.g., intestinal tissue, are attached together by a ring of staples. The two pieces of tubular tissue may be attached end to end or one piece of tubular tissue may be attached laterally around an opening formed in the side of another piece of tubular tissue. In performing the anastomosis with a stapling instrument, the two pieces of tubular tissue are clamped together between the anvil and the staple cartridge. A staple pusher is advanced to drive the staples into the tissue and form the staples against the anvil. Also, the circular knife is advanced to cut the excess tissue clamped between the anvil and the staple holder. As a result, a donut-shaped section of tissue is severed from each lumen and remains on the anvil shaft. The tubular tissue joined by the circular ring of staples is unclamped by advancing the anvil shaft distally to move the anvil away from the staple holder. The stapling instrument is removed by pulling the anvil through the circular opening between the pieces of tubular tissue attached by the ring of staples.


Further, when performing a lower colon procedure using a circular stapler, the intestine is typically stapled using a conventional surgical stapler with double rows of staples being emplaced on either side of the diseased portion of intestine to be removed. The target section is simultaneously cut as the adjoining end is stapled. After removing the diseased portion, the surgeon typically inserts the anvil into the proximal end of the lumen, proximal of the staple line. This is done by inserting the anvil head into an entry port cut into the proximal lumen by the surgeon. On occasion, the anvil can be placed transanally, by placing the anvil head on the distal end of the stapler and inserting the instrument through the rectum. The surgeon then ties the proximal end of the intestine to the anvil shaft using a suture or other conventional tying device. Next, the surgeon cuts excess tissue adjacent to the tie and the surgeon attaches the anvil to the trocar shaft of the stapler. The surgeon then closes the gap between the anvil and cartridge, thereby clamping the proximal and distal ends of the intestine in the gap. The surgeon next actuates the stapler causing several rows of staples to be driven through both ends of the intestine and formed, thereby joining the ends and forming a tubular pathway. Simultaneously, as the staples are driven and formed, the concentric circular knife blade is driven through the intestinal tissue ends, cutting the ends adjacent to the inner row of staples. The surgeon then withdraws the stapler from the intestine and the procedure is complete.


During the above-described surgical procedures, it is desirable to properly form staples within a range of staple heights such that they are retained in the tissue and prevent leakage and bleeding and to achieve “tissue-to-tissue” contact which promotes tissue healing. In general, by controlling the distance or gap between the anvil and the cartridge, better stapling and healing results may be achieved. While some surgical staplers are equipped with a visual readout indicating staple height, a surgeon may need to focus on many different items during surgery. Further, once the anvil has been properly positioned, it is necessary that the anvil not move during firing, otherwise proper staple formation could be adversely affected.


The foregoing discussion is intended only to illustrate the present field and should not be taken as a disavowal of claim scope.


SUMMARY

In various embodiments, a surgical stapling head assembly is provided. In at least one embodiment, the surgical stapling head assembly can comprise a staple cartridge for supporting one or more surgical staples, a core movable relative to the staple cartridge, at least one staple driver for engaging and driving the staples from the staple cartridge, and a casing configured to at least partially hold the staple cartridge and movably receive the core and the at least one staple driver. In these embodiments, the at least one staple driver can extend from the core. Further, in these embodiments, the casing can further comprise at least one retention member that is configured to move from a first position to a second position when sufficient external force is applied to the retention member. Moreover, in these embodiments, when the at least one retention member is at the second position, the at least one staple driver is prevented from driving the staples from the staple cartridge.


In various embodiments, a surgical stapler is provided. In at least one embodiment, the surgical stapler can comprise a body, a stapling head assembly, a drive system, an anvil, and an anvil adjustment assembly. In these embodiments, the body can comprise a handle portion and a shaft portion extending from the handle portion. Further, in these embodiments, the stapling head assembly can be releasably coupled to the shaft portion. Additionally, in these embodiments, the stapling head assembly can comprise a staple cartridge for supporting one or more surgical staples, a core movable relative to the staple cartridge, at least one staple driver for engaging and driving the staples from the staple cartridge, and a casing configured to at least partially hold the staple cartridge and movably receive the core and the at least one staple driver. Also, in these embodiments, the at least one staple driver can extend from the core. Further, in these embodiments, the casing can further comprise at least one retention member that is configured to move from a first position to a second position when sufficient external force is applied to the retention member. Moreover, in these embodiments, when the at least one retention member is at the second position, the at least one staple driver is prevented from driving the staples from the staple cartridge. Additionally, in these embodiments, the drive system may be configured to apply drive motions to the staple driver. Further, in these embodiments, the anvil may be movably supported relative to the staple cartridge for axial movement toward and away from the staple cartridge. Also, in these embodiments, the anvil adjustment assembly may be configured to selectively adjust an axial position of the anvil relative to the staple cartridge.


In at least one embodiment, a surgical stapling head assembly is provided that can comprise a staple cartridge for supporting one or more surgical staples, a core movable relative to the staple cartridge, at least one staple driver extending from the core and for engaging and driving the staples from the staple cartridge, a casing configured to at least partially hold the staple cartridge and movably receive the core and the at least one staple driver, and lockout means for preventing the at least one staple driver from driving staples from the staple cartridge.





BRIEF DESCRIPTION OF THE FIGURES

The novel features of the embodiments described herein are set forth with particularity in the appended claims. The embodiments, however, both as to organization and methods of operation may be better understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.



FIG. 1 is a perspective view of a non-limiting embodiment of a surgical stapler including a circular stapling head and an anvil in a first position.



FIG. 2 is a perspective view of the surgical stapler of FIG. 1 with the anvil shown in a second position.



FIG. 3 is an exploded view of the surgical stapler of FIG. 1.



FIG. 4 is a perspective view of the surgical stapler of FIG. 1 with a body of the stapler shown in dotted lines to better illustrate the stapler's components within the body.



FIG. 5 is a cross-sectional view of the surgical stapler of FIG. 1.



FIG. 6 is a rear perspective view of the anvil of the surgical stapler of FIG. 1.



FIG. 7A is a front perspective view of a stapling head assembly of the surgical stapler of FIG. 1.



FIG. 7B is a rear perspective view of a staple cartridge of the stapling head assembly of 7A; two staples are shown removed from staple cavities of the cartridge.



FIG. 7C is a front perspective view of a cutting member and staple drivers of the stapling head assembly of FIG. 7A.



FIG. 8 is a side view of an anvil adjustment shaft of the surgical stapler of FIG. 1.



FIG. 9 is a perspective view of a portion of the anvil adjustment shaft of FIG. 8.



FIGS. 10A-10C are a series of side views of a portion of the anvil adjustment shaft of FIG. 8, each showing a progression of a screw surface as the shaft is rotated about its longitudinal axis.



FIGS. 11A-11C are a series of side views of the anvil and the stapling head assembly of the surgical stapler of FIG. 1, each showing a discrete staple forming height correlating with the shaft positions shown in FIGS. 10A-10C, respectively.



FIG. 12 illustrates a non-limiting embodiment a portion of an anvil adjustment shaft including reference indicia.



FIG. 13 illustrates three reference indicia from the portion of the adjustment shaft of FIG. 12.



FIG. 14 is a rear perspective view of a trigger of the surgical stapler of FIG. 1; the trigger includes a lockout stem.



FIG. 15 is a front perspective view of a portion of the surgical stapler of FIG. 3, showing the trigger and lockout stem interfacing with a drive band and the adjustment shaft, respectively.



FIG. 16 is a perspective view of a non-limiting embodiment of a surgical stapler including a straight shaft portion.



FIG. 17 is a side view of an anvil adjustment shaft of the surgical stapler of FIG. 16.



FIG. 18 is a perspective view of a drive bar of the surgical stapler of FIG. 16.



FIG. 19 is a perspective view of a non-limiting embodiment of a stapling head assembly with a casing of the assembly shown in dotted lines to better illustrate the features within the casing.



FIG. 20 is a side view of the stapling head assembly of FIG. 19.



FIG. 21 is a perspective view of a staple driver core of the stapling head assembly of FIG. 19.



FIG. 22 is a partial side view of the stapling head assembly of FIG. 19 being initially inserted into a body of the stapler of FIG. 1 with a body of the stapler shown in dotted lines to better illustrate the portion of the stapling head assembly positioned within the stapler's body.



FIG. 23 is a partial perspective view of the stapling head assembly of FIG. 19 being further inserted into the body of the stapler of FIG. 1 with the body of the stapler and the casing of the stapling head assembly shown in dotted lines to better illustrate the various features therein.



FIG. 24 is a partial perspective view of the stapling head assembly of FIG. 19 fully inserted into the body of the stapler of FIG. 1 with the body of the stapler shown in dotted lines to better illustrate the components therein.



FIG. 25 is a perspective view of a non-limiting embodiment of a stapling head assembly including a cutting member with a casing of the assembly shown in dotted lines to better illustrate the features within the casing.



FIG. 26 is a side view of the stapling head assembly of FIG. 25.





DETAILED DESCRIPTION

Certain embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments and that the scope of these embodiments is defined solely by the claims. The features illustrated or described in connection with one embodiment may be combined with the features of other embodiments. Further, where an ordering of steps in a process is indicated, such ordering may be rearranged or the steps may be carried out contemporaneously as desired unless illogical or the listed order is explicitly required. Such modifications and variations are intended to be included within the scope of the appended claims.


In the following description, like reference characters designate like or corresponding parts throughout the several views. Also in the following description, it is to be understood that terms such as “forward,” “rearward,” “front,” “back,” “right,” “left,” “over,” “under,” “upwardly,” “downwardly,” “proximally,” “distally,” and the like are words of convenience and are not to be construed as limiting terms. The description below is for the purpose of describing various embodiments and is not intended to limit the appended claims.


The various embodiments generally relate to various surgical staplers configured to seal tissue and, in at least one embodiment, cut tissue also. Such surgical staplers may be configured to function through a natural orifice, such as the anus, mouth and/or vagina, or through an incision cut through a body wall. Further, such surgical staplers may be designed as endoscopic tools, including laparoscopic tools. One exemplary type of surgical stapler may be found in co-pending U.S. application Ser. No. 12/635,415, titled CIRCULAR SURGICAL STAPLER WITH DISCRETE STAPLE HEIGHT ADJUSTMENT, and filed on Dec. 10, 2009, incorporated herein by reference in its entirety.


Focusing now on one non-limiting embodiment, as can be seen in FIGS. 1-4, a circular stapler 1 is provided that includes a tubular or circular body 10, a stapling head 30 operably coupled to the body 10, an anvil 50, an anvil adjustment shaft 70 supported by the body 10, and a trigger 90 movably coupled to the body 10. The anvil 50 may be movably supported relative to the stapling head assembly for selective travel toward and away from the stapling head 30. Further, the anvil adjustment shaft 70 may be supported by the body 10 to selectively adjust a position of the anvil relative to the stapling head. Therefore, as will be explained in more detail below, the adjustment shaft 70 may be operably coupled to the anvil 50 to effect movement of the same. For example, the adjustment shaft 70 may be rotated, via a knob 79 of the adjustment shaft, about its longitudinal axis, in a first rotation direction, such as a clockwise “CW” direction, to cause the shaft 70 and the anvil 50 to move or translate in a distal direction “DD,” relative to the body 10, from a first position shown in FIG. 1 to a second position shown in FIG. 2. Likewise, the adjustment shaft 70 may be rotated in a second rotational direction, such as a counterclockwise “CCW” direction, to cause the shaft 70 and the anvil 50 to move or translate in a proximal direction “PD,” relative to the body 10, from the second position shown in FIG. 2 to the first position shown in FIG. 1. It is to be understood that the anvil 50 may be positioned anywhere between or outside the positions shown in FIGS. 1-2, as allowed by the surgical stapler 1. Further, in at least one embodiment, as explained in more detail below, the adjustment shaft 70 may be configured to move the anvil 50 to at least one predetermined distance from the stapling head and/or to provide tactile feedback to a user.


