The invention relates generally to implants, and more particularly to systems and methods for implanting deflectable implants.
Minimally invasive subcutaneous procedures, which are performed through a small orifice in the skin, limit the size of the surgery tools and implants that are used.
Hence it would be highly advantageous to develop implants that have small cross sections such that they can be inserted easily through a small orifice in the skin and be deflected into their final functional expanded shape at the intended implantation site in the body.
It would be highly advantageous to provide implants for spinal surgeries such as interbody fusion, motion preservation and vertebral augmentation that may be inserted into the body in minimally invasive procedures.
Embodiments of the present invention disclose an implant comprising: (a) a base; and (b) a sequence of at least two segments including a first end segment and a second end segment, adjacent segments of the sequence being interconnected at a hinge, wherein the first end segment is interconnected with the base at a fixed hinge, and wherein the second end segment is interconnected with the base at a sliding interconnection, such that the base and the sequence of at least two segments assume an insertion state in which the sequence of segments is adjacent to the base, and a deployed state in which a part of the sequence of segments is deflected away from the base.
According to a further feature of certain embodiments of the present invention, in the deployed state, the base and the sequence of segments form a loop at least partially defining an enclosed volume.
According to a further feature of certain embodiments of the present invention, the sliding interconnection additionally allows pivotal movement of the second segment relative to the base.
According to a further feature of certain embodiments of the present invention, in the insertion state, the sliding interconnection is at a first position along the base, and wherein, in the deployed state, the sliding interconnection is displaced along the base from the first position towards the fixed hinge.
According to a further feature of certain embodiments of the present invention, the fixed hinge is located at one end of the base.
According to a further feature of certain embodiments of the present invention, the fixed hinge is located at a distal end of the base.
According to a further feature of certain embodiments of the present invention, the sliding interconnection includes an element slidingly engaged within a slot.
There is also provided according to the teachings of certain embodiments of the present invention, a method comprising the steps of: (a) providing the aforementioned implant; (b) introducing the implant in the insertion state into an intervertebral space; (c) deploying the implant to the deployed state; and (d) filling a space between the sequence of segments and the base with filler material to promote intervertebral fusion.
Additional features and advantages of the invention will become apparent from the following drawings and description.
For a better understanding of the invention and to show how the same may be carried into effect, reference will now be made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections throughout.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. In the accompanying drawings:
Certain embodiments of the present invention provide deflectable implants, systems and methods for implanting deflectable implants having a loop structure in a human or animal body. The loop structure is preferably pre-formed as a closed loop structure during delivery of the implant, but assumes a low-profile configuration folded on itself and/or straightened, to facilitate delivery via a minimally invasive procedure. In certain embodiments, the implant is arranged to open towards opposing sides of the axis defined by the direction of insertion, and may be symmetrical or asymmetrical about that axis, as will be exemplified below, thereby allowing the implant form and deployment sequence to be optimized for a range of different applications and approach directions.
In the context of the present description and claims, the word “loop” is used to refer to any structure in which following along the contiguous structure can lead back to the starting point while encircling at least one point lying outside the device. In certain cases, completion of the loop may be in the form of a sliding joint (as will be exemplified in
The term “low profile” is used to refer to a configuration of a device in which at least one dimension of the device is significantly reduced, typically to less than 50% of the corresponding dimension of its deployed state, in order to facilitate delivery. In the present context, the low-profile configuration preferably has two transverse dimensions which are small compared to the direction of elongation, for easy delivery in a minimally invasive procedure, and the device opens up in one or two transverse dimensions when deployed.
Particularly preferred but non-limiting examples of implementations include intervertebral implants for supplementing, supporting or replacing an intervertebral disc as part of a fusion procedure or as a motion preserving implant, and intravertebral implants for supporting or restoring a vertebral body. The deflectable implants may include sequences of segments interconnected with effective hinges (such as conventional hinges or integral hinges) or may be formed with at least two elongated sides without clearly distinguished segments.
