Surgical training model for laparoscopic procedures

Information

  • Patent Grant
  • 11990055
  • Patent Number
    11,990,055
  • Date Filed
    Monday, October 1, 2018
    5 years ago
  • Date Issued
    Tuesday, May 21, 2024
    a month ago
Abstract
A surgical training device is provided. The training device includes a practice model comprising a base with a plurality of eyelets connected to the outer surface of the base. The plurality of eyelets defines at least one predetermined pathway for practicing the passing of at least one needle and suture through the eyelets of the predetermined pathway. Various eyelets are described including angled, flexible, deflectable, interchangeable, retractable, rotatable and ones having apertures of various shapes and sizes. The predetermined pathway is marked with markings on the outer surface of base or with color-coded eyelets. Suture pathways define anatomical pathways as well as differing skill levels. The model provides a platform for practicing hand-to-hand transfer and depth perception among other skills required in laparoscopic procedures.
Description
FIELD OF THE INVENTION

This application is generally related to surgical training tools, and in particular, to simulated tissue structures and models for teaching and practicing various surgical techniques and procedures related but not limited to laparoscopic, endoscopic and minimally invasive surgery.


BACKGROUND OF THE INVENTION

Medical students as well as experienced doctors learning new surgical techniques must undergo extensive training before they are qualified to perform surgery on human patients. The training must teach proper techniques employing various medical devices for cutting, penetrating, clamping, grasping, stapling, cauterizing and suturing a variety of tissue types. The range of possibilities that a trainee may encounter is great. For example, different organs and patient anatomies and diseases are presented. The thickness and consistency of the various tissue layers will also vary from one part of the body to the next and from one patient to another. Different procedures demand different skills. Furthermore, the trainee must practice techniques in various anatomical environs that are influenced by factors such as the size and condition of the patient, the adjacent anatomical landscape and the types of targeted tissues and whether they are readily accessible or relatively inaccessible.


Numerous teaching aids, trainers, simulators and model organs are available for one or more aspects of surgical training. However, there is a need for models or simulated tissue elements that are likely to be encountered in and that can be used for practicing endoscopic and laparoscopic, minimally invasive surgical procedures. In laparoscopic surgery, a trocar or cannula is inserted to access a body cavity and to create a channel for the insertion of a camera such as a laparoscope. The camera provides a live video feed capturing images that are then displayed to the surgeon on one or more monitors. At least one additional small incision is made through which another trocar/cannula is inserted to create a pathway through which surgical instruments can be passed for performing procedures observed on the monitor. The targeted tissue location such as the abdomen is typically enlarged by delivering carbon dioxide gas to insufflate the body cavity and create a working space large enough to accommodate the scope and instruments used by the surgeon. The insufflation pressure in the tissue cavity is maintained by using specialized trocars. Laparascopic surgery offers a number of advantages when compared with an open procedure. These advantages include reduced pain, reduced blood and shorter recovery times due to smaller incisions.


Laparoscopic or endoscopic minimally invasive surgery requires an increased level of skill compared to open surgery because the target tissue is not directly observed by the clinician. The target tissue is observed on monitors displaying a portion of the surgical site that is accessed through a small opening. Therefore, clinicians need to practice visually determining tissue planes, three-dimensional depth perception on a two-dimensional viewing screen, hand-to-hand transfer of instruments, suturing, precision cutting and tissue and instrument manipulation. Typically, models simulating a particular anatomy or procedure are placed in a simulated pelvic trainer where the anatomical model is obscured from direct visualization by the practitioner. Ports in the trainer are employed for passing instruments to practice techniques on the anatomical model hidden from direct visualization. Simulated pelvic trainers provide a functional, inexpensive and practical means to train surgeons and residents the basic skills and typical techniques used in laparoscopic surgery such as grasping, manipulating, cutting, tying knots, suturing, stapling, cauterizing as well as how to perform specific surgical procedures that utilized these basic skills. Simluated pelvic trainers are also effective sales tools for demonstrating medical devices required to perform these laparoscopic procedures.


One of the techniques mentioned above that requires practice in endoscopic or laparoscopic minimally invasive surgery is the passing of sutures and suturing which requires the clinician to develop skills such as three-dimensional depth perception and hand-to-hand transfer of a needle and suture while the target tissue and instruments are observed on a two-dimensional video monitor. Therefore, it is desirable to present a model suitable for practicing suturing and, in particular, there is a need for a model that isolates a particular step of a procedure for the trainee such as the passing of sutures for the clinician to practice in a simulated laparoscopic environment. The laparoscopic training model is removably placed inside a simulated laparoscopic environment such as a laparoscopic trainer in which it is at least partially obscured from direct visualization. A camera and monitor provide visualization to the practitioner. After a technique is practiced, it is furthermore desirable that such a model permits repeatable practice with ease, speed and cost savings. In view of the above, it is an object of this invention to provide a surgical training device that realistically simulates an anatomy and isolates a particular stage or step of a procedure that also enables repeatable practice. It has been demonstrated that the use of simulation trainers greatly enhances the skill levels of new laparoscopists and are a great tool to train future surgeons in a non-surgical setting. There is a need for such improved, realistic and effective surgical training models.