When the trigger 90 is activated, a drive system may be actuated within the body 10 so that staples 31 (see FIGS. 3 and 7B) may be expelled from the stapling head 30 into forming contact with the anvil 50. Simultaneously, a cutting member 32 (see FIG. 7C), that is operably supported within the head 30, acts to cut tissue held within the circumference of the stapled tissue. The stapler 10 is then pulled through the tissue leaving stapled tissue in its place. Further, the trigger 90 may include a spring 91 extending from a lever 92 such that when lever 92 is squeezed or otherwise moved towards body 10 about hinge pin 93, the lever 91 is biased back away from the body 10 and the knife 70 is automatically retracted upon release of the lever 92.


Referring to FIG. 3, the body 10 may include a handle portion 11 and a curved shaft portion 12. While the present embodiment illustrates a curved shaft portion 12, the shaft portion may also be straight or linear (see, e.g., FIG. 16, discussed below). The handle portion 11 may be adapted to receive trigger 90 via a saddle attachment 13 that may further include holes 16 (see FIG. 3) with which to receive hinge pin 93 which may also be received in holes 96 of the trigger 90. The handle portion 11 may further define an opening 14 at the top of the body 10 through which a portion of the trigger 90 may be positioned. For example, cam surfaces 94 and a lockout stem 95 may extend through the opening 14. As will be explained in more detail below, cam surfaces 94 may be configured to actuate the drive system when the trigger 90 is moved relative to the handle portion 11, and the lockout stem 95 may prevent inadvertent firing of the cutting member 32 and/or staples 31 before the anvil 50 is in an appropriate position such that staples may be formed between the anvil 50 and the stapling head 30.


Referring to FIGS. 3 and 4, the drive system may comprise drive band 80 extending axially between the trigger's cam surfaces 94 and tabs 36 of the stapling head 30, within the body's shaft portion 12. Drive band 80 may include proximal drive surfaces 81 and distal drive surfaces 82. Thus actuation of the trigger may cause the cam surfaces 94 to rotate and push proximal drive surfaces 81 such that the drive band 80 moves in an axial direction towards or away from anvil 50. The stapling head's tabs 36 may be coupled within the drive band's distal drive surfaces 82, which may take the form of notches to releasably receive tabs 36.


Referring to FIGS. 4 and 7A-7C, the stapling head 30 may include an assembly comprising a staple cartridge 33 for supporting one or more staples 31, at least one staple driver 34 for engaging and driving the staples 31 from the cartridge 33, and a cutting member 32, e.g., a knife, movably supported in the stapling head 30. In at least one embodiment, the staple drivers 34 and the cutting member 32 may be integrally connected and/or formed. For example, the staple drivers 34 and cutting member 33 may extend from a core 35, each of which may be formed from the same material. In any event, actuation of the drive band 80 towards staple cartridge 33 and/or anvil 50 may cause the stapling head's tabs 36, which may extend from core 35, and, thus, the cutting member 32 and the staple drivers 34 to move towards anvil 50. Further, the stapling head 30 may also comprise a casing 39 that is configured to hold the staple cartridge 33 and movably receive the staple drivers 34, cutting member 32, and/or core 35 therethrough. The casing 39 may additionally include release buttons 37 that are configured to flexibly deflect and allow the stapling head 30 to be releasably attached to the body's shaft portion 12 at corresponding holes 15 (see FIG. 3) formed therein. Accordingly, referring to FIG. 4, the stapling head 30 may be removed by pressing on buttons 37, then turning the head 30 such that tabs 36 are released from the notches formed by the distal driving surfaces 82 of the drive band 80, and finally pulling the stapling head 30 away from the body 10.


Focusing now on the adjustment of the anvil 50 and referring to FIG. 3, in various embodiments and as noted above, the anvil 50 may be movably supported relative to the staple cartridge 33 such that the anvil may be moved axially toward and away from the staple cartridge 33. In more detail, the surgical stapler 1 may comprise an anvil adjustment assembly for selectively adjusting an axial position of the anvil 50 relative to the staple cartridge 33. The anvil adjustment assembly may comprise adjustment shaft 70 and a trocar 73 coupled to the adjustment shaft 70 for travel therewith. The adjustment shaft 70 may comprise a proximal portion 70a and a distal portion 70b, which may be connected together to form shaft 70. Alternatively, proximal and distal portions 70a, 70b may be unitary and integrally formed from the same piece of material (see, e.g., adjustment shaft 170 depicted in FIG. 17 and discussed below). Additionally, the adjustment shaft 70 may further comprise an annular groove 71 located at distal portion 70b which may be clipped or otherwise freely connected to a proximal end of an anvil adjustment band 72. By freely connected, it is to be understood that the adjustment band 72 may not rotate while the adjustment shaft 70 rotates; however, the adjustment band 72 may still translate along with the shaft 70. A distal end of the adjustment band 72 may be also attached to trocar 73. Accordingly, axial movement or translation of adjustment shaft 70 with respect to body 10 may cause the trocar 73 to also axially move or translate with respect to body 10.


Referring to FIGS. 3 and 4, one or both of anvil adjustment band 72 and drive band 80 may include tabs 83 and 84, respectively, that are bent or otherwise projecting toward body 10. Tabs 83, 84 may assist in allowing bands 72, 80 to travel through the body's curved shaft portion 12 while filling space and maintaining an appropriate axial position therein.


Further, referring to FIGS. 3 and 6, as is known in the field, the trocar 73 may be removably attached to the anvil 50 by leaf or spring clips 55 coupled to the anvil and/or trocar. In other words, the anvil may be removed from the trocar by pressing, pulling, or otherwise manipulating the spring clips 55. Contrarily, the trocar may be snapped into the anvil by moving the trocar into the anvil such that the spring clips 55 releasably hold the anvil on the trocar. Thus, axial movement of the anvil adjustment shaft 70 with respect to body 10 may also axially move or translate anvil 50 with respect to body 10. Further, the anvil may also include a shroud 53 coupled to an anvil body 52 (see FIG. 3) and a washer 54 that is sheared during firing of the cutting member 32, as discussed above. The washer 54 may be made of plastic and may serve as a cutting surface against which tissue may be severed.


Referring now to FIGS. 3-5, the anvil adjustment shaft 70 may be configured to be rotated, as explained above, such that the shaft 70 translates relative to the body 10. In more detail and in at least one embodiment, the anvil adjustment shaft 70 may comprise a screw surface 74 that operably engages an engagement portion of the body 10, such as a screw pin 75 fixed to the body 10 via a hole in the same. The screw surface 74 may be defined by a channel formed in adjustment shaft 70 that is sized and configured to receive at least a portion of pin 75 therein. The anvil adjustment shaft 70 may be rotated about its longitudinal axis L (see FIG. 8) such that the screw surface 74 contacts and is moved over the pin 75, thereby causing the anvil adjustment shaft 70 to translate with respect to the body 10. While pin 75 is described in the present embodiment, any other suitable thread mating portion or component, such as a protrusion, thread, and the like, may be used to engage the screw surface in place of or in addition to pin 75. In any event, rotating the adjustment shaft 70 about its longitudinal axis may cause the shaft 70 and, hence, trocar 73 and anvil 50 to also translate or move axially with respect body 10 and/or stapling head 30.


As mentioned above, in various embodiments, the adjustment shaft 70 may be configured to move the anvil 50 to at least one predetermined distance from the stapling head 30. In more detail, and focusing now on FIG. 8, which shows only the adjustment shaft 70, the adjustment shaft's screw surface 74 may include at least one ramp portion and at least one dwell portion. For example, the screw surface 74 may comprise a first, ramp portion 74a and a second, dwell portion or portions 74b. At least one delimiter, such as delimiter 76, may also separate the ramp portion 74a from the dwell portion 74b. As will be discussed in more detail below, the ramp portion 74a may allow the adjustment shaft to translate with respect to the body 10 (see FIG. 4), dwell portion 74b may provide a predetermined distance to maintain the position of the anvil 50 from the stapling head 30 (see FIG. 2), and the delimiter 76 may provide tactile feedback to a user rotating the anvil adjustment shaft 70 as well as a transition between the ramp and dwell portions. Further, in at least one embodiment, the ramp portion 74a may be at least partially helical in shape.


Continuing, the circle drawn in dashed lines in FIG. 8 represents the approximate portion of the anvil adjustment shaft 70 that is shown in FIGS. 9 and 10A-10C. Focusing now on FIG. 9, the ramp portion 74a of screw surface 74 may lead into at least one dwell portion. As illustrated and in at least one embodiment, the screw surface 74 may further comprise three dwell portions, first dwell portion 74b′, second dwell portion 74b″, and third dwell portion 74b′″. Rotation of the anvil adjustment shaft 70 about its longitudinal axis may cause the screw surface 74 to pass along pin 75 (see FIG. 5) such that the shaft 70 translates with respect to the body 10 (again, see FIG. 5). Further, as the shaft 70 is rotated clockwise CW, for example, the screw surface 74 may move along pin 75 such that the pin 75 contacts the ramp portion and then the first dwell portion 74b′. Then, as the shaft 70 is again rotated clockwise CW, the pin may contact the second dwell portion 74b″. Thereafter, additional rotation of the shaft 70 clockwise CW may cause the pin to contact the third dwell portion 74b′″. As will be explained in more detail below, each dwell portion may be at a different angular configuration compared to the ramp portion 74a.


Further, each dwell portion 74b′, 74b″, and 74b′″ may be at a different longitudinal position along anvil adjustment shaft 70 to provide predetermined, discrete staple forming heights. For example, referring to FIG. 10A, the first dwell portion 74b′ may be at a first distance L1 from a transverse ledge 77 of the shaft assembly. The second dwell portion 74b″ may be at a second distance L2 from the transverse ledge 77, and the third dwell portion 74b′″ may be at a third distance L3 from the transverse ledge 77. Any reference point or plane, including transverse ledge 77 may be used to establish the aforementioned distances. In any event, the first distance L1 may be greater than the second distance L2, which may be greater than the third distance L3, or L1>L2>L3. Alternatively, although now shown, the distances may be in other comparative orders, such as L1>L3>L2, L2>L1>L3, L2>L3>L1, L3>L2>L1, or L3>L1>L2. Further, each of the dwell distances L1, L2, and L3 may be uniform over their respective dwell portions 74b′, 74b″, and 74b′″. In other words, referring to FIG. 10B, for example, while the screw surface's ramp portion 74a may slope at a ramp or helix angle α of less than 90 degrees relative to the adjustment shaft's longitudinal axis L, each dwell portion (e.g., 74b″ in FIG. 10B) may be substantially perpendicular to the longitudinal axis L, or define an angle θ that is approximately 90 degrees with respect to the axis L. Further, referring to FIGS. 9 and 10A-10C, the dwell portions 74b′, 74b″, 74b′″ may otherwise be steps defining predetermined, discrete staple heights, as discussed below. When measuring the aforementioned angles with respect to longitudinal axis L, it should be understood that such measurements may be made with respect to a plane that is tangential to a portion of screw surface 74 and that plane's intersection with longitudinal axis L, which, for the purposes of clarity, is shown over the length of the anvil adjustment shaft shown in FIGS. 10A-10C. For example, referring to FIG. 10B again, helix angle α is defined between tangential plane “TP,” that is perpendicular to the plane of the page of FIG. 10B, and longitudinal axis L.