According to certain embodiments of the present invention, an implant that includes at least one sequence of segments, the sequence includes further at least two segments, more preferably at least three, and in many preferred cases four or more segments. The segments are interconnected at effective hinges, the sequence assuming a straightened or low curvature insertion state for insertion into the body, and being deflectable to a fully deflected state defined by abutment of abutment features of adjacent of the segments. Alternatively, the effective hinges may be configured to allow a range of angular motion beyond what is required to reach the fully open state. In the latter case, precise delineation of the desired final deployed state of the implant may be achieved by use of lateral tie elements, as will be described below. The implant preferably also includes a linkage, mechanically linked to at least part of at least one of the sequences of segments for deflecting the at least one sequence of segments from the insertion state towards the fully deflected state, wherein the at least one sequence is at least part of a loop structure assuming a low profile folded state with the at least one sequence in the insertion state, and wherein deflection of the at least one sequence towards the fully deflected state generates an open state of the loop structure.
According to certain embodiments of the present invention, a deflected implant may not have clearly distinct segments, but rather being formed from a single body of slotted or otherwise flexible material with at least first and second elongated sides interconnected at their proximal and distal ends, the at least first and second elongated interconnected sides assuming a straightened insertion state for insertion into a body, the at least first and second elongated interconnected sides being deflectable to a fully deflected loop inside the body, where the loop defines an enclosed volume with the upper and lower surfaces of the body. A linkage mechanically linked to at least part of at least one of the elongated interconnected sides, such as a tensioning element or a rod as two non limiting examples, may be used for deflecting the at least first and second elongated interconnected sides from the straightened insertion state towards the fully deflected loop inside the body.
According to certain embodiments of the present invention, an implant for interbody fusion is disclosed. The implant being deflectable to a fully deflected loop inside the body, where the loop defines an enclosed volume with the upper and lower surfaces of the bodies. The implant for interbody fusion further includes at least one opening in one or both of the elongated sides allowing access to the enclosed volume wherein the at least one opening is used to fill the enclosed volume in the fully deflected loop state with biocompatible filling materials for interbody fusion.
According to certain embodiments of the present invention, an implant for motion preservation is disclosed. The implant is deflectable to a fully deflected loop inside the body, where the loop defines an enclosed volume with the upper and lower surfaces of the body. The implant for interbody fusion further includes at least one opening in one or both of the elongated sides allowing access to the enclosed volume wherein the at least one opening is used to fill the enclosed volume in the fully deflected loop state with inert biocompatible filling materials applicable for motion preservation.
According to certain embodiments of the present invention, an implant system for implanting implants described herein above is disclosed. The implant system includes further an injector containing filling materials such as but not limited to biocompatible materials, bone grafts, bone chips, bone-growth enhancing agents for interbody fusion or inert filling materials, such as cement for interbody fusion or for stabilizing compression fractures, or other nucleus reinforcement or replacement material for motion preservation.
A linkage (not shown in
An alternative set of non-limiting implementations of a linkage for deflecting the implant are arrangements for causing flexing of one or both segment sequences directly, such as an internal tensioning element as shown in
Actuation of a linkage for deflecting/opening the implant from its low-profile insertion state to its open deployed state is typically performed by operation of various actuating rod(s) or cable(s) or string(s) or strip(s) extending along the length of a minimally invasive delivery system, such as a conduit, all as is well known in the art. The motion or force required for actuation may originate from a manually operable handle, or from an automated or semi-automated mechanical or electrical actuator. Details of these arrangements a within the capabilities of a person having ordinary skill in the relevant art, and do not per se constitute part of the present invention. For conciseness, such details are therefore not described herein in detail.
The tensioning elements may be fabricated from metal (including steel, shape memory alloy, titanium or other) or polymer rods, metal or plastic cables or similar or a combination. The tensioning elements may be removed from the implant or remain completely or partially attached to the implant after deployment. The tensioning element may have a locking mechanism to enable controlled attachment and separation from the implant. The tensioning elements may have a mechanism to maintain a tensed configuration of the fully deflected implant.
Alternatively, the implant may be deflected by employing the properties of memory shape material or other materials with suitable resilient properties. Such memory shape or otherwise resilient material may constitute at least part of the implant's sequence of segments. In these embodiments, no linkage or tensing element may be necessary.
