The present disclosure relates generally to surgical systems and methods. More particularly, the present disclosure relates to surgical systems and methods facilitating cooling one or more components of a surgical instrument while warming fluid to be introduced into a patient during a surgical procedure.
Many surgical procedures utilize surgical instruments that have components that generate heat during use such as, for example, motors, generators, battery packs, etc. These heat-generating components need to be maintained at appropriate operating temperatures to ensure safety and adequate performance.
Many surgical procedures also require or are facilitated by the use of fluid introduced into and removed from a patient during the surgical procedure. For example, an intrauterine surgical procedure may be performed by inserting an endoscope into the uterus and introducing a fluid (for example, saline, sorbitol, or glycine) through the endoscope and into the uterus to distend the uterus. A surgical instrument such as, for example, a motor-drive tissue shaver, may be inserted through the endoscope and into the uterus to perform a surgical procedure therein such as, for example, tissue cutting and removal. The inflow and outflow of fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space. In such surgical procedures, it may be desirable to pre-heat the fluid introduced into the patient. Pre-heating the fluid may be advantageous, for example, in order to make the introduction of fluid into the patient more palatable by reducing or eliminating the temperature differential between the fluid and the patient.
As used herein, the term “distal” refers to the portion that is described which is farther from the operator (whether a human surgeon or a surgical robot), while the term “proximal” refers to the portion that is described which is closer to the operator. Further, to the extent consistent, any or all of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
Provided in accordance with aspects of the present disclosure is a surgical system including a fluid-delivery device configured to deliver fluid to a surgical site, a surgical instrument including a heat-generating component, and a fluid inflow path defined from a fluid source to the fluid-delivery device to provide fluid to the fluid-delivery device for delivery to the surgical site. At least a portion of the fluid inflow path is thermally coupled to the heat-generating component of the surgical instrument to simultaneously draw heat from the heat-generating component and warm fluid flowing through the fluid inflow path.
In an aspect of the present disclosure, the fluid-delivery device is an endoscope. In such aspects, the endoscope may be configured to receive a portion of the surgical instrument therethrough.
In another aspect of the present disclosure, the surgical instrument is a tissue shaver. In such aspects, the heat-generating component may be a motor configured to drive a cutting shaft of the tissue shaver.
In yet another aspect of the present disclosure, the surgical instrument includes a handpiece and an end effector assembly releasably engaged with the handpiece. In such aspects, an inflow lumen extending through the handpiece and thermally coupled to the heat-generating component may define a portion of the fluid inflow path. Alternatively or additionally, tubing engaged to the handpiece and thermally coupled to the heat-generating component may define a portion of the fluid inflow path.
In still another aspect of the present disclosure, the at least a portion of the fluid inflow path is thermally coupled to the heat-generating component of the surgical instrument via sufficient approximation of the fluid inflow path with the heat-generating component.
In still yet another aspect of the present disclosure, the at least a portion of the fluid inflow path is thermally coupled to the heat-generating component of the surgical instrument via a thermally conductive material connecting the fluid inflow path with the heat-generating component.
A method of surgery provided in accordance with aspects of the present disclosure includes using a surgical instrument having a heat-generating component that generates heat during the use of the surgical instrument, and introducing fluid along a fluid inflow path from a fluid source to a surgical site. At least a portion of the fluid inflow path is thermally coupled to the heat-generating component of the surgical instrument to simultaneously draw heat from the heat-generating component and warm the fluid introduced along the fluid inflow path.
In an aspect of the present disclosure, using the surgical instrument includes inserting a portion of the surgical instrument into the surgical site. In such aspects, using the surgical instrument may further include activating the surgical instrument to perform a surgical task at the surgical site. In some aspects, the surgical task includes tissue cutting and removal, and activating the surgical instrument includes activating a motor to drive a cutting shaft of the surgical instrument. Further, the motor may be the heat-generating component.
In another aspect of the present disclosure, the method further includes inserting an endoscope into the surgical site. Introducing the fluid along the fluid inflow path from the fluid source to the surgical site includes introducing the fluid through the endoscope.
