The present invention relates to the suspension system arts. It particularly relates to suspension systems for surgical operating room lightheads, monitors, cameras, and the like, and will be described with particular reference thereto. However, the invention will also find application in other ceiling-mounted apparatus and in fields outside the medical industry.
In operating theaters, intensive care rooms, and other hospital and clinical settings, medical equipment, such as overhead lighting and monitoring devices, is carried from overhead by suspension systems extending downward from a ceiling. This arrangement advantageously places the equipment out of the way of busy medical personnel and yet readily accessible when needed. Suspended lighting, for example, can effectively illuminate the surgical site without physically interfering with the surgeon.
Such suspension systems usually include a mounting plate (sometimes called a “cheese plate”) attached to a rigid overhead structure, a drop tube connected to the mounting plate, a rotatable spindle fixed to the drop tube which allows rotation about a vertical axis, and one or a plurality of extension and/or articulating arms which connect with and support equipment such as surgical lightheads, monitors, cameras, or other devices. The articulating arms are often multiply jointed to permit several degrees of mechanical freedom for the attached device.
The connection of the drop tube to the mounting plate most often uses a tube-in-tube design wherein the drop tube is fixed to a cylinder which is in turn fixed to the mounting plate using screws or other suitable fasteners. Because ceiling heights at various installations such as hospitals and clinics vary from one facility to another, and because the suspension system preferably accommodates placement of medical devices in ergonomically acceptable positions for medical personnel relative to the floor, the suspension systems are advantageously adaptable for different ceiling heights.
However, existing suspension systems typically use a drop tube having a fixed length. Height adjustment of the overall system is accomplished either by selecting a drop tube of an appropriate standard or custom length, or by cutting the tube at the installation site and drilling the necessary holes into the tube at the proper locations to effect secure attachment.
Providing preselected custom length drop tubes that are pre-cut at the factory to match the ceiling height disadvantageously introduces logistical problems, long lead times, and the possibility that the drop tubes will not fit with the actual relative ceiling to floor spacing.
Cutting a tube at the installation site risks poorly executed cutting and/or drilling of the tube resulting in a damaged suspension system and possible safety issues. Another disadvantage of cutting the tube at the installation site is that it is usually not possible to machine properly the end of the tube which is cut. The rough cut end is accommodated by including relatively large tolerances for the tube-in-tube connection and may require adjustment screws or the like. However, abnormal clearances can nonetheless result and cannot always be corrected by the adjustment screws.
Yet another disadvantage of existing suspension systems is that the height of the finished system is not S subsequently adjustable in the vertical direction. Thus, when the suspension system is moved to a different operating theater having a different ceiling height the drop tube is either replaced or, if the new operating theater has a lower ceiling, re-cut to accommodate the lower ceiling.
The present invention contemplates an improved surgical suspension apparatus which overcomes the aforementioned limitations and others.
According to one aspect of the invention, a suspension system is disclosed for suspending one or more devices, such as lightheads, monitors, cameras, or other medical apparatus, from an overhead structure at a selectable height. A drop tube has a selected portion thereof surroundingly encompassed by a receiving element that preferably has a variable inside diameter substantially conforming to a frustum of a cone. A mounting plate rigidly connects with the overhead structure and with the receiving element. The mounting plate has an opening through which an end of the drop tube passes. A wedge-shaped element has a variable outer diameter substantially conforming to a frustum of a cone. The wedge-shaped element compressively inserts into the receiving element and surroundingly encompasses the selected portion of the drop tube to effectuate a compressive clamping of the selected portion of the drop tube inside the receiving element.
According to another aspect of the invention, a device mounting system is disclosed. A securing element, rigidly connects with an associated overhead fixed structure. A drop tube has a first end that extends through an opening in the securing element. A wedge-shaped locking tube slidably receives the drop tube. The wedge-shaped locking tube compressively inserts into the opening of the securing element to effectuate a compressive locking between the securing element and a selected portion of the drop tube. An articulating arm is disposed at a second end of the drop tube. The articulating arm has at least one adjustable joint, and also has an attachment end adapted to receive an associated device.
According to yet another aspect of the invention, a mounting post is disclosed that adjustably extends downward from an overhead structure. A mounting plate is arranged a selected distance below the associated overhead structure and is rigidly connected therewith. The mounting plate has a drop tube opening. A drop tube passes through the drop tube opening at a selected point along the drop tube. The drop tube has a proximal end extending upward above the drop tube opening and a distal end extending downward below the drop tube opening. A collar is surroundingly arranged over the drop tube at the selected point. The collar includes an outer surface of narrowing diameter terminating at a narrow end. The outer surface compressively wedges at least partially into the drop tube opening. The collar also includes an inner surface which compresses against the drop tube at the selected point responsive to the wedging to secure the drop tube in the drop tube opening at the selected point.
According to yet another aspect of the invention, a method of variably adjusting a distance, relative to a fixed surface, of a distal end of a drop tube for supporting a medical device is provided. The method includes rigidly supporting a receiving element from the fixed surface, loosely inserting a collar into a bore of the receiving element, inserting the drop tube into the collar such that an end of the drop tube extends a selected distance below the receiving element, and drawing the collar into the receiving element bore such that the drop tube is compressively clamped by the receiving element and collar.
