The present technology generally relates to a surgical table having a first platform portion and a second platform portion that can be used to adjust a corresponding first portion and a corresponding second portion of a patient relative to one another before, during, and after surgery.
Typically, conventional surgical tables include some form of patient articulation, but such patient articulation afforded thereby is often quite limited. For example, sometimes the conventional surgical tables can afford a limited degree of flexion or extension of the spine of the patient by lifting a portion of the torso of the patient in a upward direction and a downward direction. The patient articulation afforded by the convention surgical tables is limited because patient platforms thereof are typically horizontally-oriented, and the patient articulation is relative to the horizontal orientations of the patient platforms. That is, adjustment mechanisms used to manipulate the patient are integrated into the horizontally-oriented patient platforms, and the limits of the corresponding adjustment is oftentimes constrained by such integration. Other types of surgical tables include patient platform portions that are attached to and articulatable with respect one another. Because such patient platform portions are attached to one another, corresponding movement of the patient platforms are constrained by such attachment. Oftentimes, the movement of such patient platforms is limited to only one axis or in one plane. Therefore, in order to enhance patient articulation, there is a need for a surgical table that includes a first platform portion and a second platform portion that are independently moveable with respect to one another. Such a surgical table incorporating the first platform portion and the second platform portion can include a gap spacing apart the first platform portion and the second platform portion. And the independent movement of the first platform portion and the second platform portion of such a surgical table can correspondingly position/orient and reposition/reorient a first portion of the patient's body supported by the first platform portion, and a second portion of the patient's body supported by the second platform portion relative to one another.
The techniques of this disclosure generally relate to a surgical table for performing surgery on a patient supported thereby, with a first platform portion and a second platform portion of the surgical table capable of supporting a first portion and a second portion, respectively, of the patient thereon. The first platform portion and the second platform portion can be independently moveable with respect to one another to afford positioning/orienting and repositioning/reorienting the patient's body relative to the surgical robot before, during, and after surgery.
In one aspect, the present disclosure provides a surgical table including a support portion including a first end, an opposite second end, a mid-longitudinal axis extending through the first end and the second end, a first end portion at and adjacent the first end, a second end portion at and adjacent the second end, and a cross member extending between the first end portion and the second end portion, the first end portion including a first slider portion and a rotator portion supported by the first slider portion, and the second end portion including a second slider portion; a first platform portion, and a first vertically-oriented portion supporting the first platform portion relative to the rotator portion of the first end portion, the first platform portion including a first end, an opposite second end, a first end portion at the first end of the first platform portion, a second end portion at the second end of the first platform portion, at least a first rail and a second rail extending between the first end portion and the second end portion of the first platform portion, a head support, and a chest support supported by the at least the first rail and the second rail of the first platform portion, and the first vertically-oriented portion vertically spacing the first platform portion apart from the support portion; and a second platform portion, and a second vertically-oriented portion supporting the second platform portion relative to the second slider portion of the second end portion, the second platform portion including a first end, an opposite second end, a first end portion at the first end of the first platform portion, a second end portion at the second end of the first platform portion, at least a first rail and a second rail extending between the first end portion and the second end portion of the second platform portion, and at least a first thigh support and a second thigh support supported by the at least the first rail and the second rail of the second platform portion, and the second vertically-oriented portion vertically spacing the second platform portion apart from the support portion; where the first platform portion and the second platform portion are positioned adjacent to one another and separated by a gap between the first end of the first platform portion and the second end of the second platform portion; and where the first platform portion is moveable side-to-side across the mid-longitudinal axis via operation of the slider portion, the first platform portion is rotatable about an axis transverse to the mid-longitudinal axis via operation of the rotator portion, and the second platform portion is moveable toward and away from the first platform portion in directions aligned with the mid-longitudinal axis via operation of the slider portion.
