Surgical training model for laparoscopic procedures

Information

  • Patent Grant
  • 9959786
  • Patent Number
    9,959,786
  • Date Filed
    Wednesday, September 25, 2013
    11 years ago
  • Date Issued
    Tuesday, May 1, 2018
    6 years ago
Abstract
A surgical training device includes a model comprising a simulated tissue portion mounted in selectable tension onto a plurality of posts connected to a base. Each post includes at least one notch configured for retaining the simulated tissue portion. Mounting the simulated tissue portion that is in the form of a sheet in notches of different heights creates an angled installation of simulated tissue upon which surgical techniques such as cutting and suturing can be practiced in a simulated laparoscopic environment. More than one sheet can be mounted and each sheet can be mounted with selectable tension by pulling the sheet more or less as desired onto the posts. One variation includes a simulated tumor disposed between sheets, angled or wobbly posts and textured and imprinted simulated tissue surfaces to provide various levels of dynamism and difficulty for surgical skills training in a laparoscopic environment.
Description
FIELD OF THE INVENTION

This application is generally related to surgical training tools, and in particular, to simulated tissue structures and models for teaching and practicing various surgical techniques and procedures related but not limited to laparoscopic, endoscopic and minimally invasive surgery.


BACKGROUND OF THE INVENTION

Medical students as well as experienced doctors learning new surgical techniques must undergo extensive training before they are qualified to perform surgery on human patients. The training must teach proper techniques employing various medical devices for cutting, penetrating, clamping, grasping, stapling, cauterizing and suturing a variety of tissue types. The range of possibilities that a trainee may encounter is great. For example, different organs and patient anatomies and diseases are presented. The thickness and consistency of the various tissue layers will also vary from one part of the body to the next and from one patient to another. Different procedures demand different skills. Furthermore, the trainee must practice techniques in various anatomical environs that are influenced by factors such as the size and condition of the patient, the adjacent anatomical landscape and the types of targeted tissues and whether they are readily accessible or relatively inaccessible.


Numerous teaching aids, trainers, simulators and model organs are available for one or more aspects of surgical training. However, there is a need for model organs or simulated tissue elements that are likely to be encountered and that can be used in practicing endoscopic and laparoscopic, minimally invasive surgical procedures. In laparoscopic or minimally invasive surgery, a small incision, as small as 5-10 mm is made through which a trocar or cannula is inserted to access a body cavity and to create a channel for the insertion of a camera, such as a laparoscope. The camera provides a live video feed capturing images that are then displayed to the surgeon on one or more monitors. At least one additional small incision is made through which another trocar/cannula is inserted to create a pathway through which surgical instruments can be passed for performing procedures observed on the monitor. The targeted tissue location such as the abdomen is typically enlarged by delivering carbon dioxide gas to insufflate the body cavity and create a working space large enough to safely accommodate the scope and instruments used by the surgeon. The insufflation pressure in the tissue cavity is maintained by using specialized trocars. Laparoscopic surgery offers a number of advantages when compared with an open procedure. These advantages include reduced pain, reduced blood and shorter recovery times due to smaller incisions.


Laparoscopic or endoscopic minimally invasive surgery requires an increased level of skill compared to open surgery because the target tissue is not directly observed by the clinician. The target tissue is observed on monitors displaying a portion of the surgical site that is accessed through a small opening. Therefore, clinicians need to practice visually determining tissue planes, three-dimensional depth perception on a two-dimensional viewing screen, hand-to-hand transfer of instruments, suturing, precision cutting and tissue and instrument manipulation. Typically, models simulating a particular anatomy or procedure are placed in a simulated pelvic trainer where the anatomical model is obscured from direct visualization by the practitioner. Simulated pelvic trainers provide a functional, inexpensive and practical means to train surgeons and residents the basic skills and typical techniques used in laparoscopic surgery such as grasping, manipulating, cutting, knot tying, suturing, stapling, cauterizing as well as how to perform specific surgical procedures that utilize these basic skills. Simulated pelvic trainers are also effective sales tools for demonstrating medical devices required to perform these laparoscopic procedures.


One of the techniques mentioned above that requires practice in laparoscopic or minimally invasive surgery is cutting and suturing. Therefore, it is desirable to present a model for practicing cutting and suturing. It is also desirable to have a model that not only simulates the particular anatomy but also presents the anatomy at a particular step or stage of the procedure or isolates a particular step of a procedure for the trainee to practice in a simulated laparoscopic environment. The model is then disposed inside a simulated laparoscopic environment such as a laparoscopic trainer in which it is at least partially obscured from direct visualization. A camera and monitor provide visualization to the practitioner as in real surgery. After a technique is practiced, it is furthermore desirable that such a model permits repeatable practice with ease, speed and cost savings. In view of the above, it is an object of this invention to provide a surgical training device that realistically simulates an anatomy, isolates such anatomy and presents such an anatomy at a particular stage or step of a procedure that also enables repeatable practice. It has been demonstrated that the use of simulation trainers greatly enhances the skill levels of new laparoscopists and are a great tool to train future surgeons in a non-surgical setting. There is a need for such improved, realistic and effective surgical training models.


SUMMARY OF THE INVENTION

According to one aspect of the invention, a surgical training device is provided. The device includes a top cover connected to and spaced apart from a base to define an internal cavity between the top cover and the base. At least one aperture or a penetrable region for accessing the internal cavity is provided. A laparoscopic camera extends into the internal cavity and a video display is connected to the laparoscopic camera and configured to display to a user images captured by the laparoscopic camera. A removable model is disposed inside the internal cavity. The model includes at least one simulated tissue portion connected to a plurality of mounting posts that are connected in spaced apart fashion to a base. Each mounting post includes at least one notch formed in its outer surface and along the longitudinal axis and configured to hold the simulated tissue portion in the location of the at least one notch such that the simulated tissue portion is suspended by a distance from the base.


According to another aspect of the invention, a surgical training device is provided. The device includes a base having an upper surface and a plurality of mounting posts connected to the base and extending upwardly from the upper surface of the base. Each mounting post has a proximal end connected to the base and a tapered distal end. At least one substantially planar simulated tissue portion having an upper surface and a lower surface is provided. Apertures in the simulated tissue portion are connected to the mounting posts such that the simulated tissue portion is suspended by the posts extending through the apertures. The simulated tissue portion is made of flexible and stretchable material such that it is mounted in tension between the plurality of mounting posts. The simulated tissue portion is penetrable with surgical instruments including a suture needle and scalpel. Also, the material is configured to hold sutures without propagating the point of penetration while the simulated tissue portion is held in tension on the posts. Each mounting post includes at least one notch equally spaced from one end of the post such that all the mounting posts have notches at the same height.


