Surgical system for detecting gradual changes in perfusion

Information

  • Patent Grant
  • 11517183
  • Patent Number
    11,517,183
  • Date Filed
    Thursday, January 7, 2021
    3 years ago
  • Date Issued
    Tuesday, December 6, 2022
    a year ago
Abstract
The present disclosure is directed to an augmented reality surgical system. The system includes an endoscope that captures an image of the region of interest of a patient and an ECG device that records an ECG of the patient. A controller receives the image and applies at least one image processing filter to the image. The image processing filter includes a decomposition filter that decomposes the image into frequency bands. A temporal filter is applied to the frequency bands to generate temporally filtered bands. An adder adds each band frequency band to a corresponding temporally filtered band to generate augmented bands. A reconstruction filter generates an augmented image by collapsing the augmented bands. The controller also receives the ECG and processes the augmented image with the ECG to generate an ECG filtered augmented image. A display displays the ECG filtered augmented image to a user.
Description

Minimally invasive surgeries have involved the use of multiple small incisions to perform a surgical procedure instead of one larger opening. The small incisions have reduced patient discomfort and improved recovery times. The small incisions have also limited the visibility of internal organs, tissue, and other matter.


Endoscopes have been inserted in one or more of the incisions to make it easier for clinicians to see internal organs, tissue, and other matter inside the body during surgery. These endoscopes have included a camera with an optical and/or digital zoom capability that is coupled to a display showing the magnified view of organs, tissue, and matter inside the body as captured by the camera. Existing endoscopes and displays, especially those used in surgical robotic systems, have had a limited ability to identify conditions or objects that are within the field of view of the camera but are not fully visible within the spectrum shown on the display. For example, existing minimally invasive and robotic surgical tools, including but not limited to endoscopes and displays, have had a limited, if any, ability to identify blood perfusion during a minimally invasive surgical procedure. In order to identify blood perfusion, many procedures involved adding taggants to the patient's blood stream.


In view thereof, there is a need for identifying a greater range of possible conditions or objects that are within the field of view of a surgical camera but are not fully visible within the spectrum shown on the display during surgery.


SUMMARY

The present disclosure relates to video imaging techniques of target surgical sites, in vivo, during a surgical procedure, for detecting gradual changes in perfusion of tissue at the target surgical site.


In an aspect of the present disclosure, an augmented reality surgical system is provided. The system includes an endoscope configured to capture an image of a region of interest of a patient and an electrocardiogram (ECG) device configured to record electrical activity of a heart of the patient. The system also includes a controller configured to receive the image and apply at least one image processing filter to the image to generate an augmented image. The image processing filter includes a decomposition filter configured to decompose the image into a plurality of frequency bands, a temporal filter that is configured to be applied to the plurality of frequency bands to generate a plurality of temporally filtered bands, an adder configured to add each band in the plurality of frequency bands to a corresponding band in the plurality of temporally filtered bands to generate a plurality of augmented bands, a reconstruction filter configured to generate an augmented image by collapsing the plurality of augmented bands, and an ECG filter configured to generate the ECG filtered augmented image based on the augmented image and the electrical activity. The ECG filtered augmented image of the patient is then displayed to a user.


The image capture device may capture a video having a plurality of image frames and the controller applies the at least one image processing filter to each image frame of the plurality of image frames.


The temporal filter isolates at least one frequency band from the plurality of frequency bands to generate the plurality of temporally filtered bands. The plurality of temporally filtered bands are amplified by an amplifier before each band in the plurality of frequency bands is added to a corresponding band in the plurality of temporally filtered bands to generate a plurality of augmented bands.


The ECG filter may generate a baseline time varying signal. The ECG filter may average the baseline time varying amplified color and remove the averaged baseline time varying amplified color from the augmented image.


In some aspects, the endoscope includes an illumination device or optical fiber light guide. The endoscope may emit light having a wavelength that is selectively absorbed or reflected by arterial blood and/or venous blood.


In another aspect of the present disclosure, a method for generating an electrocardiogram (ECG) filtered augmented image is provided. The method includes capturing at least one image using an endoscope and recording electrical activity of a heart of the patient using an ECG device. The at least one image is decomposed to generate a plurality of frequency bands. A temporal filter is applied to the plurality of frequency bands to generate a plurality of temporally filtered bands. Each band in the plurality of frequency bands is added to a corresponding band in the plurality of temporally filtered bands to generate a plurality of augmented bands. The plurality of augmented bands is collapsed to generate an augmented image. The augmented image and the electrical activity are used to generate the ECG filtered augmented image which is displayed on a display.


At least one frequency band is isolated from the plurality of frequency bands. The temporally filtered bands may be amplified before adding each band in the plurality of frequency bands to a corresponding band in the plurality of temporally filtered bands to generate a plurality of augmented bands.


A baseline time varying amplified color is generated which may then be averaged. The averaged baseline time varying amplified color is removed from the augmented image to generate the ECG filtered augmented image.