In another aspect, the present disclosure provides a surgical table including a support portion including a first end, an opposite second end, a mid-longitudinal axis extending through the first end and the second end, a first end portion at and adjacent the first end, a second end portion at and adjacent the second end, and a cross member extending between the first end portion and the second end portion, the first end portion including a first slider portion and a rotator portion supported by the first slider portion, and the second end portion including a second slider portion; a first platform portion, a first vertically-oriented portion supporting the first platform portion relative to the rotator portion of the first end portion, the first platform portion including a first end, an opposite second end, a first end portion at the first end of the first platform portion, a second end portion at the second end of the first platform portion, at least a first rail and a second rail extending between the first end portion and the second end portion of the first platform portion, a head support, and a chest support supported by the at least the first rail and the second rail of the first platform portion, the first vertically-oriented portion being expandable and contractable, and vertically spacing the first platform portion apart from the support portion; and a second platform portion, a second vertically-oriented portion supporting the second platform portion relative to the second slider portion of the second end portion, the second platform portion including a first end, an opposite second end, a first end portion at the first end of the first platform portion, a second end portion at the second end of the first platform portion, at least a first rail and a second rail extending between the first end portion and the second end portion of the second platform portion, and at least a first thigh support and a second thigh support supported by the at least the first rail and the second rail of the second platform portion, the second vertically-oriented portion being expandable and contractable, and vertically spacing the second platform portion apart from the support portion; where the first platform portion and the second platform portion are positioned adjacent to one another and separated by a gap between the first end of the first platform portion and the second end of the second platform portion; where a first adjustment portion is positioned one of between the first platform portion and the first vertically-oriented portion and between the second platform portion and the second vertically-oriented portion, the first adjustment portion being configured to tilt a first corresponding one of the first platform portion and the second platform portion upwardly and downwardly relative to the support portion, and to rotate the first corresponding one of the first platform portion and the second platform portion side-to-side relative to the support portion; and where the first platform portion is moveable side-to-side across the mid-longitudinal axis via operation of the slider portion, the first platform portion is rotatable about an axis transverse to the mid-longitudinal axis via operation of the rotator portion, and the second platform portion is moveable toward and away from the first platform portion in directions aligned with the mid-longitudinal axis via operation of the slider portion.
In yet another aspect, the present disclosure provides a surgical table including a support portion including a first end, an opposite second end, a mid-longitudinal axis extending through the first end and the second end, a first end portion at and adjacent the first end, a second end portion at and adjacent the second end, and a cross member extending between the first end portion and the second end portion, the first end portion including a first slider portion and a rotator portion supported by the first slider portion, and the second end portion including a second slider portion; a first platform portion, a first vertically-oriented portion supporting the first platform portion relative to the rotator portion of the first end portion, and a first adjustment portion positioned between the first platform portion and the first vertically-oriented portion, the first platform portion including a first end, an opposite second end, a first end portion at the first end of the first platform portion, a second end portion at the second end of the first platform portion, at least a first rail and a second rail extending between the first end portion and the second end portion of the first platform portion, a head support, and a chest support supported by the at least the first rail and the second rail of the first platform portion, the first vertically-oriented portion being expandable and contractable, and vertically spacing the first platform portion apart from the support portion, and the first adjustment portion being configured to tilt the first end of the first platform portion upwardly and downwardly relative to the support portion, and to rotate the first platform portion side-to-side relative to the support portion; and a second platform portion, a second vertically-oriented portion supporting the second platform portion relative to the second slider portion of the second end portion, and a second adjustment portion positioned between the second platform portion and the second vertically-oriented portion, the second platform portion including a first end, an opposite second end, a first end portion at the first end of the first platform portion, a second end portion at the second end of the first platform portion, at least a first rail and a second rail extending between the first end portion and the second end portion of the second platform portion, and at least a first thigh support and a second thigh support supported by the at least the first rail and the second rail of the second platform portion, the second vertically-oriented portion vertically spacing the second platform portion apart from the support portion, and the second adjustment portion being configured to tilt the second end of the second platform portion upwardly and downwardly relative to the support portion, and to rotate the second platform portion side-to-side relative to the support portion; where the first platform portion and the second platform portion are positioned adjacent to one another and separated by a gap between the first end of the first platform portion and the second end of the second platform portion; and where the first platform portion is moveable side-to-side across the mid-longitudinal axis via operation of the slider portion, the first platform portion is rotatable about an axis transverse to the mid-longitudinal axis via operation of the rotator portion, and the second platform portion is moveable toward and away from the first platform portion in directions aligned with the mid-longitudinal axis via operation of the slider portion.