According to another aspect of the invention, a method for surgical training is provided. The method includes the step of providing a surgical training model comprising a base having an upper surface. The model includes a plurality of mounting posts connected to the base and extending upwardly from the upper surface of the base. Each mounting post has a proximal end connected to the base and a tapered distal end with the proximal end connected to the base. The method further includes the step of providing at least one substantially planar simulated tissue structure having an upper surface and a lower surface. The simulated tissue structure is flexible and stretchable. The method includes the step of mounting the at least one simulated tissue structure onto the mounting posts. The method includes the step of piercing the simulated tissue structure with the tapered distal ends of the mounting posts to connect the simulated tissue structure to the mounting posts with selectable tension such that the simulated tissue portion is suspended by the posts extending through apertures. The method includes stretching the simulated tissue between mounting posts. The method includes the step of providing apertures in the simulated tissue structure. The method includes the step of providing apertures in the simulated tissue structure prior to mounting the simulated tissue portion to the mounting posts. The method includes the step of providing apertures in the simulated tissue portion wherein the apertures are formed by piercing the simulated tissue structure with the mounting posts in selected locations along the simulated tissue structure. The method includes mounting the at least one planar simulated tissue portion at an angle with respect to the base. The method includes providing a plurality of notches in the mounting posts and locating the simulated tissue structure such that the simulated tissue structure is retained within the notches. The method further includes providing a second planar simulated tissue structure. The method further includes the step of mounting the second simulated tissue structure on the mounting posts. Wherein the step of mounting the at least one simulated tissue structure includes the step of selectively piercing the at least one simulated tissue structure with the distal ends of the mounting posts. Wherein the step of mounting the second simulated tissue structure and the at least one other simulated tissue structure, further includes the step of selectively piercing the at least one simulated tissue structure with the distal ends of the mounting posts. The method includes the step of mounting the second simulated tissue structure above the first simulated tissue structure. The method further includes the step of providing a laparoscopic trainer. The laparoscopic trainer includes a trainer base and a trainer top cover connected to and spaced apart from the base to define an internal trainer cavity between the top cover and the base. The laparoscopic trainer includes at least one aperture or a penetrable region for accessing the internal trainer cavity and a laparoscopic camera extending into and for viewing the internal trainer cavity. A video display connected to the laparoscopic camera and configured to display to a user images captured by the laparoscopic camera is further provided. The method further includes placing the surgical training model into the cavity of the laparoscopic trainer such that it is substantially obscured from view of the user. The method further includes providing a predetermined pathway on an upper surface of the at least one simulated tissue structure and cutting the simulated tissue structure along the predetermined pathway. The method includes cutting the at least one simulated tissue structure with a laparoscopic instrument to create an opening. The method includes laparoscopically suturing the opening closed. The method includes the step of providing a simulated tumor located between the second simulated tissue structure and the at least one other simulated tissue structure. The method includes the step of penetrating the second simulated tissue structure to access the tumor. The method includes the step of observing the surgical training model and procedure with the laparoscope. The method includes laparoscopically excising the tumor from the surgical training model. The method includes the step of suturing the at least one simulated tissue structure and the second simulated tissue structure. The method includes the step of mounting a second simulated tissue structure onto the mounting posts such that it is angled with respect to the at least one other simulated tissue structure. The method includes the step of stretching the at least one simulated tissue structure. Mounting posts that wobble, angulate or rotate polyaxially are provided. The method includes angulating at least one of the mounting posts upon contact with the at least one simulated tissue portion with a surgical instrument.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a top perspective view of a surgical training device according to the present invention.



FIG. 2 illustrates a top perspective, partially transparent view of a surgical training model according to the present invention.



FIG. 3 illustrates a top perspective view of a model without a simulated tissue portion according to the present invention.



FIG. 4 illustrates a top perspective, partially transparent view of a model with two tissue simulation portions according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A surgical training device 10 that is configured to mimic the torso of a patient such as the abdominal region is shown in FIG. 1. The surgical training device 10 provides a body cavity 12 substantially obscured from the user and configured for receiving simulated or live tissue or model organs or training model of the like described in this invention. The body cavity 12 is accessed via a tissue simulation region 14 that is penetrated by the user employing devices to practice surgical techniques on the tissue or organ model found located in the body cavity 12. Although the body cavity 12 is shown to be accessible through a tissue simulation region, a hand-assisted access device or single-site port device may be alternatively employed to access the body cavity 12. An exemplary surgical training device is described in U.S. patent application Ser. No. 13/248,449 entitled “Portable Laparoscopic Trainer” filed on Sep. 29, 2011 and incorporated herein by reference in its entirety. The surgical training device 10 is particularly well suited for practicing laparoscopic or other minimally invasive surgical procedures.


Still referencing FIG. 1, the surgical training device 10 includes a top cover 16 connected to and spaced apart from a base 18 by at least one leg 20. FIG. 1 shows a plurality of legs 20. The surgical training device 10 is configured to mimic the torso of a patient such as the abdominal region. The top cover 16 is representative of the anterior surface of the patient and the space between the top cover 16 and the base 18 is representative of an interior of the patient or body cavity where organs reside. The surgical trainer 10 is a useful tool for teaching, practicing and demonstrating various surgical procedures and their related instruments in simulation of a patient undergoing a surgical procedure. Surgical instruments are inserted into the cavity 12 through the tissue simulation region 14 as well as through pre-established apertures 22 in the top cover 16. Various tools and techniques may be used to penetrate the top cover 16 to perform mock procedures on model organs placed between the top cover 16 and the base 18. The base 18 includes a model-receiving area 24 or tray for staging or holding a simulated tissue model or live tissue. The model-receiving area 24 of the base 18 includes frame-like elements for holding the model (not shown) in place. To help retain simulated tissue model or live organs on the base 18, a clip attached to a retractable wire is provided at locations 26. The wire is extended and then clipped to hold the tissue model in position substantially beneath the tissue simulation region 14. Other means for retaining the tissue model include a patch of hook-and-loop type fastening material (VELCRO®) affixed to the base 18 in the model-receiving area 24 such that it is removably connectable to a complementary piece of hook-and-loop type fastening material (VELCRO®) affixed to the model.


A video display monitor 28 that is hinged to the top cover 16 is shown in a closed orientation in FIG. 1. The video monitor 28 is connectable to a variety of visual systems for delivering an image to the monitor. For example, a laparoscope inserted through one of the pre-established apertures 22 or a webcam located in the cavity and used to observe the simulated procedure can be connected to the video monitor 28 and/or a mobile computing device to provide an image to the user. Also, audio recording or delivery means may also be provided and integrated with the trainer 10 to provide audio and visual capabilities. Means for connecting a portable memory storage device such as a flash drive, smart phone, digital audio or video player, or other digital mobile device is also provided, to record training procedures and/or play back pre-recorded videos on the monitor for demonstration purposes. Of course, connection means for providing an audio visual output to a larger screen other than the monitor is provided. In another variation, the top cover 10 does not include a video display but includes means for supporting a laptop computer, a mobile digital device or tablet such as an IPAD® and connecting it by wire or wirelessly to the trainer.


When assembled, the top cover 16 is positioned directly above the base 18 with the legs 20 located substantially around the periphery and interconnected between the top cover 16 and base 18. The top cover 16 and base 18 are substantially the same shape and size and have substantially the same peripheral outline. The internal cavity is partially or entirely obscured from view. In the variation shown in FIG. 1, the legs include openings to allow ambient light to illuminate the internal cavity as much as possible and also to advantageously provide as much weight reduction as possible for convenient portability. The top cover 16 is removable from the legs 20 which in turn are removable or collapsible via hinges or the like with respect to the base 18. Therefore, the unassembled trainer 10 has a reduced height that makes for easier portability. In essence, the surgical trainer 10 provides a simulated body cavity 12 that is obscured from the user. The body cavity 12 is configured to receive at least one surgical model accessible via at least one tissue simulation region 14 and/or apertures 22 in the top cover 16 or sides through which the user may access the models to practice laparoscopic or endoscopic minimally invasive surgical techniques.


A surgical training model 30 according to the present invention is shown in FIG. 2. The model 30 is configured to be placed inside the surgical training device 10 described above or other surgical trainer similar to the one described above. The model 30 may also be used by itself without a laparoscopic trainer to train or practice certain procedures and surgical techniques. The model 30 includes a base 32, a plurality of posts 34, and at least one simulated tissue portion 36.


The base 32 of the model 30 is a platform that serves as a bottom support for the rest of the model 30 and it is sized and configured such that the model 30 does not tip over. The platform is made of any material such as metal or plastic. The base 32 is of sufficient heft to maintain the stability of the model 30 in the upright position while being manipulated by a user. The base 32 may include holes for receiving posts 34. Alternatively, the posts 34 may be integrally form with the base 32 as a unitary body. The model 30 is sized and configured to be placed into the body cavity 12 of the surgical trainer 10 in the location of the model receiving area 24. The underside of the base 32 is provided with means to affix the model 30 inside the surgical trainer 10. Such means to affix the model 30 inside the trainer 10 include but are not limited to adhesive, suction cup, snap-fit, magnet, and a hook-and-loop type fastener material attached to the bottom surface of the base 32 and configured to connect with a complementary hook-and-loop type fastener material or adhesive attached to the base 18 of the surgical trainer 30.


