i. Technical Field
The present invention relates, in general, to surgical instruments and, more particularly, to surgical stapling instruments.
ii. Background of the Related Art
Surgical stapling instruments have been used to simultaneously make an incision in tissue and apply lines of staples on opposing sides of the incision. Such instruments commonly include a pair of cooperating jaw members that, if the instrument is intended for endoscopic or laparoscopic applications, are capable of passing through a cannula passageway. In various embodiments, one of the jaw members can receive a staple cartridge having at least two laterally spaced rows of staples. The other jaw member can define an anvil having staple-forming pockets aligned with the rows of staples in the cartridge. The instrument can further include a plurality of wedges, or a staple sled, which, when driven distally, passes through openings in the staple cartridge and engages drivers supporting the staples in order to effect the firing of the staples toward the anvil. The simultaneous severing of tissue while forming rows of staples on each side of the cut can reduce bleeding and simplify various surgical procedures. In certain circumstances, however, the force required to form the staples and incise the tissue simultaneously may be significant.
Previous surgical stapling instruments have included a handle assembly, an elongate shaft extending from the handle assembly, and an end effector movably mounted to the elongate shaft, wherein the end effector can be articulated relative to the elongate shaft. Often, a surgeon is required to use both hands in order to articulate the end effector relative to the shaft, i.e., the surgeon is often required to use one hand to hold the handle assembly of the surgical instrument, for example, and use their other hand to operate a lever, for example, which articulates the end effector. While such surgical instruments can be suitable in many circumstances, a surgeon may not have a hand free to perform another step in the surgical procedure. The foregoing discussion is intended only to illustrate some of the shortcomings present in the field of the invention at the time, and should not be taken as a disavowal of claim scope.
In one general aspect, a surgical instrument can comprise a plurality of magnetic elements configured to articulate an end effector of the surgical instrument. The surgical instrument can comprise at least one electromagnet which can be selectively activated, or polarized, to generate a magnetic field sufficient to motivate at least one second magnetic element, such as a permanent magnet and/or an iron core, for example, mounted to the end effector. In various embodiments, a surgical instrument can comprise a first electromagnet configured to generate a first magnetic field which rotates an end effector in a first direction and, in addition, a second electromagnet configured to generate a second magnetic field which rotates the end effector in a second direction. In certain embodiments, a surgical instrument can comprise at least one solenoid which can be configured to pivot an end effector of the surgical instrument.
In one general aspect, a surgical instrument can comprise a motor which can be configured to pivot an end effector of the surgical instrument. In certain embodiments, the motor can comprise windings which can be selectively energized to rotate an iron core. In at least one embodiment, the motor can comprise at least one electromagnet which can be configured to rotate a shaft having at least one magnetic element mounted thereto. In various embodiments, a surgical instrument can further comprise a lock and/or brake which can be configured to prevent, or at least inhibit, the articulation of the end effector of the surgical instrument. In certain embodiments, a lock can comprise at least one solenoid, motor, and/or electromagnet which can be configured to move a locking element between locked and unlocked positions in order to engage and disengage the locking element with the end effector.
In one general aspect, a surgical instrument can comprise a plurality of magnetic elements configured to open and close an end effector of the surgical instrument. In certain embodiments, the surgical instrument can comprise at least one electromagnet which can be selectively activated, or polarized, to generate a magnetic field sufficient to motivate at least one second magnetic element, such as a permanent magnet and/or an iron core, for example, mounted to an anvil of the end effector. In another general aspect, a surgical stapling instrument can comprise a plurality of magnetic elements configured to advance and/or retract a firing bar, cutting member, and/or staple sled within the surgical instrument in order to incise and/or staple tissue positioned within an end effector of the surgical instrument. In certain embodiments, the cutting element can comprise at least one electromagnet mounted thereto which can be configured to generate a magnetic field configured to interact with one or more permanent magnets, for example, mounted to the end effector.
This Summary is intended to briefly outline certain embodiments of the subject application. It should be understood that the subject application is not limited to the embodiments disclosed in this Summary, and is intended to cover modifications that are within its spirit and scope, as defined by the claims. It should be further understood that this Summary should not be read or construed in a manner that will act to narrow the scope of the claims.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate preferred embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
The disclosures of the following commonly-owned, contemporaneously-filed United States Patent Applications are incorporated herein by reference in their entirety:
(1) U.S. patent application Ser. No. 12/366,514, now U.S. Patent Publication No. 2010/0193567, entitled SURGICAL STAPLING INSTRUMENT COMPRISING AN ARTICULATION JOINT; and
(2) U.S. patent application Ser. No. 12/366,539, now U.S. Patent Publication No. 2010/0193566, entitled SURGICAL STAPLING INSTRUMENT.
In various embodiments, referring to
In various embodiments, referring once again to
In use, lock 130 can be disengaged from pivot plate 122 such that end effector 106 can be rotated relative to elongate shaft 104. Once lock 130 has been disengaged from pivot plate 122, in at least one such embodiment, end effector 106 can be placed against a cavity wall within a surgical site, such as the peritoneal cavity wall, for example, and a longitudinal force can be applied to shaft 104 via handle assembly 102 in order to rotate end effector 106 relative to elongate shaft 104. In certain circumstances, such articulation can be referred to as passive articulation. In any event, once end effector 106 has been suitably articulated, lock 130 can be re-engaged with pivot plate 122 and closure tube 112 can be advanced longitudinally by trigger 108 in order to close anvil 114 as described above. The reader will note that, when end effector 106 is moved between a straight position, i.e., a position in which it is aligned or at least substantially aligned with elongate shaft 104, and an articulated position, distal tube portion 118 can be moved between a first angle with respect to closure tube 112 and a second, or different, angle with respect to closure tube 112. In order to accommodate such relative movement, referring to
In various embodiments, referring to
In various embodiments, further to the above, rod 241 can be advanced distally in a direction indicated by arrow “D” in order to rotate end effector 206 in a clockwise direction indicated by arrow “CW”. In order to rotate end effector 206 in a counter-clockwise direction indicated by arrow “CCW”, rod 241 can be retracted proximally in a direction indicated by arrow “P”. In certain embodiments, rod 241 can include a distal end 245 which can be positioned within an aperture 246 in pivot plate 222 such that rod 241 can pivot relative pivot plate 222. In at least one embodiment, rod 241 can be suitably flexible to accommodate relative movement between pivot plate 222 and solenoid 240. In certain embodiments, solenoid 240 can be slidably and/or rotatably mounted within elongate shaft 204 such that rod 241 does not unsuitably bend or bind when it is extended or retracted to drive pivot plate 222 about an axis. In any event, referring to
In certain embodiments, further to the above, elongate shaft 204 can include at least one additional solenoid, such as solenoid 242, for example, which can be configured to rotate pivot plate 222 contemporaneously with, and/or independently of, solenoid 240. In at least one such embodiment, solenoid 242 can comprise a piston and/or rod 243 which can be advanced distally and/or proximally in order to rotate end effector 206 in a clockwise and/or clockwise direction. Conversely to solenoid 240, rod 243 can be extended distally to rotate pivot plate 222 in a counter-clockwise direction and/or retracted proximally to rotate pivot plate 222 in a clockwise direction. Similar to solenoid 240, rod 243 can include a distal end 245 which can be pivotably mounted within an aperture 246 in pivot plate 222. Also similar to solenoid 240, solenoid 242 can be rotatably and/or slidably mounted within elongate shaft 204 in order to add at least one degree of freedom to a system of linkages comprising pivot plate 222, pin insert plate 226, solenoid 242, and rod 243 in order to permit articulation between end effector 206 and shaft 204.
As described above, an end effector of a surgical instrument can be locked into position once the end effector has been suitably articulated. In various embodiments, referring to
In various embodiments, referring to
Similar to the above, a surgical instrument, such as surgical instrument 500, for example, can include one or more motors configured to articulate an end effector of the surgical instrument using a worm drive arrangement. In various embodiments, surgical instrument 500 can comprise an elongate shaft 504 and an end effector 506, wherein end effector 506 can be configured to articulate relative to elongate shaft 504 about articulation joint 520. Similar to surgical instrument 400, end effector 506 can comprise a pivot plate 522 retained within a staple cartridge channel 513, wherein pivot plate 522 can comprise a pin aperture 523 configured to receive an articulation pin extending from a pin insert plate 526 retained within elongate shaft 504. In at least one embodiment, elongate shaft 504 can further comprise a motor, such as motor 540, for example, mounted therein which can be operably engaged with pivot plate 522 in order to rotate, or articulate, end effector 506 relative to shaft 504. More particularly, in at least one such embodiment, motor 540 can be configured to rotate a worm, such as worm 539, for example, which can be meshingly engaged with a worm gear, or concave worm wheel portion, 529 on pivot plate 522 such that the rotation of worm 539 can be transmitted to pivot plate 522. A worm drive arrangement, such as the one described above, for example, can provide a very large gear ratio such that a gear box is not required to reduce the speed of the motor, although a gear box can be used. In certain embodiments, a worm drive arrangement can be self-locking. More particularly, the lead angle of the helical thread on worm 539 can be such that end effector 506 and worm gear portion 529 cannot be rotated in order to drive worm 539 and motor 540 in reverse. Stated another way, worm gear portion 529 and worm 539 can be configured such that they are friction-locked together if a rotational force is applied to end effector 506. In certain embodiments, as a result, the articulation of end effector 506 relative to elongate shaft 504 can only be controlled by the selective rotation of worm 539 by motor 540 in clockwise and counter-clockwise directions in order to rotate end effector 506 in left and right directions, for example, about articulation joint 520. In at least one such embodiment, a separate articulation lock, such as those described above, for example, may not be required, although they can be used.
In various embodiments, at least a portion of an elongate shaft of a surgical instrument, such as surgical instrument 600, for example, can comprise a motor configured to articulate an end effector of a surgical instrument. In various embodiments, referring to
In various embodiments, further to the above, spine portion 616 and/or pivot pin member 626 can include one or more apertures or recesses, such as apertures 651, for example, which can be configured to receive one or more electromagnets, such as electromagnets 647, for example, mounted therein. Although not illustrated, surgical instrument 600 can further comprise one or more conductors, such as insulated wires, for example, which can be configured to conduct an electrical current therethrough when a current source and/or voltage source, such as a battery, for example, is operably coupled with the conductors. In at least one such embodiment, the conductors can extend from a handle assembly of the surgical instrument, such as handle assembly 102, for example, to the distal end of elongate shaft 604, wherein the conductors can be wrapped or coiled around ferromagnetic cores, which can be comprised of iron and/or cobalt, for example, to comprise electromagnets 647a and 647b. In use, in at least one embodiment, a surgical instrument can further include a switch, or actuator, which can be operated to selectively couple the current source and/or voltage source to the conductors. In certain embodiments, when electrical current is not flowing through the conductors, electromagnets 647a, 647b may not generate a magnetic field and, when sufficient electrical current is flowing through the conductors, the electrical current can generate one or more magnetic fields which can be utilized to rotate driver 639. Referring primarily to
In various embodiments, further to the above, permanent magnets 649 can comprise a magnetic polarity regardless of whether they are present in a magnetic field. In at least one embodiment, each permanent magnet 649 can comprise a positive, or north, pole 649n and a negative, or south, pole 649s, wherein poles 649n and 649s can be arranged such that, when the magnetic field, or fields, produced by the electromagnets 647a and 647b are selectively produced, such magnetic fields can interact with magnetic fields produced by permanent magnets 649 and, as a result, rotate driver 639. In various embodiments, driver 639 can be closely received and rotatably supported within aperture 654 in spine 616 such that driver 639 can be rotated about an axis when permanent magnets 649 are displaced within the magnetic field produced by electromagnets 647a, 647b. As outlined above, electromagnets 647a and 647b can be selectively energized to create a magnetic field which, owing to the polarity of permanent magnets 649, causes permanent magnets 649 to be displaced within the magnetic field(s). In various embodiments, electromagnets 647a and 647b can be energized such that electromagnets 647a have a different polarity than the polarity of electromagnets 647b. In at least one embodiment, electromagnets 647a and 647b can be energized such that they have opposite polarities, or different positive (north) and negative (south) poles, and such that the poles of electromagnets 647a and 647b are arranged in an alternating fashion. In various embodiments, the direction of current flowing through the conductors wrapped around the cores of electromagnets 647a, 647b can determine the polarity of the magnetic field(s) generated by the electromagnets. In use, the direction of the current flowing through the conductors as described above can be repeatedly switched, or alternated, such that the polarities of one or more of the electromagnets 647a and 647b can be repeatedly switched, or alternated, in order to attract and/or repel permanent magnets 649 in a manner such that driver 639 can be continuously rotated in clockwise and/or counter-clockwise directions, for example.