In still another aspect of the present disclosure, using the surgical instrument includes inserting a portion of the surgical instrument through the endoscope (or other fluid delivery device) and into the surgical site.
In yet another aspect of the present disclosure, introducing the fluid along the fluid inflow path from the fluid source to the surgical site includes introducing the fluid through tubing engaged with the surgical instrument to thereby thermally couple the fluid inflow path with the heat-generating component.
In still yet another aspect of the present disclosure, introducing the fluid along the fluid inflow path from the fluid source to the surgical site includes introducing the fluid through an internal lumen defined within the surgical instrument to thereby thermally couple the fluid inflow path with the heat-generating component.
In another aspect of the present disclosure, the fluid inflow path is thermally coupled to the heat-generating component via at least one of: sufficient approximation of the fluid inflow path with the heat-generating component; or a thermally conductive material connecting the fluid inflow path with the heat-generating component.
Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views and:
The present disclosure provides surgical systems and methods facilitating cooling of one or more heat-generating components of a surgical instrument used during a surgical procedure while also warming fluid to be introduced into a patient during the surgical procedure. More specifically, in accordance with the system and methods of the present disclosure, inflow fluid to be introduced into a patient during a surgical procedure is utilized as a heat sink to draw heat away (and absorb the heat) from one or more heat-generating components of a surgical instrument used in the surgical procedure. This results in the dual benefit of cooling the heat-generating component(s) of the surgical instrument (by drawing the heat therefrom) while simultaneously warming the inflow fluid to be introduced into the patient (by absorbing the heat). Although described hereinbelow with respect to a surgical system including a motor-powered tissue shaver and hysteroscopic fluid management system, the aspects and features of the present disclosure are equally applicable for use with other surgical instruments (and/or for cooling other heat-generating components thereof, e.g., generators, battery packs, controllers, etc.) and/or other surgical fluid management systems. Further, the systems and methods detailed herein are not limited to use with human-operated surgical instrumentation but, rather, also apply to surgical robotics implementations.
Referring to
Control console 100 is configured to power and control surgical instrument 200, e.g., via a cable 110 connecting control console 100 with handpiece 210 of surgical instrument 200, and to perform fluid management with respect to the introduction of fluid through endoscope 300 into the surgical site and/or the withdrawal of fluid from the surgical site via surgical instrument 200 and/or endoscope 300. Although shown as an integrated unit contained within a single housing, it is understood that control console 100 may consist of plural separate units physically and/or operably connected to one another in any suitable manner.
With respect to powering and controlling surgical instrument 200, one or more microprocessors of the control console 100 controls a motor 230 within handpiece 210 of surgical instrument 200 to drive surgical instrument 200 according to appropriate speed and/or direction profiles and provides torque limits to protect surgical instrument 200 and the patient. The microprocessor(s) of control console 100 also directs communicates with surgical instrument 200, e.g., to identify surgical instrument 200, verify surgical instrument 200 is permitted to be used, obtain operational parameters and/or other information associated with surgical instrument 200, write use or other information to surgical instrument 200, etc.
With respect to fluid management, control console 100 may selectively operate one or more inflow pumps (not explicitly shown) disposed therein or connected thereto, one or more vacuum pumps (not explicitly shown) disposed therein or connected thereto, and/or any other suitable inflow and/or outflow pump(s). Control console 100, more specifically, may monitor fluid flow rate, fluid pressure, total fluid volume, fluid impedance, fluid deficit, etc., control the one or more pumps based thereon, and/or provide feedback regarding the same, e.g., display status information, output notifications and/or alarms, disable features, etc.