Still referencing FIG. 2, four posts 34 are connected to the base 32 of the model 30 or, alternatively, the posts 34 are integrally formed with the base 32. Each post 34 is elongate and cylindrical in shape having a proximal end connected to the base 32 and a distal end that extends upwardly from the base 32. In one variation, the distal end includes a tapered section 38 that terminates at a blunt tip surface 40 so as to not injure a user but is sharp enough to puncture holes in simulated tissue. In one variation, as shown in FIG. 2, the distal end is conical or tapered and has smoothly curved, rounded or flat tip. Each post 34 includes at least one circumferential notch 42 or cut that extends radially inwardly from the outer surface and into the post 34. In the variation shown in FIG. 2, each post 34 includes three notches 42a, 42b, 42c spaced apart along the length of the post 34 although any number of notches may be included in the post 34. The notches 34 are perpendicular to the longitudinal axis of the each post 34. In one variation, all of the posts 34 have the same number of notches 34 in the same locations or distances along the longitudinal axis. The posts 34 are spaced apart and located in substantially the four corners of the base 32. The posts 34 may be oriented perpendicular to the base 32 or angled outwardly as shown in FIG. 2 to help retain a tensioned simulated tissue portion 36 or to allow for varied tension in the simulated tissue portion 36. In one variation, the posts are movable with respect to the base 32 such that their angle with respect to the base 32 can be selected by the user in order to vary the tension on the simulated tissue portion 26. In another variation, the angle of the posts 34 are not fixed but vary within constrained parameters upon manipulation of the connected simulated tissue portion 36 thereby increasing the difficulty for the clinician in performing the surgical technique. At least one of the posts 34 angulates, shifts, tilts, wobbles or is movable with respect to base 32 in response to forces applied to the simulated tissue portion 36 by the practitioner. The proximal end of at least one post 34 is connected to the base 32 and configured such that the post angulates polyaxially or rotates polyaxially with respect to the base. In another variation at least one of the posts 34 is a flexible gooseneck which can be adjusted with the position being maintained by the gooseneck post 34 following the adjustment. The gooseneck post 34 is advantageous in adjusting the tension in the simulated tissue portion 36. The posts 34 are configured to support the simulated tissue portion 36 and to selectively locate and position the simulated tissue portion 36 in the notches 34. If the simulated tissue portion 36 is in the form of a sheet as shown in FIG. 2, then the thickness of the notches 42 is at least as thick as the thickness of the sheet forming the simulated tissue portion 36 such that the simulated tissue portion 36 is supported within and by the notches 42 and retained in the notches 42 along the posts 34 and thereby prevented from slipping or moving along the length of the post 34 as a clinician manipulates the simulated tissue portion 36. In one variation, the simulated tissue sheet 36 is approximately 0.05 inches thick and the notches are approximately 0.1 inches thick and the notches 42 are spaced apart by approximately 0.25 inches. In another variation, the notches 42 are thinner than the sheet 36 to slightly compress the sheet in position within the notch 42. For example, the notch 42 is approximately 0.08 inches and the sheet is approximately 0.1 inches. One variation includes mounting posts that have notches that are formed at the same height. For example, a post 34 is approximately 4.0 inches long and includes first, second, third and fourth notches located at approximately 1.0 inch, 1.8 inches, 2.7 inches, and 3.7 inches, respectively. The outer diameter of the posts 34 are approximately 0.3 inches and the inner diameter of the posts 34 in the location of the notches is approximately 0.23 inches.


In one variation, the posts 34 are removable from the base 32. The base 32 includes four apertures and the posts 34 are passed into the apertures from underneath the base 32. Each post 34 is provided with a flange and each aperture is keyed for allowing the flanged post 34 to pass into the aperture. Once inserted into the aperture of the base 32, the post 34 is twisted relative to the base 32 to lock the post 34 in position relative to the base 32. To remove the post 34, the post 34 is twisted in the opposite direction and pushed down through the aperture. The underside of the base 32 includes an alcove provided with detents into which the posts 34 may be snapped into for flat storage of the model. Of course, rigid posts 34 may be interchangeable with flexible/movable ones.


Still referencing FIG. 2, the simulated tissue portion 36 includes a sheet of simulated tissue material. In another variation, the simulated tissue portion can take the form and shape of a particular organ. The simulated tissue portion 36 is connected to the posts 34 and in essence suspended from the upper surface of the base by a distance defined by the distance of the notch 42 to which the simulated tissue portion is attached. The simulated tissue portion 36 is free on all sides except at the points of support at the posts 34. The simulated tissue portion 36 is mounted in tension being slightly stretched between and connected to the posts 34. The tension of the sheet may be adjusted by angulating the posts 34 or by stretching and piercing the simulated tissue portion 36 in locations closer together along the simulated tissue portion. In one variation, the simulated tissue portion 36 is a sheet of silicone. In another variation the simulated tissue portion is a sheet of fabric or mesh coated with silicone on at least one side. The fabric or mesh is a 2-way or 4-way stretch material such as stretch nylon or spandex or a stretch nylon/spandex blend mesh or fabric. The fabric or mesh material is stretchable and porous and weighs approximately 79 grams per square yard. The material of the sheet can be any polymeric material that is flexible and can stretch and may include a mesh or other reinforcement material or fiber. The silicone coating on the mesh provides a realistic tissue feel and may include a textured surface to provide the user with tactile feedback and to allow the user to grab onto the surface with graspers. The mesh, fabric, fiber or other filler material provides reinforcement to the silicone such that the sheet can hold a suture without tearing or be stretched without tearing when being manipulated or connected to the posts 34. The simulated tissue portion 36 may also be made of KRATON® or other thermoplastic elastomer.


In one variation, the simulated tissue portion 36 includes a marking or a predetermined pathway drawn on the upper surface of the at least one simulated tissue portion 36 with ink for example for the user to cut along. A shape may also be drawn which the user can practice cutting out. A pre-marked simulated tissue portion 36 provides a starting point for the user. Also, a blank simulated tissue portion 36 allows the user to draw their own line, path or shape on the simulated tissue portion 36 that then the user can cut along employing laparoscopic scissors and dissectors to practice precision cutting and then practice suturing the cut or opening closed. Furthermore, in one variation, the simulated tissue portion 36 includes pre-formed apertures 44 located along the perimeter at the four corners as shown in FIG. 2. These apertures are approximately 0.125 inches in diameter and are set back from the edges by approximately 0.413 inches. The apertures 44 are located in the four corners of the sheet 36 and are used for mounting the simulated tissue portion 36 onto the four posts 34 as shown. The simulated tissue portion 36 in the form of a sheet is approximately 1 to 10 mm thick for example. In another variation, the simulated tissue portion 36 that is formed in a sheet includes a textured upper surface and a smooth lower surface. The texturing can include protrusions or other realistic organ details. If desired, the user may flip the sheet such that the smooth surface is facing upwardly on the posts. The smooth surface may increase the difficulty in grasping and manipulating the simulated tissue portion with instruments. In another variation, the sheet of simulated tissue 36 includes several pre-cut paths and/or holes which forces the user to maintain tension on the simulated tissue portion drawing opposite sides of the hole or pre-cut path close together for suturing.