One advantage of the present invention resides in the enablement of continuous height adjustment over a range of positions in installing a surgical suspension system.
Another advantage of the present invention is the ability to adapt the suspension system height to different surgical theaters or other ceiling height changes.
Another advantage of the present invention resides in the elimination of circumferential tube-in-tube fitting clearances which are replaced in the preferred embodiment of the invention by a compressed wedge element that surroundingly clamps onto the drop tube.
Yet another advantage of the present invention is the elimination of on-site installation work including precision tube cutting and drilling. The drop tube can be “rough cut” at the installation site to provide a desired nominal tube length, but precision machining is not necessary.
Still yet another advantage of the present invention is the elimination of a precise length specification in preselected custom length drop tubes.
Numerous additional advantages and benefits of the present invention will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiment.
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for the purpose of illustrating preferred embodiments and are not to be construed as limiting the invention.
a is an enlarged showing of the circled area of
With reference to
A drop tube 20 connects at a proximal end to the mounting plate 14 and has a distal end 22 extending downward. One or more articulating arms 24 are disposed at the distal end 22. Each articulating arm 24 has a medical device, such as a lighthead 26, CRT monitor 28, flat panel monitor 30, manual task light 34, or the like attached at a distal end 35. Typically, the proximal end of each articulating arm 24 connects to the drop tube 20 via a rotatable spindle 32 which is rotatable about a vertical axis V. Each articulating arm 24 usually includes one or multiple joints 36 which are adjustable about one or more axes each to provide additional degrees of motion freedom.
The overhead lighting system 10 optionally includes additional features, such as a cosmetic ceiling cover 38. Those skilled in the art will also appreciate that the system 10 can be employed for mounting a wide range of other devices in addition to the lightheads and monitors illustrated, such as cameras, fiber optical light pipes, and the like. It will further be appreciated that the overhead lighting system 10 is not limited in application to surgical theaters, or even to medical or clinical settings. The overhead mounting of devices is beneficial in any setting where it is advantageous to have devices conveniently accessible and yet not “in the way” of people's usual movements.
An important parameter of the overhead lighting system 10 is the height of the distal end 22 of the drop tube 20 relative to the floor. For example, many surgical lightheads include reflectors designed to reflect light around the surgeon's head. The lighthead is thus positioned behind the surgeon's head, and the light reflects around the surgeon's head and onto or into the surgical opening. The precise positioning of the lighthead relative to the surgeon's head is thus critical, and improper positioning can result in partial blockage of the illumination by the surgeon's head, or a collision. Similarly, the monitors 28, 30 should be placed at an ergonomically advantageous position so that the surgeon can easily view the monitors during the operation, with the ability to glance back-and-forth between the surgical opening and the monitors.
With reference to
Although a separate drop tube receiving element, namely the cylinder 42, is shown in the illustrated embodiment, it is also contemplated to form the mounting plate 14 and the cylinder 42 as a single integral piece. That is, in a contemplated alternative embodiment the mounting plate includes an opening corresponding to the opening 44. However, as can be discerned from
With continuing reference to
The wedge-shaped collar 48 acts as a collet which passes through the cylinder opening 44 and is wedged into the bore 43, with the lower end 52, extending slightly beyond the lower open end 47 of the bore 43. The wedging compresses the collar 48, with the slots 50 facilitating the compression. During compression, both the inner and outer diameters of the collar decreases. As the collar 48 compresses, it presses against the drop tube 20 to effectuate a compressive clamping of the drop tube 20 inside the cylinder 42. The collar 48 is preferably formed from metal of a sufficient thickness for the strips 49 to flex inward when compressed and return to their original positions when released.
To enable a secure compressive locking, a tightening nut 53 (
Optionally, a lock washer 56 is included to prevent the nut 53 from loosening. Furthermore, although a slotted wedge-shaped collar 48 is illustrated, other wedge-shaped elements are suitably substituted therefore as desired. For example, a collet or other type of locking tube is also contemplated. In another embodiment, only one of the collar 48 and cylinder 42 has a taper, for example, the cylinder bore 43 may have a constant diameter D while the collar is tapered, or the collar have a constant diameter d while the cylinder 42 is tapered.
The length of drop tube 20 which extends below the cylinder 42 is thus infinitely variable between an upper position, in which the uppermost spindle 32 is flush with the nut 53, and a lower position, in which the upper end of the tube 20 is clamped by the collar. The excess, upper portion of the drop tube 20 is thus “stored” until needed within the cylinder 42 and may extend upward, into the space above the ceiling 18, thus providing for the portion of the drop tube below the cylinder 42 to be increased or decreased in length, as the need arises.
With continuing reference to
Preferably, a safety ring assembly 70 is provided to prevent the tube 20 from pulling through the collar 48 in the unlikely event that the system loosens. The safety ring assembly attaches to the tube 20 above the collar 48 using suitable fasteners 72, such as bolts, screws or the like (
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application is a continuation-in-part application of application Ser. No. 10/373,918 filed Feb. 25, 2003, still pending, which claims the benefit of U.S. Provisional Application No. 60/359,518, filed Feb. 25, 2002.
Number | Date | Country | |
---|---|---|---|
60359518 | Feb 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10373918 | Feb 2003 | US |
Child | 11054170 | Feb 2005 | US |