Focusing now on FIGS. 11A-11C, the stapling head 30 and the anvil 50 are shown in various positions correlating with the dwell portions 74b′, 74b″, and 74b′″ of the shaft's screw surface. For example, discrete staple forming heights D1, D2, and D3 may be defined between a staple forming surface 51 of anvil 50 and a staple ejection surface 38 of staple cartridge 33. The first height D1 may be greater than the second height D2, which may be greater than the third distance D3, or D1>D2>D3. Referring collectively to FIGS. 10A-10C and 11A-11C, each dwell portion 74b′, 74b″, and/or 74b′″ may allow the anvil 50 to be held at the respective staple forming height D1, D2, and/or D3 while the adjustment shaft 70 is being rotated such that the a dwell portion moves along the pin 75 (see FIG. 5). For example, each dwell portion 74b′, 74b″, 74b′″ may be designed to maintain the anvil's position for a period of shaft rotation of about 60 degrees. In other words, an arc running along each dwell portion's surface may stretch over an angle of approximately 60 degrees.


Referring to FIGS. 9 and 10A-10C, in various embodiments, at least one transition may separate each dwell portion 74b′, 74b″, and/or 74b′″ to thereby enable the anvil adjustment shaft 70 to be advanced to another position relative to the pin 75 (see FIG. 5). In at least one embodiment, the transition may comprise another ramp portion and/or a partial helical surface. However, in at least one other embodiment, the transition may also comprise at least one delimiter. As can be seen in FIGS. 10A-10C, a first delimiter 76′ may separate the screw surface's ramp portion 74a from the first dwell portion 74b′, a second delimiter 76″ may separate the first dwell portion 74b′ from the second dwell portion 74b″, and a third delimiter 76′″ may separate the second dwell portion 74b″ from the third dwell portion 74b′″. As mentioned above, each delimiter 76′, 76″, and/or 76′″ may provide tactile feedback to a user while the user rotates the anvil adjustment shaft.


In more detail, referring again to FIGS. 9 and 10A-10C, each delimiter 76′, 76″, and/or 76′″ may comprise a bump or a protrusion in the screw surface. In other words, the screw surface 74 may define a surface topography including the ramp portion 74a and the dwell portions 74b′, 74b″, and 74b′″, and each delimiter 76′, 76″, and/or 76′″ may be an interruption in the surface topography, between the aforementioned portions, respectively. Also, with the exception of the delimiters 76′, 76″, and/or 76′″, the surface topography over any portion of screw surface 74 may be smooth. For example, referring to FIGS. 5, 9, and 10A-10C, the screw surface's ramp portion 74a may include a smooth topography such that the screw surface 74 may move relatively smoothly past the pin 75 when the anvil adjustment shaft 70 is rotated with respect to body 10. However, when the pin 75 reaches the end of the ramp portion 74a, the surface topography may be interrupted by the first delimiter 76′. Accordingly, as the screw surface 74 is advanced over pin 75, the adjustment shaft 70, which may be extending proximally from body 10 in a smooth fashion as shaft 70 is being rotated, may jump, push, or pull in an abrupt or discontinuous fashion, or otherwise provide tactile feedback to a user, as the first delimiter 76′ contacts the pin 75, owing to the interruption in the surface topography of the screw surface 74 at the delimiter 76′. The action of the first delimiter 76′ passing over the pin 75 may provide a user rotating the shaft 70 with an indication that the first discrete staple forming height D1 (see FIG. 11A) has been reached as the pin 75 is now received at the first dwell portion 74b′. Continued rotation of shaft 70 for the dwell period, which, as mentioned above, may be approximately 60 degrees, may not adjust the first staple forming height D1. Accordingly, the user does not necessarily need to focus on the exact rotational position at which anvil adjustment shaft 70 is located, as long as the user knows that the first staple forming height D1 will not change until the shaft 70 is further rotated to bring another delimiter into contact with the pin 75. Further, the user may rotate the anvil adjustment shaft 70 back and forth such that the pin 75 is relatively moved along first dwell portion 74b′, between first delimiter 76′ and second delimiter 76″. As the delimiters protrude from the surface of first dwell portion 74b′, the user, through the anvil adjustment shaft 70, may feel when the pin 75 contacts the first or second delimiter 76′, 76″ at the respective ends of first dwell portion 74b′, thereby providing confidence to the user that the first staple forming height D1 has been reached.


Referring to FIGS. 5, 9, and 10A-10C, if the user desires to change the staple forming height from the first staple forming height D1 to the second staple forming height D2 (see FIGS. 11A-11B), the user may further rotate the anvil adjustment shaft 70 such that the second delimiter 76″ contacts the pin 75. When the pin 75 reaches the end of the first dwell portion 74b′, the surface topography may be interrupted by the second delimiter 76″. Accordingly, as the screw surface 74 is advanced over pin 75, the adjustment shaft 70, which may be rotating smoothly while the pin 75 is contacting the first dwell portion 74b′, may jump, push, or pull in an abrupt or discontinuous fashion, or otherwise provide tactile feedback to a user, as the second delimiter 76″ contacts the pin 75 owing to the interruption in the surface topography of the screw surface 74 at the delimiter 76′″. The action of the second delimiter 76″ passing over the pin 75 may provide a user rotating the shaft 70 with an indication that the second discrete staple forming height D2 (see FIG. 11B) has been reached as the pin 75 is now received at the second dwell portion 74b″. Continued rotation of shaft 70 for the dwell period, which, as mentioned above, may be approximately 60 degrees, may not adjust the second staple forming height D2. Accordingly, the user does not necessarily need to focus on the exact rotational position at which anvil adjustment shaft 70 is located, as long as the user knows that the second staple forming height D2 will not change until the shaft 70 is further rotated to bring another delimiter into contact with the pin 75. Further, the user may rotate the anvil adjustment shaft 70 back and forth such that the pin 75 is relatively moved along second dwell portion 74b″, between second delimiter 76″ and third delimiter 76′″. As the delimiters protrude from the surface of second dwell portion 74b″, the user, through the anvil adjustment shaft 70, may feel when the pin 75 contacts the second or third delimiter 76″, 76′″ at the respective ends of second dwell portion 74b″, thereby providing confidence to the user that the second staple forming height D2 has been reached.


Similarly, referring still to FIGS. 5, 9, and 10A-10C, if the user desires to change the staple forming height from the second staple forming height D2 to the third staple forming height D3 (see FIGS. 11B-11C), the user may further rotate the anvil adjustment shaft 70 such that the third delimiter 76′″ contacts the pin 75. When the pin 75 reaches the end of the second dwell portion 74b″, the surface topography may be interrupted by the third delimiter 76′″. Accordingly, as the screw surface 74 is advanced over pin 75, the adjustment shaft 70, which may be rotating smoothly while the pin 75 is contacting the second dwell portion 74b″, may jump, push, or pull in an abrupt or discontinuous fashion, or otherwise provide tactile feedback to a user, as the third delimiter 76′″ contacts the pin 75, owing to the interruption in the surface topography of the screw surface 74 at the delimiter 76′″. The action of the third delimiter 76′″ passing over the pin 75 may provide a user rotating the shaft 70 with an indication that the third discrete staple forming height D3 (see FIG. 11C) has been reached as the pin 75 is now received at the third dwell portion 74b′″. Continued rotation of shaft 70 for the dwell period, which, as mentioned above, may be approximately 60 degrees, may not adjust the third staple forming height D3. Accordingly, the user does not necessarily need to focus on the exact rotational position at which anvil adjustment shaft 70 is located, as long as the user knows that the third staple forming height D3 will not change until the shaft 70 is further rotated to bring a stop 78 into contact with the pin 75, thereby preventing further movement of the pin 75 relative to the screw surface 74, towards stop 78. The stop 78 may be a wall formed at the end of the third delimiter portion 74b′″. Further, the user may rotate the anvil adjustment shaft 70 back and forth such that the pin 75 is relatively moved along third dwell portion 74b′″, between third delimiter 76′″ and stop 78. As the stop and delimiter 76′″ protrude from the surface of third dwell portion 74b″, the user, through the anvil adjustment shaft 70, may feel when the pin 75 contacts the third delimiter 76′″ or stop 78 at the respective ends of third dwell portion 74b′″, thereby providing confidence to the user that the third staple forming height D3 has been reached.


In various embodiments, referring to FIGS. 9 and 15, for example, the screw surface 74 may be closed over the ramp portion 74a and open over the dwell portions 74b′, 74b″, 74b′″. In other words, the screw surface's ramp portion may include proximal and distal walls whereas the screw surface's dwell portions may only include proximal walls. In use, the pin 75 may be biased against the dwell portions due to tissue being clamped between anvil 50 and stapling head 30 when the anvil 50 is at an appropriate staple forming height from the head 30, as discussed above (see FIGS. 11A-11C).


While at least one embodiment described above show the delimiters 76′, 76″, and/or 76′″ as being formed as bumps or protrusions in the screw surface 74, the delimiters may also take the form of indentations in the screw surface. Also, the delimiters may be a separate piece from the adjustment shaft 70 such that they may be attached thereto. In any event, the delimiters may provide tactile feedback to a user as the user rotates the shaft 70. Further, while a delimiter is shown as separating the ramp portion 74a from the first dwell portion 74b′, and so on, the screw surface may not include a dwell portion or dwell portions. In such embodiments, the screw surface may comprise multiple ramp portions separated, at desired intervals, by at least one delimiter. Accordingly, a user may be informed, via tactile feedback, when an appropriate staple forming height, between the anvil 50 and staple cartridge 33 (see, e.g., FIG. 11A) has been obtained.


In addition to tactile feedback, the surgical stapler 1 may include visual reference indicia to provide a user with an indication of when the aforementioned staple forming height(s) have been reached. For example, referring now to FIGS. 12-13, the anvil adjustment shaft 70 may include reference indicia 85 printed or formed in the shaft's surface that, via a marking 86 on body 10, to provide an indication of when a discrete staple forming height, such as D1, D2, D3 (see FIGS. 11A-11C), has been reached. In at least one embodiment, the respective staple forming heights may be 2.5 mm, 1.8 mm, and 1.0 mm, and the reference indicia 85 may indicate the same. In any event, the incorporation of visual indicia, delimiters, and/or dwell portions, as discussed above, into the anvil adjustment shaft 70 may remove the need for a staple height indicator mechanism separate from the shaft.