With additional reference to
End effector assembly 260 of surgical instrument 200 includes a proximal hub 270 configured to releasably engage outer housing 220 of handpiece 210, an outer shaft 280 extending distally from proximal hub 270, and an inner assembly 290 including an inner cutting shaft 292 extending through outer shaft 280 and a drive assembly 294 disposed within proximal hub 270, operably engaged with inner cutting shaft 292, and configured to operable couple to output rotor 232 of motor 230 such that, in response to activation of motor 230 to drive rotation of output rotor 232, inner cutting shaft 292 is driven to rotate continuously, oscillate rotationally, and/or oscillate translationally relative to outer shaft 280 to cut tissue at the distal end of surgical instrument 200. Outer shaft 280 and/or inner cutting shaft 292 may define open distal ends and/or side windows towards the distal ends thereof to enable tissue to be drawn therein and cut by the motion of inner cutting shaft 292. More specifically, in aspects, inner cutting shaft 292 may include an open distal end and may define a cutting edge 296 surrounding the open distal end. Inner cutting shaft 292 may be configured to rotate and oscillate translationally relative to a side window 282 defined through outer shaft 280 towards the distal end thereof to cut tissue extending through side window 282. Suction may be applied through inner cutting shaft 292 to facilitate suctioning tissue through side window 282 for cutting and to facilitate the withdrawal of cut tissue, fluid, and debris from the surgical site through inner cutting shaft 292.
Referring back to
Connection tubing 400 includes inflow tubing 410; outflow tubing 420, 430, 440; and vacuum tubing 450. Each tubing 410-450 may include one or more segments of tube that may be connected with one another directly (via a suitable coupler) or indirectly (via suitable intermediate components). Inflow tubing 410 connects fluid bag 700 with inflow port 330 of endoscope 300 to enable the delivery of fluid from fluid bag 700 through the inflow channel of endoscope 300 and into a surgical site. Fluid may be delivered from fluid bag 700 into the internal surgical site via gravity, an inflow pump (not shown) connected between fluid bag 700 and endoscope 300, and/or via vacuum assist, e.g., via suction established through outflow tubing 420 and 430. Inflow tubing 410 forms at least a portion of a fluid inflow path from fluid bag 700 to endoscope 300. This fluid inflow path, as detailed below, is configured to thermally couple to one or more heat-generating components of surgical instrument 200 along at least a portion of the length of the fluid inflow path to simultaneously cool the heat-generating component(s) and warm the fluid flowing along the fluid inflow path by drawing heat away from the heat-generating components(s) and absorbing the heat with the fluid, respectively.
Outflow tubing 420 connects an outflow port 340 of endoscope 300 with the one or more fluid collection canisters 600 to enable the outflow of fluid from the surgical site, through endoscope 300, to the one or more fluid collection canisters 600. Outflow tubing 430 connects surgical instrument 200 with the one or more fluid collection canisters 600 to enable the removal of fluid, cut tissue, and debris from the surgical site through surgical instrument 200 and to the one or more fluid collection canisters 600. Outflow tubing 440 connects an outflow drain 510 of collection drape 500 with the one or more fluid collection canisters 600. Vacuum tubing 450 connects the one or more fluid collection canisters 600 with a vacuum pump (not shown) within control console 100 to establish suction through outflow tubing 420, 430, 440 to facilitate the outflow of fluid from the surgical site to the one or more fluid collection canisters 600.
Fluid collection drape 500 is configured to collect leakage fluid and return the same to the one or more fluid collection canisters 600 via outflow tubing 440 and drain 510 of fluid collection drape 500.
Fluid bag 700 (or other suitable fluid source) may hold any suitable fluid to be introduced into the surgical site such as, for example, saline, sorbitol, or glycine.
Support stand 800 is configured to support control console 100, collection canister(s) 600, and fluid bag 700 thereon.
Footswitch 900 may be configured to connect to control console 100 to act as an input device for actuating and/or controlling surgical instrument 200.
Turning to
Inflow lumen 1100, more specifically, extends through outer housing 220 of handpiece 210 of surgical instrument 200. At least a portion of inflow lumen 1100 extends along at least a portion of motor 230 (in sufficient approximation relative thereto) to thermally couple inflow lumen 1100 with motor 230 to enable fluid flowing through inflow lumen 1100 to draw and absorb heat from motor 230, thereby cooling motor 230 and warming the fluid. Additionally or alternatively, a thermally conductive material(s) 1130 thermally couples motor 230 with at least a portion of inflow lumen 1100 to enable or facilitate the drawing of heat from motor 230 and absorption of heat by the fluid flowing through inflow lumen 1100 to thereby cool motor 230 and warm the fluid flowing through inflow lumen 1100.