In some aspects, light having a wavelength that is selectively absorbed or reflected by arterial blood or venous blood is emitted onto the tissue.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:



FIG. 1 is a schematic side view of an endoscope in accordance with embodiments of the present disclosure;



FIG. 2A is a schematic side view of a steerable endoscope in accordance with embodiments of the present disclosure;



FIG. 2B is a cross sectional view of a distal end of the endoscope of FIG. 2A;



FIG. 3 is a block diagram of a system for augmenting an image or video in accordance with an embodiment of the present disclosure;



FIG. 4 is a system block diagram of a controller of FIG. 3;



FIG. 5 is a system block diagram of a sub assembly of an image processing filter of FIG. 4;



FIG. 6 is a system block diagram of the image processing filter of FIG. 4; and



FIG. 7 is a system block diagram of a robotic surgical system in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION

Image data captured from a surgical camera during a surgical procedure may be analyzed to identify additional not readily human perceivable properties of objects within the camera field of view that may not be apparent to people viewing the camera image displayed on a screen. Various image processing technologies may be applied to this image data to identify different conditions in the patient. For example, Eulerian image amplification techniques may be used to identify small wavelength or “color” changes of light in different parts of a captured image. These changes may be further analyzed to identify re-perfusion, arterial flow, and/or vessel types.


Eulerian image amplification may also be used to make motion or movement between image frames more visible to a clinician. In some instances changes in a measured intensity of predetermined wavelengths of light between different image frames may be presented to a clinician to make the clinician more aware of the motion of particular objects of interest (such as blood).


Hyper-spectral image analysis may be used to identify subtle changes in small areas within the range of view that may be invisible or otherwise difficult for the human eye to discern. These hyper-spectral image analysis techniques may be combined with Eulerian image amplification to identify a specific set of changes in these areas.


One or more of Eulerian image amplification, image algebra, hyper-spectral image analysis, and filtering technologies may be included as part of an imaging system. These technologies may enable the imaging system to provide additional information about unapparent conditions and objects within a camera's field of view and enhance surgical outcomes. This additional information may include, but is not limited to, identifying tissue perfusion, locating arteries of specific sizes (such as larger arteries), verifying an effectiveness of vessel sealing, identifying a heat signature of abnormal tissue, verifying desired object motion (such as a lack of movement in edges of dead tissue or verifying proper flow after resection), distinguishing between similar looking objects (such as between the ureter, inferior mesenteric artery, and/or surrounding blood), and detecting small leaks (such as leaks that may occur after an anastomosis).


One or more of these technologies may be included as part of an imaging system in a surgical robotic system to provide a clinician with additional information in real time about unapparent conditions and objects within an endoscope's field of view. This may enable the clinician to quickly identify, avoid, and/or correct undesirable situations and conditions during surgery. For example, a clinician may be able to verify during surgery that vessels have been properly sealed, that blood is properly flowing, that there are no air leaks after an anastomosis, and/or that diseased tissue has been removed. The clinician may then be able to correct these issues if needed during the surgery. A clinician may also be able to identify delicate or critical objects in the body that the surgical instruments should avoid contacting or handle with extra care, such as larger arteries or the ureter.


Meanwhile, an electrocardiogram (ECG) device is generally used to measure the electrical activity of a patient's heart. The electrical activity corresponds to the cyclic change of blood flow through the body. There is a consistent correlation between the electrical activity and the variation in blood flow at a target region.


The present disclosure is directed to systems and methods for providing an augmented image in real time to a clinician during a surgical procedure. The systems and methods described herein apply image processing filters to a captured image to provide an augmented or enhanced image to a clinician via a display. In some embodiments, the systems and methods permit video capture during a surgical procedure. The captured video is processed in real time or near real time and then displayed to the clinician as an augmented image. The image processing filters are applied to each frame of the captured video. Providing the augmented image or video to the clinician permits the clinician to identify and address potential adverse physiologic conditions thereby reducing the need for additional surgical procedures as well as ensuring the effectiveness of the original surgical procedure.


The embodiments described herein enable a clinician to identify and filter out the cyclical change in blood flow, i.e., resulting from the propagation of flow from the heart, in the augmented image to permit a clinician to determine if there is an abnormal change in blood perfusion. The clinician may also determine if the change in blood perfusion is within the arterial blood flow or the venous blood flow. The embodiments described herein use a concept known as ECG gating in which data is acquired in relation to the ECG identified cardiac cycle. Using ECG gating to time average the color amplification of a region of interest, permits subtle changes in tissue to be readily and immediately observed without adding taggants or making modifications to existing endoscopes. The systems described herein permit clinicians to see and understand clinically significant situations such as blood flow obstructions from clamping of tissue.


Turning to FIG. 1, an endoscope 10 according to an embodiment of the present disclosure is illustrated. An example of endoscope 10 can be found in U.S. patent application Ser. No. 14/150,443 filed on Jan. 8, 2014, the contents of which are hereby incorporated by reference. The endoscope 10 includes an elongated shaft 12 having a proximal portion 14 and a distal portion 16. In one embodiment, the elongated shaft 12 is made from shape-memory alloy (e.g. Nitinol) such that the elongate shaft 12 may have a straight or linear cylindrical configuration in a relaxed state (i.e., in the absence of externally applied forces). In the linear configuration, the distal portion 16 of the endoscope 10 is inserted into a conventional trocar sleeve or cannula (not shown), which is essentially a straight, hollow instrument that allows the endoscope 10 to be inserted into the abdominal cavity of a patient. The cannula and/or endoscope 10 may be supported on the arm of a robotic surgical system. The cannula is typical of known cannulas in the art and is made from polyvinyl chloride (PVC) or any other flexible material suitable for use in the abdominal cavity or other medical applications.