Additionally, while at least one embodiment described above has illustrated the screw surface 74 as being defined by a channel formed in anvil adjustment shaft 70, the screw surface may, in at least one embodiment, alternatively be defined by a thread projecting from the anvil adjustment shaft 70. In such embodiments, pin 75 may be employed or another thread mating component may be used to engage the screw surface, such as a fork projecting from the inside of body 10.


Further, while the screw surface 74 discussed above is described as being a part of anvil adjustment shaft 70, it is to be understood that such screw surface could alternatively be a part of the body 10. In such embodiments, an engagement portion, such as a pin or other thread engaging component, would likewise be fixed to the adjustment shaft 70 instead of to the body 10. In any event, rotation of the shaft 70 may cause a screw surface to rotate with respect to an engagement portion such that the shaft 70 and, hence, the anvil 50 translate with respect to the body 10 and/or stapling head 30.


In various embodiments, as mentioned above and referring to FIG. 5, before the anvil 50 is at an appropriate distance from staple cartridge 33, the trigger 90 may cooperate with the adjustment shaft 70 to prevent the trigger 90 from moving substantially towards body 10 or otherwise causing staple drivers 34 and/or cutting member 32 to be actuated, thereby preventing the unintended firing of the surgical stapler 1. In other words, the trigger may include a lockout. For example, in at least one embodiment and referring to FIG. 8, the actuation shaft 70 may comprise the first, proximal portion 70a defining a first width W1, and the second, distal portion 70b defining a second width W2. Further, referring to FIG. 14, the trigger 90 may comprise lockout stem 95 extending from lever 92, the stem 95 defining an opening 97 having a size S. The lockout stem may resemble a fork with two tines, or a yoke. In any event, the size S of the opening 97 may be smaller than the first width W1 of the proximal portion 70a but the size S of the opening 97 may be larger than or equal to the second width W2 of the distal portion 70b, or W1>S≧W2.


Referring now to FIG. 15, the lockout stem 95 may be positioned through body opening 14 such that the stem 95 is operable to engage either the shaft's proximal portion 70a or the shaft's distal portion 70b. If the lockout stem 95 is longitudinally positioned over the proximal portion 70a, the trigger lever 92 may be prevented from moving substantially towards body 10 due to interference between the lockout stem 95 and the shaft's proximal portion 70a. In other words, because the proximal portion's width W1 (see FIG. 8) is larger than the size S of the lockout stem's opening 97 (see FIG. 14), the trigger lever 92 may be prevented from causing the drive band 80 to actuate, as described above, thereby preventing inadvertent firing of staples 31 and/or cutting member 32 (see FIG. 3). However, if the lockout stem 95 is longitudinally positioned over the distal portion 70b, the trigger lever 92 may be allowed to move substantially towards body 10 due to a lack of interference between the lockout stem 95 and the shaft's distal portion 70b. In other words, because the distal portion's width W2 (see FIG. 8) is smaller than or equal to the size S of the lockout stem's opening 97 (see FIG. 14), the trigger lever 92 may be allowed to move and cause the drive band 80 to actuate, as described above, thereby firing staples 31 and/or cutting member 32 (see FIG. 3). In such embodiments, the opening 97 may receive the shaft's distal portion 70b and allow the lever 92 to move towards body 10 until the distal portion 70b reaches the end of opening 97.


Further, referring to FIG. 15, the shaft's distal portion 70b may be positioned along anvil adjustment shaft 70 such that the distal portion 70b correlates with an appropriate staple forming height. For example, the distal portion 70b may be axially positioned along shaft 70 such that the lockout stem 95 is longitudinally positioned over the distal portion 70b when the pin 75 is received in a dwell portion, such as first dwell portion 74b′. Accordingly, the lockout stem 95 may only allow the staple drivers 34 and/or cutting member 32 (see FIG. 3) to be fired when a desired staple forming height has been reached, without the need for a lockout lever or mechanism separate from the trigger 90. Further, referring to FIG. 14, the lockout stem 95 may be unitary and integrally formed from the same piece of material as trigger spring 91. However, in at least one embodiment, the lockout stem 95, trigger spring 91, and lever 92 may be unitary and integrally formed from the same piece of material.


In various embodiments, and as mentioned above, the surgical stapler may be straight instead of curved, as described above. Accordingly, referring now to FIG. 16, a surgical stapler 101 is shown. Surgical stapler 101 may include a body 110, a stapling head 130, an anvil 150, an anvil adjustment shaft 170, and a trigger 190, similar to that described above. However, shaft portion 112 of body 110 may be straight. Further, the stapling head 130 and anvil 150 may be linear and project axially away from the body 110. It should be noted that, referring to the surgical staplers 1 and 101 depicted in FIGS. 1 and 16, respectively, because each stapling head 30, 130 may be removed from the surgical stapler's body 10, 110 as discussed above, the stapling heads 30, 130 and anvils 50, 150 may be interchanged with each other, for example. Further, other stapling head and anvil configurations may be employed in addition to the above describe heads 30, 130 and anvils 50, 150.


Also, referring now to FIG. 17, the anvil adjustment shaft 170 and trocar 173 may be unitary and integrally formed from the same piece of material. Thus, the shaft's distal portion 170b may project from the proximal portion 170a and abut the trocar 173. Further, referring to FIG. 18, a drive bar 180 is shown. Drive bar may allow movement of trigger 190 (see FIG. 16) to actuate drive bar 180 towards stapling head 130 to eject staples and/or actuate a cutting member (not shown) therefrom. Briefly, the drive bar may be elongate and generally tubular in shape and include proximal drive surfaces 181 and distal drive surfaces 182. Referring to FIGS. 16 and 18, the proximal drive surfaces 181 may be configured to receive driving motions from trigger 190 and the distal drive surfaces 182 may be configured to engage staple drivers and/or a cutting member (not shown) within stapling head 130, as described above. Also, the drive bar 180 may include a passage 187 adapted to receive anvil adjustment shaft 170 (see FIG. 17) therethrough. In at least one embodiment, the stapler 101 may not include a cutting member, and may primarily function to staple or seal, but not transect, tissue.


It should be appreciated that the straight stapler 101 and the curved stapler 1, discussed above (see FIGS. 16 and 1, respectively) may contain significantly fewer components than similar current surgical staplers available on the market. For example, referring to straight surgical stapler 101, and in particular to anvil adjustment shaft, the combination of a knob 179, with a closure screw or screw surface 174, and trocar 173 into one integral component, anvil adjustment shaft 170, reduces part count of a surgical stapler. Further reducing component count may be obtained by combining a ramp portion 174a with a dwell portion 174b into screw surface 174. As discussed above, the screw surface's ramp portion 174a may allow initial, course axial movement of shaft 170 with respect to body 110, and the dwell portion(s) 174b may establish at least one discrete, predetermined staple forming height between anvil 150 and stapling heard 130. Overall, ignoring the anvil and stapling head components, the surgical stapler 101 may include only seven components compared to over thirty in current devices. Referring to FIGS. 16-18, the seven components may include the body 110, the firing trigger 190, a hinge pin 193 pivotally coupling the trigger 190 to the body 110, a trigger spring 191 integrally formed with a lockout stem 195, the anvil adjustment shaft 170, a screw pin (not shown, see screw pin 75 seen in FIG. 3, for example) operably engaging the shaft's screw surface 174, and the drive bar 180. Additionally, the part count may be further reduced. For example, the hinge pin 193 may be eliminated by combining a hinge detent or flexible tab, for example, into the trigger 190 itself. Further, spring 191 and lockout stem 195 may also be integrally formed with the trigger 190. Also, the screw pin (not shown) may be eliminated by incorporating a protrusion extending from an inner surface of body 110 such that the screw protrusion may engage the screw surface 174. In any event, the aforementioned components of surgical stapler 101 may provide similar functionality as that described above. This simplified stapler architecture using only a few manufacturing techniques may be broadly applicable, and should be appropriate for a multi-use, sterilizable device, that costs significantly less and requires less manufacturing time than similar, currently available surgical staplers. Accordingly, in at least one embodiment, a stapler, including the above-mentioned components, less the anvil and stapling head parts, may be provided that is reusable. Also, in at least one embodiment, the anvil and/or stapling head, including a staple cartridge, may further be disposable.


In at least one exemplary experiment, the aforementioned minimization of part count was accomplished by comparing each component to a part criteria list to see if that part was needed. The only ones remaining were those listed above and required for assembly reasons, possessed unique material properties, or which moved with respect to other parts in the stapler.


In various embodiments, a stapling head assembly may be configured to include a lockout feature such that during insertion into a portion of surgical stapler, the staple drivers are resisted or prevented from unintentionally firing or driving the staples from a staple cartridge. In more detail, referring now to FIGS. 19-20, a stapling head assembly 230 may be generally similar to stapling head 30 and/or 130 described above, such that the stapling head assembly 230 may be used as a component of surgical stapler 1 and/or 101, for example. In other words, stapling head assembly 230 may be inserted into the shaft 12 or 112 as discussed above with respect to stapling heads 30 and 130, respectively.


Thus, in more detail, the stapling head assembly 230 may comprise a staple cartridge 233 for supporting one or more surgical staples (not shown; however, see staples 31 in FIG. 7B, for example), a core 235 movable relative to the staple cartridge 233, at least one staple driver 234 extending from the core 235, and a casing 239 configured to at least partially hold the staple cartridge 233 and movably receive the core 235 and the staple drivers 234. As discussed above, the staple drivers 234 may engage and drive staples from the staple cartridge.


Referring to FIG. 21, in at least one embodiment, the staple drivers 234 and the core 235 may be integrally connected and/or formed. For example, the staple drivers 234 and may be operably coupled to the core 235, each of which may be formed from the same material, such as a plastic material, for example. Protruding from the core may be tabs 236 which may be configured to engage a drive band 80 or drive bar 180 (see FIGS. 4 and 18, respectively). In any event, as with stapling head 30, discussed above, for example, actuation of the drive band 80 or drive 180 may cause the core 235 and thus the staple drivers 234 to fire, thereby driving or ejecting staples from the staple cartridge 233.


As shown in FIG. 20, in at least one embodiment, the casing 239 may additionally comprise at least one retention member 237 that are configured to resiliently and/or flexibly deflect and allow the stapling head 30 to be releasably attached to the body's shaft portion 12 at corresponding holes 15 (see FIG. 3) formed therein, for example. Each retention member 237 may further comprise a release button as illustrated in FIGS. 19-20, for example. Accordingly, when inserted in the shaft portion 12 of the stapler's body 10 (FIG. 3), the stapling head assembly 230 (FIG. 19) may be removed by pressing on the respective buttons of retention members 237, then turning the head 30 such that tabs 36 are released from notches formed by the distal driving surfaces 82 of the drive band 80, and finally pulling the stapling head assembly 230 away from the body 10.