As described above, the operation of permanent magnets 647a, 647b can rotate driver 639 in a clockwise and/or counter-clockwise direction. In various embodiments, driver 639 can further comprise one or more gear portions, or drive teeth, which can be configured to engage or mate with a corresponding gear portion, or drive teeth, on pivot member 622. More particularly, in at least one embodiment, driver 639 can include a first gear portion 639a extending therefrom which can be configured to engage a first gear portion 629a extending from pivot member 622 such that, when driver 639 is rotated as described above, first gear portion 639a can drive first gear portion 629a to pivot or articulate pivot member 622 and, correspondingly, end effector 606 about pivot pins 627a and 627b. In at lest one such embodiment, referring primarily to
As outlined above, a surgical instrument can include a handle assembly for operating the surgical instrument. In various embodiments, referring now to
In addition to the closure drive described above, handle assembly 702 can further comprise an articulation system configured to rotate a driver, such as driver 739, for example, in order to articulate end effector 706 relative to elongate shaft 704. In at least one such embodiment, handle assembly 702 can further comprise articulation knob 760 which can be moved between locked and unlocked positions wherein, in certain embodiments, referring primarily to
Further to the above, when articulation knob 760 is moved into its unlocked, or proximal, position, locking teeth 761 can be sufficiently disengaged from locking teeth 771 such that articulation knob 760 can be rotated relative to rotation knob 770. In at least one such embodiment, referring again to
In use, as outlined above, articulation knob 760 can be pulled proximally to disengage locking teeth 761 from locking teeth 771 of rotation knob 770. In various embodiments, referring generally to
In various embodiments, further to the above, rotation knob 770 can be configured to rotate end effector 706 about a longitudinal axis, such as longitudinal axis 799, for example. In at least one such embodiment, referring primarily to
In addition to the above, referring to
In various embodiments, further to the above, a surgeon can hold handle assembly 702 in one hand, such as their right hand, for example, and operate surgical instrument 700. In at least one embodiment, as outlined above, the surgeon can retract triggers 108 and 110 toward pistol grip 103 by positioning their thumb, for example, on the proximal side of pistol grip 103 and positioning one or more fingers of the same hand on the distal side of triggers 108 and 110 in order to apply a force thereto and pull them toward pistol grip 103. As also outlined above, a surgeon can extend one or more of their fingers of the same hand distally in order to grasp lip 769 of articulation knob 760 and/or lip 779 of rotation knob 770 and pull them proximally. Stated another way, a surgeon can open and close anvil 114 via closure trigger 108, incise and staple tissue via firing trigger 110, articulate end effector 706 relative to elongate shaft 704 about articulation joint 720, and, in addition, rotate end effector 706 about longitudinal axis 799 all with one hand. As a result, the surgeon can have their other hand available to perform other tasks during a surgery. In various circumstances, however, the operation of knobs 760 and 770 and triggers 108 and 110 may require a surgeon to use two hands to operate the surgical instrument, especially if the surgeon's hands are too small or are otherwise unable to perform the tasks set forth above, thereby defeating one or more possible advantages. In various alternative embodiments, referring now to
Similar to articulation knob 760 of surgical instrument 700, referring now to
Once articulation knob 860 has been sufficiently unlocked, as described above, articulation knob 860 can be rotated relative to rotation knob 870 in order to articulate end effector 706 relative to elongate shaft 704. In various embodiments, articulation knob 860 can include one or more magnetic elements 849 which can be configured to interact with a magnetic field, or fields, produced by one or more electromagnets 847 mounted to rotation knob 870. In at least one such embodiment, magnetic elements 849 can be comprised of iron, and/or any other suitable ferromagnetic material, for example, and can be embedded within and/or otherwise suitably mounted to articulation knob 860. In various embodiments, electromagnets 847 can apply a magnetomotive force (mmf) to magnetic elements 849 in order to displace magnetic elements 849, and articulation knob 860, relative to electromagnets 847 and rotation knob 870. In at least one embodiment, the polarity of electromagnets 847 can be switched between first and second polarities in order to drive articulation knob 860 in a first direction indicated by arrow D1 (
Similar to rotation knob 770 of surgical instrument 700, rotation knob 870 of surgical instrument 800 can be moved between a distal position in which it is locked to frame 801 and a proximal position in which it is unlocked from frame 801. In various embodiments, further to the above, a system of electromagnets and magnetic elements, for example, can be utilized to move rotation knob 870 between its locked and unlocked positions. In at least one such embodiment, referring to
Although not illustrated, the reader will appreciate that the electromagnets of surgical instrument 800 can be powered by a common power source, such as a battery, for example, and/or different power sources. Referring once again to
In various embodiments, similar to the above, handle assembly 802 can further comprise one or more conductors, or wires, 884 which can supply current and/or apply voltage to electromagnets 881. In some embodiments, although not illustrated, conductors 884 can have sufficient flexibility and/or slack in order to accommodate relative movement between rotation knob 870 and frame 801. In other embodiments, similar to the above, handle assembly 802 can comprise one or more brushes 885 positioned intermediate rotation knob 870 and frame 801 which can be configured to conduct current between a power source and electromagnets 881 regardless of whether rotation knob 860 is moving relative to frame 801 and/or regardless of the degree of rotation between rotation knob 870 and frame 801. Similar to the above, brushes 885 comprise metal fiber brushes, such as braided copper brushes, for example, carbon brushes, and/or any other suitable brush which can be sufficiently resilient such that they can flex, or compress, when rotation knob 870 is pulled distally and re-expand when rotation knob 870 is moved back into its locked position. In addition to the above, brushes 885, and/or brushes 888, can permit relative sliding movement between two halves of the brush. More particularly, in at least one embodiment, a brush 885, for example, can comprise a first half mounted to rotation knob 870 having bristles extending therefrom, wherein the second half of brush 885 can comprise a contact plate, or plates, mounted to frame 801 against which the bristles can contact and slide thereover. In other various embodiments, a brush 885, for example, can comprise first and second halves each having bristles extending therefrom, wherein the first and second halves can be mounted to rotation knob 870 and frame 801 and can contact and slide over one another. In any event, brushes 885 can be positioned in an annular, or at least substantially annular, array around frame 801 and rotation knob 870. In various embodiments, referring once again to
In various embodiments, a surgical instrument can include one or more electromagnets positioned within an elongate shaft, wherein the electromagnets can be configured to articulate an end effector of the surgical instrument relative to the elongate shaft. In at least one embodiment, referring to
In use, in at least one embodiment, electromagnet 940b, for example, can be energized, or polarized, such that the distal end of electromagnet 940b comprises a positive, or north, magnetic pole of a magnetic field. In such circumstances, the positive poles of magnetic elements 949 can be repulsed away from electromagnet 940b and the negative poles of magnetic elements 949 can be attracted toward electromagnet 940b. In various embodiments, as a result, the magnetic field produced by electromagnet 940b, for example, can be sufficient to displace, or rotate, pivot plate 922, and end effector 906, in a counter-clockwise direction indicated by arrow CCW, for example. In at least one such embodiment, referring to
In various embodiments, it may be desirable to limit the range in which end effector 906 can be rotated relative to elongate shaft 904. In certain embodiments, although not illustrated, elongate shaft 904 can include one or more stops which can be configured to stop the rotation of end effector 906 when it is moved in a clockwise direction and/or a counter-clockwise direction. In at least one such embodiment, the stops can limit the maximum rotation of end effector 906 in the clockwise and/or counter-clockwise directions. In some embodiments, referring to
In various embodiments, referring primarily to
As described above, elongate shaft 904 can comprise two electromagnets, i.e., electromagnets 940a and 940b, which can be configured to emit a magnetic field, or fields, which can interact with magnetic elements 949. As illustrated in
In various embodiments, referring now to
In various embodiments, further to the above, electromagnets 1141 can be selectively energized, or polarized, in order to retract or repel permanent magnets 1149 and rotate end effector 1106 in a desired direction. In certain embodiments, referring to
Once end effector 1106 has been sufficiently articulated, further to the above, end effector 1106 can be locked into position. In various embodiments, referring to
In order to disengage brake shoe 1131 from pivot plate 1122, in various embodiments, magnetic elements 1133 can comprise electromagnets which can be selectively energized to order to create a magnetic field, or fields, which can move brake shoe 1131 away from pivot plate 1122. In at least one circumstance, electromagnets 1133 can be energized in order to generate positive poles at their distal ends, i.e., their ends closest to pivot plate 122, such that the positive poles generated by electromagnets 1133 are repelled by the positive poles of permanent magnets 1138. In various embodiments, electromagnets 1133 can be mounted to brake shoe 1131 such that, when a sufficient magnetomotive force is generated, brake shoe 1131 can be displaced proximally. Brake shoe 1131 can be displaced proximally such that brake shoe 1131 is no longer engaged with brake surface 1125 and/or such that brake shoe 1131 is otherwise unable to apply a sufficient braking force to pivot plate 1122 in order to hold end effector 1106 in position. In certain other embodiments, the negative poles of permanent magnets 1138 can be positioned radially outwardly such that, when electromagnets 1133 are energized, negative poles generated at the distal ends of electromagnets 1133 can be repelled by the negative poles of permanent magnets 1138. In at least one embodiment, referring primarily to
In various embodiments, further to the above, an articulation joint can comprise first and second portions which can be configured to articulate relative to one another. In various other embodiments, an articulation joint can comprise more than two portions which can articulate relative to one another. In at least one such embodiment, referring to
In various embodiments, further to the above, each electromagnet 1240a can comprise a core, such as core 1241a, for example, and a conductor, such as conductor 1247a, for example, wherein conductors 1247a can be configured to conduct current when a current source and/or voltage source is supplied to conductors 1247a, and wherein at least a portion of conductors 1247a can be wrapped around cores 1241a in order to generate a magnetic field having a polarity. As outlined above, the polarity of such magnetic fields may depend on the direction in which current is flowing through conductors 1247a. Similar to the above, each permanent magnet 1240b can comprise a core, such as core 1241b, for example, and a conductor, such as conductor 1247b, for example, wherein conductors 1247b can be configured to conduct current when a current source and/or voltage source is supplied to conductors 1247b. In use, in at least one embodiment, end effector 1206 can be articulated to the right, or in a clockwise direction, for example, as illustrated in
In various embodiments, similar to the above, end effector 1206 can be articulated to the left, or in a counter-clockwise direction, for example, when current is supplied to, and/or voltage is applied to, conductors 1247b such that current flows through conductors 1247b in a first direction. More particularly, referring again to
In various embodiments, also further to the above, every electromagnet 1240a, for example, in articulation joint 1220 can be energized simultaneously in order to achieve a maximum rightward articulation of end effector 1206. Similarly, every electromagnet 1240b, for example, can be energized simultaneously in order to achieve a maximum leftward articulation of end effector 1206. In at least one embodiment, referring to
As described above, each electromagnet 1240a, 1240b can include a conductor 1247a, 1247b, respectively, which can be configured to conduct current. In various embodiments, conductors 1247a and 1247b can comprise wires, for example, which can be sufficiently flexible to accommodate relative movement between first joint members 1222 and second joint members 1226. In at least one embodiment, conductors 1247a and 1247b can extend through one or more throughholes 1298 in joint members 1222 and 1226, wherein conductors 1247a and 1247b can have sufficient slack such that they are not damaged when end effector 1206 is articulated. In at least some embodiments, referring again to
In various embodiments, as described above, first joint members 1222 can be configured to articulate relative to second joint members 1226 and, correspondingly, second joint members 1226 can be configured to articulate relative to first joint members 1222. In at least one embodiment, referring again to
In any event, further to the above, one or more first joint members 1222 and one or more second joint members 1226 can be realigned along an axis after they have been moved or articulated relative to one other. In at least one embodiment, electromagnets 1240a and 1240b, for example, can be energized in order to straighten out articulation joint 1220 and, in addition, realign end effector 1206 with shaft 1204. More particularly, in at least one embodiment, electromagnets 1240a and electromagnets 1240b can be energized simultaneously such that first joint members 1222 and second joint members 1226 are positioned along a central axis defined by shaft 1204. In certain embodiments, the magnitude of current, and/or power, supplied to electromagnets 1240a and 1240b can be different, at least initially, in order to move joint members 1222 and 1226 into substantial alignment with one another wherein, thereafter, the magnitude of the current and/or power supplied to electromagnets 1240a and 1240b can be equalized, or at least substantially equalized, such that joint members 1222 and 1226 can be more precisely aligned. In certain embodiments, the magnitude of the current and/or power supplied to electromagnets 1240a and 1240b can be the same, or at least substantially the same, initially, especially when end effector 1206 has not been significantly articulated.
In various embodiments, further to the above, an end effector of a surgical instrument can be articulated in more than one plane. In at least one embodiment, referring now to
In use, similar to the above and referring to
In various embodiments, as outlined above, electromagnets 1340b and 1340c can be actuated in order to articulate end effector 1306 in a direction along axis 1395n, for example. In at least one such embodiment, electromagnets 1340b and 1340c can be actuated in order to attract permanent magnets 1349b and 1349c, respectively, thereto. Contemporaneously, in certain embodiments, electromagnets 1340a and 1340d can be actuated in order to repel permanent magnets 1349a and 1349d, respectively, in order to assist in the articulation of end effector 1306. In various embodiments, in view of the above, any suitable combination of electromagnets can be actuated such that they can attract and/or repel the various permanent magnets associated therewith, for example, at the same time and/or in any suitable order.