The details of one or more aspects of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the techniques described in this disclosure will be apparent from the description and drawings, and from the claims.
The techniques of this disclosure generally relate to a surgical table.
A preferred embodiment of a surgical table of the present disclosure is generally indicated by the numeral 10 in
The first platform portion 12 and the second platform portion 14, as depicted in
The support portion 16, as depicted in
As depicted in
The first end portion 26, as depicted in
The first end portion 26 includes an open end 58 adjacent the first end 27, and together, the bottom portion 50, the endwall portion 52, the first sidewall portion 54, and the second sidewall portion 56 define an area in which the slider portion 40 and the rotator portion 42 are provided. Furthermore, the first sidewall portion 54 and the second sidewall portion 56 include indentations 60 and 62 that include undersurfaces 64 and 66, respectively. Casters 68 can be attached to each of the undersurfaces 64 and 66, and together with other casters, the casters 68 can be used to space the support portion 16 from the ground and to facilitate movement of the support portion 16.
The slider portion 40, as depicted in
Linear movement of the platform portion 78 can be controlled via operation of an actuator 80 that includes a motor and transmission portion 82 that is actuatable to move a telescoping arm portion 84 inwardly and outwardly. The telescoping arm portion 84 is attached to an extension portion 86 that extends outwardly from the platform portion 78. As such, the inward movement and the outward movement of the telescoping arm portion 84 serves to move the platform portion 78 (and the first vertically-oriented portion 22 supported thereby) between the first position and the second position thereof. As such, the first platform portion 12 supported by the first vertically-oriented portion 22 can be moved in side-to-side directions relative to the mid-longitudinal axes L1 and L2 via actuation of the actuator 80 of the slider portion 40. Furthermore, the operation of the slider portion 40 and the actuator 80 thereof can be controlled by the controllers of the surgical table 10.
As depicted in
The second end portion 28, as depicted in
The second end portion 28 includes an open end 110 adjacent the second end 29, and together, the bottom portion 102, the endwall 104, the first sidewall portion 106, and the second sidewall portion 108 define an area in which the slider portion 100 are provided. An arm portion 112 extends outwardly from the first sidewall portion 106 and an arm portion 114 extends outwardly from the second sidewall portion 108, and the arm portions 112 and 114 include undersurfaces 116 and 118, respectively. Casters 120 can be attached to each of the undersurfaces 116 and 118, and together with the casters 68, the casters 120 can be used to space the support portion 16 from the ground and to facilitate movement of the support portion 16.
The slider portion 100, as depicted in
Linear movement of the platform portion 130 can be controlled via operation of an actuator 132 that includes a motor and transmission portion 134 that is actuatable to move a telescoping arm portion 136 inwardly and outwardly. The telescoping arm portion 136 is attached to an extension portion 138 that extends outwardly from the platform portion 130. As such, the inward movement and the outward movement of the telescoping arm portion 138 serves to move the platform portion 130 (and the second vertically-oriented portion 24 supported thereby) between the first position and the second position thereof. As such, the second platform portion 14 supported by the second vertically-oriented portion 24 can be moved toward and away from the first platform portion 12 in directions aligned with the mid-longitudinal axes L1 and L2 via actuation of the actuator 132 of the slider portion 100. Furthermore, the operation of the slider portion 100 and the actuator 132 thereof can be controlled by the controllers of the surgical table 10.
As discussed below, the use of the slider portion 40 and the rotator portion 42 of the first end portion 26, and the use of the slider portion 100 of the second end portion 28 can afford independent movement and adjustment of the first platform portion 12 and the second platform portion 14 relative to one another. Furthermore, rather than employing the slider portion 40 and the rotator portion 42, the first vertically-oriented portion 22 can be supported directly by the first end portion 26 and be fixed in position relative thereto, and rather than employing the slider portion 100, the second vertically-oriented portion 24 can be supported directly by the second end portion 28. As such, if the slider portion 40, the rotatable portion 42, and the slider portion 100 are not provided, portions of the first vertically-oriented portion 22 and the second vertically-oriented portion 24 can be used to facilitate independent movement and adjustment of the first platform portion 12 and the second platform portion 14 relative to one another.