As discussed in more detail below, the retention members 237 may be configured move from a first position to a second position when sufficient external force is applied to the retention member, such as that provided by the shaft portion 12 of a surgical stapler 1 (see FIG. 4) during insertion of the stapling head assembly into the shaft. The first position may be a non-depressed position and the second position may be a depressed position in which the retention members 237 may or may not be in contact with the core 235. When the retention members 237 are at the second position, the staple drivers 234 may be prevented from driving or ejecting staples from the staple cartridge 233, thereby providing a firing lockout feature to the stapling head assembly 230 during insertion of the same into at least a portion of a surgical stapler.


In at least one embodiment, to provide additional locking ability to the stapling head assembly 230, the core 235 may further comprise a recess 240 sized and configured to receive the retention members 237 when the retention members 237 are in the second position. For example, referring to FIG. 21, the recess 240 may be provided in the surface of the core 235 and the recess 240 may be defined between two side walls 241 and 242, for example. In such embodiments, the core 235 and, subsequently, the staple drivers 234, may be prevented from moving relative to the casing 239 (see FIG. 19) when the retention members 237 are depressed into the recess 240 owing at least in part to physical interference between the depressed retention members 237 and the side walls 241, 242, and/or owing at least in part to friction between the depressed retention members 237 and the surface(s) of the core 235.


As noted above, in various embodiments, the retention members 237 may be resiliently deflectable. In other words, the retention members 237 may be configured to deflect resiliently such that after deflecting due to external forces, they may spring back or otherwise return to their original positions. In more detail, the retention members 237 may each comprise a cantilevered arm formed in the casing 239. In such embodiments, referring to FIG. 19, the cantilevered retention member may be curved about a longitudinal axis “L” defined by the casing 235 to correlate with the curvature of a tubular body 10 of a surgical stapler 1 (see FIG. 4), for example. In other words, the retention members 237 may be curved or wrapped radially around the cartridge casing as shown in FIG. 19. Alternatively, although not shown, retention members may be linear or extend in a direction that is parallel to the longitudinal axis L defined by the casing 239.


In at least one embodiment, the retention members 237 may be unitary and integrally formed with the casing 239 such that the casing 239 and the retention members 237 are formed and/or molded from the same piece of material. In such embodiments, the casing 239 may be made from a plastic material, such as Nylon, Polycarbonate, Polyetherimide (PEI) or PolyEtherEther-Ketone (PEEK), for example. Additionally, in at least one embodiment, the core may be made from a plastic material, such as Nylon, Polycarbonate, Polyetherimide (PEI) or PolyEtherEther-Ketone (PEEK), for example.


In at least one embodiment, the operation of the retention members 237 interacting with the core 235 and/or recess 240 may be understood with reference with FIGS. 22-24. FIG. 22 illustrates a portion of the stapling head assembly 230 being initially inserted into the shaft portion 12 of the circular stapler's body 10. The body 10 is shown in broken lines to better illustrate the portion of the stapling head assembly 230 that is positioned within the stapler's body. As can be seen, the retention members 237, which may each include an inclined surface 243, are still at a non-deflected or first position immediately before the shaft portion 12 makes contact with the inclined surface 243 of the retention members 237. Further advancing the stapling head assembly in the proximal direction “PD” may cause the shaft portion 12 to contact and thereby begin to deflect the retention members 237 inwardly towards the core 235. FIG. 23 illustrates the stapling head assembly 230 being further inserted into the circular stapler's body. As can be seen, the retention members 237 are being held in a depressed or second position by the internal walls of the circular body 10. In the depressed or second position, the retention members 237 may be received within the recess 240 (see FIG. 21) to thereby prevent the core 235 from moving in a distal direction “DD”. Additionally, the retention members 237 may be prevented from significantly moving in the distal direction DD by the recess side wall 241, for example. Moving the stapling head assembly further in the proximal direction PD (see FIG. 22) and then aligning the release buttons of the retention members 237 with the holes 15 in the body 10 may allow the retention members to resiliently return to a non-depressed position such that the retention members 237 not only hold the stapling head assembly 230 in the circular stapler body 10, but also clear the recess 240 and/or side walls 241, 242 to allow the core 235 and the staple drivers 234 to be actuated and drive staples from the staple cartridge 233 (see FIG. 19). For example, FIG. 24 illustrates the stapling head assembly 230 fully inserted into the circular stapler's body 10 with the retention members 237 in such a non-depressed position and located at least partially within holes 15. Further, as shown in FIG. 24, the core's tabs 236 are received in notches of the drive band 80 to receive actuating motions therefrom, similar to that discussed above with respect to stapling head 30 (see FIG. 4), for example.


Other styles of stapling head assemblies may include various features discussed above. For example, in at least one embodiment and referring to FIGS. 25-26, a stapling head assembly 330 may be generally radially symmetric about a longitudinal axis “L.” However, in such embodiments, the stapling head assembly 330 may be similar in other respects to stapling head assembly 230 and/or stapling head 30 described above, for example. For instance, the stapling head assembly 330 may comprise a staple cartridge 333 for supporting one or more surgical staples a core 335 movable relative to the staple cartridge 333, at least one staple driver 334 extending from the core 335, and a casing 339 configured to at least partially hold the staple cartridge 333 and movably receive the core 335 and the at least one staple driver 334. The staple drivers 334 may be configured to engage and drive staples from the staple cartridge 333. Additionally, the casing may further comprise at least one retention member 337 that is configured to move from a first position to a second position when sufficient external force is applied to the retention member 337. Further, when the retention members 337 are at the second position, the at least one staple driver may be prevented from driving the staples from the staple cartridge. In at least one embodiment, the core may further comprise a recess 340 sized and configured to receive the retention members 337 when the retention members 337 are at the second position. Additionally, and different from stapling head assembly 230, the assembly 330 may further comprise a cutting member 332 operably coupled to the core 335. Accordingly, when the retention members are in a depressed position such that the core 335 is prevented from moving relative to the casing 339, the cutting member 332 and/or the staple drivers 334 may be prevented from also moving relative to the casing 339, thereby preventing unintentional firing of the cutting member 332 and/or staples from the staple cartridge 333. Additionally, the core 335 may include tabs 336 protruding laterally therefrom for operably engaging a drive band or drive bar of a surgical stapler as discussed above with respect to stapling head assemblies 30, 130, and/or 230. In still other alternative embodiments, the casing may be configured to operably support one or more surgical staples therein. In such alternative embodiments, there is no separate staple cartridge required to operably support the surgical staples. Instead, the casing is configured to support the staples such that upon contact with the staple drivers, the staples are driven out of the casing.


While the embodiments have been described, it should be apparent, however, that various modifications, alterations and adaptations to the embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the various embodiments. For example, according to various embodiments, a single component or step may be replaced by multiple components or steps, and multiple components or steps may be replaced by a single component or step, to perform a given function or functions or accomplish a given objective. Further, the various components described above may be made from a variety of materials. For example, the components may be made from any combination of metal, plastic, and/or a biocompatible material. Moreover, various components, such as the trigger, drive band, and anvil adjustment band may be made and bent or folded from sheet metal. This application is therefore intended to cover all such modifications, alterations and adaptations without departing from the scope and spirit of the appended claims.


The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the devices can be reconditioned for reuse after at least one use. Reconditioning can include a combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the devices can be disassembled, and any number of particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the devices can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those of ordinary skill in the art will appreciate that the reconditioning of a device can utilize a variety of different techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.