As outlined above, various combinations of electromagnets 1340a, 1340b, 1340c, and 1340d can be actuated in order to articulate end effector 1306 wherein, in some embodiments, the same magnitude of current can be supplied to the actuated electromagnets in order to articulate end effector 1306 along axes 1395n and 1395p, i.e., along approximately 45 degree angles with respect to axes 1395v and 1395h, for example. In other embodiments, different magnitudes of current can be supplied to various electromagnets such that end effector 1306 is articulated in other directions. For example, conductors 1347c of electromagnets 1340c can be supplied with a current which has approximately twice the magnitude of the current supplied to conductors 1347b of electromagnets 1340b so as to articulate end effector 1306 in a direction which is intermediate axes 1395n and 1395v. In any event, electromagnets 1340a, 1340b, 1340c, and 1340d can all be actuated simultaneously in order to re-straighten articulation joint 1320 along longitudinal axis 1399, for example. In certain embodiments, referring once again to
As described above, a system of permanent magnets and electromagnets can be utilized to articulate an end effector relative to an elongate shaft of a surgical instrument. In various embodiments, a surgical instrument can include a system of permanent magnets and electromagnets configured to drive a cutting member and/or staple driver through an end effector of the surgical instrument. In at least one embodiment, referring to
In various embodiments, similar to the above, staple cartridge channel 1413 can further include a plurality of permanent magnets 1419 mounted thereto wherein permanent magnets 1419 can be configured to advance or retract cutting member 1452. More particularly, in at least one embodiment, cutting member 1452 can comprise one or more electromagnets 1457 which can be energized, or polarized, in order to create a magnetic field, or fields, which can interact with permanent magnets 1419 and generate a magnetomotive force therebetween. In various embodiments, such forces can displace cutting member 1452 proximally and/or distally within end effector 1406. In at least one embodiment, permanent magnets 1419 can be secured within equidistant, or at least substantially equidistant, apertures in staple cartridge channel 1413 and, in addition, electromagnets 1457 can be mounted within lower shoe 1459. In various embodiments, referring to
In various embodiments, as outlined above, electromagnets can be positioned on and/or within a cutting member movable within an end effector. In use, the electromagnets can be actuated, or energized, such that they can produce a polarized magnetic field. In at least one such embodiment, each electromagnet can include at least one conductor arranged in a wrapped configuration wherein, when current is supplied to the conductor, the current can generate a field having positive and negative poles. In certain embodiments, as also outlined above, iron cores positioned within the wrapped conductor can amplify the magnetic field produced by the current. Although electromagnets are entirely suitable in various embodiments, any device capable of selectively generating one or more magnetic fields can be used. In at least one embodiment, for example, a polarizable device can include an annular, or toroidal, permanent magnet, and/or iron core, wherein a conductor can extend through an aperture therein, and wherein a magnetic field produced by current flowing through the conductor can be amplified by the annular iron core surrounding the conductor. In various circumstances, the magnetic field produced by such a device may be sufficient to create a usable magnetomotive force as described herein. In certain embodiments, fields produced by a Hall Effect device, or coil, can be utilized to move a cutting member, for example, within an end effector.
In various embodiments, either in addition to or in lieu of the above, a surgical instrument can comprise a system of permanent magnets and electromagnets configured to advance and/or retract a firing bar within an elongate shaft of a surgical instrument. Referring now to
In various embodiments, further to the above, a surgical instrument can comprise a system including magnetic elements, such as iron cores and/or permanent magnets, for example, and selectively actuatable electromagnets, wherein the system can comprise a linear motor configured to move a firing bar and/or cutting member along a predetermined path, and wherein the path can comprise linear portions and/or curved portions in one or more directions. In various embodiments, the surgical instrument can further comprise a computer, or processor, which can be configured to calculate the appropriate magnitude, duration, and/or direction of the current to be supplied to the electromagnets. In certain embodiments, the surgical instrument can further comprise one or more switches which can be operated by the computer in order to selectively supply current to one or more electromagnets. In certain embodiments, although not illustrated, a surgical instrument can include a handle, an elongate shaft extending from the handle, and an end effector operably coupled to the shaft, wherein the shaft can include one or more conductors wound about an axis or predetermined path within the shaft. In at least one such embodiment, a firing bar, or rod, having an iron portion, for example, can be positioned within an aperture defined by the wound conductors such that, when current is supplied to the conductors, the magnetic field, or fields, generated by the flow of current can move the iron firing bar along the predetermined path. In at least one embodiment, similar to the above, current flowing through the conductors in a first direction can move the firing bar distally within the shaft, for example, and, in addition, current flowing through the conductors in an opposite direction can move the firing bar in an opposite, or proximal, direction.
In various embodiments, an elongate shaft of a surgical instrument can include a solenoid configured to advance and/or retract a firing bar, cutting member, and/or staple driver. In at least one embodiment, referring to
In various embodiments, although not illustrated, a surgical instrument can include a handle, a shaft extending from the handle, and an end effector operably coupled to the shaft, wherein the shaft can include a rotatable drive shaft, and wherein the surgical instrument can further include a motor configured to rotate the drive shaft. Various surgical instruments including a motor and a rotatable drive shaft are disclosed in U.S. Pat. No. 7,422,139 to Shelton, IV, et al., entitled MOTOR-DRIVEN SURGICAL CUTTING FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008; and U.S. Pat. No. 7,416,101 to Shelton, IV, et al., entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH LOADING FORCE FEEDBACK, which issued on Aug. 28, 2008, the entire disclosures of which are incorporated by reference herein. In at least one embodiment, the motor of the surgical instrument can comprise a stepper motor which can be configured to rotate a drive shaft through a predetermined range of rotation. In at least one embodiment, one or more magnetic elements, such as iron cores, for example, can be placed on or embedded within the drive shaft, wherein the magnetic elements can be configured to be detected by one or more sensors positioned within the shaft, for example. In certain embodiments, such sensors can comprise Hall Effect sensors, or coils, which can be configured to detect disruptions within one or more magnetic fields, i.e., disruptions created by the magnetic elements.
In various embodiments, although not illustrated, a surgical instrument can include a system of electromagnets and magnetic elements which can be configured to close and/or open an end effector of a surgical instrument. In at least one such embodiment, similar to the above, the end effector can comprise a staple cartridge channel configured to receive a staple cartridge and, in addition, an anvil rotatably coupled to the staple cartridge channel. In certain embodiments, one or more electromagnets can be positioned within the staple cartridge channel and, in addition, one or more magnetic elements can be positioned within the anvil, wherein, when the electromagnets are energized, or polarized, the electromagnets can generate a magnetic field which can move the magnetic elements toward the electromagnets and, as a result, move the anvil between an open position and a closed position. In some such embodiments, the polarity of the electromagnets can be reversed in order to repel the magnetic elements mounted to the anvil and, as a result, move the anvil between a closed position and an open position. In other embodiments, the current being supplied to the electromagnets can be sufficiently reduced, or disconnected, such that the electromagnets cannot produce a sufficient magnetic field to hold the anvil in its closed position. In at least one such embodiment, the end effector can further comprise a spring which can be configured to bias the anvil into its open position such that, when the electromagnets are sufficiently deenergized as described above, the spring can move the anvil into its open position. In various alternative embodiments, the electromagnets can be configured to bias the anvil into its open position and the spring can be configured to bias the anvil into its closed position.
While the present invention has been illustrated by the description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications may readily appear to those skilled in the art. Furthermore, although the embodiments disclosed herein have been described in connection with an endoscopic cutting and stapling instrument, other embodiments are envisioned in connection with any suitable medical device. While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains.
Further to the above, the various embodiments of the present invention have been described above in connection with cutting-type surgical instruments. It should be noted, however, that in other embodiments, the surgical instruments disclosed herein need not be a cutting-type surgical instrument. For example, it could be a non-cutting endoscopic instrument, a grasper, a stapler, a clip applier, an access device, a drug/gene therapy delivery device, an energy device using ultrasound, RF, laser, etc. Although the present invention has been described herein in connection with certain disclosed embodiments, many modifications and variations to those embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