Prior to insertion of the elongated shaft 12 into the cannula and the abdominal cavity, the surgeon adjusts the elongated shaft 12 into a pre-bent configuration to obtain an optimal viewing window. The elongated shaft 12 is then returned to the original straight configuration. Once inserted into the abdominal cavity, the elongated shaft assumes the pre-bent configuration. In one embodiment, the elongated shaft 12 assumes the pre-bent configuration in response to temperature within the body cavity. In an alternate embodiment, the elongated shaft 12 responds to an electrical signal from a control unit.


With continued reference to FIG. 1, the proximal and distal portions 14, 16 of the elongated shaft 12 each have an outer surface 18, 20, respectively. The outer surface 20 of the distal portion 16 includes at least one image capturing device 22 thereon. The image capturing device 22 allows the surgeon to clearly view the inside of the abdominal cavity. Preferably, the image capturing device 22 is a low profile camera so that the image capturing device 22 does not obstruct the surgeon's tools during the procedure. At least one illumination device 24 is disposed adjacent the image capturing device 22 to illuminate the inside of the abdominal cavity and aide in viewing the internal organs with the image capturing device 22.


The image capturing device 22 and illumination device 24 can be disposed in varying configurations along the distal portion 16 of the elongated shaft 12. Based on the location of the image capturing device 22, the elongated shaft 12 is pre-bent to provide the desired location as well as optimal angle for the surgeon. This variation in the pre-bent configuration is determined by varying the length of the bent portion (i.e. the distal portion) and the angle of the bend 26. FIG. 1 illustrates the angle of the bend 26 as a generally ninety degree angle with the distal portion 16 being generally the same length as the proximal portion 14, however, it is understood that any bend angle to allow the surgeon to view the body cavity can be achieved. Further, FIG. 1 illustrates the image capturing device 22 and the illumination device 24 generally along the same longitudinal axis with the image capturing device 22 being near a distal end of the elongated shaft 12. It will be appreciated that this configuration can be altered during manufacturing based on the particular needs of the surgical procedure.


Turning to FIG. 2A, an endoscope in accordance with another embodiment of the present disclosure is shown generally as 30. Endoscope 30 includes a locatable guide 32 which has a steerable distal tip 34, a flexible body 36 and, at its proximal end, a control handle or housing 38. Guide 32 may be inserted into a sheath 40 and may be locked in position by a locking mechanism 42 or any other connectors. A position sensor element 44 is integrated with distal tip 34 and allows monitoring of the tip position and orientation (6 degrees of freedom) relative to a reference coordinate system. An example of endoscope 30 can be found in U.S. patent application Ser. No. 12/723,577 filed on Mar. 12, 2010 (now U.S. Pat. No. 8,696,685), the contents of which are hereby incorporated by reference.


Turning now to FIG. 2B, distal tip 34 of endoscope 30 includes an image sensor 46. By way of example, image sensor 46 is shown here as an optical imaging sensor with a lens 48 positioned in front of an image sensor array 50. Illumination is provided via an optic fiber light guide 52.


The illumination device 24 of FIG. 1 and the optical fiber light guide 32 may emit specific light frequencies that may be used to illuminate a surgical site to selectively enhance the visibility or arterial and venous blood flow.


Turning to FIG. 3, a system for augmenting a surgical environment, according to embodiments of the present disclosure, is shown generally as 100. System 100 includes a controller 102 that has a processor 104 and a memory 106. The system 100 receives images from endoscope 10 or endoscope 30.


A sensor array 108 of system 100 provides information concerning the surgical environment to the controller 102. For instance, sensor array 108 includes biometric sensors capable of obtaining biometric data of a patient such as, pulse, temperature, blood pressure, blood oxygen levels, heart rhythm, etc. Sensor array 108 may also include hyper-spectral sensors to perform hyper-spectral imaging. Sensor array 108 may be incorporated in endoscope 10 or endoscope 30 or sensor array 108 may be provided as a separate standalone unit.


An ECG device 110 of system 100 provides an ECG or electrical activity signals of the heart of the patient to the controller 102. A display 112 of system 100, displays augmented images to a clinician during a surgical procedure. In some embodiments, the controller 102 may communicate with a central server (not shown) via a wireless or wired connection. The central server may store images of a patient or multiple patients that may be obtained using x-ray, a computed tomography scan, or magnetic resonance imaging.



FIG. 4 depicts a system block diagram of the controller 102. As shown in FIG. 4, the controller 102 includes a transceiver 114 configured to receive still frame images or video from endoscope 10, data from sensor array 110, or ECG data or signals from the ECG device 110. In some embodiments, the transceiver 114 may include an antenna to receive the still frame images, video, data, or ECG data or signals via a wireless communication protocol. The still frame images, video, data, or ECG data or signals are provided to the processor 104. The processor 104 includes an image processing filter 116 that processes the received still frame images, video, data, or ECG data or signals to generate an augmented image or video. The image processing filter 116 may be implemented using discrete components, software, or a combination thereof. The augmented image or video is provided to the display 112.


Turning to FIG. 5, a system block diagram of an image processing filter that may be applied to video received by transceiver 114 is shown as 116A. In the image processing filter 116A, each frame of a received video is decomposed into different frequency bands S1 to SN using a decomposition filter 118. The decomposition filter 118 uses an image processing technique known as a pyramid in which an image is subjected to repeated smoothing and subsampling.