In use, a user will mount at least one simulated tissue portion 36 onto the posts 34. If the simulated tissue portion 36 includes preformed apertures 44 then mounting the simulated tissue portion 36 includes placing the apertures 44 over each post 34 and sliding the simulated tissue portion 36 to rest within one of the at least one notches 42 formed in the post 34. The simulated tissue portion 36 is mounted on all four posts 34. Fewer posts may be employed to suspend the simulated tissue portion 36. The notches 42 advantageously permit the entire sheet 36 to be mounted at an angle such that one side or at least one corner of the simulated tissue portion 36 is mounted on a higher or lower notch relative to the other corners and posts. For example, one side of the simulated tissue portion 36 is connected to two posts 34 by positioning the simulated tissue portion 36 along that first side to rest in notches 42a and the other side of the simulated tissue portion 36 is connected to two posts 34 by positioning the simulated tissue portion 36 along that second side to rest in notches 42c which are lower than notches 42a thereby angulating the simulated tissue portion 36. If the simulated tissue portion 36 is not provided with preformed apertures 44, the tapered distal ends 38 of the posts 34 can be used to puncture apertures 44 anywhere into the sheet 36. Hence, the tension in the simulated tissue portion 36 can be selected by the user when the user mounts the simulated tissue portion 36 onto the posts 34. For example, when the simulated tissue portion 36 is mounted by piercing an aperture 44 into the simulated tissue portion 36, it can then be selectively stretched making the simulated tissue portion 36 as tense or loose as the user wishes before piercing at least a second aperture 44 to mount the simulated tissue portion on another post 34 and so forth. The fabric reinforced silicone material prevents the aperture 44 from propagating. Multiple preformed apertures 44 can be included in the sheet 36 to provide different degrees of tension when the sheet is mounted using a specific set of preformed apertures 44. As the simulated tissue portion 36 in the form of a sheet is stretched over a post, it then snaps into place inside one of the notches 42. The posts 34 may include barbs, a shoulder or flange (not shown) extending outwardly from the outer surface to help retain the simulated tissue portion 36 in position together with or without notches 42. The posts 34 allow the user to set the sheet to different tensions to allow for different levels of difficulty as well as different angles to represent different structures or locations within the body.



FIG. 3 shows a variation of the model 30 that includes more than four posts 34. In particular, there is a first or outer set of posts 34 and a second inner set of posts 46. There are four outer posts 34 and four inner posts 46 for a total of eight posts. The inner posts 46 are shorter relative to the outer posts 34. Both sets of posts are generally positioned in the four corners of the base 32 and adjacent to each other. Having two sets of posts allows greater variation or selectability in the tension or angles for mounting the simulated tissue portion 36. The second set of posts 46, like the first set of posts 34, includes notches 42 for positioning the simulated tissue portion 36. Although one notch 42 is shown in all of the posts 34, 46, the invention is not so limited and any number of notches at varying heights can be formed in the posts 34, 42. FIG. 3 does not illustrate the simulated tissue portion 36.


Turning now to FIG. 4, there is shown a model 30 according to the present invention having two simulated tissue portions 36a, 36b mounted on the posts 34. As shown the simulated tissue portions 36a, 36b are formed as sheets but are not so limited and may include shapes that simulate organs and other tissue structures. A first simulated tissue portion 36a is mounted onto the posts 34 and placed into notches 42c and a second simulated tissue portion is shown mounted onto posts 34 and placed into notches 42a. Of course, the second sheet 36b can be placed into the same notches as the first sheet 36a or angled in any manner with respect to the first sheet 36a which may also be angled and placed in different notches. Placing the sheets 36a, 36b in the same notches creates a layered tissue that can be used to mimic muscle tissue as found in the abdominal region. The sheets of simulated tissue 36 can be any color and include markings and vascular structures drawn on the simulated tissue structure 36 to mimic real tissue structures. The multiple sheets may all be connected together and retained with adhesive selectively applied in selected areas between the sheets. Although, two sheets 36a, 36b are shown, the invention is not limited to the number of sheets that can be mounted on the posts 34. The posts 34 can be accordingly constructed to be longer and include more notches 42 to accommodate more sheets and a wider selection of angulations. FIG. 4 illustrates a simulated tumor 48 located between the two sheets 36a, 36b. The tumor 48 can be attached to one or both of the layers 36a, 36b or not be attached. The clinician can practice making an incision in the second layer 36b to uncover the tumor 48, then practice excising the tumor 48 and then practice suturing the defect left behind in the first layer 36a if the tumor 48 was attached to the first layer 36a and then practice suturing the second layer 36b closed as well.


The model 30 is also suitable for use as a blunt dissection model. The simulated tissue sheet 36 for blunt dissection is made of silicone with no fabric reinforcement which allows the dissectors or trocars to puncture and separate the material. Multiple sheets may be layered together and attached together by means of silicone adhesive or thinner layers of silicone to allow for tissue dissections and separations of tissue planes.


The model 30 provides a realistic platform for presenting simulated tissue structures for training in a laparoscopic environment. As the clinician practices certain techniques such as cutting and suturing, the clinician will use certain instruments such as graspers, cutters, suture needles, sutures, laparoscopes, endoscopes, trocars and the like. When the simulated tissue structure that is supported on the posts in the model of the present invention is contacted with such instruments, the simulated tissue structure will give and flex under the force, deflecting a certain degree depending upon the tension with which it is mounted. This dynamism of the simulated tissue structure advantageously mimics real live tissue that gives way, moves and flexes upon manipulation in real life. Also, cutting and suturing feels differently when performed on simulated tissue structure that is suspended, that is in tension and that allows for a certain amount of deflection. These simulation advantages are provided by the model 30 of the present invention and are particularly useful when practicing laparoscopic surgical techniques that allow the user to fine tune depth perception and tissue manipulation skills while suturing, cutting and puncturing in a simulated laparoscopic environment.


While certain embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope thereof as defined by the following claims.

Claims
  • 1. A surgical training device, comprising: a base;a top cover connected to and spaced apart from the base to define an internal cavity between the top cover and the base;at least one aperture or a penetrable region for accessing the internal cavity;a laparoscopic camera insertable into the internal cavity;a video display monitor configured to connect to an inserted laparoscopic camera and display images;a removable model disposed inside the cavity; the model comprising at least one simulated tissue portion connected to a plurality of mounting posts that are connected in spaced apart fashion to a base; each mounting post includes at least one notch formed in the outer surface perpendicular to the longitudinal axis and configured to hold the simulated tissue portion in the location of the at least one notch such that the simulated tissue portion is suspended by a distance from the base;wherein at least one mounting post is configured to angulate polyaxially with respect to the base and be movable with respect to the base in response to forces applied to the simulated tissue portion.
  • 2. The surgical training device of claim 1 wherein the simulated tissue portion is a sheet of silicone.
  • 3. The surgical training device of claim 2 wherein the sheet of silicone includes a stretchable fabric or mesh.
  • 4. The surgical training device of claim 1 wherein the model includes two simulated tissue portions in the form of sheets.
  • 5. The surgical training device of claim 4 wherein at least one of the simulated tissue portions includes at least one simulated tumor structure.
  • 6. The surgical training device of claim 5 wherein the at least one simulated tumor structure is positioned between the two sheets.
  • 7. The surgical training device of claim 1 wherein the simulated tissue portion is mounted with selectable tension on the posts and is deflectable when manipulated to simulate real tissue consistency.
  • 8. The surgical training device of claim 1 wherein the simulated tissue portion includes a plurality of preformed apertures for mounting on the plurality of mounting posts.
  • 9. The surgical training device of claim 1 wherein each mounting post includes a tapered distal end.
  • 10. The surgical training device of claim 1 wherein each mounting post includes a blunt tip surface.
  • 11. The surgical training device of claim 10 wherein each mounting post is capable of forming an aperture in the at least one simulated tissue portion.
  • 12. A surgical training device comprising: a base having an upper surface;a plurality of mounting posts connected to the base and extending upwardly from the upper surface of the base; each mounting post has a proximal end connected to the base and a tapered distal end; the proximal end is connected to the base;at least one substantially planar simulated tissue portion having an upper surface and a lower surface; the simulated tissue portion includes apertures extending between the upper surface and the lower surface; the mounting posts are configured to pass through the apertures such that the simulated tissue portion is suspended by the posts extending through the apertures; the simulated tissue portion is made of flexible and stretchable materialwherein each mounting post includes at least one notch formed in the outer surface perpendicular to the longitudinal axis and configured to hold the simulated tissue portion in the location of the at least one notch such that the simulated tissue portion is suspended within the notches and retained in the notches along the mounting posts and prevented from moving along the length of the mounting posts.
  • 13. The surgical training device of claim 12 wherein at least one mounting post is configured to angulate polyaxially with respect to the base.
  • 14. The surgical training device of claim 12 wherein the at least one simulated tissue portion is mounted on the mounting posts such that the simulated tissue portion is angled with respect to the base.
  • 15. The surgical training device of claim 12 further including a second substantially planar simulated tissue portion having an upper surface and a lower surface and apertures connected to the mounting posts such that the second simulated tissue portion is suspended by the posts through the apertures; the second simulated tissue portion is made of flexible and stretchable material such that it is mounted in tension between the plurality of mounting posts; the second simulated tissue portion is located adjacent to the at least one other simulated tissue portion.
  • 16. The surgical training device of claim 15 further including a simulated tumor located between the second simulated tissue portion and the at least one other simulated tissue portion.
  • 17. The surgical training device of claim 15 wherein the second simulated tissue portion is disposed at an angle with respect to the at least one other simulated tissue portion.
  • 18. The surgical training device of claim 12 wherein the at least one simulated tissue portion is made of silicone with an embedded mesh material.
  • 19. The surgical training device of claim 12 further including four mounting posts.
  • 20. The surgical training device of claim 19 wherein the simulated tissue portion includes four pre-formed apertures located along the perimeter of the simulated tissue.
  • 21. The surgical training device of claim 12 wherein the at least one simulated tissue portion is mounted to the plurality of mounting posts by the user selectively piercing the at least one simulated tissue portion with the distal ends of the mounting posts.
  • 22. The surgical training device of claim 12 further including a laparoscopic trainer comprising: a trainer base;a trainer top cover connected to and spaced apart from the base to define an internal trainer cavity between the top cover and the base;at least one aperture or a penetrable region for accessing the internal trainer cavity;a laparoscopic camera insertable into the internal trainer cavity; anda video display monitor configured to connect to an inserted laparoscopic camera and display images;wherein the base, mounting posts and at least one simulated tissue portion are disposed inside the trainer cavity substantially concealed from direct observation by the user for practicing laparoscopic procedures.
  • 23. The surgical training device of claim 22 wherein the at least one simulated tissue portion includes a predetermined pathway marked on the upper surface of the at least one simulated tissue portion.
  • 24. The surgical training device of claim 14 wherein at least one notch is formed at the same height on all mounting posts.
  • 25. The surgical training device of claim 12 wherein the mounting posts are removable from the base and the base includes fastener features for storage of the mounting posts.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/706,591 entitled “Surgical training model for laparoscopic procedures” filed on Sep. 27, 2012 which is incorporated herein by reference in its entirety.