Further to the above, the various staple cartridges disclosed herein can be disposable. In at least one embodiment, an expended staple cartridge, or an at least partially expended staple cartridge, can be removed from a surgical stapler and replaced with another staple cartridge. In other various embodiments, the staple cartridge may not be removable and/or replaceable during the ordinary use of the surgical instrument but, in some circumstances, may be replaceable while and/or after the surgical stapler is reconditioned as described in greater detail below. In various embodiments, the staple cartridge can be part of a disposable loading unit or end-effector which can further include a staple cartridge carrier, anvil, cutting member, and/or staple driver. In at least one such embodiment, the entire, or at least a portion of, the disposable loading unit or end-effector can be detachably connected to a surgical instrument and can be configured to be replaced.
The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
Preferably, the invention described herein will be processed before surgery. First, a new or used instrument is obtained and if necessary cleaned. The instrument can then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument are then placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, or high-energy electrons. The radiation kills bacteria on the instrument and in the container. The sterilized instrument can then be stored in the sterile container. The sealed container keeps the instrument sterile until it is opened in the medical facility.
Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2853074 | Olson | Sep 1958 | A |
3490675 | Green et al. | Jan 1970 | A |
3551987 | Wilkinson | Jan 1971 | A |
3643851 | Green et al. | Feb 1972 | A |
3662939 | Bryan | May 1972 | A |
3717294 | Green | Feb 1973 | A |
3819100 | Noiles et al. | Jun 1974 | A |
3851196 | Hinds | Nov 1974 | A |
RE28932 | Noiles et al. | Aug 1976 | E |
4169990 | Lerdman | Oct 1979 | A |
4331277 | Green | May 1982 | A |
4383634 | Green | May 1983 | A |
4393728 | Larson et al. | Jul 1983 | A |
4396139 | Hall et al. | Aug 1983 | A |
4402445 | Green | Sep 1983 | A |
4415112 | Green | Nov 1983 | A |
4429695 | Green | Feb 1984 | A |
4434796 | Karapetian et al. | Mar 1984 | A |
4473077 | Noiles et al. | Sep 1984 | A |
4475679 | Fleury, Jr. | Oct 1984 | A |
4489875 | Crawford et al. | Dec 1984 | A |
4500024 | DiGiovanni et al. | Feb 1985 | A |
4505273 | Braun et al. | Mar 1985 | A |
4505414 | Filipi | Mar 1985 | A |
4506671 | Green | Mar 1985 | A |
4522327 | Korthoff et al. | Jun 1985 | A |
4530453 | Green | Jul 1985 | A |
4566620 | Green et al. | Jan 1986 | A |
4571213 | Ishimoto | Feb 1986 | A |
4573622 | Green et al. | Mar 1986 | A |
4580712 | Green | Apr 1986 | A |
4610383 | Rothfuss et al. | Sep 1986 | A |
4619262 | Taylor | Oct 1986 | A |
4629107 | Fedotov et al. | Dec 1986 | A |
4632290 | Green et al. | Dec 1986 | A |
4655222 | Florez et al. | Apr 1987 | A |
4664305 | Blake, III et al. | May 1987 | A |
4671445 | Barker et al. | Jun 1987 | A |
4715520 | Roehr, Jr. et al. | Dec 1987 | A |
4728020 | Green et al. | Mar 1988 | A |
4743214 | Tai-Cheng | May 1988 | A |
4752024 | Green et al. | Jun 1988 | A |
4754909 | Barker et al. | Jul 1988 | A |
4767044 | Green | Aug 1988 | A |
4805823 | Rothfuss | Feb 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4817847 | Redtenbacher et al. | Apr 1989 | A |
4819853 | Green | Apr 1989 | A |
4821939 | Green | Apr 1989 | A |
4844068 | Arata et al. | Jul 1989 | A |
4869414 | Green et al. | Sep 1989 | A |
4869415 | Fox | Sep 1989 | A |
4941623 | Pruitt | Jul 1990 | A |
4944443 | Oddsen et al. | Jul 1990 | A |
5065929 | Schulze et al. | Nov 1991 | A |
5071430 | de Salis et al. | Dec 1991 | A |
5074454 | Peters | Dec 1991 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5137198 | Nobis et al. | Aug 1992 | A |
5139513 | Segato | Aug 1992 | A |
5141144 | Foslien et al. | Aug 1992 | A |
5142932 | Moya et al. | Sep 1992 | A |
5158567 | Green | Oct 1992 | A |
5221036 | Takase | Jun 1993 | A |
5222975 | Crainich | Jun 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5258009 | Conners | Nov 1993 | A |
5271543 | Grant et al. | Dec 1993 | A |
5282829 | Hermes | Feb 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5342395 | Jarrett et al. | Aug 1994 | A |
5342396 | Cook | Aug 1994 | A |
5350400 | Esposito et al. | Sep 1994 | A |
5366479 | McGarry et al. | Nov 1994 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5405072 | Zlock et al. | Apr 1995 | A |
5413272 | Green et al. | May 1995 | A |
5415334 | Williamson, IV et al. | May 1995 | A |
5417361 | Williamson, IV | May 1995 | A |
5425745 | Green et al. | Jun 1995 | A |
5433721 | Hooven et al. | Jul 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5478354 | Tovey et al. | Dec 1995 | A |
5480089 | Blewett | Jan 1996 | A |
5482197 | Green et al. | Jan 1996 | A |
5484095 | Green et al. | Jan 1996 | A |
5485947 | Olson et al. | Jan 1996 | A |
5485952 | Fontayne | Jan 1996 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5487500 | Knodel et al. | Jan 1996 | A |
5489058 | Plyley et al. | Feb 1996 | A |
5497933 | DeFonzo et al. | Mar 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5505363 | Green et al. | Apr 1996 | A |
5507426 | Young et al. | Apr 1996 | A |
5509596 | Green et al. | Apr 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5533661 | Main et al. | Jul 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5553765 | Knodel et al. | Sep 1996 | A |
5554169 | Green et al. | Sep 1996 | A |
5560530 | Bolanos et al. | Oct 1996 | A |
5560532 | DeFonzo et al. | Oct 1996 | A |
5562241 | Knodel et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5577654 | Bishop | Nov 1996 | A |
5580067 | Hamblin et al. | Dec 1996 | A |
5586711 | Plyley et al. | Dec 1996 | A |
5588579 | Schnut et al. | Dec 1996 | A |
5588580 | Paul et al. | Dec 1996 | A |
5588581 | Conlon et al. | Dec 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5603443 | Clark et al. | Feb 1997 | A |
5605273 | Hamblin et al. | Feb 1997 | A |
5607094 | Clark et al. | Mar 1997 | A |
5607095 | Smith et al. | Mar 1997 | A |
5609285 | Grant et al. | Mar 1997 | A |
5628446 | Geiste et al. | May 1997 | A |
5630539 | Plyley et al. | May 1997 | A |
5630540 | Blewett | May 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5632433 | Grant et al. | May 1997 | A |
5634584 | Okorocha et al. | Jun 1997 | A |
5636780 | Green et al. | Jun 1997 | A |
5639008 | Gallagher et al. | Jun 1997 | A |
5651491 | Heaton et al. | Jul 1997 | A |
5653373 | Green et al. | Aug 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5655698 | Yoon | Aug 1997 | A |
5657921 | Young et al. | Aug 1997 | A |
5662258 | Knodel et al. | Sep 1997 | A |
5662260 | Yoon | Sep 1997 | A |
5667527 | Cook | Sep 1997 | A |
5669544 | Schulze et al. | Sep 1997 | A |
5673840 | Schulze et al. | Oct 1997 | A |
5673841 | Schulze et al. | Oct 1997 | A |
5680981 | Mililli et al. | Oct 1997 | A |
5680982 | Schulze et al. | Oct 1997 | A |
5685474 | Seeber | Nov 1997 | A |
5690269 | Bolanos et al. | Nov 1997 | A |
5692668 | Schulze et al. | Dec 1997 | A |
5695524 | Kelley et al. | Dec 1997 | A |
5697543 | Burdorff | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5711472 | Bryan | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5715987 | Kelley et al. | Feb 1998 | A |
5718360 | Green et al. | Feb 1998 | A |
5725554 | Simon et al. | Mar 1998 | A |
5730758 | Allgeyer | Mar 1998 | A |
5732871 | Clark et al. | Mar 1998 | A |
5732872 | Bolduc et al. | Mar 1998 | A |
5743456 | Jones et al. | Apr 1998 | A |
5752644 | Bolanos et al. | May 1998 | A |
5758814 | Gallagher et al. | Jun 1998 | A |
5762256 | Mastri et al. | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5779131 | Knodel et al. | Jul 1998 | A |
5779132 | Knodel et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5785232 | Vidal et al. | Jul 1998 | A |
5797536 | Smith et al. | Aug 1998 | A |
5797537 | Oberlin et al. | Aug 1998 | A |
5797538 | Heaton et al. | Aug 1998 | A |
5799857 | Robertson et al. | Sep 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5826776 | Schulze et al. | Oct 1998 | A |
5829662 | Allen et al. | Nov 1998 | A |
5836503 | Ehrenfels et al. | Nov 1998 | A |
5839639 | Sauer et al. | Nov 1998 | A |
5855311 | Hamblin et al. | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5871135 | Williamson, IV et al. | Feb 1999 | A |
5901895 | Heaton et al. | May 1999 | A |
5911353 | Bolanos et al. | Jun 1999 | A |
5915616 | Viola et al. | Jun 1999 | A |
5937951 | Izuchukwu et al. | Aug 1999 | A |
5941442 | Geiste et al. | Aug 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6053390 | Green et al. | Apr 2000 | A |
6083242 | Cook | Jul 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6102271 | Longo et al. | Aug 2000 | A |
6119913 | Adams et al. | Sep 2000 | A |
6126058 | Adams et al. | Oct 2000 | A |
6171330 | Benchetrit | Jan 2001 | B1 |
6193129 | Bittner et al. | Feb 2001 | B1 |
6202914 | Geiste et al. | Mar 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6250532 | Green et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6330965 | Milliman et al. | Dec 2001 | B1 |
6338737 | Toledano | Jan 2002 | B1 |
6387113 | Hawkins et al. | May 2002 | B1 |
RE37814 | Allgeyer | Aug 2002 | E |
6428070 | Takanashi et al. | Aug 2002 | B1 |
6429611 | Li | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6450391 | Kayan et al. | Sep 2002 | B1 |
6488196 | Fenton, Jr. | Dec 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6505768 | Whitman | Jan 2003 | B2 |
6517565 | Whitman et al. | Feb 2003 | B1 |
6517566 | Hovland et al. | Feb 2003 | B1 |
6578751 | Hartwick | Jun 2003 | B2 |
6588643 | Bolduc et al. | Jul 2003 | B2 |
6601749 | Sullivan et al. | Aug 2003 | B2 |
6616686 | Coleman et al. | Sep 2003 | B2 |
6619529 | Green et al. | Sep 2003 | B2 |
6626834 | Dunne et al. | Sep 2003 | B2 |
6629630 | Adams | Oct 2003 | B2 |
6629988 | Weadock | Oct 2003 | B2 |
6644532 | Green et al. | Nov 2003 | B2 |
6681978 | Geiste et al. | Jan 2004 | B2 |
6681979 | Whitman | Jan 2004 | B2 |
6695199 | Whitman | Feb 2004 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6716233 | Whitman | Apr 2004 | B1 |
6722552 | Fenton, Jr. | Apr 2004 | B2 |
6755338 | Hahnen et al. | Jun 2004 | B2 |