The devices described herein may be processed before surgery. First a new or used instrument is obtained and, if necessary, cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK® bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or higher energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A surgical stapling head assembly, comprising a casing configured to at least partially operably support one or more surgical staples therein, said casing further configured to movably receive a core and at least one staple driver therein, said casing further having at least one retention member that is configured to move from a first position to a second position when sufficient external force is applied to the retention member, and wherein when the at least one retention member is at the second position, the at least one staple driver is prevented from driving the staples from the casing.
  • 2. The surgical stapling head assembly of claim 1, wherein the core further comprises a recess sized and configured to receive the at least one retention member when the at least one retention member is at the second position.
  • 3. The surgical stapling head assembly of claim 1, wherein the retention member is resiliently deflectable.
  • 4. The surgical stapling head assembly of claim 3, wherein the retention member comprises a cantilevered arm.
  • 5. The surgical stapling head assembly of claim 3, wherein the cantilevered arm is curved about a longitudinal axis defined by the casing.
  • 6. The surgical stapling head assembly of claim 3, wherein the cantilevered arm extends in a direction that is parallel to a longitudinal axis defined by the casing.
  • 7. The surgical stapling head assembly of claim 3, wherein the retention member is unitary and integrally formed with the casing.
  • 8. The surgical stapling head assembly of claim 1, wherein said one or more surgical staples are supported in a staple cartridge supported in said casing.
  • 9. The surgical stapling head assembly of claim 1, further comprising a cutting member operably coupled to the core.
  • 10. A surgical stapler, comprising: a body comprising: a handle portion; anda shaft portion extending from the handle portion;a stapling head assembly releasably coupled to the shaft portion, the stapling head assembly comprising: a casing configured to at least partially operably support one or more surgical staples therein, said casing further configured to movably support a core and at least one staple driver therein, said casing further having at least one retention member that is configured to move from a first position to a second position when sufficient external force is applied to the retention member, and wherein when the at least one retention member is at the second position, the at least one staple driver is prevented from driving the staples from the casing;a drive system for applying drive motions to the at least one staple driver;an anvil movably supported relative to the casing for axial movement toward and away from the casing; andan anvil adjustment assembly for selectively adjusting an axial position of the anvil relative to the casing.
  • 11. The surgical stapling head assembly of claim 10, wherein the core further comprises a recess sized and configured to receive the at least one retention member when the at least one retention member is at the second position.
  • 12. The surgical stapling head assembly of claim 10, wherein the retention member is resiliently deflectable.
  • 13. The surgical stapling head assembly of claim 12, wherein the retention member comprises a cantilevered arm.
  • 14. The surgical stapling head assembly of claim 12, wherein the cantilevered aim is curved about a longitudinal axis defined by the casing.
  • 15. The surgical stapling head assembly of claim 12, wherein the cantilevered arm extends in a direction that is parallel to a longitudinal axis defined by the casing.
  • 16. The surgical stapling head assembly of claim 12, wherein the retention member is unitary and integrally formed with the casing.
  • 17. The surgical stapling head assembly of claim 10, wherein said one or more surgical staples are supported in a staple cartridge supported in said casing.
  • 18. The surgical stapling head assembly of claim 10, further comprising a cutting member operably coupled to the core.
  • 19. A surgical stapling head assembly, comprising: a casing configured to operably support one or more surgical staples therein, said casing configured to movably receive a core and at least one staple driver therein; andlockout means for preventing the at least one staple driver from driving staples from the staple cartridge.
US Referenced Citations (622)
Number Name Date Kind
3490675 Green et al. Jan 1970 A
3643851 Green et al. Feb 1972 A
3662939 Bryan May 1972 A
3717294 Green Feb 1973 A
3819100 Noiles et al. Jun 1974 A
RE28932 Noiles et al. Aug 1976 E
4331277 Green May 1982 A
4383634 Green May 1983 A
4396139 Hall et al. Aug 1983 A
4402445 Green Sep 1983 A
4415112 Green Nov 1983 A
4429695 Green Feb 1984 A
4475679 Fleury, Jr. Oct 1984 A
4489875 Crawford et al. Dec 1984 A
4500024 DiGiovanni et al. Feb 1985 A
4505273 Braun et al. Mar 1985 A
4505414 Filipi Mar 1985 A
4522327 Korthoff et al. Jun 1985 A
4530453 Green Jul 1985 A
4566620 Green et al. Jan 1986 A
4573622 Green et al. Mar 1986 A
4580712 Green Apr 1986 A
4610383 Rothfuss et al. Sep 1986 A
4629107 Fedotov et al. Dec 1986 A
4632290 Green et al. Dec 1986 A
4655222 Florez et al. Apr 1987 A
4664305 Blake, III et al. May 1987 A
4671445 Barker et al. Jun 1987 A
4715520 Roehr, Jr. et al. Dec 1987 A
4728020 Green et al. Mar 1988 A
4752024 Green et al. Jun 1988 A
4754909 Barker et al. Jul 1988 A
4767044 Green Aug 1988 A
4805823 Rothfuss Feb 1989 A
4817847 Redtenbacher et al. Apr 1989 A
4819853 Green Apr 1989 A
4821939 Green Apr 1989 A
4869414 Green et al. Sep 1989 A
4869415 Fox Sep 1989 A
4941623 Pruitt Jul 1990 A
4944443 Oddsen et al. Jul 1990 A
5065929 Schulze et al. Nov 1991 A
5071430 de Salis et al. Dec 1991 A
5104025 Main et al. Apr 1992 A
5129570 Schulze et al. Jul 1992 A
5137198 Nobis et al. Aug 1992 A
5139513 Segato Aug 1992 A
5158567 Green Oct 1992 A
5205459 Brinkerhoff et al. Apr 1993 A
5211649 Kohler et al. May 1993 A
5221036 Takase Jun 1993 A
5222975 Crainich Jun 1993 A
5236440 Hlavacek Aug 1993 A
5258009 Conners Nov 1993 A
5282806 Haber et al. Feb 1994 A
5282829 Hermes Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5304204 Bregen Apr 1994 A
5309927 Welch May 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5350400 Esposito et al. Sep 1994 A
5366479 McGarry et al. Nov 1994 A
5397324 Carroll et al. Mar 1995 A
5417361 Williamson, IV May 1995 A
5425745 Green et al. Jun 1995 A
5474566 Alesi et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5484451 Akopov et al. Jan 1996 A
5485947 Olson et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5503320 Webster et al. Apr 1996 A
5509596 Green et al. Apr 1996 A
5520700 Beyar et al. May 1996 A
5533661 Main et al. Jul 1996 A
5535935 Vidal et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5547117 Hamblin et al. Aug 1996 A
5553765 Knodel et al. Sep 1996 A
5554169 Green et al. Sep 1996 A
5560530 Bolanos et al. Oct 1996 A
5560532 DeFonzo et al. Oct 1996 A
5562239 Boiarski et al. Oct 1996 A
5562682 Oberlin et al. Oct 1996 A
5571116 Bolanos et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5579978 Green et al. Dec 1996 A
5580067 Hamblin et al. Dec 1996 A
5584425 Savage et al. Dec 1996 A
5586711 Plyley et al. Dec 1996 A
5588580 Paul et al. Dec 1996 A
5588581 Conlon et al. Dec 1996 A
5597107 Knodel et al. Jan 1997 A
5605272 Witt et al. Feb 1997 A
5605273 Hamblin et al. Feb 1997 A
5624452 Yates Apr 1997 A
5630540 Blewett May 1997 A
5632432 Schulze et al. May 1997 A
5634584 Okorocha et al. Jun 1997 A
5636779 Palmer Jun 1997 A
5636780 Green et al. Jun 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5649937 Bito et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5655698 Yoon Aug 1997 A
5657921 Young et al. Aug 1997 A
5662260 Yoon Sep 1997 A
5667527 Cook Sep 1997 A
5669544 Schulze et al. Sep 1997 A
5669918 Balazs et al. Sep 1997 A
5680983 Plyley et al. Oct 1997 A
5690269 Bolanos et al. Nov 1997 A
5697543 Burdorff Dec 1997 A
5702408 Wales et al. Dec 1997 A
5706997 Green et al. Jan 1998 A
5706998 Plyley et al. Jan 1998 A
5709334 Sorrentino et al. Jan 1998 A
5716366 Yates Feb 1998 A
5718359 Palmer et al. Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5725554 Simon et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5732872 Bolduc et al. Mar 1998 A
5743456 Jones et al. Apr 1998 A
5752644 Bolanos et al. May 1998 A
5758814 Gallagher et al. Jun 1998 A
5762255 Chrisman et al. Jun 1998 A
5762256 Mastri et al. Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5779131 Knodel et al. Jul 1998 A
5779132 Knodel et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5785232 Vidal et al. Jul 1998 A
5794834 Hamblin et al. Aug 1998 A
5797537 Oberlin et al. Aug 1998 A
5797538 Heaton et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5833695 Yoon Nov 1998 A
5855311 Hamblin et al. Jan 1999 A
5855583 Wang et al. Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5878937 Green et al. Mar 1999 A
5893506 Powell Apr 1999 A
5894979 Powell Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5901895 Heaton et al. May 1999 A
5908427 McKean et al. Jun 1999 A
5911353 Bolanos et al. Jun 1999 A
5918791 Sorrentino et al. Jul 1999 A
5919198 Graves, Jr. et al. Jul 1999 A
5937951 Izuchukwu et al. Aug 1999 A
5954259 Viola et al. Sep 1999 A
6010054 Johnson et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6050472 Shibata Apr 2000 A
6079606 Milliman et al. Jun 2000 A
6083242 Cook Jul 2000 A
6086600 Kortenbach Jul 2000 A
6099551 Gabbay Aug 2000 A
6102271 Longo et al. Aug 2000 A
6109500 Alli et al. Aug 2000 A
6119913 Adams et al. Sep 2000 A
6126058 Adams et al. Oct 2000 A
6155473 Tompkins et al. Dec 2000 A
6171330 Benchetrit Jan 2001 B1
6193129 Bittner et al. Feb 2001 B1
6202914 Geiste et al. Mar 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6330965 Milliman et al. Dec 2001 B1
6387113 Hawkins et al. May 2002 B1
RE37814 Allgeyer Aug 2002 E
6436107 Wang et al. Aug 2002 B1
6439446 Perry et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6505768 Whitman Jan 2003 B2
6517565 Whitman et al. Feb 2003 B1
6578751 Hartwick Jun 2003 B2
6588643 Bolduc et al. Jul 2003 B2
6601749 Sullivan et al. Aug 2003 B2
6616686 Coleman et al. Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6629630 Adams Oct 2003 B2
6629988 Weadock Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6669073 Milliman et al. Dec 2003 B2
6681978 Geiste et al. Jan 2004 B2
6681979 Whitman Jan 2004 B2
6695199 Whitman Feb 2004 B2
6698643 Whitman Mar 2004 B2
6716233 Whitman Apr 2004 B1
6769594 Orban, III Aug 2004 B2
6773438 Knodel et al. Aug 2004 B1
6805273 Bilotti et al. Oct 2004 B2
6817508 Racenet et al. Nov 2004 B1
6817509 Geiste et al. Nov 2004 B2
6843403 Whitman Jan 2005 B2
RE38708 Bolanos et al. Mar 2005 E
6866178 Adams et al. Mar 2005 B2
6877647 Green et al. Apr 2005 B2
6905057 Swayze et al. Jun 2005 B2
6978921 Shelton, IV et al. Dec 2005 B2
6978922 Bilotti et al. Dec 2005 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
6988650 Schwemberger et al. Jan 2006 B2