US Referenced Citations (464)
Number Name Date Kind
184573 Becker Nov 1876 A
2127774 Jacobson Aug 1938 A
2284888 Arnell, Jr. Jun 1942 A
2324702 Hoffman et al. Jul 1943 A
2345489 Lord Mar 1944 A
2495568 Coel Jan 1950 A
3766666 Stroop Oct 1973 A
3775865 Rowan Dec 1973 A
3789518 Chase Feb 1974 A
3921311 Beasley et al. Nov 1975 A
3991490 Markman Nov 1976 A
4001951 Fasse Jan 1977 A
4001952 Kleppinger Jan 1977 A
4321047 Landis Mar 1982 A
4323350 Bowden, Jr. Apr 1982 A
4332569 Burbank Jun 1982 A
4371345 Palmer et al. Feb 1983 A
4386917 Forrest Jun 1983 A
4459113 Boscaro Gatti et al. Jul 1984 A
4481001 Graham et al. Nov 1984 A
4596528 Lewis et al. Jun 1986 A
4726772 Amplatz Feb 1988 A
4737109 Abramson Apr 1988 A
4789340 Zikria Dec 1988 A
4832978 Lesser May 1989 A
4867686 Goldstein Sep 1989 A
4907973 Hon Mar 1990 A
4938696 Foster et al. Jul 1990 A
4940412 Blumenthal Jul 1990 A
5061187 Jerath Oct 1991 A
5083962 Pracas Jan 1992 A
5104328 Lounsbury Apr 1992 A
5149270 McKeown Sep 1992 A
5180308 Garito et al. Jan 1993 A
5230630 Burgett Jul 1993 A
5273435 Jacobson Dec 1993 A
5295694 Levin Mar 1994 A
5310348 Miller May 1994 A
5318448 Garito et al. Jun 1994 A
5320537 Watson Jun 1994 A
5358408 Medina Oct 1994 A
5368487 Medina Nov 1994 A
5380207 Siepser Jan 1995 A
5403191 Tuason Apr 1995 A
5425644 Szinicz Jun 1995 A
5425731 Daniel et al. Jun 1995 A
5472345 Eggert Dec 1995 A
5518406 Waters May 1996 A
5518407 Greenfield et al. May 1996 A
5520633 Costin May 1996 A
5541304 Thompson Jul 1996 A
5620326 Younker Apr 1997 A
5720742 Zacharias Feb 1998 A
5722836 Younker Mar 1998 A
5727948 Jordan Mar 1998 A
5743730 Clester et al. Apr 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5775916 Cooper et al. Jul 1998 A
5785531 Leung et al. Jul 1998 A
5800178 Gillio Sep 1998 A
5803746 Barrie et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5810880 Jensen et al. Sep 1998 A
5814038 Jensen et al. Sep 1998 A
5850033 Mirzeabasov et al. Dec 1998 A
5855583 Wang et al. Jan 1999 A
5873732 Hasson Feb 1999 A
5873863 Komlosi Feb 1999 A
5908302 Goldfarb Jun 1999 A
5947743 Hasson Sep 1999 A
5951301 Younker Sep 1999 A
6080181 Jensen et al. Jun 2000 A
6083008 Yamada et al. Jul 2000 A
6113395 Hon Sep 2000 A
6234804 Yong May 2001 B1
6336812 Cooper et al. Jan 2002 B1
6398557 Hoballah Jun 2002 B1
6413264 Jensen et al. Jul 2002 B1
6474993 Grund et al. Nov 2002 B1
6485308 Goldstein Nov 2002 B1
6488507 Stoloff et al. Dec 2002 B1
6497902 Ma Dec 2002 B1
6511325 Lalka et al. Jan 2003 B1
6517354 Levy Feb 2003 B1
6568941 Goldstein May 2003 B1
6620174 Jensen et al. Sep 2003 B2
6654000 Rosenberg Nov 2003 B2
6659776 Aumann et al. Dec 2003 B1
6773263 Nicholls et al. Aug 2004 B2
6780016 Toly Aug 2004 B1
6817973 Merril et al. Nov 2004 B2
6820025 Bachmann et al. Nov 2004 B2
6854976 Suhr Feb 2005 B1
6857878 Chosack et al. Feb 2005 B1
6863536 Fisher et al. Mar 2005 B1
6866514 Von Roeschlaub et al. Mar 2005 B2
6887082 Shun May 2005 B2
6929481 Alexander et al. Aug 2005 B1
6939138 Chosack et al. Sep 2005 B2
6950025 Nguyen Sep 2005 B1
6960617 Omidian et al. Nov 2005 B2
6997719 Wellman et al. Feb 2006 B2
7008232 Brassel Mar 2006 B2
7018327 Conti Mar 2006 B1
7025064 Wang et al. Apr 2006 B2
7056123 Gregorio et al. Jun 2006 B2
7080984 Cohen Jul 2006 B1
7118582 Wang et al. Oct 2006 B1
7255565 Keegan Aug 2007 B2
7269532 David et al. Sep 2007 B2
7272766 Sakezles Sep 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7364582 Lee Apr 2008 B2
7404716 Gregorio et al. Jul 2008 B2
7419376 Sarvazyan et al. Sep 2008 B2
7427199 Sakezles Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7465168 Allen et al. Dec 2008 B2
7467075 Humphries et al. Dec 2008 B2
7544062 Hauschild et al. Jun 2009 B1
7549866 Cohen et al. Jun 2009 B2
7553159 Arnal et al. Jun 2009 B1
7575434 Palakodeti Aug 2009 B2
7594815 Toly Sep 2009 B2
7621749 Munday Nov 2009 B2
7646901 Murphy et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7648513 Green et al. Jan 2010 B2
7651332 Dupuis et al. Jan 2010 B2
7677897 Sakezles Mar 2010 B2
7775916 Mahoney Aug 2010 B1
7780451 Willobee et al. Aug 2010 B2
7802990 Korndorffer et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806696 Alexander et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7833018 Alexander et al. Nov 2010 B2
7837473 Koh Nov 2010 B2
7850454 Toly Dec 2010 B2
7850456 Chosack et al. Dec 2010 B2
7854612 Frassica et al. Dec 2010 B2
7857626 Toly Dec 2010 B2
7866983 Hemphill et al. Jan 2011 B2
7931470 Alexander et al. Apr 2011 B2
7931471 Senagore et al. Apr 2011 B2
7988992 Omidian et al. Aug 2011 B2
7993140 Sakezles Aug 2011 B2
7997903 Hasson et al. Aug 2011 B2
8007281 Toly Aug 2011 B2
8007282 Gregorio et al. Aug 2011 B2
8016818 Ellis et al. Sep 2011 B2
8021162 Sui Sep 2011 B2
8048088 Green et al. Nov 2011 B2
8083691 Goldenberg et al. Dec 2011 B2
8116847 Gattani et al. Feb 2012 B2
8137110 Sakezles Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8197464 Krever et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8221129 Parry et al. Jul 2012 B2
8297982 Park et al. Oct 2012 B2
8308817 Egilsson et al. Nov 2012 B2
8323028 Matanhelia Dec 2012 B2
8323029 Toly Dec 2012 B2
8328560 Niblock et al. Dec 2012 B2
8342851 Speeg et al. Jan 2013 B1
8403674 Feygin et al. Mar 2013 B2
8403675 Stoianovici et al. Mar 2013 B2
8403676 Frassica et al. Mar 2013 B2
8408920 Speller Apr 2013 B2
8425234 Sakezles Apr 2013 B2
8439687 Morriss et al. May 2013 B1
8442621 Gorek et al. May 2013 B2
8454368 Ault et al. Jun 2013 B2
8459094 Yanni Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8460002 Wang et al. Jun 2013 B2
8469715 Ambrozio Jun 2013 B2
8469716 Fedotov et al. Jun 2013 B2
8480407 Campbell et al. Jul 2013 B2
8480408 Ishii et al. Jul 2013 B2
8491309 Parry et al. Jul 2013 B2
8500753 Green et al. Aug 2013 B2
8512044 Sakezles Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8521252 Diez Aug 2013 B2
8535062 Nguyen Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8556635 Toly Oct 2013 B2
8608483 Trotta et al. Dec 2013 B2
8613621 Henderickson et al. Dec 2013 B2
8636520 Iwasaki et al. Jan 2014 B2
D699297 Bahsoun et al. Feb 2014 S
8641423 Gumkowski Feb 2014 B2
8647125 Johns et al. Feb 2014 B2
8678831 Trotta et al. Mar 2014 B2
8679279 Thompson et al. Mar 2014 B2
8696363 Gray et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8708707 Hendrickson et al. Apr 2014 B2
8764449 Rios et al. Jul 2014 B2
8764452 Pravong et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8801437 Mousques Aug 2014 B2