6769594 | Orban, III | Aug 2004 | B2 |
6786382 | Hoffman | Sep 2004 | B1 |
6805273 | Bilotti et al. | Oct 2004 | B2 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6817509 | Geiste et al. | Nov 2004 | B2 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6843403 | Whitman | Jan 2005 | B2 |
RE38708 | Bolanos et al. | Mar 2005 | E |
6866178 | Adams et al. | Mar 2005 | B2 |
6874669 | Adams et al. | Apr 2005 | B2 |
6877647 | Green et al. | Apr 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6945444 | Gresham et al. | Sep 2005 | B2 |
6953138 | Dworak et al. | Oct 2005 | B1 |
6953139 | Milliman et al. | Oct 2005 | B2 |
6959851 | Heinrich | Nov 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6978921 | Shelton, IV et al. | Dec 2005 | B2 |
6978922 | Bilotti et al. | Dec 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988650 | Schwemberger et al. | Jan 2006 | B2 |
7000818 | Shelton, IV et al. | Feb 2006 | B2 |
7000819 | Swayze et al. | Feb 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
7032799 | Viola et al. | Apr 2006 | B2 |
7044352 | Shelton, IV et al. | May 2006 | B2 |
7044353 | Mastri et al. | May 2006 | B2 |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7056330 | Gayton | Jun 2006 | B2 |
7070083 | Jankowski | Jul 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7080769 | Vresh et al. | Jul 2006 | B2 |
7083075 | Swayze et al. | Aug 2006 | B2 |
7108709 | Cummins | Sep 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7114642 | Whitman | Oct 2006 | B2 |
7121446 | Arad et al. | Oct 2006 | B2 |
7128253 | Mastri et al. | Oct 2006 | B2 |
7128254 | Shelton, IV et al. | Oct 2006 | B2 |
7140527 | Ehrenfels et al. | Nov 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7147139 | Schwemberger et al. | Dec 2006 | B2 |
7156863 | Sonnenschein et al. | Jan 2007 | B2 |
7159750 | Racenet et al. | Jan 2007 | B2 |
7168604 | Milliman et al. | Jan 2007 | B2 |
7182239 | Myers | Feb 2007 | B1 |
7188758 | Viola et al. | Mar 2007 | B2 |
7207471 | Heinrich et al. | Apr 2007 | B2 |
7207472 | Wukusick et al. | Apr 2007 | B2 |
7210609 | Leiboff et al. | May 2007 | B2 |
7213736 | Wales et al. | May 2007 | B2 |
7220272 | Weadock | May 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7234624 | Gresham et al. | Jun 2007 | B2 |
7237708 | Guy et al. | Jul 2007 | B1 |
7238195 | Viola | Jul 2007 | B2 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7258262 | Mastri et al. | Aug 2007 | B2 |
7278562 | Mastri et al. | Oct 2007 | B2 |
7278563 | Green | Oct 2007 | B1 |
7296724 | Green et al. | Nov 2007 | B2 |
7303106 | Milliman et al. | Dec 2007 | B2 |
7303107 | Milliman et al. | Dec 2007 | B2 |
7303108 | Shelton, IV | Dec 2007 | B2 |
7308998 | Mastri et al. | Dec 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7328829 | Arad et al. | Feb 2008 | B2 |
7334717 | Rethy et al. | Feb 2008 | B2 |
7354447 | Shelton, IV et al. | Apr 2008 | B2 |
7357287 | Shelton, IV et al. | Apr 2008 | B2 |
7364060 | Milliman | Apr 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7398907 | Racenet et al. | Jul 2008 | B2 |
7398908 | Holsten et al. | Jul 2008 | B2 |
7401721 | Holsten et al. | Jul 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7404509 | Ortiz et al. | Jul 2008 | B2 |
7407075 | Holsten et al. | Aug 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7410086 | Ortiz et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422136 | Marczyk | Sep 2008 | B1 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7424965 | Racenet et al. | Sep 2008 | B2 |
7431188 | Marczyk | Oct 2008 | B1 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7431730 | Viola | Oct 2008 | B2 |
7434717 | Shelton, IV et al. | Oct 2008 | B2 |
7438209 | Hess et al. | Oct 2008 | B1 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7441685 | Boudreaux | Oct 2008 | B1 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7455208 | Wales et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7467740 | Shelton, IV et al. | Dec 2008 | B2 |
7472815 | Shelton, IV et al. | Jan 2009 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481349 | Holsten et al. | Jan 2009 | B2 |
7490749 | Schall et al. | Feb 2009 | B2 |
7494039 | Racenet et al. | Feb 2009 | B2 |
7500979 | Hueil et al. | Mar 2009 | B2 |
7506790 | Shelton, IV | Mar 2009 | B2 |
7506791 | Omaits et al. | Mar 2009 | B2 |
7510107 | Timm et al. | Mar 2009 | B2 |
7546940 | Milliman et al. | Jun 2009 | B2 |
7549563 | Mather et al. | Jun 2009 | B2 |
7556185 | Viola | Jul 2009 | B2 |
7556186 | Milliman | Jul 2009 | B2 |
7559450 | Wales et al. | Jul 2009 | B2 |
7559452 | Wales et al. | Jul 2009 | B2 |
7568604 | Ehrenfels et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7611038 | Racenet et al. | Nov 2009 | B2 |
7624902 | Marczyk et al. | Dec 2009 | B2 |
7631793 | Rethy et al. | Dec 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7651498 | Shifrin et al. | Jan 2010 | B2 |
7658312 | Vidal et al. | Feb 2010 | B2 |
7665646 | Prommersberger | Feb 2010 | B2 |
7699204 | Viola | Apr 2010 | B2 |
7708180 | Murray et al. | May 2010 | B2 |
7717312 | Beetel | May 2010 | B2 |
7721930 | McKenna et al. | May 2010 | B2 |
7726537 | Olson et al. | Jun 2010 | B2 |
7726538 | Holsten et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7766209 | Baxter, III et al. | Aug 2010 | B2 |
7780054 | Wales | Aug 2010 | B2 |
7784662 | Wales et al. | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7810692 | Hall et al. | Oct 2010 | B2 |
7815092 | Whitman et al. | Oct 2010 | B2 |
7819296 | Hueil et al. | Oct 2010 | B2 |
7819297 | Doll et al. | Oct 2010 | B2 |
7819298 | Hall et al. | Oct 2010 | B2 |
7828189 | Holsten et al. | Nov 2010 | B2 |
7832611 | Boyden et al. | Nov 2010 | B2 |
7837081 | Holsten et al. | Nov 2010 | B2 |
7845533 | Marczyk et al. | Dec 2010 | B2 |
7850642 | Moll et al. | Dec 2010 | B2 |
7909221 | Viola et al. | Mar 2011 | B2 |
7922063 | Zemlok et al. | Apr 2011 | B2 |
7938307 | Bettuchi | May 2011 | B2 |
7950560 | Zemlok et al. | May 2011 | B2 |
7967180 | Scirica | Jun 2011 | B2 |
8002795 | Beetel | Aug 2011 | B2 |
8011551 | Marczyk et al. | Sep 2011 | B2 |
8011555 | Tarinelli et al. | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8028883 | Stopek | Oct 2011 | B2 |
8034077 | Smith et al. | Oct 2011 | B2 |
8038045 | Bettuchi et al. | Oct 2011 | B2 |
8038046 | Smith et al. | Oct 2011 | B2 |
D650074 | Hunt et al. | Dec 2011 | S |
8091756 | Viola | Jan 2012 | B2 |
8097017 | Viola | Jan 2012 | B2 |
8123103 | Milliman | Feb 2012 | B2 |
8152041 | Kostrzewski | Apr 2012 | B2 |
8157152 | Holsten et al. | Apr 2012 | B2 |
8205781 | Baxter, III et al. | Jun 2012 | B2 |
8245901 | Stopek | Aug 2012 | B2 |
8256654 | Bettuchi et al. | Sep 2012 | B2 |
8292155 | Shelton, IV et al. | Oct 2012 | B2 |
8333313 | Boudreaux et al. | Dec 2012 | B2 |
8360296 | Zingman | Jan 2013 | B2 |
20020117534 | Green et al. | Aug 2002 | A1 |
20030025408 | Miekka et al. | Feb 2003 | A1 |
20040006372 | Racenet et al. | Jan 2004 | A1 |
20040094597 | Whitman et al. | May 2004 | A1 |
20040108357 | Milliman et al. | Jun 2004 | A1 |
20040164123 | Racenet et al. | Aug 2004 | A1 |
20040167572 | Roth et al. | Aug 2004 | A1 |
20040173659 | Green et al. | Sep 2004 | A1 |
20040222268 | Bilotti et al. | Nov 2004 | A1 |
20040232201 | Wenchell et al. | Nov 2004 | A1 |
20040254608 | Huitema et al. | Dec 2004 | A1 |
20040267310 | Racenet et al. | Dec 2004 | A1 |
20050006429 | Wales et al. | Jan 2005 | A1 |
20050059997 | Bauman et al. | Mar 2005 | A1 |
20050075561 | Golden | Apr 2005 | A1 |
20050096683 | Ellins et al. | May 2005 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050145675 | Hartwick et al. | Jul 2005 | A1 |
20050184121 | Heinrich | Aug 2005 | A1 |
20050187545 | Hooven et al. | Aug 2005 | A1 |
20050187576 | Whitman et al. | Aug 2005 | A1 |
20050189397 | Jankowski | Sep 2005 | A1 |
20050192628 | Viola | Sep 2005 | A1 |
20050216055 | Scirica et al. | Sep 2005 | A1 |
20050240222 | Shipp | Oct 2005 | A1 |
20050263563 | Racenet et al. | Dec 2005 | A1 |
20050274768 | Cummins et al. | Dec 2005 | A1 |
20060011699 | Olson et al. | Jan 2006 | A1 |
20060025812 | Shelton, IV | Feb 2006 | A1 |
20060047303 | Ortiz et al. | Mar 2006 | A1 |
20060047307 | Ortiz et al. | Mar 2006 | A1 |
20060049229 | Milliman et al. | Mar 2006 | A1 |
20060052825 | Ransick et al. | Mar 2006 | A1 |
20060085033 | Criscuolo et al. | Apr 2006 | A1 |
20060108393 | Heinrich et al. | May 2006 | A1 |
20060161185 | Saadat et al. | Jul 2006 | A1 |
20060180634 | Shelton, IV et al. | Aug 2006 | A1 |
20060190029 | Wales | Aug 2006 | A1 |
20060226196 | Hueil et al. | Oct 2006 | A1 |
20060235469 | Viola | Oct 2006 | A1 |
20060241692 | McGuckin, Jr. et al. | Oct 2006 | A1 |
20060259073 | Miyamoto et al. | Nov 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20060278681 | Viola et al. | Dec 2006 | A1 |
20060289602 | Wales et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070027468 | Wales et al. | Feb 2007 | A1 |
20070034668 | Holsten et al. | Feb 2007 | A1 |
20070045379 | Shelton, IV | Mar 2007 | A1 |
20070073341 | Smith | Mar 2007 | A1 |
20070084897 | Shelton, IV et al. | Apr 2007 | A1 |
20070102452 | Shelton, IV et al. | May 2007 | A1 |
20070102453 | Morgan et al. | May 2007 | A1 |
20070102472 | Shelton, IV | May 2007 | A1 |
20070102473 | Shelton, IV et al. | May 2007 | A1 |
20070102474 | Shelton, IV et al. | May 2007 | A1 |
20070106317 | Shelton, IV et al. | May 2007 | A1 |
20070114261 | Ortiz et al. | May 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070158385 | Hueil et al. | Jul 2007 | A1 |
20070170225 | Shelton, IV et al. | Jul 2007 | A1 |
20070175949 | Shelton, IV et al. | Aug 2007 | A1 |
20070175950 | Shelton, IV et al. | Aug 2007 | A1 |
20070175951 | Shelton, IV et al. | Aug 2007 | A1 |
20070175953 | Shelton, IV et al. | Aug 2007 | A1 |
20070175955 | Shelton, IV et al. | Aug 2007 | A1 |
20070175956 | Swayze et al. | Aug 2007 | A1 |
20070175957 | Shelton, IV et al. | Aug 2007 | A1 |
20070175958 | Shelton, IV et al. | Aug 2007 | A1 |
20070175959 | Shelton, IV et al. | Aug 2007 | A1 |
20070175964 | Shelton, IV et al. | Aug 2007 | A1 |
20070179476 | Shelton, IV et al. | Aug 2007 | A1 |
20070181632 | Milliman | Aug 2007 | A1 |
20070194079 | Hueil et al. | Aug 2007 | A1 |
20070194080 | Swayze et al. | Aug 2007 | A1 |
20070194081 | Hueil et al. | Aug 2007 | A1 |
20070194082 | Morgan et al. | Aug 2007 | A1 |
20070221700 | Ortiz et al. | Sep 2007 | A1 |
20070221701 | Ortiz et al. | Sep 2007 | A1 |
20070225562 | Spivey et al. | Sep 2007 | A1 |