After the frame is subjected to the decomposition filter 118, a temporal filter 120 is applied to all the frequency bands S1 to Sato generate temporally filtered bands ST1 to STN. The temporal filter 120 is a bandpass filter that is used to extract one or more desired frequency bands. For example, if the clinician knows the patient's pulse, the clinician can set the bandpass frequency of the temporal filter 120, using a user interface (not shown), to magnify the frequency band that corresponds to the patient's pulse. In other words, the bandpass filter is set to a narrow range that includes the patient's pulse and applied to all the frequency bands S1 to SN. Only the frequency band that corresponds to the set range of the bandpass filter will be isolated or passed through. In an embodiment, the bandpass frequency of the temporal filter 120 may be set automatically by system 100 based on the patient's pulse being measured by a pulse sensor, included in sensor array 108, and transmitted to temporal filter 120.


All of the temporally filtered bands ST1 to STN are individually amplified by an amplifier having a gain “α”. Because the temporal filter 120 isolates or passes through a desired frequency band of bands S1 to SN, only the desired frequency band of bands S1 to SN gets amplified. The amplified temporally filtered bands ST1 to STN are then added, by adder 121, to the original frequency bands S1 to SN to generate augmented bands S′1 to S′N. Each frame of the video is then reconstructed using a reconstruction filter 122 by collapsing augmented bands S′1 to S′N to generate an augmented frame. All the augmented frames are combined to produce the augmented video. The augmented video that is shown to the clinician includes a portion that is magnified, i.e., the portion that corresponds to the desired frequency band, to enable the clinician to easily identify such portion.


In some embodiments, instead of using an amplifier to amplify the isolated temporally filtered band, the image processing filter 116A may highlight the temporally filtered band using one or more colors before reconstructing the video. Using an enhanced color for a desired portion of the patient, e.g., a vessel or nerve, may make it easier for the clinician to identify the location of such portion.


Turning to FIG. 6, image processing filter 116A feeds the augmented video to ECG filter 116B. ECG filter 116B also receives ECG data or signals that were obtained by ECG device 110. Because the ECG data or signals is correlated with a cyclic change in blood flow, there is a consistent offset between the ECG data or signals and variation in blood flow at the surgical site. By using the consistent offset, the ECG filter 116B may determine a baseline time varying signal using the QRS signal pattern observed in the ECG data or signals. The ECG filter 116B then averages the baseline time varying signal and removes the average signal from the augmented video to generate an ECG filtered augmented video. In the ECG filtered augmented video, only unique changes in blood flow are visible, thus permitting a surgeon to view situations in real time, e.g., cessation in blood flow from over clamping tissue using jaw like end effector.


The image processing performed by image processing filter 116 may be combined with the specific light wavelengths emitted by illumination device 24 or optical fiber light guide 52, e.g., 660 nm and 940 nm, to determine if there is an abnormal blood flow in the arterial system or the venous system. Specifically, the illumination device 24 or optical fiber light guide 52 may emit light having a wavelength that selectively is absorbed or reflected by arterial blood. The received images and the ECG data or signals are processed by the image processing filter 116 to check for abnormalities in the arterial blood flow. The same procedure would apply to venous blood except that the illumination device 24 or optical fiber light guide 52 would emit light having a wavelength that isolates venous blood.


The above-described embodiments may also be configured to work with robotic surgical systems and what is commonly referred to as “Telerobotic surgery.” Such systems employ various robotic elements to assist the clinician in the operating theater and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the clinician during the course of an operation or treatment. Such robotic systems may include, remotely steerable systems, flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.


As shown in FIG. 7, a robotic surgical system 200 may be employed with one or more consoles 202 that are next to the operating theater or located in a remote location. In this instance, one team of clinicians or nurses may prep the patient for surgery and configure the robotic surgical system 200 with one or more instruments 204 while another clinician (or group of clinicians) remotely controls the instruments via the robotic surgical system. As can be appreciated, a highly skilled clinician may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.


The robotic arms 206 of the surgical system 200 are typically coupled to a pair of master handles 208 by a controller 210. Controller 210 may be integrated with the console 202 or provided as a standalone device within the operating theater. The handles 206 can be moved by the clinician to produce a corresponding movement of the working ends of any type of surgical instrument 204 (e.g., probe, end effectors, graspers, knifes, scissors, etc.) attached to the robotic arms 206. For example, surgical instrument 204 may be a probe, e.g., endoscope, that includes an image capture device. The probe is inserted into a patient in order to capture an image of a region of interest inside the patient during a surgical procedure. One or more of the image processing filters 116A or 116B are applied to the captured image by the controller 210 before the image is displayed to the clinician on a display 212.


The movement of the master handles 208 may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the clinician. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s) 204.


During operation of the surgical system 200, the master handles 208 are operated by a clinician to produce a corresponding movement of the robotic arms 206 and/or surgical instruments 204. The master handles 208 provide a signal to the controller 208 which then provides a corresponding signal to one or more drive motors 214. The one or more drive motors 214 are coupled to the robotic arms 206 in order to move the robotic arms 206 and/or surgical instruments 204.


The master handles 208 may include various haptics 216 to provide feedback to the clinician relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such haptics 216 provide the clinician with enhanced tactile feedback simulating actual operating conditions. The haptics 216 may include vibratory motors, electroactive polymers, piezoelectric devices, electrostatic devices, subsonic audio wave surface actuation devices, reverse-electrovibration, or any other device capable of providing a tactile feedback to a user. The master handles 208 may also include a variety of different actuators 218 for delicate tissue manipulation or treatment further enhancing the clinician's ability to mimic actual operating conditions.