8801438 Sakezles Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808004 Misawa et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814573 Nguyen Aug 2014 B2
8827988 Belson et al. Sep 2014 B2
8840628 Green et al. Sep 2014 B2
8870576 Millon et al. Oct 2014 B2
8888498 Bisaillon et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8911238 Forsythe Dec 2014 B2
8915742 Hendrickson et al. Dec 2014 B2
8945095 Blumenkranz et al. Feb 2015 B2
8961190 Hart et al. Feb 2015 B2
8966954 Ni et al. Mar 2015 B2
8968003 Hendrickson et al. Mar 2015 B2
9008989 Wilson et al. Apr 2015 B2
9017080 Placik Apr 2015 B1
9026247 White May 2015 B2
9050201 Egilsson et al. Jun 2015 B2
9056126 Hersel et al. Jun 2015 B2
9070306 Rappel et al. Jun 2015 B2
9087458 Shim et al. Jul 2015 B2
9117377 Shim et al. Aug 2015 B2
9119572 Gorek et al. Sep 2015 B2
9123261 Lowe Sep 2015 B2
9129054 Nawana et al. Sep 2015 B2
9196176 Hager et al. Nov 2015 B2
9226799 Lightcap et al. Jan 2016 B2
9257055 Endo et al. Feb 2016 B2
9265587 Vancamberg et al. Feb 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9351714 Ross et al. May 2016 B2
9336694 Shim et al. Jun 2016 B2
9358682 Ruiz Morales Jun 2016 B2
9364224 Nicholas et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370361 Viola et al. Jun 2016 B2
9373270 Miyazaki Jun 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439733 Ha et al. Sep 2016 B2
9449532 Black et al. Sep 2016 B2
9468438 Baber et al. Oct 2016 B2
20010019818 Yong Sep 2001 A1
20020168619 Provenza Nov 2002 A1
20030031993 Pugh Feb 2003 A1
20030091967 Chosack et al. May 2003 A1
20030176770 Merril et al. Sep 2003 A1
20040005423 Dalton et al. Jan 2004 A1
20040248072 Gray et al. Dec 2004 A1
20050008997 Herman Jan 2005 A1
20050026125 Toly Feb 2005 A1
20050084833 Lacey et al. Apr 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050142525 Cotin et al. Jun 2005 A1
20050192595 Green et al. Sep 2005 A1
20050196739 Moriyama Sep 2005 A1
20050196740 Moriyana Sep 2005 A1
20050214727 Stoianovici et al. Sep 2005 A1
20060046235 Alexander et al. Mar 2006 A1
20060252019 Burkitt et al. Nov 2006 A1
20060275741 Chewning et al. Dec 2006 A1
20070074584 Talarico et al. Apr 2007 A1
20070077544 Lemperle et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070148626 Ikeda Jun 2007 A1
20070166682 Yarin et al. Jul 2007 A1
20070197895 Nycz et al. Aug 2007 A1
20070225734 Bell et al. Sep 2007 A1
20070275359 Rotnes et al. Nov 2007 A1
20080032272 Palakodeti Feb 2008 A1
20080032273 Macnamara et al. Feb 2008 A1
20080052034 David et al. Feb 2008 A1
20080064017 Grundmeyer, III Mar 2008 A1
20080076101 Hyde et al. Mar 2008 A1
20080097501 Blier Apr 2008 A1
20080108869 Sanders et al. May 2008 A1
20080187895 Sakezles Aug 2008 A1
20080188948 Flatt Aug 2008 A1
20080299529 Schaller Dec 2008 A1
20090068627 Toly Mar 2009 A1
20090142739 Wang et al. Jun 2009 A1
20090142741 Ault et al. Jun 2009 A1
20090143642 Takahashi et al. Jun 2009 A1
20090176196 Niblock et al. Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090246747 Buckman, Jr. Oct 2009 A1
20090298034 Parry et al. Dec 2009 A1
20100047752 Chan et al. Feb 2010 A1
20100094312 Ruiz Morales et al. Apr 2010 A1
20100099067 Agro Apr 2010 A1
20100167248 Ryan Jul 2010 A1
20100167249 Ryan Jul 2010 A1
20100167250 Ryan et al. Jul 2010 A1
20100167253 Ryan et al. Jul 2010 A1
20100167254 Nguyen Jul 2010 A1
20100196867 Geerligs et al. Aug 2010 A1
20100204713 Ruiz Morales Aug 2010 A1
20100209899 Park Aug 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100273136 Kandasami et al. Oct 2010 A1
20100279263 Duryea Nov 2010 A1
20100324541 Whitman Dec 2010 A1
20110046637 Patel et al. Feb 2011 A1
20110046659 Ramstein et al. Feb 2011 A1
20110087238 Wang et al. Apr 2011 A1
20110091855 Miyazaki Apr 2011 A1
20110137337 van den Dool et al. Jun 2011 A1
20110200976 Hou et al. Aug 2011 A1
20110207104 Trotta Aug 2011 A1
20110218550 Ma Sep 2011 A1
20110244436 Campo Oct 2011 A1
20110269109 Miyazaki Nov 2011 A2
20110281251 Mousques Nov 2011 A1
20110301620 Di Betta et al. Dec 2011 A1
20120015337 Hendrickson et al. Jan 2012 A1
20120015339 Hendrickson et al. Jan 2012 A1
20120016362 Heinrich et al. Jan 2012 A1
20120028231 Misawa et al. Feb 2012 A1
20120045743 Misawa et al. Feb 2012 A1
20120065632 Shadduck Mar 2012 A1
20120082970 Pravong et al. Apr 2012 A1
20120100217 Green et al. Apr 2012 A1
20120115117 Marshall May 2012 A1
20120115118 Marshall May 2012 A1
20120116391 Houser et al. May 2012 A1
20120148994 Hori et al. Jun 2012 A1
20120164616 Endo et al. Jun 2012 A1
20120165866 Kaiser et al. Jun 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120179072 Kegreiss Jul 2012 A1
20120202180 Stock et al. Aug 2012 A1
20120264096 Taylor et al. Oct 2012 A1
20120264097 Newcott et al. Oct 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120282584 Millon et al. Nov 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120288839 Crabtree Nov 2012 A1
20120308977 Tortola Dec 2012 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130101973 Hoke et al. Apr 2013 A1
20130103092 Ballard Apr 2013 A1
20130105552 Weir et al. May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130157240 Hart et al. Jun 2013 A1
20130171288 Harders Jul 2013 A1
20130177890 Sakezles Jul 2013 A1
20130192741 Trotta et al. Aug 2013 A1
20130218166 Elmore Aug 2013 A1
20130224709 Riojas et al. Aug 2013 A1
20130245681 Straehnz et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130267876 Leckenby et al. Oct 2013 A1
20130282038 Dannaher et al. Oct 2013 A1
20130288216 Parry, Jr. et al. Oct 2013 A1
20130302771 Alderete Nov 2013 A1
20130324991 Clem et al. Dec 2013 A1
20130324999 Price et al. Dec 2013 A1
20140011172 Lowe Jan 2014 A1
20140017651 Sugimoto et al. Jan 2014 A1
20140030682 Thilenius Jan 2014 A1
20140038151 Hart Feb 2014 A1
20140051049 Jarc et al. Feb 2014 A1
20140072941 Hendrickson et al. Mar 2014 A1
20140087345 Breslin et al. Mar 2014 A1
20140087346 Breslin et al. Mar 2014 A1
20140087347 Tracy et al. Mar 2014 A1
20140087348 Tracy et al. Mar 2014 A1
20140088413 Von Bucsh et al. Mar 2014 A1
20140093852 Poulsen et al. Apr 2014 A1
20140093854 Poulsen et al. Apr 2014 A1
20140099858 Hernandez Apr 2014 A1
20140106328 Loor Apr 2014 A1
20140107471 Haider et al. Apr 2014 A1
20140156002 Thompson et al. Jun 2014 A1
20140162016 Matsui et al. Jun 2014 A1
20140170623 Jarstad et al. Jun 2014 A1
20140186809 Hendrickson et al. Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140212861 Romano Jul 2014 A1
20140220527 Li et al. Aug 2014 A1
20140220530 Merkle et al. Aug 2014 A1
20140220532 Ghez et al. Aug 2014 A1