20070233053 | Shelton, IV et al. | Oct 2007 | A1 |
20070239028 | Houser et al. | Oct 2007 | A1 |
20070246505 | Pace-Floridia et al. | Oct 2007 | A1 |
20070249999 | Sklar et al. | Oct 2007 | A1 |
20070295780 | Shelton et al. | Dec 2007 | A1 |
20080015598 | Prommersberger | Jan 2008 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080029576 | Shelton et al. | Feb 2008 | A1 |
20080035701 | Racenet et al. | Feb 2008 | A1 |
20080041917 | Racenet et al. | Feb 2008 | A1 |
20080078800 | Hess et al. | Apr 2008 | A1 |
20080078801 | Shelton et al. | Apr 2008 | A1 |
20080078802 | Hess et al. | Apr 2008 | A1 |
20080078803 | Shelton et al. | Apr 2008 | A1 |
20080078804 | Shelton et al. | Apr 2008 | A1 |
20080078806 | Omaits et al. | Apr 2008 | A1 |
20080078807 | Hess et al. | Apr 2008 | A1 |
20080078808 | Hess et al. | Apr 2008 | A1 |
20080082115 | Morgan et al. | Apr 2008 | A1 |
20080082124 | Hess et al. | Apr 2008 | A1 |
20080082125 | Murray et al. | Apr 2008 | A1 |
20080082126 | Murray et al. | Apr 2008 | A1 |
20080083813 | Zemlok et al. | Apr 2008 | A1 |
20080140115 | Stopek | Jun 2008 | A1 |
20080164296 | Shelton et al. | Jul 2008 | A1 |
20080167522 | Giordano et al. | Jul 2008 | A1 |
20080167644 | Shelton et al. | Jul 2008 | A1 |
20080167670 | Shelton et al. | Jul 2008 | A1 |
20080167671 | Giordano et al. | Jul 2008 | A1 |
20080167672 | Giordano et al. | Jul 2008 | A1 |
20080167736 | Swayze et al. | Jul 2008 | A1 |
20080169328 | Shelton | Jul 2008 | A1 |
20080169329 | Shelton et al. | Jul 2008 | A1 |
20080169330 | Shelton et al. | Jul 2008 | A1 |
20080169331 | Shelton et al. | Jul 2008 | A1 |
20080169332 | Shelton et al. | Jul 2008 | A1 |
20080169333 | Shelton et al. | Jul 2008 | A1 |
20080172088 | Smith et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080210738 | Shelton et al. | Sep 2008 | A1 |
20080237296 | Boudreaux et al. | Oct 2008 | A1 |
20080251568 | Zemlok et al. | Oct 2008 | A1 |
20080251569 | Smith et al. | Oct 2008 | A1 |
20080283570 | Boyden et al. | Nov 2008 | A1 |
20080290134 | Bettuchi et al. | Nov 2008 | A1 |
20080296343 | Schall et al. | Dec 2008 | A1 |
20080296345 | Shelton, IV et al. | Dec 2008 | A1 |
20080296346 | Shelton, IV et al. | Dec 2008 | A1 |
20080296347 | Shelton, IV et al. | Dec 2008 | A1 |
20080297287 | Shachar et al. | Dec 2008 | A1 |
20080300579 | Broehl et al. | Dec 2008 | A1 |
20080300580 | Shelton, IV et al. | Dec 2008 | A1 |
20080300613 | Shelton, IV et al. | Dec 2008 | A1 |
20080308601 | Timm et al. | Dec 2008 | A1 |
20080308602 | Timm et al. | Dec 2008 | A1 |
20080308603 | Shelton, IV et al. | Dec 2008 | A1 |
20080308606 | Timm et al. | Dec 2008 | A1 |
20080308607 | Timm et al. | Dec 2008 | A1 |
20080308608 | Prommersberger | Dec 2008 | A1 |
20080314954 | Boudreaux | Dec 2008 | A1 |
20080314955 | Boudreaux et al. | Dec 2008 | A1 |
20080314956 | Boudreaux | Dec 2008 | A1 |
20080314957 | Boudreaux | Dec 2008 | A1 |
20080314960 | Marczyk et al. | Dec 2008 | A1 |
20080314961 | Boudreaux et al. | Dec 2008 | A1 |
20080314962 | Boudreaux | Dec 2008 | A1 |
20090001121 | Hess et al. | Jan 2009 | A1 |
20090001122 | Prommersberger et al. | Jan 2009 | A1 |
20090001123 | Morgan et al. | Jan 2009 | A1 |
20090001124 | Hess et al. | Jan 2009 | A1 |
20090001125 | Hess et al. | Jan 2009 | A1 |
20090001126 | Hess et al. | Jan 2009 | A1 |
20090001128 | Weisenburgh, II et al. | Jan 2009 | A1 |
20090001130 | Hess et al. | Jan 2009 | A1 |
20090005807 | Hess et al. | Jan 2009 | A1 |
20090005808 | Hess et al. | Jan 2009 | A1 |
20090005809 | Hess et al. | Jan 2009 | A1 |
20090012556 | Boudreaux et al. | Jan 2009 | A1 |
20090057369 | Smith et al. | Mar 2009 | A1 |
20090076534 | Shelton, IV et al. | Mar 2009 | A1 |
20090108048 | Zemlok et al. | Apr 2009 | A1 |
20090114701 | Zemlok et al. | May 2009 | A1 |
20090149871 | Kagan et al. | Jun 2009 | A9 |
20090206125 | Huitema et al. | Aug 2009 | A1 |
20090206126 | Huitema et al. | Aug 2009 | A1 |
20090206129 | Doll et al. | Aug 2009 | A1 |
20090206130 | Hall et al. | Aug 2009 | A1 |
20090206131 | Weisenburgh, II et al. | Aug 2009 | A1 |
20090206132 | Hueil et al. | Aug 2009 | A1 |
20090206133 | Morgan et al. | Aug 2009 | A1 |
20090206134 | Swayze et al. | Aug 2009 | A1 |
20090206137 | Hall et al. | Aug 2009 | A1 |
20090206138 | Smith et al. | Aug 2009 | A1 |
20090206139 | Hall et al. | Aug 2009 | A1 |
20090206140 | Scheib et al. | Aug 2009 | A1 |
20090206141 | Huitema et al. | Aug 2009 | A1 |
20090206142 | Huitema et al. | Aug 2009 | A1 |
20090206143 | Huitema et al. | Aug 2009 | A1 |
20090206144 | Doll et al. | Aug 2009 | A1 |
20090209946 | Swayze et al. | Aug 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090218384 | Aranyi | Sep 2009 | A1 |
20090242610 | Shelton, IV et al. | Oct 2009 | A1 |
20090255974 | Viola | Oct 2009 | A1 |
20090255975 | Zemlok et al. | Oct 2009 | A1 |
20090255976 | Marczyk et al. | Oct 2009 | A1 |
20090255977 | Zemlok | Oct 2009 | A1 |
20090255978 | Viola et al. | Oct 2009 | A1 |
20090289096 | Shelton, IV et al. | Nov 2009 | A1 |
20100001036 | Marczyk et al. | Jan 2010 | A1 |
20100012704 | Tarinelli Racenet et al. | Jan 2010 | A1 |
20100032470 | Hess et al. | Feb 2010 | A1 |
20100057087 | Cha | Mar 2010 | A1 |
20100065605 | Shelton, IV et al. | Mar 2010 | A1 |
20100065609 | Schwemberger | Mar 2010 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100072251 | Baxter, III et al. | Mar 2010 | A1 |
20100072252 | Baxter, III et al. | Mar 2010 | A1 |
20100072253 | Baxter, III et al. | Mar 2010 | A1 |
20100072254 | Aranyi et al. | Mar 2010 | A1 |
20100072256 | Baxter, III et al. | Mar 2010 | A1 |
20100076474 | Yates et al. | Mar 2010 | A1 |
20100076475 | Yates et al. | Mar 2010 | A1 |
20100089970 | Smith et al. | Apr 2010 | A1 |
20100089972 | Marczyk | Apr 2010 | A1 |
20100089974 | Shelton, IV | Apr 2010 | A1 |
20100096435 | Fuchs et al. | Apr 2010 | A1 |
20100108740 | Pastorelli et al. | May 2010 | A1 |
20100108741 | Hessler et al. | May 2010 | A1 |
20100127042 | Shelton, IV | May 2010 | A1 |
20100133317 | Shelton, IV et al. | Jun 2010 | A1 |
20100133318 | Boudreaux | Jun 2010 | A1 |
20100147922 | Olson | Jun 2010 | A1 |
20100163598 | Belzer | Jul 2010 | A1 |
20100179382 | Shelton, IV et al. | Jul 2010 | A1 |
20100181364 | Shelton, IV et al. | Jul 2010 | A1 |
20100193566 | Scheib et al. | Aug 2010 | A1 |
20100193567 | Scheib et al. | Aug 2010 | A1 |
20100193569 | Yates et al. | Aug 2010 | A1 |
20100198220 | Boudreaux et al. | Aug 2010 | A1 |
20100200637 | Beetel | Aug 2010 | A1 |
20100213241 | Bedi et al. | Aug 2010 | A1 |
20100222901 | Swayze et al. | Sep 2010 | A1 |
20100224669 | Shelton, IV et al. | Sep 2010 | A1 |
20100230465 | Smith et al. | Sep 2010 | A1 |
20100237132 | Measamer et al. | Sep 2010 | A1 |
20100243707 | Olson et al. | Sep 2010 | A1 |
20100243708 | Aranyi et al. | Sep 2010 | A1 |
20100243709 | Hess et al. | Sep 2010 | A1 |
20100258611 | Smith et al. | Oct 2010 | A1 |
20100264193 | Huang et al. | Oct 2010 | A1 |
20100264194 | Huang et al. | Oct 2010 | A1 |
20100268030 | Viola et al. | Oct 2010 | A1 |
20100276471 | Whitman | Nov 2010 | A1 |
20100294827 | Boyden et al. | Nov 2010 | A1 |
20100294829 | Giordano et al. | Nov 2010 | A1 |
20100301095 | Shelton, IV et al. | Dec 2010 | A1 |
20100301096 | Moore et al. | Dec 2010 | A1 |
20100305552 | Shelton, IV et al. | Dec 2010 | A1 |
20100308100 | Boudreaux | Dec 2010 | A1 |
20110003528 | Lam | Jan 2011 | A1 |
20110006099 | Hall et al. | Jan 2011 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110006103 | Laurent et al. | Jan 2011 | A1 |
20110011914 | Baxter, III et al. | Jan 2011 | A1 |
20110011915 | Shelton, IV | Jan 2011 | A1 |
20110017801 | Zemlok et al. | Jan 2011 | A1 |
20110024477 | Hall et al. | Feb 2011 | A1 |
20110024478 | Shelton, IV | Feb 2011 | A1 |
20110024479 | Swensgard et al. | Feb 2011 | A1 |
20110036887 | Zemlok et al. | Feb 2011 | A1 |
20110042441 | Shelton, IV et al. | Feb 2011 | A1 |
20110060363 | Hess et al. | Mar 2011 | A1 |
20110062212 | Shelton, IV et al. | Mar 2011 | A1 |
20110068145 | Bedi et al. | Mar 2011 | A1 |
20110068148 | Hall et al. | Mar 2011 | A1 |
20110084112 | Kostrzewski | Apr 2011 | A1 |
20110084113 | Bedi et al. | Apr 2011 | A1 |
20110084115 | Bedi et al. | Apr 2011 | A1 |
20110087276 | Bedi et al. | Apr 2011 | A1 |
20110087279 | Shah et al. | Apr 2011 | A1 |
20110095068 | Patel | Apr 2011 | A1 |
20110101065 | Milliman | May 2011 | A1 |
20110114697 | Baxter, III et al. | May 2011 | A1 |
20110114698 | Baxter, III et al. | May 2011 | A1 |
20110114699 | Baxter, III et al. | May 2011 | A1 |
20110114700 | Baxter, III et al. | May 2011 | A1 |
20110118761 | Baxter, III et al. | May 2011 | A1 |
20110121051 | Shelton, IV et al. | May 2011 | A1 |
20110121052 | Shelton, IV et al. | May 2011 | A1 |
20110125176 | Yates et al. | May 2011 | A1 |
20110125177 | Yates et al. | May 2011 | A1 |
20110132962 | Hall et al. | Jun 2011 | A1 |
20110132963 | Giordano et al. | Jun 2011 | A1 |
20110132964 | Weisenburgh, II et al. | Jun 2011 | A1 |
20110132965 | Moore et al. | Jun 2011 | A1 |
20110139852 | Zingman | Jun 2011 | A1 |
20110144430 | Spivey et al. | Jun 2011 | A1 |
20110147433 | Shelton, IV et al. | Jun 2011 | A1 |
20110147434 | Hueil et al. | Jun 2011 | A1 |
20110155780 | Boudreaux | Jun 2011 | A1 |
20110155781 | Swensgard et al. | Jun 2011 | A1 |
20110155785 | Laurent et al. | Jun 2011 | A1 |
20110155787 | Baxter, III et al. | Jun 2011 | A1 |
20110163147 | Laurent et al. | Jul 2011 | A1 |
20110174860 | Shelton, IV et al. | Jul 2011 | A1 |
20110174861 | Shelton, IV et al. | Jul 2011 | A1 |
20110174863 | Shelton, IV et al. | Jul 2011 | A1 |
20110192882 | Hess et al. | Aug 2011 | A1 |
20110210156 | Smith et al. | Sep 2011 | A1 |
20110226837 | Baxter, III et al. | Sep 2011 | A1 |
20110275901 | Shelton, IV | Nov 2011 | A1 |
20110276083 | Shelton, IV et al. | Nov 2011 | A1 |
20110288573 | Yates et al. | Nov 2011 | A1 |
20110290851 | Shelton, IV | Dec 2011 | A1 |
20110290853 | Shelton, IV et al. | Dec 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110290855 | Moore et al. | Dec 2011 | A1 |
20110290856 | Shelton, IV et al. | Dec 2011 | A1 |
20110295242 | Spivey et al. | Dec 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20110295270 | Giordano et al. | Dec 2011 | A1 |
20110295295 | Shelton, IV et al. | Dec 2011 | A1 |
20120024934 | Shelton, IV et al. | Feb 2012 | A1 |
20120024935 | Shelton, IV et al. | Feb 2012 | A1 |
20120024936 | Baxter, III et al. | Feb 2012 | A1 |
20120029272 | Shelton, IV et al. | Feb 2012 | A1 |
20120029544 | Shelton, IV et al. | Feb 2012 | A1 |