Parenthetically, it should be noted that the term “enclosed volume” in the specification and claims refers to a volume which is encompassed on all sides in at least one plane, but does not necessarily imply closure above and below. In certain applications, the implants of the present invention are inserted between adjacent surfaces of tissue such that, together with the adjacent tissue surfaces, the enclosed volume becomes fully enclosed. Furthermore, the term “enclosed” does not rule out the presence of one or more opening through the enclosing structure, such as to allow filling of the enclosed volume through the wall of the implant, as will be discussed further herein.
According to certain embodiments of the present invention, the implant 100 may be deflected to its fully deflected state by linkage elements such as tensioning elements, inflation of balloons, by springs, by memory-shape material (such as Nitinol or similar materials), by turning a threaded rod, by a jacking mechanism, by injection of bone graft or other biologic material to promote fusion or by any other mechanical means. In other cases, the implant may be inherently resiliently biased to the deployed (open) state, and may temporarily be elastically deformed to the insertion state for deployment.
According to certain embodiments of the present invention, the implant 100 may be made of a polymer such as: Poly Ethylene, UHMWPE—Ultra High Molecular Weight Poly Ethylene, PEEK—Poly Ether Ether Ketone, Poly Ether Ketone Ketone, Poly Urethane as non limiting examples, or metal such as stainless steel, titanium, titanium alloy, shape memory alloy, as non limiting examples, or other material or a combination of such materials. The polymer materials may be reinforced with carbon fibers, glass fibers or similar filling materials known in the art.
According to certain embodiments of the present invention, the implant 100 may have a locking mechanism to retain the final fully deflected state. The locking mechanism may include a plurality of mechanisms that include cords, cables, strips, interconnections, snaps, or any other means known in the art, between each segment or a single mechanism for the entire implant or a combination. The locking mechanism may be fabricated from metal, including steel, shape memory alloy, titanium or other, or plastic or a combination. The locking mechanism may include a linkage or tensing element used to deflect the implant.
According to embodiments of the present invention, the implant may include a stabilizing arrangement to anchor the implant in the fully deflected state to the body. The locking arrangement may include a plurality of mechanisms that include cords, cables, strips, interconnections, snaps, ridges and any other means known in the art. The locking mechanism may be fabricated from metal, including steel, shape memory alloy, titanium or other, or plastic or a combination.
Another application of a 3D implant is for vertebral augmentation with or without the addition of a stabilizing agent such as cement for treating degenerative or trauma vertebra fracture cases.
According to embodiments of the present invention, the fully deflected state of the implants may be toroidal polyhedrons, ring toroids, elliptical toroids and multi-ring toroids as shown in the various drawings which are merely non limiting examples of deflected implants that are in the scope of the present invention and where other deflected implants may be designed by persons skilled in the art according to embodiments of the present invention.
Turning finally to
In this case, in the straightened state of
In summary, deflectable implants described above may be used for interbody fusion, for motion preservation and for vertebral augmentation. The deflectable implants may be used as intervertebral implants or/and intravertebral implants. Other spinal and non-spinal applications of such implants are also envisaged.
Advantageously, embodiments of the deflectable implants described above have low cross section in their straightened insertion state allowing them to be inserted through a small orifice in the skin.
Another advantage of certain embodiments of the deflectable implants described above is that their fully deflected state may fill the intervertebral disc space replacing a sick disc tissue.
Another advantage of certain embodiments of the deflectable implants described above is that their fully deflected state may have at least one opening that may be filled with bone grafts and other biocompatible materials for interbody fusion.
Another advantage of certain embodiments of the deflectable implants described above is that their fully deflected state may have at least one opening that may be filled with inert materials for motion preservation.
Another advantage of certain embodiments of the deflectable implants described above is that their fully deflected state in more than one plane and particularly in the sagittal plane may be used for vertebral augmentation.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.
Unless otherwise defined, all technical and scientific terms used herein have the same meanings as are commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods are described herein.