With additional reference to
Turning to
In order to facilitate the releasable engagement of inflow tubing 410 with handpiece 210, outer housing 220 of handpiece 210 may define a channel 1310 extending therealong and/or one or more retention elements 1320. Channel 1310 may be configured for press-fit receipt of inflow tubing 410 (see
Similarly as detailed above, handpiece 210 may further define outflow lumen 1200 extending through outer housing 220 of handpiece 210 to outflow connection port 1210. Outflow lumen 1200 may also be thermally coupled to motor 230 similarly as described above to further facilitate cooling of motor 230. Alternatively, motor 230 may be sufficiently cooled via the fluid flowing through inflow tubing 410 within channel 1310 and, thus, outflow lumen 1200 need not be thermally coupled to motor 230 or routed through handpiece 210.
Turning to
While several aspects and features of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular configurations. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
1585934 | Muir | May 1926 | A |
1666332 | Hirsch | Apr 1928 | A |
1831786 | Duncan | Nov 1931 | A |
2708437 | Hutchins | May 1955 | A |
3297022 | Wallace | Jan 1967 | A |
3686706 | Finley | Aug 1972 | A |
3734099 | Bender et al. | May 1973 | A |
3791379 | Storz | Feb 1974 | A |
3812855 | Banko | May 1974 | A |
3835842 | Iglesias | Sep 1974 | A |
3850162 | Iglesias | Nov 1974 | A |
3945375 | Banko | Mar 1976 | A |
3980252 | Tae | Sep 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
3996921 | Neuwirth | Dec 1976 | A |
4011869 | Seiler, Jr. | Mar 1977 | A |
4108182 | Hartman et al. | Aug 1978 | A |
4146405 | Timmer et al. | Mar 1979 | A |
4184256 | Loge | Jan 1980 | A |
4198958 | Utsugi | Apr 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4210146 | Banko | Jul 1980 | A |
4246902 | Martinez | Jan 1981 | A |
4247180 | Norris | Jan 1981 | A |
4258721 | Parent et al. | Mar 1981 | A |
4261346 | Wettermann | Apr 1981 | A |
4294234 | Matsuo | Oct 1981 | A |
4316465 | Dotson, Jr. | Feb 1982 | A |
4369768 | Vukovic | Jan 1983 | A |
4392485 | Hiltebrandt | Jul 1983 | A |
4414962 | Carson | Nov 1983 | A |
4449538 | Corbitt et al. | May 1984 | A |
4493698 | Wang et al. | Jan 1985 | A |
4517977 | Frost | May 1985 | A |
4543965 | Pack et al. | Oct 1985 | A |
4567880 | Goodman | Feb 1986 | A |
4589414 | Yoshida et al. | May 1986 | A |
4601284 | Arakawa et al. | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4606330 | Bonnet | Aug 1986 | A |
4630598 | Bonnet | Dec 1986 | A |
4644952 | Patipa et al. | Feb 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4700694 | Shishido | Oct 1987 | A |
4706656 | Kuboto | Nov 1987 | A |
4718291 | Wood et al. | Jan 1988 | A |
4737142 | Heckele | Apr 1988 | A |
4749376 | Kensey et al. | Jun 1988 | A |
4756309 | Sachse et al. | Jul 1988 | A |
4819635 | Shapiro | Apr 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4856919 | Takeuchi et al. | Aug 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4924851 | Ognier et al. | May 1990 | A |
4940061 | Terwilliger et al. | Jul 1990 | A |
4950278 | Sachse et al. | Aug 1990 | A |
4955882 | Hakky | Sep 1990 | A |
4971034 | Doi et al. | Nov 1990 | A |
4986827 | Akkas et al. | Jan 1991 | A |
4998527 | Meyer | Mar 1991 | A |
4998914 | Wiest et al. | Mar 1991 | A |
5007917 | Evans | Apr 1991 | A |