20120029547 | Shelton, IV et al. | Feb 2012 | A1 |
20120046692 | Smith et al. | Feb 2012 | A1 |
20120071711 | Shelton, IV et al. | Mar 2012 | A1 |
20120071866 | Kerr et al. | Mar 2012 | A1 |
20120074196 | Shelton, IV et al. | Mar 2012 | A1 |
20120074198 | Huitema et al. | Mar 2012 | A1 |
20120074200 | Schmid et al. | Mar 2012 | A1 |
20120074201 | Baxter, III et al. | Mar 2012 | A1 |
20120080332 | Shelton, IV et al. | Apr 2012 | A1 |
20120080333 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080334 | Shelton, IV et al. | Apr 2012 | A1 |
20120080335 | Shelton, IV et al. | Apr 2012 | A1 |
20120080336 | Shelton, IV et al. | Apr 2012 | A1 |
20120080337 | Shelton, IV et al. | Apr 2012 | A1 |
20120080338 | Shelton, IV et al. | Apr 2012 | A1 |
20120080339 | Shelton, IV et al. | Apr 2012 | A1 |
20120080340 | Shelton, IV et al. | Apr 2012 | A1 |
20120080344 | Shelton, IV | Apr 2012 | A1 |
20120080345 | Morgan et al. | Apr 2012 | A1 |
20120080475 | Smith et al. | Apr 2012 | A1 |
20120080477 | Leimbach et al. | Apr 2012 | A1 |
20120080478 | Morgan et al. | Apr 2012 | A1 |
20120080479 | Shelton, IV | Apr 2012 | A1 |
20120080480 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080481 | Widenhouse et al. | Apr 2012 | A1 |
20120080482 | Schall et al. | Apr 2012 | A1 |
20120080483 | Riestenberg et al. | Apr 2012 | A1 |
20120080484 | Morgan et al. | Apr 2012 | A1 |
20120080485 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080486 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080487 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120080488 | Shelton, IV et al. | Apr 2012 | A1 |
20120080489 | Shelton, IV et al. | Apr 2012 | A1 |
20120080490 | Shelton, IV et al. | Apr 2012 | A1 |
20120080491 | Shelton, IV et al. | Apr 2012 | A1 |
20120080493 | Shelton, IV et al. | Apr 2012 | A1 |
20120080496 | Schall et al. | Apr 2012 | A1 |
20120080498 | Shelton, IV et al. | Apr 2012 | A1 |
20120080499 | Schall et al. | Apr 2012 | A1 |
20120080500 | Morgan et al. | Apr 2012 | A1 |
20120080501 | Morgan et al. | Apr 2012 | A1 |
20120080502 | Morgan et al. | Apr 2012 | A1 |
20120080503 | Woodard, Jr. et al. | Apr 2012 | A1 |
20120083833 | Shelton, IV et al. | Apr 2012 | A1 |
20120083834 | Shelton, IV et al. | Apr 2012 | A1 |
20120083835 | Shelton, IV et al. | Apr 2012 | A1 |
20120083836 | Shelton, IV et al. | Apr 2012 | A1 |
20120132450 | Timm et al. | May 2012 | A1 |
20120138660 | Shelton, IV | Jun 2012 | A1 |
20120160721 | Shelton, IV et al. | Jun 2012 | A1 |
20120175399 | Shelton et al. | Jul 2012 | A1 |
20120187179 | Gleiman | Jul 2012 | A1 |
20120199630 | Shelton, IV et al. | Aug 2012 | A1 |
20120199631 | Shelton, IV et al. | Aug 2012 | A1 |
20120199632 | Spivey et al. | Aug 2012 | A1 |
20120199633 | Shelton, IV et al. | Aug 2012 | A1 |
20120203247 | Shelton, IV et al. | Aug 2012 | A1 |
20120205421 | Shelton, IV | Aug 2012 | A1 |
20120211546 | Shelton, IV | Aug 2012 | A1 |
20120234890 | Aronhalt et al. | Sep 2012 | A1 |
20120234891 | Aronhalt et al. | Sep 2012 | A1 |
20120234892 | Aronhalt et al. | Sep 2012 | A1 |
20120234893 | Schuckmann et al. | Sep 2012 | A1 |
20120234895 | O'Connor et al. | Sep 2012 | A1 |
20120234896 | Ellerhorst et al. | Sep 2012 | A1 |
20120234897 | Shelton, IV et al. | Sep 2012 | A1 |
20120234898 | Shelton, IV et al. | Sep 2012 | A1 |
20120234899 | Scheib et al. | Sep 2012 | A1 |
20120234900 | Swayze | Sep 2012 | A1 |
20120238823 | Hagerty et al. | Sep 2012 | A1 |
20120238824 | Widenhouse et al. | Sep 2012 | A1 |
20120238826 | Yoo et al. | Sep 2012 | A1 |
20120238829 | Shelton, IV et al. | Sep 2012 | A1 |
20120239009 | Mollere et al. | Sep 2012 | A1 |
20120239010 | Shelton, IV et al. | Sep 2012 | A1 |
20120239012 | Laurent et al. | Sep 2012 | A1 |
20120239075 | Widenhouse et al. | Sep 2012 | A1 |
20120239082 | Shelton, IV et al. | Sep 2012 | A1 |
20120241491 | Aldridge et al. | Sep 2012 | A1 |
20120241492 | Shelton, IV et al. | Sep 2012 | A1 |
20120241493 | Baxter, III et al. | Sep 2012 | A1 |
20120241496 | Mandakolathur Vasudevan et al. | Sep 2012 | A1 |
20120241497 | Mandakolathur Vasudevan et al. | Sep 2012 | A1 |
20120241498 | Gonzalez et al. | Sep 2012 | A1 |
20120241499 | Baxter, III et al. | Sep 2012 | A1 |
20120241500 | Timmer et al. | Sep 2012 | A1 |
20120241501 | Swayze et al. | Sep 2012 | A1 |
20120241502 | Aldridge et al. | Sep 2012 | A1 |
20120241503 | Baxter, III et al. | Sep 2012 | A1 |
20120241505 | Alexander, III et al. | Sep 2012 | A1 |
20120248169 | Widenhouse et al. | Oct 2012 | A1 |
20120253298 | Henderson et al. | Oct 2012 | A1 |
20120265230 | Yates et al. | Oct 2012 | A1 |
20120273551 | Shelton, IV et al. | Nov 2012 | A1 |
20120283707 | Giordano et al. | Nov 2012 | A1 |
20120286019 | Hueil et al. | Nov 2012 | A1 |
20120292367 | Morgan et al. | Nov 2012 | A1 |
20120292370 | Hess et al. | Nov 2012 | A1 |
20120298719 | Shelton, IV et al. | Nov 2012 | A1 |
20130012931 | Spivey et al. | Jan 2013 | A1 |
20130012957 | Shelton, IV et al. | Jan 2013 | A1 |
20130020376 | Shelton, IV et al. | Jan 2013 | A1 |
20130023861 | Shelton, IV et al. | Jan 2013 | A1 |
20130026208 | Shelton, IV et al. | Jan 2013 | A1 |
20130026210 | Shelton, IV et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2458946 | Mar 2003 | CA |
2512960 | Jan 2006 | CA |
2514274 | Jan 2006 | CA |
2488482 | May 2002 | CN |
1634601 | Jul 2005 | CN |
1868411 | Nov 2006 | CN |
1915180 | Feb 2007 | CN |
101011286 | Aug 2007 | CN |
101095621 | Jan 2008 | CN |
273689 | May 1914 | DE |
1775926 | Jan 1972 | DE |
3210466 | Sep 1983 | DE |
9412228 | Sep 1994 | DE |
19509116 | Sep 1996 | DE |
19851291 | Jan 2000 | DE |
19924311 | Nov 2000 | DE |
69328576 | Jan 2001 | DE |
10052679 | May 2001 | DE |
20112837 | Oct 2001 | DE |
20121753 | Apr 2003 | DE |
10314072 | Oct 2004 | DE |
202007003114 | Jun 2007 | DE |
0122046 | Oct 1984 | EP |
0070230 | Oct 1985 | EP |
0156774 | Oct 1985 | EP |
0387980 | Oct 1985 | EP |
0033548 | May 1986 | EP |
0129442 | Nov 1987 | EP |
0276104 | Jul 1988 | EP |
0178941 | Jan 1991 | EP |
0248844 | Jan 1993 | EP |
0545029 | Jun 1993 | EP |
0277959 | Oct 1993 | EP |
0233940 | Nov 1993 | EP |
0261230 | Nov 1993 | EP |
0639349 | Feb 1994 | EP |
0324636 | Mar 1994 | EP |
0593920 | Apr 1994 | EP |
0594148 | Apr 1994 | EP |
0427949 | Jun 1994 | EP |
0523174 | Jun 1994 | EP |
0600182 | Jun 1994 | EP |
0310431 | Nov 1994 | EP |
0375302 | Nov 1994 | EP |
0376562 | Nov 1994 | EP |
0630612 | Dec 1994 | EP |
0634144 | Jan 1995 | EP |
0646356 | Apr 1995 | EP |
0646357 | Apr 1995 | EP |
0653189 | May 1995 | EP |
0669104 | Aug 1995 | EP |
0511470 | Oct 1995 | EP |
0679367 | Nov 1995 | EP |
0392547 | Dec 1995 | EP |
0685204 | Dec 1995 | EP |
0364216 | Jan 1996 | EP |
0699418 | Mar 1996 | EP |
0702937 | Mar 1996 | EP |
0705571 | Apr 1996 | EP |
0711611 | May 1996 | EP |
0484677 | Jun 1996 | EP |
0541987 | Jul 1996 | EP |
0667119 | Jul 1996 | EP |
0708618 | Mar 1997 | EP |
0770355 | May 1997 | EP |
0503662 | Jun 1997 | EP |
0447121 | Jul 1997 | EP |
0625077 | Jul 1997 | EP |
0633749 | Aug 1997 | EP |
0710090 | Aug 1997 | EP |
0578425 | Sep 1997 | EP |
0625335 | Nov 1997 | EP |
0552423 | Jan 1998 | EP |
0592244 | Jan 1998 | EP |
0648476 | Jan 1998 | EP |
0649290 | Mar 1998 | EP |
0598618 | Sep 1998 | EP |
0676173 | Sep 1998 | EP |
0678007 | Sep 1998 | EP |
0603472 | Nov 1998 | EP |
0605351 | Nov 1998 | EP |
0878169 | Nov 1998 | EP |
0879742 | Nov 1998 | EP |
0695144 | Dec 1998 | EP |
0722296 | Dec 1998 | EP |
0760230 | Feb 1999 | EP |
0623316 | Mar 1999 | EP |
0650701 | Mar 1999 | EP |
0537572 | Jun 1999 | EP |
0923907 | Jun 1999 | EP |
0843906 | Mar 2000 | EP |
0552050 | May 2000 | EP |
0833592 | May 2000 | EP |
0830094 | Sep 2000 | EP |
1034747 | Sep 2000 | EP |
1034748 | Sep 2000 | EP |
0694290 | Nov 2000 | EP |
1050278 | Nov 2000 | EP |
1053719 | Nov 2000 | EP |
1053720 | Nov 2000 | EP |
1055399 | Nov 2000 | EP |
1055400 | Nov 2000 | EP |
1080694 | Mar 2001 | EP |
1090592 | Apr 2001 | EP |
1095627 | May 2001 | EP |
1256318 | May 2001 | EP |
0806914 | Sep 2001 | EP |
0768840 | Dec 2001 | EP |
0908152 | Jan 2002 | EP |
0872213 | May 2002 | EP |
0862386 | Jun 2002 | EP |
0949886 | Sep 2002 | EP |
1238634 | Sep 2002 | EP |
0858295 | Dec 2002 | EP |
0656188 | Jan 2003 | EP |
1284120 | Feb 2003 | EP |
1287788 | Mar 2003 | EP |
0717966 | Apr 2003 | EP |
0869742 | May 2003 | EP |
0829235 | Jun 2003 | EP |
0887046 | Jul 2003 | EP |
0852480 | Aug 2003 | EP |
0891154 | Sep 2003 | EP |
0813843 | Oct 2003 | EP |
0873089 | Oct 2003 | EP |
0856326 | Nov 2003 | EP |
1374788 | Jan 2004 | EP |
0741996 | Feb 2004 | EP |
0814712 | Feb 2004 | EP |
1402837 | Mar 2004 | EP |
0705570 | Apr 2004 | EP |
0959784 | Apr 2004 | EP |
1407719 | Apr 2004 | EP |
1086713 | May 2004 | EP |
0996378 | Jun 2004 | EP |
1426012 | Jun 2004 | EP |
0833593 | Jul 2004 | EP |
1442694 | Aug 2004 | EP |
0888749 | Sep 2004 | EP |
0959786 | Sep 2004 | EP |
1459695 | Sep 2004 | EP |
1473819 | Nov 2004 | EP |
1477119 | Nov 2004 | EP |
1479345 | Nov 2004 | EP |
1479347 | Nov 2004 | EP |
1479348 | Nov 2004 | EP |
0754437 | Dec 2004 | EP |
1025807 | Dec 2004 | EP |
1001710 | Jan 2005 | EP |
1520521 | Apr 2005 | EP |
1520523 | Apr 2005 | EP |
1520525 | Apr 2005 | EP |
1522264 | Apr 2005 | EP |
1523942 | Apr 2005 | EP |
1550408 | Jul 2005 | EP |
1557129 | Jul 2005 | EP |
1064883 | Aug 2005 | EP |
1067876 | Aug 2005 | EP |
0870473 | Sep 2005 | EP |
1157666 | Sep 2005 | EP |
0880338 | Oct 2005 | EP |
1158917 | Nov 2005 | EP |
1344498 | Nov 2005 | EP |
1330989 | Dec 2005 | EP |
0771176 | Jan 2006 | EP |
1621138 | Feb 2006 | EP |
1621139 | Feb 2006 | EP |
1621141 | Feb 2006 | EP |
1621145 | Feb 2006 | EP |
1621151 | Feb 2006 | EP |
1034746 | Mar 2006 | EP |
1632191 | Mar 2006 | EP |
1065981 | May 2006 | EP |
1082944 | May 2006 | EP |
1652481 | May 2006 | EP |
1382303 | Jun 2006 | EP |
1253866 | Jul 2006 | EP |
1032318 | Aug 2006 | EP |
1045672 | Aug 2006 | EP |
1617768 | Aug 2006 | EP |
1693015 | Aug 2006 | EP |
1400214 | Sep 2006 | EP |
1702567 | Sep 2006 | EP |
1129665 | Nov 2006 | EP |
1400206 | Nov 2006 | EP |
1721568 | Nov 2006 | EP |
1256317 | Dec 2006 | EP |
1285633 | Dec 2006 | EP |
1728473 | Dec 2006 | EP |
1728475 | Dec 2006 | EP |
1479346 | Jan 2007 | EP |
1484024 | Jan 2007 | EP |
1754445 | Feb 2007 | EP |
1759812 | Mar 2007 | EP |
1767163 | Mar 2007 | EP |
1769756 | Apr 2007 | EP |
1769758 | Apr 2007 | EP |
1581128 | May 2007 | EP |
1785097 | May 2007 | EP |
1790293 | May 2007 | EP |
1800610 | Jun 2007 | EP |
1300117 | Aug 2007 | EP |
1813199 | Aug 2007 | EP |