As depicted in
As depicted in
Accordingly, to further position/orient and reposition/reorient the first platform portion 12 and the second platform portion 14, the platform portion 12 and the second platform portion 14 each can be raised and lowered via expansion and contraction of the telescoping columns 140, the first platform portion 12 and the second platform portion 14 each can be rotated side to side by rotation of the axles 158 using the motors and transmissions 156, and the first platform portion 12 and the second platform portion 14 can be tilted upwardly or downwardly by rotation of the axles 164 using the motors and transmissions 162. The rotation of the axles 158 can rotate the first platform portion 12 and the second platform portion 14 side to side in a vertical plane perpendicular to the mid-longitudinal axes L1 and L2, and the rotation of the axles 164 can tilt the first platform portion 12 and the second platform portion 14 upwardly and downwardly in a vertical plane aligned with the mid-longitudinal axes L1 and L2 As discussed below, the operation of the telescoping columns 140, the motors and transmissions 156, and the motors and transmissions 162 can be controlled by the controllers of the surgical table 10.
As depicted in
The first platform portion 12 includes a first patient support portion 180, and the various rails, as depicted in
In addition to providing structural rigidity to the first platform portion 12, the first outer rail 182 and the second outer rail 184 can also be used to support the first patient support portion 180 of the first platform portion 12. The patient support portion 180 can include a chest support portion 190 and a head support portion 192 that are integrated with or separate from one another. As depicted in
In addition to the chest support portion 190 and the head support portion 192, first and second arm supports 194 and 196 can be provided as part of the first platform portion 12 to support arms of the patient relative to the remaining portions thereof. As depicted in
As depicted in
The second platform portion 14 includes a second patient support portion 210, and the various rails, as depicted in
In addition to providing structural rigidity to the second platform portion 14, the first outer rail 212 and the second outer rail 214 can also be used to support the second patient support portion 210 that can include a first upper thigh support 220, a second upper thigh support 222, a first lower thigh support 224, and a second lower thigh support 226. The first upper thigh support 220, the second upper thigh support 222, the first lower thigh support 224, and the second lower thigh support 226 can be moveably adjusted or fixed in position along portions of the first outer rail 212 and the second outer rail 214 to accommodate differently-sized patients. As depicted in
As depicted in
As depicted in
The first platform portion 12 can be raised and lowered via operation of the corresponding telescoping column 140, can be rotated with rotation of the corresponding axle 158 via actuation of the corresponding motor and transmission 156 of the corresponding rotational portion 154, can be titled with rotation of the corresponding axle 164 via actuation of the corresponding motor and transmission 162 of the corresponding tilt portion 160, can be moved in side-to-side directions relative to the mid-longitudinal axes L1 and L2 via actuation of the actuator 80 of the slider portion 40, and can be rotated about a vertically-oriented axis relative to the support portion 16 via actuation of the actuator 94 of the rotator portion 42. Furthermore, the second platform portion 14 can be raised and lowered via operation of the corresponding telescoping column 140, can be rotated with rotation of the corresponding axle 158 via actuation of the corresponding motor and transmission 156 of the corresponding rotational portion 154, can be titled with rotation of the corresponding axle 164 via actuation of the corresponding motor and transmission 162 of the corresponding tilt portion 160, and can be moved toward and away from the first platform portion 12 in directions aligned with the mid-longitudinal axes L1 and L2 via actuation of the actuator 132 of the slider portion 100. In addition to such movement, the chest support portion 130, the head support portion 132, the first the first upper thigh support 220, the second upper thigh support 222, the first lower thigh support 224, the second lower thigh support 226, and the lower leg support 228 can be adjusted to accommodate differently-sized patients.