20140242564 Pravong et al. Aug 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140248596 Hart et al. Sep 2014 A1
20140263538 Leimbach et al. Sep 2014 A1
20140272878 Shim et al. Sep 2014 A1
20140272879 Shim et al. Sep 2014 A1
20140275795 Little et al. Sep 2014 A1
20140275981 Selover et al. Sep 2014 A1
20140277017 Leimbach et al. Sep 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140303646 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140308643 Trotta et al. Oct 2014 A1
20140342334 Black et al. Nov 2014 A1
20140349266 Choi Nov 2014 A1
20140350530 Ross et al. Nov 2014 A1
20140357977 Zhou Dec 2014 A1
20140370477 Black et al. Dec 2014 A1
20140371761 Juanpera Dec 2014 A1
20140378995 Kumar et al. Dec 2014 A1
20150031008 Black et al. Jan 2015 A1
20150037773 Quirarte Catano Feb 2015 A1
20150038613 Sun et al. Feb 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150086955 Poniatowski et al. Mar 2015 A1
20150132732 Hart et al. May 2015 A1
20150132733 Garvik et al. May 2015 A1
20150135832 Blumenkranz et al. May 2015 A1
20150148660 Weiss et al. May 2015 A1
20150164598 Blumenkranz et al. Jun 2015 A1
20150187229 Wachli et al. Jul 2015 A1
20150194075 Rappel et al. Jul 2015 A1
20150202299 Burdick et al. Jul 2015 A1
20150209035 Zemlock Jul 2015 A1
20150209059 Trees et al. Jul 2015 A1
20150209573 Hibner et al. Jul 2015 A1
20150228206 Shim et al. Aug 2015 A1
20150262511 Lin et al. Sep 2015 A1
20150265431 Egilsson et al. Sep 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272574 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272581 Leimbach et al. Oct 2015 A1
20150272583 Leimbach et al. Oct 2015 A1
20150272604 Chowaniec et al. Oct 2015 A1
20150332609 Alexander Nov 2015 A1
20150358426 Kimball et al. Dec 2015 A1
20150371560 Lowe Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20160000437 Giordano et al. Jan 2016 A1
20160022374 Haider et al. Jan 2016 A1
20160030240 Gonenc et al. Feb 2016 A1
20160031091 Popovic et al. Feb 2016 A1
20160066909 Baber et al. Mar 2016 A1
20160070436 Thomas et al. Mar 2016 A1
20160073928 Soper et al. Mar 2016 A1
20160074103 Sartor Mar 2016 A1
20160098933 Reiley et al. Apr 2016 A1
20160104394 Miyazaki Apr 2016 A1
20160117956 Larsson et al. Apr 2016 A1
20160133158 Sui et al. May 2016 A1
20160140876 Jabbour et al. May 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160220150 Sharonov Aug 2016 A1
20160220314 Huelman et al. Aug 2016 A1
20160225288 East et al. Aug 2016 A1
20160232819 Hofstetter et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262736 Ross et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160293055 Hofstetter Oct 2016 A1
20160296144 Gaddam et al. Oct 2016 A1
Foreign Referenced Citations (59)
Number Date Country
2421706 Feb 2001 CN
2751372 Jan 2006 CN
2909427 Jun 2007 CN
101313842 Dec 2008 CN
201364679 Dec 2009 CN
201955979 Aug 2011 CN
202443680 Sep 2012 CN
202563792 Nov 2012 CN
202601055 Dec 2012 CN
202694651 Jan 2013 CN
103050040 Apr 2013 CN
203013103 Jun 2013 CN
203038549 Jul 2013 CN
203338651 Dec 2013 CN
203397593 Jan 2014 CN
203562128 Apr 2014 CN
10388679 Jun 2014 CN
41 05 892 Aug 1992 DE
44 14 832 Nov 1995 DE
19716341 Sep 2000 DE
1 024 173 Aug 2000 EP
2 691 826 Dec 1993 FR
2 917 876 Dec 2008 FR
2 917 876 Dec 2008 FR
2488994 Sep 2012 GB
10 211160 Aug 1998 JP
2001005378 Jan 2001 JP
2009236963 Oct 2009 JP
3162161 Aug 2010 JP
2013127496 Jun 2013 JP
PA 02004422 Nov 2003 MX
106230 Sep 2013 PT
WO 9406109 Mar 1994 WO
WO 9642076 Feb 1996 WO
WO 9858358 Dec 1998 WO
WO 199901074 Jan 1999 WO
WO 200036577 Jun 2000 WO
WO 200238039 May 2002 WO
WO 2002038039 May 2002 WO
WO 2004032095 Apr 2004 WO
WO 2004082486 Sep 2004 WO
WO 2005071639 Aug 2005 WO
WO 2006083963 Aug 2006 WO
WO 2007068360 Jun 2007 WO
WO 2008021720 Feb 2008 WO
WO 2009000939 Dec 2008 WO
2010094730 Aug 2010 WO
WO 2010094730 Aug 2010 WO
WO 2011035410 Mar 2011 WO
WO 2011046606 Apr 2011 WO
WO 2011151304 Dec 2011 WO
WO 2012149606 Nov 2012 WO
WO 2012168287 Dec 2012 WO
WO 2012175993 Dec 2012 WO
WO 2013048978 Apr 2013 WO
WO 2013103956 Jul 2013 WO
WO 2014022815 Feb 2014 WO
WO 2014093669 Jun 2014 WO
WO 2015148817 Oct 2015 WO
Non-Patent Literature Citations (64)
Entry
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, dated Jul. 4, 2014, entitled “Advanced Surgical Simulation Constructions and Methods”.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/070971, titled “Advanced Surgical Simulation” dated Jun. 24, 2014.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/060997, titled “Simulated Tissue Structure for Surgical Training” dated Apr. 22, 2014.
European Patent Office, International Search Report for International Application No. PCT/US2011/053859 A3, dated May 4, 2012, entitled “Portable Laparoscopic Trainer”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/60997, dated Mar. 7, 2013, entitled “Simulated Tissue Structure for Surgical Training”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, dated Mar. 18, 2013, entitled “Advanced Surgical Simulation”.
Human Patient Simulator, Medical Education Technologies, Inc., http://www.meti.com (1999) all.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2011/053859, titled “Portable Laparoscopic Trainer” dated Apr. 2, 2013.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062363, dated Jan. 22, 2014, entitled “Surgical Training Model for Laparoscopic Procedures”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061949, dated Feb. 17, 2014, entitled “Surgical Training Model for Laparoscopic Procedures”.
Anonymous: Realsim Systems—LTS2000, Sep. 4, 2005, pp. 1-2, XP055096193, Retrieved from the Internet: URL:https://web.archive.org/web/2005090403; 3030/http://www.realsimsystems.com/exersizes.htm (retrieved on Jan. 14, 2014).
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062269, dated Feb. 17, 2014, entitled “Surgical Training Model for Transluminal Procedures”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061557, dated Feb. 10, 2014, entitled “Surgical Training Model for Laparoscopic Procedures”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061728 dated Oct. 18, 2013, entitled “Surgical Training Model for Laparoscopic Procedures”.
Simulab, Hernia Model, http://www.simulab.com/product/surgery/open/hernia-model.
McGill Laparoscopic Inguinal Hernia Simulator, Novel Low-Cost Simulator for Laparoscopic Inguinal Hernia Repair.
University of Wisconsin-Madison Biomedical Engineering, Inguinal Hernia Model, http://bmedesign.engr.wisc.edu/projects/s10/hernia_model/.