The embodiments disclosed herein are examples of the disclosure and may be embodied in various forms. Specific structural and functional details disclosed herein are not to be interpreted as limiting, but as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure. Like reference numerals may refer to similar or identical elements throughout the description of the figures.


The phrases “in an embodiment,” “in embodiments,” “in some embodiments,” or “in other embodiments,” which may each refer to one or more of the same or different embodiments in accordance with the present disclosure. A phrase in the form “A or B” means “(A), (B), or (A and B)”. A phrase in the form “at least one of A, B, or C” means “(A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C)”. A clinician may refers to a clinician or any medical professional, such as a doctor, nurse, technician, medical assistant, or the like) performing a medical procedure.


The systems described herein may also utilize one or more controllers to receive various information and transform the received information to generate an output. The controller may include any type of computing device, computational circuit, or any type of processor or processing circuit capable of executing a series of instructions that are stored in a memory. The controller may include multiple processors and/or multicore central processing units (CPUs) and may include any type of processor, such as a microprocessor, digital signal processor, microcontroller, or the like. The controller may also include a memory to store data and/or algorithms to perform a series of instructions.


Any of the herein described methods, programs, algorithms or codes may be converted to, or expressed in, a programming language or computer program. A “Programming Language” and “Computer Program” includes any language used to specify instructions to a computer, and includes (but is not limited to) these languages and their derivatives: Assembler, Basic, Batch files, BCPL, C, C #, C++, Delphi, Fortran, Java, JavaScript, Machine code, operating system command languages, Pascal, Perl, PL1, Python, scripting languages, Visual Basic, metalanguages which themselves specify programs, and all first, second, third, fourth, and fifth generation computer languages. Also included are database and other data schemas, and any other meta-languages. No distinction is made between languages which are interpreted, compiled, or use both compiled and interpreted approaches. No distinction is also made between compiled and source versions of a program. Thus, reference to a program, where the programming language could exist in more than one state (such as source, compiled, object, or linked) is a reference to any and all such states. Reference to a program may encompass the actual instructions and/or the intent of those instructions.


Any of the herein described methods, programs, algorithms or codes may be contained on one or more machine-readable media or memory. The term “memory” may include a mechanism that provides (e.g., stores and/or transmits) information in a form readable by a machine such a processor, computer, or a digital processing device. For example, a memory may include a read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, or any other volatile or non-volatile memory storage device. Code or instructions contained thereon can be represented by carrier wave signals, infrared signals, digital signals, and by other like signals.


It should be understood that the foregoing description is only illustrative of the present disclosure. Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. For instance, any of the augmented images described herein can be combined into a single augmented image to be displayed to a clinician. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. The embodiments described with reference to the attached drawing figs. are presented only to demonstrate certain examples of the disclosure. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.

Claims
  • 1. An augmented reality surgical system comprising: an image capture device configured to capture an image of a region of interest of a patient;an electrocardiogram (ECG) device configured to record electrical activity of a heart of the patient; anda controller configured to receive the image and apply at least one image processing filter to the image to generate an ECG filtered augmented image, the image processing filter including: a decomposition filter configured to decompose the image into a plurality of frequency bands;a temporal filter configured to be applied to the plurality of frequency bands to generate a plurality of temporally filtered bands;an adder configured to add each band in the plurality of frequency bands to a corresponding band in the plurality of temporally filtered bands to generate a plurality of augmented bands;a reconstruction filter configured to generate an augmented image by collapsing the plurality of augmented bands; andan ECG filter configured to generate the ECG filtered augmented image based on the augmented image and the electrical activity.
  • 2. The augmented reality surgical system of claim 1, further comprising: a display configured to display the ECG filtered augmented image of the patient to a user during the surgical procedure.
  • 3. The augmented reality surgical system of claim 1, wherein the image capture device captures a video having a plurality of image frames and the controller applies the at least one image processing filter to each image frame of the plurality of image frames.
  • 4. The augmented reality surgical system of claim 1, wherein the temporal filter includes a bandpass filter.
  • 5. The augmented reality surgical system of claim 4, wherein a bandpass frequency of the bandpass filter is set by a clinician.
  • 6. The augmented reality surgical system of claim 1, wherein the temporal filter isolates at least one frequency band from the plurality of frequency bands to generate the plurality of temporally filtered bands.
  • 7. The augmented reality surgical system of claim 1, wherein the plurality of temporally filtered bands are amplified by an amplifier before each band in the plurality of frequency bands is added to the corresponding band in the plurality of temporally filtered bands to generate the plurality of augmented bands.
  • 8. The augmented reality surgical system of claim 1, wherein the ECG filter generates a baseline time varying signal.
  • 9. The augmented reality surgical system of claim 8, wherein the ECG filter averages the baseline time varying amplified color and removes the averaged baseline time varying amplified color from the augmented image.
  • 10. The augmented reality surgical system of claim 1, wherein the image capture device includes an illumination device or an optical fiber light guide.
  • 11. The augmented reality surgical system of claim 1, wherein the image capture device emits light having a wavelength that selectively is absorbed or reflected by arterial blood.
  • 12. The augmented reality surgical system of claim 1, wherein the image capture device emits light having a wavelength that selectively is absorbed or reflected by venous blood.
  • 13. A method for generating an electrocardiogram (ECG) filtered augmented image of a region of interest of a patient during a surgical procedure, the method comprising: capturing at least one image of the region of interest using an image capture device;recording electrical activity of a heart of the patient using an ECG device;decomposing the at least one image to generate a plurality of frequency bands;applying a temporal filter to the plurality of frequency bands to generate a plurality of temporally filtered bands;adding each band in the plurality of frequency bands to a corresponding band in the plurality of temporally filtered bands to generate a plurality of augmented bands;collapsing the plurality of augmented bands to generate an augmented image; andgenerating the ECG filtered augmented image based on the augmented image and the electrical activity.
  • 14. The method of claim 13, further comprising displaying the ECG filtered augmented image on a display.
  • 15. The method of claim 13, further comprising isolating at least one frequency band from the plurality of frequency bands.
  • 16. The method of claim 15, further comprising amplifying the temporally filtered bands, before adding each band in the plurality of frequency bands to a corresponding band in the plurality of temporally filtered bands, to generate a plurality of augmented bands.
  • 17. The method of claim 13, further comprising generating a baseline time varying amplified color.
  • 18. The method of claim 17, further comprising: averaging the baseline time varying amplified color; andremoving the averaged baseline time varying amplified color from the augmented image to generate the ECG filtered augmented image.
  • 19. The method of claim 13, further comprising emitting light onto the target tissue having a wavelength that selectively is absorbed or reflected by arterial blood.
  • 20. The method of claim 13, further comprising emitting light onto the target tissue having a wavelength that selectively is absorbed or reflected by venous blood.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application claiming the benefit of and priority to U.S. patent application Ser. No. 15/768,150, filed Apr. 13, 2018, which is a U.S. National Stage Application filed under 35 U.S.C. § 371(a) of International Patent Application Serial No. PCT/US2016/057797, filed Oct. 20, 2016, which claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/245,526, filed Oct. 23, 2015, the entire disclosure of which is incorporated by reference herein.