1813201 | Aug 2007 | EP |
1813202 | Aug 2007 | EP |
1813203 | Aug 2007 | EP |
1813207 | Aug 2007 | EP |
1813209 | Aug 2007 | EP |
1487359 | Oct 2007 | EP |
1599146 | Oct 2007 | EP |
2110083 | Oct 2007 | EP |
1857057 | Nov 2007 | EP |
1402821 | Dec 2007 | EP |
1872727 | Jan 2008 | EP |
1839596 | Feb 2008 | EP |
1897502 | Mar 2008 | EP |
1330201 | Jun 2008 | EP |
1702568 | Jul 2008 | EP |
1943955 | Jul 2008 | EP |
1943957 | Jul 2008 | EP |
1943964 | Jul 2008 | EP |
1943976 | Jul 2008 | EP |
1593337 81 | Aug 2008 | EP |
1970014 | Sep 2008 | EP |
1980213 | Oct 2008 | EP |
1759645 | Nov 2008 | EP |
1990014 | Nov 2008 | EP |
1693008 | Dec 2008 | EP |
1759640 | Dec 2008 | EP |
2000102 | Dec 2008 | EP |
2008595 | Dec 2008 | EP |
1736104 | Mar 2009 | EP |
1749486 | Mar 2009 | EP |
2039316 | Mar 2009 | EP |
1721576 | Apr 2009 | EP |
1733686 | Apr 2009 | EP |
2044890 | Apr 2009 | EP |
1550409 | Jun 2009 | EP |
1550413 | Jun 2009 | EP |
1745748 | Aug 2009 | EP |
2090237 | Aug 2009 | EP |
2090244 | Aug 2009 | EP |
2090245 | Aug 2009 | EP |
2090256 | Aug 2009 | EP |
2095777 | Sep 2009 | EP |
2110082 | Oct 2009 | EP |
1813208 | Nov 2009 | EP |
2116195 | Nov 2009 | EP |
1607050 | Dec 2009 | EP |
1815804 | Dec 2009 | EP |
1566150 | Apr 2010 | EP |
1813206 | Apr 2010 | EP |
1769754 | Jun 2010 | EP |
1535565 | Oct 2010 | EP |
1702570 | Oct 2010 | EP |
1785098 | Oct 2010 | EP |
2005896 | Oct 2010 | EP |
2030578 | Nov 2010 | EP |
1627605 | Dec 2010 | EP |
1813205 | Jun 2011 | EP |
2090243 | Jun 2011 | EP |
1785102 | Jan 2012 | EP |
999646 | Feb 1952 | FR |
1112936 | Mar 1956 | FR |
2598905 | Nov 1987 | FR |
2765794 | Jan 1999 | FR |
939929 | Oct 1963 | GB |
1210522 | Oct 1970 | GB |
1217159 | Dec 1970 | GB |
1339394 | Dec 1973 | GB |
2109241 | Jun 1983 | GB |
2272159 | May 1994 | GB |
2284242 | May 1995 | GB |
2336214 | Oct 1999 | GB |
2425903 | Nov 2006 | GB |
S 58500053 | Jan 1983 | JP |
61-98249 | May 1986 | JP |
63-203149 | Aug 1988 | JP |
3-12126 | Jan 1991 | JP |
5-212039 | Aug 1993 | JP |
6007357 | Jan 1994 | JP |
7051273 | Feb 1995 | JP |
8033641 | Feb 1996 | JP |
8229050 | Sep 1996 | JP |
2000033071 | Feb 2000 | JP |
2000171730 | Jun 2000 | JP |
2000287987 | Oct 2000 | JP |
2000325303 | Nov 2000 | JP |
2001-514541 | Sep 2001 | JP |
2001286477 | Oct 2001 | JP |
2002143078 | May 2002 | JP |
2002369820 | Dec 2002 | JP |
2003-500153 | Jan 2003 | JP |
2004-344663 | Dec 2004 | JP |
2005-028149 | Feb 2005 | JP |
2005505322 | Feb 2005 | JP |
2005103293 | Apr 2005 | JP |
2005131163 | May 2005 | JP |
2005131164 | May 2005 | JP |
2005131173 | May 2005 | JP |
2005131211 | May 2005 | JP |
2005131212 | May 2005 | JP |
2005137423 | Jun 2005 | JP |
2005152416 | Jun 2005 | JP |
2005-523105 | Aug 2005 | JP |
2005524474 | Aug 2005 | JP |
2006-281405 | Oct 2006 | JP |
2141279 | Nov 1999 | RU |
2187249 | Aug 2002 | RU |
2225170 | Mar 2004 | RU |
189517 | Jan 1967 | SU |
328636 | Sep 1972 | SU |
886900 | Dec 1981 | SU |
1333319 | Aug 1987 | SU |
1377053 | Feb 1988 | SU |
1561964 | May 1990 | SU |
1722476 | Mar 1992 | SU |
WO 8202824 | Sep 1982 | WO |
WO 9115157 | Oct 1991 | WO |
WO 9220295 | Nov 1992 | WO |
WO 9221300 | Dec 1992 | WO |
WO 9308755 | May 1993 | WO |
WO 9313718 | Jul 1993 | WO |
WO 9314690 | Aug 1993 | WO |
WO 9315648 | Aug 1993 | WO |
WO 9315850 | Aug 1993 | WO |
WO 9319681 | Oct 1993 | WO |
WO 9400060 | Jan 1994 | WO |
WO 9411057 | May 1994 | WO |
WO 9412108 | Jun 1994 | WO |
WO 9418893 | Sep 1994 | WO |
WO 9422378 | Oct 1994 | WO |
WO 9423659 | Oct 1994 | WO |
WO 9502369 | Jan 1995 | WO |
WO 9503743 | Feb 1995 | WO |
WO 9506817 | Mar 1995 | WO |
WO 9509576 | Apr 1995 | WO |
WO 9509577 | Apr 1995 | WO |
WO 9514436 | Jun 1995 | WO |
WO 9517855 | Jul 1995 | WO |
WO 9518383 | Jul 1995 | WO |
WO 9518572 | Jul 1995 | WO |
WO 9519739 | Jul 1995 | WO |
WO 9520360 | Aug 1995 | WO |
WO 9523557 | Sep 1995 | WO |
WO 9524865 | Sep 1995 | WO |
WO 9525471 | Sep 1995 | WO |
WO 9526562 | Oct 1995 | WO |
WO 9529639 | Nov 1995 | WO |
WO 9604858 | Feb 1996 | WO |
WO 9619151 | Jun 1996 | WO |
WO 9619152 | Jun 1996 | WO |
WO 9620652 | Jul 1996 | WO |
WO 9621119 | Jul 1996 | WO |
WO 9622055 | Jul 1996 | WO |
WO 9623448 | Aug 1996 | WO |
WO 9624301 | Aug 1996 | WO |
WO 9627337 | Sep 1996 | WO |
WO 9631155 | Oct 1996 | WO |
WO 9635464 | Nov 1996 | WO |
WO 9639085 | Dec 1996 | WO |
WO 9639086 | Dec 1996 | WO |
WO 9639087 | Dec 1996 | WO |
WO 9639088 | Dec 1996 | WO |
WO 9639089 | Dec 1996 | WO |
WO 9700646 | Jan 1997 | WO |
WO 9700647 | Jan 1997 | WO |
WO 9706582 | Feb 1997 | WO |
WO 9710763 | Mar 1997 | WO |
WO 9710764 | Mar 1997 | WO |
WO 9711648 | Apr 1997 | WO |
WO 9711649 | Apr 1997 | WO |
WO 9715237 | May 1997 | WO |
WO 9724073 | Jul 1997 | WO |
WO 9724993 | Jul 1997 | WO |
WO 9730644 | Aug 1997 | WO |
WO 9734533 | Sep 1997 | WO |
WO 9737598 | Oct 1997 | WO |
WO 9739688 | Oct 1997 | WO |
WO 9817180 | Apr 1998 | WO |
WO 9827880 | Jul 1998 | WO |
WO 9830153 | Jul 1998 | WO |
WO 9847436 | Oct 1998 | WO |
WO 9903407 | Jan 1999 | WO |
WO 9903408 | Jan 1999 | WO |
WO 9903409 | Jan 1999 | WO |
WO 9912483 | Mar 1999 | WO |
WO 9912487 | Mar 1999 | WO |
WO 9912488 | Mar 1999 | WO |
WO 9915086 | Apr 1999 | WO |
WO 9915091 | Apr 1999 | WO |
WO 9923933 | May 1999 | WO |
WO 9923959 | May 1999 | WO |
WO 9925261 | May 1999 | WO |
WO 9929244 | Jun 1999 | WO |
WO 9934744 | Jul 1999 | WO |
WO 9945849 | Sep 1999 | WO |
WO 9948430 | Sep 1999 | WO |
WO 9951158 | Oct 1999 | WO |
WO 0024322 | May 2000 | WO |
WO 0024330 | May 2000 | WO |
WO 0041638 | Jul 2000 | WO |
WO 0048506 | Aug 2000 | WO |
WO 0053112 | Sep 2000 | WO |
WO 0054653 | Sep 2000 | WO |
WO 0057796 | Oct 2000 | WO |
WO 0064365 | Nov 2000 | WO |
WO 0072762 | Dec 2000 | WO |
WO 0072765 | Dec 2000 | WO |
WO 0103587 | Jan 2001 | WO |
WO 0105702 | Jan 2001 | WO |
WO 0110482 | Feb 2001 | WO |
WO 0135845 | May 2001 | WO |
WO 0154594 | Aug 2001 | WO |
WO 0158371 | Aug 2001 | WO |
WO 0162158 | Aug 2001 | WO |
WO 0162161 | Aug 2001 | WO |
WO 0162162 | Aug 2001 | WO |
WO 0162164 | Aug 2001 | WO |
WO 0162169 | Aug 2001 | WO |
WO 0178605 | Oct 2001 | WO |
WO 0191646 | Dec 2001 | WO |
WO 0207608 | Jan 2002 | WO |
WO 0207618 | Jan 2002 | WO |
WO 0217799 | Mar 2002 | WO |
WO 0219920 | Mar 2002 | WO |
WO 0219932 | Mar 2002 | WO |
WO 0230297 | Apr 2002 | WO |
WO 0232322 | Apr 2002 | WO |
WO 0236028 | May 2002 | WO |
WO 0243571 | Jun 2002 | WO |
WO 02058568 | Aug 2002 | WO |
WO 02060328 | Aug 2002 | WO |
WO 02067785 | Sep 2002 | WO |
WO 02098302 | Dec 2002 | WO |
WO 03000138 | Jan 2003 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03013363 | Feb 2003 | WO |
WO 03015604 | Feb 2003 | WO |
WO 03020106 | Mar 2003 | WO |
WO 03020139 | Mar 2003 | WO |
WO 03024339 | Mar 2003 | WO |
WO 03079909 | Mar 2003 | WO |
WO 03030743 | Apr 2003 | WO |
WO 03037193 | May 2003 | WO |
WO 03047436 | Jun 2003 | WO |
WO 03055402 | Jul 2003 | WO |
WO 03057048 | Jul 2003 | WO |
WO 03057058 | Jul 2003 | WO |
WO 03063694 | Aug 2003 | WO |
WO 03077769 | Sep 2003 | WO |
WO 03079911 | Oct 2003 | WO |
WO 03082126 | Oct 2003 | WO |
WO 03088845 | Oct 2003 | WO |
WO 03090630 | Nov 2003 | WO |
WO 03094743 | Nov 2003 | WO |
WO 03094745 | Nov 2003 | WO |
WO 03094746 | Nov 2003 | WO |
WO 03094747 | Nov 2003 | WO |
WO 03101313 | Dec 2003 | WO |
WO 03105698 | Dec 2003 | WO |
WO 03105702 | Dec 2003 | WO |
WO 2004006980 | Jan 2004 | WO |
WO 2004011037 | Feb 2004 | WO |
WO 2004019769 | Mar 2004 | WO |
WO 2004021868 | Mar 2004 | WO |
WO 2004028585 | Apr 2004 | WO |
WO 2004032754 | Apr 2004 | WO |
WO 2004032760 | Apr 2004 | WO |
WO 2004032762 | Apr 2004 | WO |
WO 2004032763 | Apr 2004 | WO |
WO 2004034875 | Apr 2004 | WO |
WO 2004047626 | Jun 2004 | WO |
WO 2004047653 | Jun 2004 | WO |
WO 2004049956 | Jun 2004 | WO |
WO 2004052426 | Jun 2004 | WO |
WO 2004056276 | Jul 2004 | WO |
WO 2004056277 | Jul 2004 | WO |
WO 2004062516 | Jul 2004 | WO |
WO 2004078050 | Sep 2004 | WO |
WO 2004078051 | Sep 2004 | WO |
WO 2004086987 | Oct 2004 | WO |
WO 2004096015 | Nov 2004 | WO |
WO 2004096057 | Nov 2004 | WO |
WO 2004103157 | Dec 2004 | WO |
WO 2004105593 | Dec 2004 | WO |
WO 2004105621 | Dec 2004 | WO |
WO 2004112618 | Dec 2004 | WO |
WO 2004112652 | Dec 2004 | WO |
WO 2005027983 | Mar 2005 | WO |
WO 2005037329 | Apr 2005 | WO |
WO 2005044078 | May 2005 | WO |
WO 2005055846 | Jun 2005 | WO |
WO 2005072634 | Aug 2005 | WO |
WO 2005078892 | Aug 2005 | WO |
WO 2005079675 | Sep 2005 | WO |
WO 2005096954 | Oct 2005 | WO |
WO 2005112806 | Dec 2005 | WO |
WO 2005112808 | Dec 2005 | WO |
WO 2005115251 | Dec 2005 | WO |
WO 2005115253 | Dec 2005 | WO |
WO 2005117735 | Dec 2005 | WO |
WO 2005122936 | Dec 2005 | WO |
WO 2006027014 | Mar 2006 | WO |
WO 2006044490 | Apr 2006 | WO |
WO 2006044581 | Apr 2006 | WO |
WO 2006044810 | Apr 2006 | WO |
WO 2006051252 | May 2006 | WO |
WO 2006059067 | Jun 2006 | WO |
WO 2006083748 | Aug 2006 | WO |
WO 2006092563 | Sep 2006 | WO |
WO 2006092565 | Sep 2006 | WO |
WO 2006115958 | Nov 2006 | WO |
WO 2006125940 | Nov 2006 | WO |
WO 2006132992 | Dec 2006 | WO |
WO 2007002180 | Jan 2007 | WO |
WO 2007016290 | Feb 2007 | WO |
WO 2007018898 | Feb 2007 | WO |
WO 2007098220 | Aug 2007 | WO |
WO 2007121579 | Nov 2007 | WO |
WO 2007131110 | Nov 2007 | WO |
WO 2007137304 | Nov 2007 | WO |
WO 2007139734 | Dec 2007 | WO |
WO 2007142625 | Dec 2007 | WO |
WO 2007147439 | Dec 2007 | WO |
WO 2008021969 | Feb 2008 | WO |
WO 2008039249 | Apr 2008 | WO |
WO 2008039270 | Apr 2008 | WO |
WO 2008045383 | Apr 2008 | WO |
WO 2008070763 | Jun 2008 | WO |
WO 2008089404 | Jul 2008 | WO |
WO 2008109125 | Sep 2008 | WO |
WO 2010063795 | Jun 2010 | WO |
WO 2010098871 | Sep 2010 | WO |
WO 2012021671 | Feb 2012 | WO |
WO 2012044844 | Apr 2012 | WO |
Entry |
---|
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008. |
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748. |
B.R. Coolman, DVM, MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages). |
International Search Report for PCT/US2010/022334, dated Sep. 23, 2010 (10 pages). |
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, 2000, 3 pages. |
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page). |
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005). |
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005). |
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages). |
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages. |
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000). |
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010). |
Number | Date | Country | |
---|---|---|---|
20100193568 A1 | Aug 2010 | US |