Kurashima Y et al, “A tool for training and evaluation of Laparoscopic inguinal hernia repair; the Global Operative Assessment of Laparoscopic Skills—Groin Hernia” American Journal of Surgery, Paul Hoeber, New York, NY, US vol. 201, No. 1, Jan. 1, 2011, pp. 54-61 XP027558745.
European Patent Office, International Search Report for International Application No. PCT/US2011/053859, dated Apr. 5, 2012, titled “Portable Laparoscopic Trainer”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061728 dated Oct. 18, 2013, entitled “Surgical Training Model for Laparoscopic Procedures.”
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/048027 titled “First Entry Model”, dated Oct. 17, 2014.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/042998, title; Gallbladder Model, dated Jan. 7, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability, for PCT application No. PCT/US2013/053497, titled, Simulated Stapling and Energy Based Ligation for Surgical Training, dated Feb. 12, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for international application No. PCT/US2013/061728, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062363, titled Surgical Training Model for Laparascopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062269, titled Surgical Training Model for Laparascopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061557, titled Surgical Training Model for Laparascopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061949, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/020574, titled “Advanced First Entry Model for Surgical Simulation,” dated Jun. 1, 2015.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/022774, dated Jun. 11, 2015 entitled “Simulated Dissectible Tissue.”
Limps and Things, EP Guildford MATTU Hernia Trainer, http://limbsandthings.com/us/products/tep-guildford-mattu-hernia-trainer/.
Lamouche, Guy, et al., “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomedical Optics Express, vol. 3, No. 6, Jun. 1, 2012 (18 pgs.).
Anonymous: Silicone Rubber—from Wikipedia, the free encyclopedia, Feb. 21, 2014, pp. 1-6.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/019840, titled Simulated Tissue Structure for Surgical Training, dated Sep. 11, 2015.
Society of Laparoendoscopic Surgeons, “Future Technology Session: The Edge of Innovation in Surgery, Space, and Business” http://www.laparoscopytoday.com/endourology/page/2/ , Figure 1B: http://laparoscopy.blogs.com/laparoscopy_today/images/6-1/6-1_VlaovicPicB.jpg , Sep. 5-8, 2007, 10 pgs.
Miyazaki Enterprises, “Miya Model Pelvic Surgery Training Model and Video,” www.miyazakienterprises, printed Jul. 1, 2016, 1 pg.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/059668 titled “Simulated Tissue Models and Methods” dated Apr. 26, 2016, 20 pgs.
Australian Patent Office, Patent Examination Report No. 1 for Australian Application No. 2012358851 titled “Advanced Surgical Simulation” dated May 26, 2016, 3 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/032292 titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Jul. 14, 2016, 11 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/018697 titled “Simulated Tissue Structures and Methods,” dated Jul. 14, 2016, 21 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/034591 titled “Surgical Training Model for Laparoscopic Procedures,” dated Aug. 8, 2016, 18 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/036664 titled “Hysterectomy Model”, dated Aug. 19, 2016, 15 pgs.
3D-MED Corporation, “Validated Training Course for Laparascopic Skills”, https://www.3-dmed.com/sites/default/files/product-additional/product-spec/Validated%20Training%20Course%20for%20Laparoscopic%20Skills.docx_3.pdf , printed Aug. 23, 2016, pp. 1-6.
3D-MED Corporation, “Loops and Wire #1” https://www.3-dmed.com/product/loops-and-wire-1 , printed Aug. 23, 2016, 4 pgs.
Barrier, et al., “A Novel and Inexpensive Vaginal Hysterectomy Simulatory,” Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, vol. 7, No. 6, Dec. 1, 2012, pp. 374-379.
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2016/062669, titled “Simulated Dissectible Tissue”, dated Feb. 10, 2017, 8 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/055148 titled “Hysterectomy Model”, dated Feb. 28, 2017, 12 pgs.
European Patent Office, Examination Report for European Application No. 14733949.3 titled “Gallbladder Model,” dated Dec. 21, 2016, 6 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/062669 titled “Simulated Dissectible Tissue,” dated Apr. 5, 2017, 19 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2017/020389 titled “Simulated Tissue Cartridge”, dated May 24, 2017, 13 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2015/059668, entitled “Simulated Tissue Models and Methods,” dated May 26, 2017, 16 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/018697, entitled “Simulated Tissue Structures and Methods,” dated Aug. 31, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/0032292, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Nov. 23, 2017, 2017, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/034591, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Dec. 7, 2017, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/020574, entitled “Advanced First Entry Model for Surgical Simulation,” dated Sep. 22, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/0043277 titled “Appendectomy Model”, dated Oct. 4, 2016, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/022774, titled “Simulated Dissectible Tissue,” dated Oct. 6, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/041852 titled “Simulated Dissectible Tissue”, dated Oct. 13, 2016, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/036664, entitled “Hysterectomy Model,” dated Dec. 21, 2017, 10 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2013/053497 titled “Simulated Stapling and Energy Based Ligation for Surgical Training” dated Nov. 5, 2013.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/038195 titled “Hernia Model”, dated Oct. 15, 2014.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/038195, titled Hernia Model, dated Nov. 26, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/042998, titled “Gallbladder Model” dated Dec. 30, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/048027, titled “First Entry Model” dated Feb. 4, 2016.
Related Publications (1)
Number Date Country
20140087347 A1 Mar 2014 US
Provisional Applications (1)
Number Date Country
61706591 Sep 2012 US