US Referenced Citations (313)
Number Name Date Kind
6132368 Cooper Oct 2000 A
6206903 Ramans Mar 2001 B1
6246200 Blumenkranz et al. Jun 2001 B1
6312435 Wallace et al. Nov 2001 B1
6331181 Tierney et al. Dec 2001 B1
6394998 Wallace et al. May 2002 B1
6424885 Niemeyer et al. Jul 2002 B1
6441577 Blumenkranz et al. Aug 2002 B2
6459926 Nowlin et al. Oct 2002 B1
6491691 Morley et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6493608 Niemeyer Dec 2002 B1
6565554 Niemeyer May 2003 B1
6645196 Nixon et al. Nov 2003 B1
6659939 Moll et al. Dec 2003 B2
6671581 Niemeyer et al. Dec 2003 B2
6676684 Morley et al. Jan 2004 B1
6685698 Morley et al. Feb 2004 B2
6699235 Wallace et al. Mar 2004 B2
6714839 Salisbury, Jr et al. Mar 2004 B2
6716233 Whitman Apr 2004 B1
6728599 Wang et al. Apr 2004 B2
6746443 Morley et al. Jun 2004 B1
6766204 Niemeyer et al. Jul 2004 B2
6770081 Cooper et al. Aug 2004 B1
6772053 Niemeyer Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6793652 Whitman et al. Sep 2004 B1
6793653 Sanchez et al. Sep 2004 B2
6799065 Niemeyer Sep 2004 B1
6837883 Moll et al. Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6840938 Morley et al. Jan 2005 B1
6843403 Whitman Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6866671 Tierney et al. Mar 2005 B2
6871117 Wang et al. Mar 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6899705 Niemeyer May 2005 B2
6902560 Morley et al. Jun 2005 B1
6936042 Wallace et al. Aug 2005 B2
6951535 Ghodoussi et al. Oct 2005 B2
6974449 Niemeyer Dec 2005 B2
6991627 Madhani et al. Jan 2006 B2
6994708 Manzo Feb 2006 B2
7048745 Tierney et al. May 2006 B2
7066926 Wallace et al. Jun 2006 B2
7118582 Wang et al. Oct 2006 B1
7125403 Julian et al. Oct 2006 B2
7155315 Niemeyer et al. Dec 2006 B2
7239940 Wang et al. Jul 2007 B2
7306597 Manzo Dec 2007 B2
7357774 Cooper Apr 2008 B2
7373219 Nowlin et al. May 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7391173 Schena Jun 2008 B2
7398707 Morley et al. Jul 2008 B2
7413565 Wang et al. Aug 2008 B2
7453227 Prisco et al. Nov 2008 B2
7524320 Tierney et al. Apr 2009 B2
7558618 Williams Jul 2009 B1
7574250 Niemeyer Aug 2009 B2
7594912 Cooper et al. Sep 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7666191 Orban, III et al. Feb 2010 B2
7682357 Ghodoussi et al. Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7695481 Wang et al. Apr 2010 B2
7695485 Whitman et al. Apr 2010 B2
7699855 Anderson et al. Apr 2010 B2
7713263 Niemeyer May 2010 B2
7725214 Diolaiti May 2010 B2
7727244 Orban, III et al. Jun 2010 B2
7741802 Prisco et al. Jun 2010 B2
7756036 Druke et al. Jul 2010 B2
7757028 Druke et al. Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7778733 Nowlin et al. Aug 2010 B2
7803151 Whitman Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7819885 Cooper Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7835823 Sillman et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7865266 Moll et al. Jan 2011 B2
7865269 Prisco et al. Jan 2011 B2
7886743 Cooper et al. Feb 2011 B2
7899578 Prisco et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7935130 Williams May 2011 B2
7963913 Devengenzo et al. Jun 2011 B2
7983793 Toth et al. Jul 2011 B2
8002767 Sanchez et al. Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8012170 Whitman et al. Sep 2011 B2
8054752 Druke et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8079950 Stern et al. Dec 2011 B2
8100133 Mintz et al. Jan 2012 B2
8108072 Zhao et al. Jan 2012 B2
8120301 Goldberg et al. Feb 2012 B2
8142447 Cooper et al. Mar 2012 B2
8147503 Zhao et al. Apr 2012 B2
8151661 Schena et al. Apr 2012 B2
8155479 Hoffman et al. Apr 2012 B2
8182469 Anderson et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8206406 Orban, III Jun 2012 B2