All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the patent specification, including definitions, will prevail. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention is defined by the appended claims and includes both combinations and sub-combinations of the various features described hereinabove as well as variations and modifications thereof, which would occur to persons skilled in the art upon reading the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
4759769 | Hedman et al. | Jul 1988 | A |
5059193 | Kuslich | Oct 1991 | A |
5171278 | Pisharodi | Dec 1992 | A |
5258031 | Salib et al. | Nov 1993 | A |
5390683 | Pisharodi | Feb 1995 | A |
5534029 | Shima | Jul 1996 | A |
5599279 | Slotman | Feb 1997 | A |
5620458 | Green et al. | Apr 1997 | A |
6039761 | Li et al. | Mar 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6126689 | Brett | Oct 2000 | A |
6190414 | Young et al. | Feb 2001 | B1 |
6238403 | Greene, Jr. et al. | May 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6387130 | Stone et al. | May 2002 | B1 |
6419705 | Erikson | Jul 2002 | B1 |
6443989 | Jackson | Sep 2002 | B1 |
6491724 | Ferree | Dec 2002 | B1 |
6576016 | Hochshuler et al. | Jun 2003 | B1 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6620196 | Trieu | Sep 2003 | B1 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6676665 | Foley | Jan 2004 | B2 |
6706070 | Wagner et al. | Mar 2004 | B1 |
6830589 | Erikson | Dec 2004 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7431735 | Liu et al. | Oct 2008 | B2 |
7625377 | Veldhuizen et al. | Dec 2009 | B2 |
7655046 | Dryer et al. | Feb 2010 | B2 |
7720282 | Blake et al. | May 2010 | B2 |
7763028 | Lim et al. | Jul 2010 | B2 |
7799081 | McKinley | Sep 2010 | B2 |
7846206 | Oglaza et al. | Dec 2010 | B2 |
7901409 | Canaveral | Mar 2011 | B2 |
7905920 | Galea | Mar 2011 | B2 |
7909872 | Zipnick et al. | Mar 2011 | B2 |
7938860 | Trieu | May 2011 | B2 |
7947078 | Siegal | May 2011 | B2 |
7959652 | Zucherman et al. | Jun 2011 | B2 |
8021429 | Viker | Sep 2011 | B2 |
8025665 | Lim et al. | Sep 2011 | B2 |
8062375 | Glerum et al. | Nov 2011 | B2 |
8123809 | Melkent et al. | Feb 2012 | B2 |
8133232 | Levy et al. | Mar 2012 | B2 |
8187332 | Mcluen et al. | May 2012 | B2 |
8292963 | Miller et al. | Oct 2012 | B2 |
8303658 | Peterman | Nov 2012 | B2 |
8308802 | Rhoda et al. | Nov 2012 | B2 |
8317798 | Lim et al. | Nov 2012 | B2 |
8317802 | Manzi et al. | Nov 2012 | B1 |
8317866 | Palmatier et al. | Nov 2012 | B2 |
8323344 | Galley et al. | Dec 2012 | B2 |
8337531 | Johnson et al. | Dec 2012 | B2 |
8337559 | Hansell et al. | Dec 2012 | B2 |
8343193 | Johnson et al. | Jan 2013 | B2 |
8349013 | Zucherman et al. | Jan 2013 | B2 |
8349014 | Barreiro et al. | Jan 2013 | B2 |
8377071 | Lim et al. | Feb 2013 | B2 |
8398713 | Weiman | Mar 2013 | B2 |
8403990 | Dryer et al. | Mar 2013 | B2 |
8444697 | Butler et al. | May 2013 | B1 |
8518120 | Glerum et al. | Aug 2013 | B2 |
8523944 | Jimenez et al. | Sep 2013 | B2 |
8556979 | Glerum et al. | Oct 2013 | B2 |
8579907 | Lim et al. | Nov 2013 | B2 |
8628576 | Triplett et al. | Jan 2014 | B2 |
8628577 | Jimenez | Jan 2014 | B1 |
8679183 | Glerum et al. | Mar 2014 | B2 |
8685098 | Glerum et al. | Apr 2014 | B2 |
8709086 | Glerum | Apr 2014 | B2 |
8771360 | Jimenez et al. | Jul 2014 | B2 |