In manipulating the patient P, the telescoping column 140 of the first vertically-oriented portion 22 could be actuated to raise the position of the first platform portion 12 and the tilt portion 160 of the first vertically-oriented portion 22 could be actuated to tilt the position/orientation of the first platform portion 12, and in doing so, bend the patient's body from a neutral position/orientation (
Furthermore, the positions/orientations of the first support platform 12 and the second support platform 12, via actuation of the telescoping column 140 and the tilt portions 160 of the first vertically-oriented portion 22 and the second vertically-oriented portion 24, can be adjusted to bend the patient's body from the neutral position/orientation as depicted in
In addition to the extension and the flexion of the patient's spine discussed above, the first portion of the patient's body supported by the first platform portion 12 and the second portion of the patient's body supported by the second platform portion 16 can be twisted relative to one another to introduce torsion therebetween via actuation of the rotational portions 154 of the first vertically-oriented portion 22 and the second vertically-oriented portion 24. Furthermore, the telescoping columns 140 of the first vertically-oriented portion 22 and the second vertically-oriented portion 24 can also be actuated (without tilting or twisting) to raise the first portion of patient's body supported by the first platform portion 12 relative to the second portion of the patient's body supported by the second platform portion 16, or vice versa. And, the sagittal position of the first portion relative to the second portion of the patient's body can be adjusted by operation of the slider portion 40 and the rotatable portion 42, and the patient's body can be stretched or contracted by operation of the slider portion 100.
As depicted in
Accordingly, the actuation of the telescoping columns 140, the rotational portions 154, tilt portions 160, the slider portions 40, the rotational portions 42, and/or the slider portion 100 can be used to independently adjust the relative positions and orientations of the first platform portion 12 and the second platform portion 16. And the relative movement of the first platform portion 12 and the second platform portion 16 can be used to adjust the position/orientation of the patient's body P before, during, and after surgery. As discussed above, the surgical table 10 can include a controller or controllers for controlling actuatable portions thereof to facilitate the operation thereof to coordinate movement therebetween. And such coordinated movement via the controller or controllers, for example, can be used to manipulate and prevent over-extension or over-flexion of the spine of the patient before, during, and after surgery. Thereafter, when the surgery is complete, the patient can be removed from the first platform portion 12 and the second platform portion 14.