8210413 Whitman et al. Jul 2012 B2
8216250 Orban, III et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8239170 Wegerich Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271071 Maruccio Sep 2012 B2
8285517 Sillman et al. Oct 2012 B2
8315720 Mohr et al. Nov 2012 B2
8335590 Costa et al. Dec 2012 B2
8347757 Duval Jan 2013 B2
8374723 Zhao et al. Feb 2013 B2
8418073 Mohr et al. Apr 2013 B2
8419717 Diolaiti et al. Apr 2013 B2
8423182 Robinson et al. Apr 2013 B2
8452447 Nixon May 2013 B2
8454585 Whitman Jun 2013 B2
8499992 Whitman et al. Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8528440 Morley et al. Sep 2013 B2
8529582 Devengenzo et al. Sep 2013 B2
8540748 Murphy et al. Sep 2013 B2
8551116 Julian et al. Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597182 Stein et al. Dec 2013 B2
8597280 Cooper et al. Dec 2013 B2
8600551 Itkowitz et al. Dec 2013 B2
8608773 Tierney et al. Dec 2013 B2
8620473 Diolaiti et al. Dec 2013 B2
8624537 Nowlin et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8644988 Prisco et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8668638 Donhowe et al. Mar 2014 B2
8696685 Gilboa Apr 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8758352 Cooper et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8768516 Diolaiti et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8790243 Cooper et al. Jul 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8821480 Burbank Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827989 Niemeyer Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8852174 Burbank Oct 2014 B2
8858547 Brogna Oct 2014 B2
8862268 Robinson et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864752 Diolaiti et al. Oct 2014 B2
8903546 Diolaiti et al. Dec 2014 B2
8903549 Itkowitz et al. Dec 2014 B2
8911428 Cooper et al. Dec 2014 B2
8912746 Reid et al. Dec 2014 B2
8944070 Guthart et al. Feb 2015 B2
8989903 Weir et al. Mar 2015 B2
9002518 Manzo et al. Apr 2015 B2
9014856 Manzo et al. Apr 2015 B2
9016540 Whitman et al. Apr 2015 B2
9019345 Patrick Apr 2015 B2
9043027 Durant et al. May 2015 B2
9050120 Swarup et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9068628 Solomon et al. Jun 2015 B2
9078684 Williams Jul 2015 B2
9084623 Gomez et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9096033 Holop et al. Aug 2015 B2
9101381 Burbank et al. Aug 2015 B2
9113877 Whitman et al. Aug 2015 B1
9138284 Krom et al. Sep 2015 B2
9144456 Rosa et al. Sep 2015 B2
9198730 Prisco et al. Dec 2015 B2
9204923 Manzo et al. Dec 2015 B2
9226648 Saadat et al. Jan 2016 B2
9226750 Weir et al. Jan 2016 B2
9226761 Burbank Jan 2016 B2
9232984 Guthart et al. Jan 2016 B2
9241766 Duque et al. Jan 2016 B2
9241767 Prisco et al. Jan 2016 B2
9241769 Larkin et al. Jan 2016 B2
9259275 Burbank Feb 2016 B2
9259277 Rogers et al. Feb 2016 B2
9259281 Griffiths et al. Feb 2016 B2
9259282 Azizian et al. Feb 2016 B2
9261172 Solomon et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265584 Itkowitz et al. Feb 2016 B2
9283049 Diolaiti et al. Mar 2016 B2
9301811 Goldberg et al. Apr 2016 B2
9314307 Richmond et al. Apr 2016 B2
9317651 Nixon Apr 2016 B2
9345546 Toth et al. May 2016 B2
9393017 Flanagan et al. Jul 2016 B2
9402689 Prisco et al. Aug 2016 B2
9417621 Diolaiti et al. Aug 2016 B2
9424303 Hoffman et al. Aug 2016 B2
9433418 Whitman et al. Sep 2016 B2
9446517 Burns et al. Sep 2016 B2
9452020 Griffiths et al. Sep 2016 B2
9474569 Manzo et al. Oct 2016 B2
9480533 Devengenzo et al. Nov 2016 B2
9503713 Zhao et al. Nov 2016 B2
9550300 Danitz et al. Jan 2017 B2
9554859 Nowlin et al. Jan 2017 B2
9566124 Prisco et al. Feb 2017 B2
9579164 Itkowitz et al. Feb 2017 B2
9585641 Cooper et al. Mar 2017 B2