5027792 | Meyer | Jul 1991 | A |
5037386 | Marcus et al. | Aug 1991 | A |
5105800 | Takahashi et al. | Apr 1992 | A |
5106364 | Hayafuji et al. | Apr 1992 | A |
5112299 | Pascaloff | May 1992 | A |
5116868 | Chen et al. | May 1992 | A |
5125910 | Freitas | Jun 1992 | A |
5133713 | Huang et al. | Jul 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5158553 | Berry et al. | Oct 1992 | A |
5163433 | Kagawa et al. | Nov 1992 | A |
5167619 | Wuchinich | Dec 1992 | A |
5169397 | Sakashita et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5195541 | Obenchain | Mar 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5244459 | Hill | Sep 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5269785 | Bonutti | Dec 1993 | A |
5270622 | Krause | Dec 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5288290 | Brody | Feb 1994 | A |
5304118 | Trese et al. | Apr 1994 | A |
5312399 | Hakky et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5312430 | Rosenbluth et al. | May 1994 | A |
5320091 | Grossi et al. | Jun 1994 | A |
5347992 | Pearlman et al. | Sep 1994 | A |
5350390 | Sher | Sep 1994 | A |
5364395 | West, Jr. | Nov 1994 | A |
5374253 | Burns, Sr. et al. | Dec 1994 | A |
5390585 | Ryuh | Feb 1995 | A |
5392765 | Muller | Feb 1995 | A |
5395313 | Naves et al. | Mar 1995 | A |
5403276 | Schechter et al. | Apr 1995 | A |
5409013 | Clement | Apr 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5411513 | Ireland et al. | May 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5425376 | Banys et al. | Jun 1995 | A |
5429601 | Conley et al. | Jul 1995 | A |
5435805 | Edwards et al. | Jul 1995 | A |
5443476 | Shapiro | Aug 1995 | A |
5449356 | Walbrink et al. | Sep 1995 | A |
5456673 | Ziegler et al. | Oct 1995 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5483951 | Frassica et al. | Jan 1996 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5492537 | Vancaillie | Feb 1996 | A |
5498258 | Hakky et al. | Mar 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5549541 | Muller | Aug 1996 | A |
5556378 | Storz et al. | Sep 1996 | A |
5563481 | Krause | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5569254 | Carlson et al. | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5575756 | Karasawa et al. | Nov 1996 | A |
5586973 | Lemaire et al. | Dec 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5601583 | Donahue et al. | Feb 1997 | A |
5601603 | Illi | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5603332 | O'Connor | Feb 1997 | A |
5630798 | Beiser et al. | May 1997 | A |
5649547 | Ritchart et al. | Jul 1997 | A |
5669927 | Boebel et al. | Sep 1997 | A |
5672945 | Krause | Sep 1997 | A |
5674179 | Bonnet et al. | Oct 1997 | A |
5676497 | Kim | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5702420 | Sterling et al. | Dec 1997 | A |
5709698 | Adams et al. | Jan 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733298 | Berman et al. | Mar 1998 | A |
5741286 | Recuset | Apr 1998 | A |
5741287 | Alden et al. | Apr 1998 | A |
5749885 | Sjostrom et al. | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5759185 | Grinberg | Jun 1998 | A |
5772634 | Atkinson | Jun 1998 | A |
5775333 | Burbank et al. | Jul 1998 | A |
5782849 | Miller | Jul 1998 | A |
5807240 | Muller et al. | Sep 1998 | A |
5807282 | Fowler | Sep 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5810861 | Gaber | Sep 1998 | A |