It should be understood that various aspects disclosed herein may be combined in different combinations than the combinations specifically presented in the description and the accompanying drawings. It should also be understood that, depending on the example, certain acts or events of any of the processes of methods described herein may be performed in a different sequence, may be added, merged, or left out altogether (e.g., all described acts or events may not be necessary to carry out the techniques). In addition, while certain aspect of this disclosure are described as being performed by a single module or unit for purposes of clarity, it should be understood that the techniques of this disclosure may be performed by a combination of units or modules associated with, for example, a medical device.
Number | Name | Date | Kind |
---|---|---|---|
2691979 | Watson | Oct 1954 | A |
3060925 | Honsaker et al. | Oct 1962 | A |
3227440 | Scott | Jan 1966 | A |
3293667 | Ohrberg | Dec 1966 | A |
3306287 | Arp | Feb 1967 | A |
3389702 | Kennedy | Jun 1968 | A |
3828377 | Fary, Sr. | Aug 1974 | A |
4029089 | Mulhlland | Jun 1977 | A |
4194257 | Martin et al. | Mar 1980 | A |
4627119 | Hachey et al. | Dec 1986 | A |
4655200 | Knight | Apr 1987 | A |
4705026 | Chaussy | Nov 1987 | A |
4866796 | Robinson | Sep 1989 | A |
4872656 | Brendgord | Oct 1989 | A |
4901384 | Eary | Feb 1990 | A |
4915101 | Cuccia | Apr 1990 | A |
5009407 | Watanabe | Apr 1991 | A |
5013018 | Sicek | May 1991 | A |
5088706 | Jackson | Feb 1992 | A |
5103511 | Sequin | Apr 1992 | A |
5131106 | Jackson | Jul 1992 | A |
5362302 | Jenson et al. | Nov 1994 | A |
5390383 | Carn | Feb 1995 | A |
5410769 | Waterman | May 1995 | A |
5444882 | Andrews | Aug 1995 | A |
5613254 | Clayman | Mar 1997 | A |
5642302 | Dumont | Jun 1997 | A |
5860899 | Rassman | Jan 1999 | A |
5991651 | LaBarbera | Nov 1999 | A |
6003176 | Wasley | Dec 1999 | A |
6076525 | Hoffman | Jun 2000 | A |
6112349 | Connolly | Sep 2000 | A |
6154901 | Carr | Dec 2000 | A |
6260220 | Lamb | Jul 2001 | B1 |
6295671 | Reesby et al. | Oct 2001 | B1 |
6311349 | Kazakia | Nov 2001 | B1 |
6367104 | Fallbo, Sr. et al. | Apr 2002 | B1 |
6378149 | Sanders et al. | Apr 2002 | B1 |
6516483 | VanSteenburg | Feb 2003 | B1 |
6566833 | Barlett | May 2003 | B2 |
6615430 | Heimbrock | Sep 2003 | B2 |
6671905 | Bartlett et al. | Jan 2004 | B2 |
6681423 | Zachrisson | Jan 2004 | B2 |
6701553 | Hand et al. | Mar 2004 | B1 |
6701554 | Heimbrock | Mar 2004 | B2 |
6701558 | VanSteenburg | Mar 2004 | B2 |
6715169 | Niederkrom | Apr 2004 | B2 |
6728983 | Bartlett et al. | May 2004 | B2 |
6732390 | Krywiczanin | May 2004 | B2 |
6739006 | Borders et al. | May 2004 | B2 |
6820621 | DeMayo | Nov 2004 | B2 |
6874181 | Connolly et al. | Apr 2005 | B1 |
6934986 | Krywiczanin et al. | Aug 2005 | B2 |
6941951 | Hubert et al. | Sep 2005 | B2 |
6966081 | Sharps | Nov 2005 | B1 |
7100225 | Bailey | Sep 2006 | B1 |
7152261 | Jackson | Dec 2006 | B2 |
7189214 | Saunders | Mar 2007 | B1 |
7219379 | Krywiczanin et al. | May 2007 | B2 |
7234180 | Horton et al. | Jun 2007 | B2 |
7290302 | Sharps | Nov 2007 | B2 |
7343635 | Jackson | Mar 2008 | B2 |
7426930 | Bailey | Sep 2008 | B1 |
7472440 | Bartlett et al. | Jan 2009 | B2 |
7484253 | Coppens | Feb 2009 | B1 |
7496980 | Sharps | Mar 2009 | B2 |
7565708 | Jackson | Jul 2009 | B2 |
7600281 | Skripps | Oct 2009 | B2 |
7669262 | Skripps | Mar 2010 | B2 |
7739762 | Lamb et al. | Jun 2010 | B2 |
7882583 | Skripps | Feb 2011 | B2 |
8060960 | Jackson | Nov 2011 | B2 |
8118029 | Gneiting et al. | Feb 2012 | B2 |
8286283 | Copeland et al. | Oct 2012 | B2 |