8870959 | Arnin | Oct 2014 | B2 |
9017413 | Siegal | Apr 2015 | B2 |
20020015197 | Nakashima | Feb 2002 | A1 |
20030236520 | Lim et al. | Dec 2003 | A1 |
20040059418 | McKay et al. | Mar 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040162618 | Mujwid et al. | Aug 2004 | A1 |
20040193158 | Lim et al. | Sep 2004 | A1 |
20050113920 | Foley et al. | May 2005 | A1 |
20050125062 | Biedermann | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050182416 | Lim | Aug 2005 | A1 |
20050209698 | Gordon | Sep 2005 | A1 |
20050228391 | Levy | Oct 2005 | A1 |
20050261683 | Veldhuizen | Nov 2005 | A1 |
20050278036 | Leonard et al. | Dec 2005 | A1 |
20060004455 | Leonard et al. | Jan 2006 | A1 |
20060041258 | Galea | Feb 2006 | A1 |
20060085070 | Kim | Apr 2006 | A1 |
20060142858 | Colleran et al. | Jun 2006 | A1 |
20060224241 | Butler et al. | Oct 2006 | A1 |
20060235423 | Cantu | Oct 2006 | A1 |
20060247778 | Ferree et al. | Nov 2006 | A1 |
20070032791 | Greenhalgh | Feb 2007 | A1 |
20070073398 | Fabian et al. | Mar 2007 | A1 |
20070123986 | Schaller | May 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070233245 | Trieu et al. | Oct 2007 | A1 |
20070282449 | de Villiers | Dec 2007 | A1 |
20080119853 | Felt et al. | May 2008 | A1 |
20080125865 | Abdelgany | May 2008 | A1 |
20080243255 | Butler | Oct 2008 | A1 |
20080312743 | Vila et al. | Dec 2008 | A1 |
20090216274 | Morancy-Meister et al. | Aug 2009 | A1 |
20090270873 | Fabian | Oct 2009 | A1 |
20100131009 | Roebling et al. | May 2010 | A1 |
20100286787 | Villiers et al. | Nov 2010 | A1 |
20110276141 | Caratsch | Nov 2011 | A1 |
20120004732 | Goel | Jan 2012 | A1 |
20120029639 | Blackwell et al. | Feb 2012 | A1 |
20120083889 | Purcell et al. | Apr 2012 | A1 |
20120123546 | Medina | May 2012 | A1 |
20120215316 | Mohr | Aug 2012 | A1 |
20130018466 | Yu et al. | Jan 2013 | A1 |
20130041471 | Siegal | Feb 2013 | A1 |
20130066374 | Galley et al. | Mar 2013 | A1 |
20130158664 | Palmatier | Jun 2013 | A1 |
20130158669 | Sangarian et al. | Jun 2013 | A1 |
20130190876 | Drochner et al. | Jul 2013 | A1 |
20130317615 | Jimenez et al. | Nov 2013 | A1 |
20130325128 | Perloff | Dec 2013 | A1 |
20140005787 | Dmuschewsky | Jan 2014 | A1 |
20140052254 | Glerum et al. | Feb 2014 | A1 |
20140114429 | Slone et al. | Apr 2014 | A1 |
20140156007 | Pabst et al. | Jun 2014 | A1 |
20140243982 | Miller | Aug 2014 | A1 |
20140249629 | Moskowitz | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
2263842 | Jul 1974 | DE |
9107494 | Sep 1991 | DE |
4416605 | Jun 1995 | DE |
2717068 | Sep 1995 | FR |
9834552 | Aug 1998 | WO |
03003951 | Jan 2003 | WO |
PCTGB2007003927 | Oct 2007 | WO |
2008084479 | Jul 2008 | WO |
2012117312 | Sep 2012 | WO |
PCTUS2012067227 | Nov 2012 | WO |
2013052807 | Apr 2013 | WO |
2014091029 | Jun 2014 | WO |
Entry |
---|
E. AliCl, et al “Prostheses Designed for Vertebral Body Replacement” in Journal of Biomechanics vol. 23 1990, No. 8, pp. 799-809. |
E. AliCl et al “Prostheses Designed for Vertebral Body Replacement” in Journal of Biomechanics vol. 23 1990 No. 8, pp. 799-809. |
Number | Date | Country | |
---|---|---|---|
20150142118 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61364412 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13810225 | US | |
Child | 14608231 | US |