5814009 | Wheatman | Sep 1998 | A |
5833643 | Ross et al. | Nov 1998 | A |
5840060 | Beiser et al. | Nov 1998 | A |
5857995 | Thomas et al. | Jan 1999 | A |
5871493 | Sjostrom | Feb 1999 | A |
5873886 | Larsen et al. | Feb 1999 | A |
5899915 | Saadat | May 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5911722 | Adler et al. | Jun 1999 | A |
5913867 | Dion | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5928163 | Roberts et al. | Jul 1999 | A |
5944668 | Vancaillie et al. | Aug 1999 | A |
5947990 | Smith | Sep 1999 | A |
5951490 | Fowler | Sep 1999 | A |
5956130 | Vancaillie et al. | Sep 1999 | A |
5957832 | Taylor et al. | Sep 1999 | A |
6001116 | Heisler et al. | Dec 1999 | A |
6004320 | Casscells et al. | Dec 1999 | A |
6007513 | Anis et al. | Dec 1999 | A |
6024751 | Lovato et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6039748 | Savage et al. | Mar 2000 | A |
6042552 | Cornier | Mar 2000 | A |
6068641 | Varsseveld | May 2000 | A |
6086542 | Glowa et al. | Jul 2000 | A |
6090094 | Clifford, Jr. et al. | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6113594 | Savage | Sep 2000 | A |
6119973 | Galloway | Sep 2000 | A |
6120147 | Vijfvinkel et al. | Sep 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6149633 | Maaskamp | Nov 2000 | A |
6156049 | Lovato et al. | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159209 | Hakky | Dec 2000 | A |
6171300 | Adams | Jan 2001 | B1 |
6203518 | Anis et al. | Mar 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6224603 | Marino | May 2001 | B1 |
6244228 | Kuhn et al. | Jun 2001 | B1 |
6258111 | Ross et al. | Jul 2001 | B1 |
6277096 | Cortella et al. | Aug 2001 | B1 |
6315714 | Akiba | Nov 2001 | B1 |
6358200 | Grossi | Mar 2002 | B1 |
6358263 | Mark et al. | Mar 2002 | B2 |
6359200 | Day | Mar 2002 | B1 |
6402701 | Kaplan et al. | Jun 2002 | B1 |
6428486 | Ritchart et al. | Aug 2002 | B2 |
6471639 | Rudischhauser et al. | Oct 2002 | B2 |
6494892 | Ireland et al. | Dec 2002 | B1 |
6585708 | Maaskamp | Jul 2003 | B1 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6626827 | Felix et al. | Sep 2003 | B1 |
6632182 | Treat | Oct 2003 | B1 |
6656132 | Ouchi | Dec 2003 | B1 |
6712773 | Viola | Mar 2004 | B1 |
6824544 | Boebel et al. | Nov 2004 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
7025720 | Boebel et al. | Apr 2006 | B2 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7150713 | Shener et al. | Dec 2006 | B2 |
7226459 | Cesarini et al. | Jun 2007 | B2 |
7249602 | Emanuel | Jul 2007 | B1 |
7510563 | Cesarini et al. | Mar 2009 | B2 |
7763033 | Gruber et al. | Jul 2010 | B2 |
7922737 | Cesarini et al. | Apr 2011 | B1 |
8025656 | Gruber et al. | Sep 2011 | B2 |
8061359 | Emanuel | Nov 2011 | B2 |
8062214 | Shener et al. | Nov 2011 | B2 |
8419626 | Shener-Irmakoglu et al. | Apr 2013 | B2 |
8465421 | Finkman et al. | Jun 2013 | B2 |
8523852 | Manwaring et al. | Sep 2013 | B2 |
8528563 | Gruber | Sep 2013 | B2 |
8574253 | Gruber et al. | Nov 2013 | B2 |
8617151 | Denis et al. | Dec 2013 | B2 |
8647349 | Gruber et al. | Feb 2014 | B2 |
8663264 | Cesarini et al. | Mar 2014 | B2 |
8678999 | Isaacson | Mar 2014 | B2 |
8834487 | Gruber et al. | Sep 2014 | B2 |
8840625 | Adams et al. | Sep 2014 | B2 |
8840626 | Adams et al. | Sep 2014 | B2 |