6997931 Sauer et al. Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7000819 Swayze et al. Feb 2006 B2
7008435 Cummins Mar 2006 B2
7044353 Mastri et al. May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056330 Gayton Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7070083 Jankowski Jul 2006 B2
7077856 Whitman Jul 2006 B2
7080769 Vresh et al. Jul 2006 B2
7083075 Swayze et al. Aug 2006 B2
7090684 McGuckin, Jr. et al. Aug 2006 B2
7097089 Marczyk Aug 2006 B2
7108709 Cummins Sep 2006 B2
7114642 Whitman Oct 2006 B2
7118582 Wang et al. Oct 2006 B1
7121446 Arad et al. Oct 2006 B2
7128253 Mastri et al. Oct 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143924 Scirica et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7168604 Milliman et al. Jan 2007 B2
7172104 Scirica et al. Feb 2007 B2
7188758 Viola et al. Mar 2007 B2
7210609 Leiboff et al. May 2007 B2
7213736 Wales et al. May 2007 B2
7220272 Weadock May 2007 B2
7225963 Scirica Jun 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7258262 Mastri et al. Aug 2007 B2
7278562 Mastri et al. Oct 2007 B2
7278563 Green Oct 2007 B1
7296724 Green et al. Nov 2007 B2
7303107 Milliman et al. Dec 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7328829 Arad et al. Feb 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7364061 Swayze et al. Apr 2008 B2
7398907 Racenet et al. Jul 2008 B2
7398908 Holsten et al. Jul 2008 B2
7404509 Ortiz et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7424965 Racenet et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434715 Shelton, IV et al. Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7461767 Viola et al. Dec 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472814 Mastri et al. Jan 2009 B2
7472815 Shelton, IV et al. Jan 2009 B2
7481349 Holsten et al. Jan 2009 B2
7490749 Schall et al. Feb 2009 B2
7494039 Racenet et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7506790 Shelton, IV Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7546940 Milliman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7600663 Green Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7611038 Racenet et al. Nov 2009 B2
7641092 Kruszynski et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7721930 McKenna et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7726538 Holsten et al. Jun 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7780055 Scirica et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7870989 Viola et al. Jan 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922063 Zemlok et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7942303 Shah May 2011 B2
7959050 Smith et al. Jun 2011 B2
7967180 Scirica Jun 2011 B2
8002795 Beetel Aug 2011 B2
D650074 Hunt et al. Dec 2011 S
8113410 Hall et al. Feb 2012 B2
8136712 Zingman Mar 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8220688 Laurent et al. Jul 2012 B2
20020117534 Green et al. Aug 2002 A1
20040006372 Racenet et al. Jan 2004 A1
20040034369 Sauer et al. Feb 2004 A1
20040094597 Whitman et al. May 2004 A1
20040108357 Milliman et al. Jun 2004 A1
20040164123 Racenet et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040173659 Green et al. Sep 2004 A1
20040222268 Bilotti et al. Nov 2004 A1
20040232201 Wenchell et al. Nov 2004 A1
20040243151 Demmy et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050059997 Bauman et al. Mar 2005 A1
20050119669 Demmy Jun 2005 A1
20050125009 Perry et al. Jun 2005 A1
20050143759 Kelly Jun 2005 A1
20050145675 Hartwick et al. Jul 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050189397 Jankowski Sep 2005 A1
20050192628 Viola Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050240222 Shipp Oct 2005 A1
20050263563 Racenet et al. Dec 2005 A1
20060011699 Olson et al. Jan 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060060630 Shelton, IV et al. Mar 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060100643 Laufer et al. May 2006 A1
20060180634 Shelton, IV et al. Aug 2006 A1
20060235469 Viola Oct 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060278681 Viola et al. Dec 2006 A1
20060289602 Wales et al. Dec 2006 A1
20070073341 Smith et al. Mar 2007 A1
20070084897 Shelton, IV et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070170225 Shelton, IV et al. Jul 2007 A1
20070175949 Shelton, IV et al. Aug 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20070175953 Shelton, IV et al. Aug 2007 A1
20070175955 Shelton, IV et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194081 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070295780 Shelton et al. Dec 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080035701 Racenet et al. Feb 2008 A1
20080041917 Racenet et al. Feb 2008 A1
20080078800 Hess et al. Apr 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080078803 Shelton et al. Apr 2008 A1
20080078804 Shelton et al. Apr 2008 A1
20080078806 Omaits et al. Apr 2008 A1
20080078807 Hess et al. Apr 2008 A1
20080078808 Hess et al. Apr 2008 A1
20080082115 Morgan et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080082126 Murray et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080167522 Giordano et al. Jul 2008 A1
20080167671 Giordano et al. Jul 2008 A1
20080167672 Giordano et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169330 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080290134 Bettuchi et al. Nov 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080300580 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton, IV et al. Dec 2008 A1
20080308608 Prommersberger Dec 2008 A1
20080314957 Boudreaux Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001122 Prommersberger et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005807 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012556 Boudreaux et al. Jan 2009 A1
20090076534 Shelton, IV et al. Mar 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090114701 Zemlok et al. May 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206132 Hueil et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206138 Smith et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206140 Scheib et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090206143 Huitema et al. Aug 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090218384 Aranyi Sep 2009 A1
20090242610 Shelton, IV et al. Oct 2009 A1
20090255974 Viola Oct 2009 A1
20090255978 Viola et al. Oct 2009 A1
20090308907 Nalagatla et al. Dec 2009 A1
20100012704 Tarinelli Racenet et al. Jan 2010 A1
20100032470 Hess et al. Feb 2010 A1
20100065605 Shelton, IV et al. Mar 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100072252 Baxter, III et al. Mar 2010 A1
20100072254 Aranyi et al. Mar 2010 A1
20100076474 Yates et al. Mar 2010 A1
20100076475 Yates et al. Mar 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100089974 Shelton, IV Apr 2010 A1
20100127042 Shelton, IV May 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100133318 Boudreaux Jun 2010 A1
20100179382 Shelton, IV et al. Jul 2010 A1
20100181364 Shelton, IV et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100193567 Scheib et al. Aug 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100193569 Yates et al. Aug 2010 A1
20100198220 Boudreaux et al. Aug 2010 A1
20100213241 Bedi et al. Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100224669 Shelton, IV et al. Sep 2010 A1
20100237132 Measamer et al. Sep 2010 A1
20100243707 Olson et al. Sep 2010 A1
20100243708 Aranyi et al. Sep 2010 A1
20100243709 Hess et al. Sep 2010 A1
20100264193 Huang et al. Oct 2010 A1
20100264194 Huang et al. Oct 2010 A1
20100276471 Whitman Nov 2010 A1
20100294829 Giordano et al. Nov 2010 A1
20100301095 Shelton, IV et al. Dec 2010 A1
20100301096 Moore et al. Dec 2010 A1
20100305552 Shelton, IV et al. Dec 2010 A1
20100308100 Boudreaux Dec 2010 A1
20110006099 Hall et al. Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110006103 Laurent et al. Jan 2011 A1
20110011914 Baxter, III et al. Jan 2011 A1
20110011915 Shelton, IV Jan 2011 A1
20110024477 Hall Feb 2011 A1
20110024478 Shelton, Iv Feb 2011 A1
20110024479 Swensgard et al. Feb 2011 A1
20110042441 Shelton, IV et al. Feb 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110062212 Shelton, IV et al. Mar 2011 A1
20110068145 Bedi et al. Mar 2011 A1
20110068148 Hall et al. Mar 2011 A1
20110084112 Kostrzewski Apr 2011 A1
20110084113 Bedi et al. Apr 2011 A1
20110084115 Bedi et al. Apr 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114698 Baxter, III et al. May 2011 A1
20110114699 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110118761 Baxter, III et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110125177 Yates et al. May 2011 A1
20110132963 Giordano et al. Jun 2011 A1
20110132964 Weisenburgh, II et al. Jun 2011 A1
20110132965 Moore et al. Jun 2011 A1
20110144430 Spivey et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110147434 Hueil et al. Jun 2011 A1
20110155780 Boudreaux Jun 2011 A1
20110155781 Swensgard et al. Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110163147 Laurent et al. Jul 2011 A1
20110174863 Shelton, IV et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110226837 Baxter, III et al. Sep 2011 A1
20110233258 Boudreaux Sep 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110288573 Yates et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110290855 Moore et al. Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110290857 Shelton, IV et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20110295270 Giordano et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20120024934 Shelton, IV et al. Feb 2012 A1
20120024935 Shelton, IV et al. Feb 2012 A1
20120024936 Baxter, III et al. Feb 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120029544 Shelton, IV et al. Feb 2012 A1
20120029547 Shelton, IV et al. Feb 2012 A1
20120071711 Shelton, IV et al. Mar 2012 A1
20120071866 Kerr et al. Mar 2012 A1
20120074196 Shelton, IV et al. Mar 2012 A1
20120074198 Huitema et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120074201 Baxter, III et al. Mar 2012 A1
20120080332 Shelton, IV et al. Apr 2012 A1
20120080333 Woodard, Jr. et al. Apr 2012 A1
20120080334 Shelton, IV et al. Apr 2012 A1
20120080335 Shelton, IV et al. Apr 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080337 Shelton, IV et al. Apr 2012 A1
20120080338 Shelton, IV et al. Apr 2012 A1
20120080339 Shelton, IV et al. Apr 2012 A1
20120080340 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080345 Morgan et al. Apr 2012 A1
20120080477 Leimbach et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080479 Shelton, IV Apr 2012 A1
20120080480 Woodard, Jr. et al. Apr 2012 A1
20120080481 Widenhouse et al. Apr 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080483 Riestenberg et al. Apr 2012 A1
20120080484 Morgan et al. Apr 2012 A1
20120080485 Woodard, Jr. et al. Apr 2012 A1
20120080486 Woodard, Jr. et al. Apr 2012 A1
20120080487 Woodard, Jr. et al. Apr 2012 A1
20120080488 Shelton, IV et al. Apr 2012 A1
20120080489 Shelton, IV et al. Apr 2012 A1
20120080490 Shelton, IV et al. Apr 2012 A1
20120080491 Shelton, IV et al. Apr 2012 A1
20120080493 Shelton, IV et al. Apr 2012 A1
20120080496 Schall et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120080499 Schall et al. Apr 2012 A1
20120080500 Morgan et al. Apr 2012 A1
20120080501 Morgan et al. Apr 2012 A1
20120080502 Morgan et al. Apr 2012 A1
20120080503 Woodard, Jr. et al. Apr 2012 A1