8286637 | Kaska | Oct 2012 | B2 |
8381335 | Ahlman | Feb 2013 | B2 |
8413660 | Weinstein et al. | Apr 2013 | B2 |
8439948 | King | May 2013 | B1 |
8443473 | Maxwell | May 2013 | B2 |
8584281 | Diel et al. | Nov 2013 | B2 |
8635725 | Tannoury et al. | Jan 2014 | B2 |
8677529 | Jackson | Mar 2014 | B2 |
8707484 | Jackson et al. | Apr 2014 | B2 |
8978180 | Jackson | Mar 2015 | B2 |
9072646 | Skripps et al. | Jul 2015 | B2 |
9180062 | Jackson | Nov 2015 | B2 |
9186291 | Jackson et al. | Nov 2015 | B2 |
9226865 | Jackson et al. | Jan 2016 | B2 |
9265680 | Sharps | Feb 2016 | B2 |
9295433 | Jackson et al. | Mar 2016 | B2 |
9308145 | Jackson | Apr 2016 | B2 |
9339430 | Jackson et al. | May 2016 | B2 |
9358170 | Jackson | Jun 2016 | B2 |
9402775 | Jackson et al. | Aug 2016 | B2 |
9414982 | Jackson | Aug 2016 | B2 |
9468576 | Jackson | Oct 2016 | B2 |
9498397 | Hight et al. | Nov 2016 | B2 |
9522078 | Pizzini | Dec 2016 | B2 |
9554959 | Carn | Jan 2017 | B2 |
9622928 | Jackson et al. | Apr 2017 | B2 |
9642760 | Jackson et al. | May 2017 | B2 |
9655793 | Hertz | May 2017 | B2 |
9700476 | Hoel et al. | Jul 2017 | B2 |
9713562 | Perlman et al. | Jul 2017 | B2 |
9744089 | Jackson | Aug 2017 | B2 |
9849054 | Jackson | Dec 2017 | B2 |
9937006 | Skripps et al. | Apr 2018 | B2 |
9993380 | Jackson | Jun 2018 | B2 |
10136863 | Kaiser et al. | Nov 2018 | B2 |
10314758 | Dolliver et al. | Jun 2019 | B2 |
10342722 | Garrido | Jul 2019 | B2 |
10406054 | Scholl et al. | Sep 2019 | B1 |
10426684 | Dubois et al. | Oct 2019 | B2 |
10531998 | Jackson et al. | Jan 2020 | B2 |
10543142 | Lim et al. | Jan 2020 | B2 |
10548796 | Lim et al. | Feb 2020 | B2 |
10576006 | Lim et al. | Mar 2020 | B2 |
10695252 | Jackson | Jun 2020 | B2 |
10722413 | Lim et al. | Jul 2020 | B2 |
10729607 | Jackson | Aug 2020 | B2 |
10751240 | Lim et al. | Aug 2020 | B2 |
10835438 | Jackson | Nov 2020 | B2 |
10835439 | Lim et al. | Nov 2020 | B2 |
10849809 | Lim et al. | Dec 2020 | B2 |
10874570 | Lim et al. | Dec 2020 | B2 |
10881570 | Lim et al. | Jan 2021 | B2 |
10888484 | Lim et al. | Jan 2021 | B2 |
10893996 | Lim et al. | Jan 2021 | B2 |
10898401 | Lim et al. | Jan 2021 | B2 |
10900448 | Lim et al. | Jan 2021 | B2 |
20020138905 | Barltett et al. | Oct 2002 | A1 |
20020138906 | Barltett et al. | Oct 2002 | A1 |
20020157186 | VanSteenburg | Oct 2002 | A1 |
20030140419 | Barltett et al. | Jul 2003 | A1 |
20030140420 | Niederkrom | Jul 2003 | A1 |
20030145382 | Krywiczanin | Aug 2003 | A1 |
20030178027 | DeMayo et al. | Sep 2003 | A1 |
20040010849 | Krywiczanin et al. | Jan 2004 | A1 |
20040133979 | Newkirk et al. | Jul 2004 | A1 |
20040133983 | Newkirk | Jul 2004 | A1 |
20050181917 | Dayal | Aug 2005 | A1 |
20060037141 | Krywiczanin et al. | Feb 2006 | A1 |
20060123546 | Horton | Jun 2006 | A1 |
20060162076 | Bartlett et al. | Jul 2006 | A1 |
20060162084 | Mezue | Jul 2006 | A1 |
20060185090 | Jackson | Aug 2006 | A1 |
20080034502 | Copeland et al. | Feb 2008 | A1 |
20080134434 | Celauro | Jun 2008 | A1 |
20080222811 | Gilbert et al. | Sep 2008 | A1 |
20090070936 | Henderson | Mar 2009 | A1 |
20090139030 | Yang | Jun 2009 | A1 |
20090248041 | Williams et al. | Oct 2009 | A1 |
20100037397 | Wood | Feb 2010 | A1 |
20100192300 | Tannoury | Aug 2010 | A1 |
20100293719 | Klemm et al. | Nov 2010 | A1 |
20110099716 | Jackson | May 2011 | A1 |