8852085 | Shener-Irmakoglu et al. | Oct 2014 | B2 |
8893722 | Emanuel | Nov 2014 | B2 |
8932208 | Kendale et al. | Jan 2015 | B2 |
8951274 | Adams et al. | Feb 2015 | B2 |
9060760 | Sullivan et al. | Jun 2015 | B2 |
9060800 | Cesarini et al. | Jun 2015 | B1 |
9060801 | Cesarini et al. | Jun 2015 | B1 |
9066745 | Cesarini et al. | Jun 2015 | B2 |
9072431 | Adams et al. | Jul 2015 | B2 |
9089358 | Emanuel | Jul 2015 | B2 |
9095366 | Sullivan et al. | Aug 2015 | B2 |
9125550 | Shener-Irmakoglu et al. | Sep 2015 | B2 |
9155454 | Sahney et al. | Oct 2015 | B2 |
9259233 | Gruber et al. | Feb 2016 | B2 |
9649123 | Riva | May 2017 | B2 |
9955991 | Riva | May 2018 | B2 |
10178997 | Edwards | Jan 2019 | B2 |
10898218 | Prokop | Jan 2021 | B2 |
11065147 | Prokop et al. | Jul 2021 | B2 |
20010039963 | Spear et al. | Nov 2001 | A1 |
20010047183 | Privitera et al. | Nov 2001 | A1 |
20020040229 | Norman | Apr 2002 | A1 |
20020058859 | Brommersma | May 2002 | A1 |
20020165427 | Yachia et al. | Nov 2002 | A1 |
20030050603 | Todd | Mar 2003 | A1 |
20030050638 | Yachia et al. | Mar 2003 | A1 |
20030078609 | Finlay et al. | Apr 2003 | A1 |
20030114875 | Sjostrom | Jun 2003 | A1 |
20040204671 | Stubbs et al. | Oct 2004 | A1 |
20050043690 | Todd | Feb 2005 | A1 |
20050085692 | Kiehn et al. | Apr 2005 | A1 |
20060036132 | Renner et al. | Feb 2006 | A1 |
20060047185 | Shener | Mar 2006 | A1 |
20060047239 | Nita et al. | Mar 2006 | A1 |
20060241586 | Wilk | Oct 2006 | A1 |
20080015621 | Emanuel | Jan 2008 | A1 |
20080058588 | Emanuel | Mar 2008 | A1 |
20080058842 | Emanuel | Mar 2008 | A1 |
20080097468 | Adams et al. | Apr 2008 | A1 |
20080097469 | Gruber et al. | Apr 2008 | A1 |
20080097470 | Gruber | Apr 2008 | A1 |
20080097471 | Adams et al. | Apr 2008 | A1 |
20080135053 | Gruber et al. | Jun 2008 | A1 |
20080146872 | Gruber et al. | Jun 2008 | A1 |
20080146873 | Adams et al. | Jun 2008 | A1 |
20080208233 | Barnes | Aug 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249366 | Gruber et al. | Oct 2008 | A1 |
20080249534 | Gruber et al. | Oct 2008 | A1 |
20080249553 | Gruber et al. | Oct 2008 | A1 |
20080262308 | Prestezog et al. | Oct 2008 | A1 |
20090082628 | Kucklick et al. | Mar 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270895 | Churchill | Oct 2009 | A1 |
20090270896 | Sullivan et al. | Oct 2009 | A1 |
20090270897 | Adams et al. | Oct 2009 | A1 |
20090270898 | Chin et al. | Oct 2009 | A1 |
20100087798 | Adams et al. | Apr 2010 | A1 |
20100152647 | Shener et al. | Jun 2010 | A1 |
20110034943 | Churchill et al. | Feb 2011 | A1 |
20110077674 | Sullivan et al. | Mar 2011 | A1 |
20110118544 | Adams et al. | May 2011 | A1 |
20110166419 | Reif et al. | Jul 2011 | A1 |
20120067352 | Gruber et al. | Mar 2012 | A1 |
20120078038 | Sahney et al. | Mar 2012 | A1 |
20130131452 | Kuroda et al. | May 2013 | A1 |
20140031834 | Germain | Jan 2014 | A1 |
20150051598 | Orszulak et al. | Feb 2015 | A1 |
20150157352 | Thistle | Jun 2015 | A1 |
20170055810 | Germain | Mar 2017 | A1 |
20200121496 | Prokop | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
WO-2022234448 | Nov 2022 | WO |
Entry |
---|
PCT/IB2022/062236, The International Search Report and the Written Opinion of the International Searching Authority, 13 pages, Feb. 20, 2023. |
Number | Date | Country | |
---|---|---|---|
20230190087 A1 | Jun 2023 | US |