20120083833 Shelton, IV et al. Apr 2012 A1
20120083834 Shelton, IV et al. Apr 2012 A1
20120083835 Shelton, IV et al. Apr 2012 A1
20120083836 Shelton, IV et al. Apr 2012 A1
20120132450 Timm et al. May 2012 A1
20120138660 Shelton, IV Jun 2012 A1
20120160721 Shelton, IV et al. Jun 2012 A1
20120175399 Shelton et al. Jul 2012 A1
Foreign Referenced Citations (504)
Number Date Country
2458946 Mar 2003 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
1868411 Nov 2006 CN
1915180 Feb 2007 CN
101095621 Jan 2008 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3210466 Sep 1983 DE
9412228 Sep 1994 DE
19509116 Sep 1996 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
10052679 May 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314072 Oct 2004 DE
202007003114 Jun 2007 DE
0122046 Oct 1984 EP
0070230 Oct 1985 EP
0387980 Oct 1985 EP
0033548 May 1986 EP
0276104 Jul 1988 EP
0248844 Jan 1993 EP
0545029 Jun 1993 EP
0277959 Oct 1993 EP
0233940 Nov 1993 EP
0261230 Nov 1993 EP
0639349 Feb 1994 EP
0324636 Mar 1994 EP
0593920 Apr 1994 EP
0427949 Jun 1994 EP
0523174 Jun 1994 EP
0600182 Jun 1994 EP
0310431 Nov 1994 EP
0375302 Nov 1994 EP
0376562 Nov 1994 EP
0630612 Dec 1994 EP
0634144 Jan 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0511470 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0364216 Jan 1996 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0705571 Apr 1996 EP
0711611 May 1996 EP
0484677 Jun 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0708618 Mar 1997 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0447121 Jul 1997 EP
0625077 Jul 1997 EP
0633749 Aug 1997 EP
0710090 Aug 1997 EP
0578425 Sep 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0649290 Mar 1998 EP
0598618 Sep 1998 EP
0676173 Sep 1998 EP
0678007 Sep 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0695144 Dec 1998 EP
0722296 Dec 1998 EP
0760230 Feb 1999 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0537572 Jun 1999 EP
0923907 Jun 1999 EP
0843906 Mar 2000 EP
0552050 May 2000 EP
0833592 May 2000 EP
0830094 Sep 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
1256318 May 2001 EP
0806914 Sep 2001 EP
0768840 Dec 2001 EP
0908152 Jan 2002 EP
0872213 May 2002 EP
0862386 Jun 2002 EP
0949886 Sep 2002 EP
1238634 Sep 2002 EP
0858295 Dec 2002 EP
0656188 Jan 2003 EP
1284120 Feb 2003 EP
1287788 Mar 2003 EP
0717966 Apr 2003 EP
0869742 May 2003 EP
0829235 Jun 2003 EP
0887046 Jul 2003 EP
0852480 Aug 2003 EP
0891154 Sep 2003 EP
0813843 Oct 2003 EP
0873089 Oct 2003 EP
0856326 Nov 2003 EP
1374788 Jan 2004 EP
0741996 Feb 2004 EP
0814712 Feb 2004 EP
1402837 Mar 2004 EP
0705570 Apr 2004 EP
0959784 Apr 2004 EP
1407719 Apr 2004 EP
1086713 May 2004 EP
0996378 Jun 2004 EP
1426012 Jun 2004 EP
0833593 Jul 2004 EP
1442694 Aug 2004 EP
0888749 Sep 2004 EP
0959786 Sep 2004 EP
1459695 Sep 2004 EP
1473819 Nov 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
1001710 Jan 2005 EP
1520521 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1523942 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1067876 Aug 2005 EP
0870473 Sep 2005 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
1330989 Dec 2005 EP
0771176 Jan 2006 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621145 Feb 2006 EP
1621151 Feb 2006 EP
1034746 Mar 2006 EP
1632191 Mar 2006 EP
1065981 May 2006 EP
1082944 May 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1253866 Jul 2006 EP
1032318 Aug 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1693015 Aug 2006 EP
1400214 Sep 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1400206 Nov 2006 EP
1721568 Nov 2006 EP
1256317 Dec 2006 EP
1285633 Dec 2006 EP
1728473 Dec 2006 EP
1728475 Dec 2006 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1767163 Mar 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1581128 May 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1800610 Jun 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813201 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1487359 Oct 2007 EP
1599146 Oct 2007 EP
1839596 Oct 2007 EP
1402821 Dec 2007 EP
1872727 Jan 2008 EP
1897502 Mar 2008 EP
1330201 Jun 2008 EP
1702568 Jul 2008 EP
1943957 Jul 2008 EP
1943976 Jul 2008 EP
1593337 Aug 2008 EP
1970014 Sep 2008 EP
1980213 Oct 2008 EP
1759645 Nov 2008 EP
1990014 Nov 2008 EP
1693008 Dec 2008 EP
1759640 Dec 2008 EP
2000102 Dec 2008 EP
1736104 Mar 2009 EP
1749486 Mar 2009 EP
2039316 Mar 2009 EP
1721576 Apr 2009 EP
1733686 Apr 2009 EP
2044890 Apr 2009 EP
1550413 Jun 2009 EP
1745748 Aug 2009 EP
2090256 Aug 2009 EP
1813208 Nov 2009 EP
1607050 Dec 2009 EP
1566150 Apr 2010 EP
1813206 Apr 2010 EP
1769754 Jun 2010 EP
1535565 Oct 2010 EP
1702570 Oct 2010 EP
1785098 Oct 2010 EP
1627605 Dec 2010 EP
1813205 Jun 2011 EP
1785102 Jan 2012 EP
999646 Feb 1952 FR
1112936 Mar 1956 FR
2765794 Jan 1999 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2109241 Jun 1983 GB
2272159 May 1994 GB
2284242 May 1995 GB
2336214 Oct 1999 GB
2425903 Nov 2006 GB
S 58500053 Jan 1983 JP
61-98249 May 1986 JP
3-12126 Jan 1991 JP
5-212039 Aug 1993 JP
6007357 Jan 1994 JP
7051273 Feb 1995 JP
8033641 Feb 1996 JP
8229050 Sep 1996 JP
2000033071 Feb 2000 JP
2000171730 Jun 2000 JP
2000287987 Oct 2000 JP
2000325303 Nov 2000 JP
2001-514541 Sep 2001 JP
2001286477 Oct 2001 JP
2002143078 May 2002 JP
2002369820 Dec 2002 JP
2004-344663 Dec 2004 JP
2005-028149 Feb 2005 JP
2005505322 Feb 2005 JP
2005103293 Apr 2005 JP
2005131163 May 2005 JP
2005131164 May 2005 JP
2005131173 May 2005 JP
2005131211 May 2005 JP
2005131212 May 2005 JP
2005137423 Jun 2005 JP
2005152416 Jun 2005 JP
2005-523105 Aug 2005 JP
2005524474 Aug 2005 JP
2006-281405 Oct 2006 JP
2008830 Mar 1994 RU
2187249 Aug 2002 RU
2225170 Mar 2004 RU
189517 Jan 1967 SU
328636 Sep 1972 SU
886900 Dec 1981 SU
1009439 Apr 1983 SU
1333319 Aug 1987 SU
1377053 Feb 1988 SU
1561964 May 1990 SU
1722476 Mar 1992 SU
WO 8202824 Sep 1982 WO
WO 9115157 Oct 1991 WO
WO 9220295 Nov 1992 WO
WO 9221300 Dec 1992 WO
WO 9308755 May 1993 WO
WO 9313718 Jul 1993 WO
WO 9314690 Aug 1993 WO
WO 9315648 Aug 1993 WO
WO 9315850 Aug 1993 WO
WO 9319681 Oct 1993 WO
WO 9400060 Jan 1994 WO
WO 9411057 May 1994 WO
WO 9412108 Jun 1994 WO
WO 9418893 Sep 1994 WO
WO 9422378 Oct 1994 WO
WO 9423659 Oct 1994 WO
WO 9502369 Jan 1995 WO
WO 9503743 Feb 1995 WO
WO 9506817 Mar 1995 WO
WO 9509576 Apr 1995 WO
WO 9509577 Apr 1995 WO
WO 9514436 Jun 1995 WO
WO 9517855 Jul 1995 WO
WO 9518383 Jul 1995 WO
WO 9518572 Jul 1995 WO
WO 9519739 Jul 1995 WO
WO 9520360 Aug 1995 WO
WO 9523557 Sep 1995 WO
WO 9524865 Sep 1995 WO
WO 9525471 Sep 1995 WO
WO 9526562 Oct 1995 WO
WO 9529639 Nov 1995 WO
WO 9604858 Feb 1996 WO
WO 9619151 Jun 1996 WO
WO 9619152 Jun 1996 WO
WO 9620652 Jul 1996 WO
WO 9621119 Jul 1996 WO
WO 9622055 Jul 1996 WO
WO 9623448 Aug 1996 WO
WO 9624301 Aug 1996 WO
WO 9627337 Sep 1996 WO
WO 9631155 Oct 1996 WO
WO 9635464 Nov 1996 WO
WO 9639085 Dec 1996 WO
WO 9639086 Dec 1996 WO
WO 9639087 Dec 1996 WO
WO 9639088 Dec 1996 WO
WO 9639089 Dec 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9706582 Feb 1997 WO
WO 9710763 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9711648 Apr 1997 WO
WO 9711649 Apr 1997 WO
WO 9715237 May 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9730644 Aug 1997 WO
WO 9734533 Sep 1997 WO
WO 9737598 Oct 1997 WO
WO 9739688 Oct 1997 WO
WO 9817180 Apr 1998 WO
WO 9827880 Jul 1998 WO
WO 9830153 Jul 1998 WO
WO 9847436 Oct 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912483 Mar 1999 WO
WO 9912487 Mar 1999 WO
WO 9912488 Mar 1999 WO
WO 9915086 Apr 1999 WO
WO 9915091 Apr 1999 WO
WO 9923933 May 1999 WO
WO 9923959 May 1999 WO
WO 9925261 May 1999 WO
WO 9929244 Jun 1999 WO
WO 9934744 Jul 1999 WO
WO 9945849 Sep 1999 WO
WO 9948430 Sep 1999 WO
WO 9951158 Oct 1999 WO
WO 0024322 May 2000 WO
WO 0024330 May 2000 WO
WO 0041638 Jul 2000 WO
WO 0048506 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0054653 Sep 2000 WO
WO 0057796 Oct 2000 WO
WO 0064365 Nov 2000 WO
WO 0072762 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0103587 Jan 2001 WO
WO 0105702 Jan 2001 WO
WO 0110482 Feb 2001 WO
WO 0135845 May 2001 WO
WO 0154594 Aug 2001 WO
WO 0158371 Aug 2001 WO
WO 0162158 Aug 2001 WO
WO 0162161 Aug 2001 WO
WO 0162162 Aug 2001 WO
WO 0162164 Aug 2001 WO
WO 0162169 Aug 2001 WO
WO 0178605 Oct 2001 WO
WO 0191646 Dec 2001 WO
WO 0207608 Jan 2002 WO
WO 0207618 Jan 2002 WO
WO 0217799 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0219932 Mar 2002 WO
WO 0230297 Apr 2002 WO
WO 0232322 Apr 2002 WO
WO 0236028 May 2002 WO
WO 0243571 Jun 2002 WO
WO 02058568 Aug 2002 WO
WO 02060328 Aug 2002 WO
WO 02067785 Sep 2002 WO
WO 02098302 Dec 2002 WO
WO 03000138 Jan 2003 WO
WO 03001329 Jan 2003 WO
WO 03013363 Feb 2003 WO
WO 03015604 Feb 2003 WO
WO 03020106 Mar 2003 WO
WO 03020139 Mar 2003 WO
WO 03024339 Mar 2003 WO
WO 03079909 Mar 2003 WO
WO 03030743 Apr 2003 WO
WO 03037193 May 2003 WO
WO 03047436 Jun 2003 WO
WO 03055402 Jul 2003 WO
WO 03057048 Jul 2003 WO
WO 03057058 Jul 2003 WO
WO 03063694 Aug 2003 WO
WO 03077769 Sep 2003 WO
WO 03079911 Oct 2003 WO
WO 03082126 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03090630 Nov 2003 WO
WO 03094743 Nov 2003 WO
WO 03094745 Nov 2003 WO
WO 03094746 Nov 2003 WO
WO 03094747 Nov 2003 WO
WO 03101313 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 03105702 Dec 2003 WO
WO 2004006980 Jan 2004 WO
WO 2004011037 Feb 2004 WO
WO 2004019769 Mar 2004 WO
WO 2004021868 Mar 2004 WO
WO 2004028585 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004034875 Apr 2004 WO
WO 2004047626 Jun 2004 WO
WO 2004047653 Jun 2004 WO
WO 2004049956 Jun 2004 WO
WO 2004052426 Jun 2004 WO
WO 2004056276 Jul 2004 WO
WO 2004056277 Jul 2004 WO
WO 2004062516 Jul 2004 WO
WO 2004078050 Sep 2004 WO
WO 2004078051 Sep 2004 WO
WO 2004086987 Oct 2004 WO
WO 2004096015 Nov 2004 WO
WO 2004096057 Nov 2004 WO
WO 2004103157 Dec 2004 WO
WO 2004105593 Dec 2004 WO
WO 2004105621 Dec 2004 WO
WO 2004112618 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2005027983 Mar 2005 WO
WO 2005037329 Apr 2005 WO
WO 2005044078 May 2005 WO
WO 2005055846 Jun 2005 WO
WO 2005072634 Aug 2005 WO
WO 2005078892 Aug 2005 WO
WO 2005079675 Sep 2005 WO
WO 2005096954 Oct 2005 WO
WO 2005112806 Dec 2005 WO
WO 2005112808 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2005117735 Dec 2005 WO
WO 2005122936 Dec 2005 WO
WO 2006027014 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006044581 Apr 2006 WO
WO 2006044810 Apr 2006 WO
WO 2006051252 May 2006 WO
WO 2006059067 Jun 2006 WO
WO 2006083748 Aug 2006 WO
WO 2006092563 Sep 2006 WO
WO 2006092565 Sep 2006 WO
WO 2006115958 Nov 2006 WO
WO 2006125940 Nov 2006 WO
WO 2006132992 Dec 2006 WO
WO 2007002180 Jan 2007 WO
WO 2007016290 Feb 2007 WO
WO 2007018898 Feb 2007 WO
WO 2007098220 Aug 2007 WO
WO 2007121579 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2007139734 Dec 2007 WO
WO 2007142625 Dec 2007 WO
WO 2007147439 Dec 2007 WO
WO 2008021969 Feb 2008 WO
WO 2008039270 Apr 2008 WO
WO 2008045383 Apr 2008 WO
WO 2008089404 Jul 2008 WO
WO 2008109125 Sep 2008 WO
WO 2010063795 Jun 2010 WO
Non-Patent Literature Citations (12)
Entry
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748.
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
U.S. Appl. No. 12/635,415, filed Dec. 10, 2009.
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
D. Tuite, Ed., “Get The Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Related Publications (1)
Number Date Country
20120061448 A1 Mar 2012 US