9615883 Schena et al. Apr 2017 B2
9623563 Nixon Apr 2017 B2
9623902 Griffiths et al. Apr 2017 B2
9629520 Diolaiti Apr 2017 B2
9662177 Weir et al. May 2017 B2
9664262 Donlon et al. May 2017 B2
9687312 Dachs, II et al. Jun 2017 B2
9700334 Hinman et al. Jul 2017 B2
9718190 Larkin et al. Aug 2017 B2
9730719 Brisson et al. Aug 2017 B2
9737199 Pistor et al. Aug 2017 B2
9795446 DiMaio et al. Oct 2017 B2
9797484 Solomon et al. Oct 2017 B2
9801690 Larkin et al. Oct 2017 B2
9814530 Weir et al. Nov 2017 B2
9814536 Goldberg et al. Nov 2017 B2
9814537 Itkowitz et al. Nov 2017 B2
9820823 Richmond et al. Nov 2017 B2
9827059 Robinson et al. Nov 2017 B2
9830371 Hoffman et al. Nov 2017 B2
9839481 Blumenkranz et al. Dec 2017 B2
9839487 Dachs, II Dec 2017 B2
9850994 Schena Dec 2017 B2
9855102 Blumenkranz Jan 2018 B2
9855107 Labonville et al. Jan 2018 B2
9872737 Nixon Jan 2018 B2
9877718 Weir et al. Jan 2018 B2
9883920 Blumenkranz Feb 2018 B2
9888974 Niemeyer Feb 2018 B2
9895813 Blumenkranz et al. Feb 2018 B2
9901408 Larkin Feb 2018 B2
9918800 Itkowitz et al. Mar 2018 B2
9943375 Blumenkranz et al. Apr 2018 B2
9948852 Lilagan et al. Apr 2018 B2
9949798 Weir Apr 2018 B2
9949802 Cooper Apr 2018 B2
9952107 Blumenkranz et al. Apr 2018 B2
9956044 Gomez et al. May 2018 B2
9980778 Ohline et al. May 2018 B2
10008017 Itkowitz et al. Jun 2018 B2
10028793 Griffiths et al. Jul 2018 B2
10033308 Chaghajerdi et al. Jul 2018 B2
10034719 Richmond et al. Jul 2018 B2
10052167 Au et al. Aug 2018 B2
10085811 Weir et al. Oct 2018 B2
10092344 Mohr et al. Oct 2018 B2
10123844 Nowlin et al. Nov 2018 B2
10188471 Brisson Jan 2019 B2
10201390 Swarup et al. Feb 2019 B2
10213202 Flanagan et al. Feb 2019 B2
10258416 Mintz et al. Apr 2019 B2
10278782 Jarc et al. May 2019 B2
10278783 Itkowitz et al. May 2019 B2
10282881 Itkowitz et al. May 2019 B2
10335242 Devengenzo et al. Jul 2019 B2
10405934 Prisco et al. Sep 2019 B2
10433922 Itkowitz et al. Oct 2019 B2
10464219 Robinson et al. Nov 2019 B2
10485621 Morrissette et al. Nov 2019 B2
10500004 Hanuschik et al. Dec 2019 B2
10500005 Weir et al. Dec 2019 B2
10500007 Richmond et al. Dec 2019 B2
10507066 DiMaio et al. Dec 2019 B2
10510267 Jarc et al. Dec 2019 B2
10524871 Liao Jan 2020 B2
10548459 Itkowitz et al. Feb 2020 B2
10575909 Robinson et al. Mar 2020 B2
10592529 Hoffman et al. Mar 2020 B2
10595946 Nixon Mar 2020 B2
10881469 Robinson Jan 2021 B2
10881473 Itkowitz et al. Jan 2021 B2
10898188 Burbank Jan 2021 B2
10898189 McDonald, II Jan 2021 B2
10905506 Itkowitz et al. Feb 2021 B2
10912449 Meglan et al. Feb 2021 B2
10912544 Brisson et al. Feb 2021 B2
10912619 Jarc et al. Feb 2021 B2
10918387 Duque et al. Feb 2021 B2
10918449 Solomon et al. Feb 2021 B2
10932873 Griffiths et al. Mar 2021 B2
10932877 Devengenzo et al. Mar 2021 B2
20070055128 Glossop Mar 2007 A1
20100158330 Guissin Jun 2010 A1
20130035581 Vesto Feb 2013 A1
20130038707 Cunningham et al. Feb 2013 A1
20140213849 Pandey Jul 2014 A1
20140275760 Lee et al. Sep 2014 A1
20150257653 Hyde Sep 2015 A1
20170202633 Liu Jul 2017 A1
Non-Patent Literature Citations (4)
Entry
Extended European Search Report dated Jun. 14, 2021 corresponding to counterpart Patent Application EP 21172585.8.
European Office Action dated Mar. 6, 2020 corresponding to counterpart Patent Application EP 16858177.5.
International Search Report and Written Opinion of Int'l Appln. PCT/US16/057797 dated Feb. 1, 2017.
Extended European Search Report dated May 23, 2019 corresponding to counterpart Patent Application EP 16858177.5.
Related Publications (1)
Number Date Country
20210145259 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62245526 Oct 2015 US
Continuations (1)
Number Date Country
Parent 15768150 US
Child 17143243 US