20120103344 | Hunter | May 2012 | A1 |
20120144589 | Skripps et al. | Jun 2012 | A1 |
20120255122 | Diel et al. | Oct 2012 | A1 |
20130111666 | Jackson | May 2013 | A1 |
20130191994 | Bellows et al. | Aug 2013 | A1 |
20130283526 | Gagliardi | Oct 2013 | A1 |
20130307298 | Meiki | Nov 2013 | A1 |
20140020183 | Dominick | Jan 2014 | A1 |
20140059773 | Carn | Mar 2014 | A1 |
20140068861 | Jackson | Mar 2014 | A1 |
20140109316 | Jackson et al. | Apr 2014 | A1 |
20140130258 | Kobuss | May 2014 | A1 |
20140137327 | Tannoury et al. | May 2014 | A1 |
20150038982 | Kilroy et al. | Feb 2015 | A1 |
20150044956 | Hacker | Feb 2015 | A1 |
20150245971 | Bernardoni et al. | Sep 2015 | A1 |
20150272681 | Skripps et al. | Oct 2015 | A1 |
20160000621 | Jackson | Jan 2016 | A1 |
20160081582 | Rapoport | Mar 2016 | A1 |
20160089287 | Buerstner | Mar 2016 | A1 |
20160193099 | Drake | Jul 2016 | A1 |
20160317373 | Jackson et al. | Nov 2016 | A1 |
20170027797 | Dolliver et al. | Feb 2017 | A1 |
20170049651 | Lim | Feb 2017 | A1 |
20170049653 | Lim | Feb 2017 | A1 |
20170079864 | Riley | Mar 2017 | A1 |
20170112698 | Hight et al. | Apr 2017 | A1 |
20170135891 | Kettner | May 2017 | A1 |
20170151115 | Jackson | Jun 2017 | A1 |
20170341232 | Perplies | Nov 2017 | A1 |
20170348171 | Jackson | Dec 2017 | A1 |
20180116891 | Beale et al. | May 2018 | A1 |
20180185228 | Catacchio et al. | Jul 2018 | A1 |
20180193104 | Beale et al. | Jul 2018 | A1 |
20180207044 | Sabet et al. | Jul 2018 | A1 |
20180363596 | Lim et al. | Dec 2018 | A1 |
20190000702 | Lim et al. | Jan 2019 | A1 |
20190000707 | Lim et al. | Jan 2019 | A1 |
20190046381 | Lim et al. | Feb 2019 | A1 |
20190046383 | Lim et al. | Feb 2019 | A1 |
20190209409 | Jackson et al. | Jul 2019 | A1 |
20190374420 | Lehman et al. | Dec 2019 | A1 |
20200000668 | Lim et al. | Jan 2020 | A1 |
20200060913 | Lim et al. | Feb 2020 | A1 |
20200060914 | Lim et al. | Feb 2020 | A1 |
20200060915 | Lim et al. | Feb 2020 | A1 |
20200138660 | Jackson | May 2020 | A1 |
20200170868 | Jackson | Jun 2020 | A1 |
20200188208 | Lim et al. | Jun 2020 | A1 |
20200138659 | Lim et al. | Jul 2020 | A1 |
20200281788 | Lim et al. | Sep 2020 | A1 |
20200297568 | Lim et al. | Sep 2020 | A1 |
20200337923 | Lim et al. | Oct 2020 | A1 |
20200337926 | Lim et al. | Oct 2020 | A1 |
20200337927 | Lim et al. | Oct 2020 | A1 |
20200360214 | Lim et al. | Nov 2020 | A1 |
20220008016 | Harrison et al. | Jan 2022 | A1 |
20220409311 | Tadano et al. | Dec 2022 | A1 |
20230066826 | Morgan | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
3158986 | Apr 2017 | EP |
3434248 | Jan 2019 | EP |
3909539 | Nov 2021 | EP |
2018069048 | May 2018 | JP |
6449958 | Dec 2018 | JP |
WO0062731 | Oct 2000 | WO |
2007058673 | May 2007 | WO |
2021176531 | Sep 2021 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jul. 19, 2023 in PCT/IB2023/054288. |
International Search Report and Written Opinion dated Jun. 27, 2023 in PCT/IL2023/050291. |
International Search Report and Written Opinion dated Jul. 20, 2023 in PCT/IB2023/054218. |
International Search Report and Written Opinion dated Oct. 18, 2023 in PCT/IB2023/058416. |
International Search Report and Written Opinion dated Jul. 20, 2023 in PCT/IB2023/054786. |
Number | Date | Country | |
---|---|---|---|
20230363969 A1 | Nov 2023 | US |