SUMMARY OF THE INVENTION

According to one aspect of the invention, a surgical training device is provided. The device includes a top cover spaced apart from a base to define an internal cavity between the top cover and the base. At least one aperture or a penetrable region for accessing the internal cavity is provided and a laparoscopic camera is disposed inside the cavity and configured to display video images on a video monitor connected to the camera and located outside of the cavity. A model is removably disposed inside the cavity such that the model is substantially obscured from a user yet observable via the laparoscopic camera displaying video images of the model on the video monitor. The model includes a base having an outer surface and a plurality of eyelets connected to the base. The plurality of eyelets are configured along the surface to define a pathway for practicing the passing of at least one needle and suture through one or more of the plurality of eyelets of the pathway.


According to another aspect of the invention, a surgical training device is provided. The device includes a base having an outer surface and a plurality of eyelets connected to the outer surface of the base. Each eyelet has a head portion connected to a neck portion. The neck portion is connected to the base at a proximal end of the eyelet. The head portion includes an aperture defining an aperture plane having a first side and a second side. The plurality of eyelets are configured with respect to the base such that at least one aperture plane is angled with respect to at least one other aperture plane of the plurality of eyelets. At least a subset of the plurality of eyelets defines a pathway with apertures that are sized for passing a suture and suture needle.


According to another aspect of the invention, a method for practicing laparoscopic suture passing is provided. The method includes providing a device having a base with an outer surface and a plurality of eyelets connected to the base. Each eyelet has a head portion connected to a neck portion. The neck portion is connected to the base. The plurality of eyelets includes at least one retractable eyelet. The retractable eyelet is retractable with respect to the outer surface such that the retractable eyelet has a first position in which the aperture is at a first distance relative to the outer surface and a second position in which the aperture is at a second distance relative to the outer surface. The second distance is greater above the outer surface than the first distance. The method includes grasping a retractable eyelet and pulling it from a first position to a second position. The eyelet is held in the second position while a suture and needle are passed through the aperture. The method includes releasing the retracted eyelet.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a top perspective view of a surgical training device according to the present invention.



FIG. 2 illustrates a top perspective view of a model according to the present invention.



FIG. 3 illustrates a top perspective view of a model according to the present invention.



FIGS. 4A-4D illustrate various eyelets according to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

A surgical training device 10 that is configured to mimic the torso of a patient such as the abdominal region is shown in FIG. 1. The surgical training device 10 provides a body cavity 12 substantially obscured from the user for receiving simulated or live tissue or model organs or training models of the like described in this invention. The body cavity 12 is accessed via a tissue simulation region 14 that is penetrated by the user employing devices to practice surgical techniques on the tissue or practice model found located in the body cavity 12. Although the body cavity 12 is shown to be accessible through a tissue simulation region, a hand-assisted access device or single-site port device may be alternatively employed to access the body cavity 12. An exemplary surgical training device is described in U.S. patent application Ser. No. 13/248,449 entitled “Portable Laparoscopic Trainer” filed on Sep. 29, 2011 and incorporated herein by reference in its entirety. The surgical training device 10 is particularly well suited for practicing laparoscopic or other minimally invasive surgical procedures.


Still referencing FIG. 1, the surgical training device 10 includes a top cover 16 connected to and spaced apart from a base 18 by at least one leg 20. FIG. 1 shows a plurality of legs 20. The surgical training device 10 is configured to mimic the torso of a patient such as the abdominal region. The top cover 16 is representative of the anterior surface of the patient and the space 12 between the top cover 16 and the base 18 is representative of an interior of the patient or body cavity where organs reside. The surgical trainer 10 is a useful tool for teaching, practicing and demonstrating various surgical procedures and their related instruments in simulation of a patient undergoing a surgical procedure. Surgical instruments are inserted into the cavity 12 through the tissue simulation region 14 as well as through pre-established apertures 22 in the top cover 16. Various tools and techniques may be used to penetrate the top cover 16 to perform mock procedures on simulated organs or practice models placed between the top cover 16 and the base 18. The base 18 includes a model-receiving area 24 or tray for staging or holding a simulated tissue model or live tissue. The model-receiving area 24 of the base 18 includes frame-like elements for holding the model (not shown) in place. To help retain a simulated tissue model or live organs on the base 18, a clip attached to a retractable wire is provided at locations 26. The retractable wire is extended and then clipped to hold the tissue model in position substantially beneath the tissue simulation region 14. Other means for retaining the tissue model include a patch of hook-and-loop type fastening material (VELCRO®) affixed to the base 18 in the model receiving area 24 such that it is removably connectable to a complementary piece of hook-and-loop type fastening material (VELCRO®) affixed to the model.


A video display monitor 28 that is hinged to the top cover 16 is shown in a closed orientation in FIG. 1. The video monitor 62 is connectable to a variety of visual systems for delivering an image to the monitor. For example, a laparoscope inserted through one of the pre-established apertures 22 or a webcam located in the cavity and used to observe the simulated procedure can be connected to the video monitor 28 and/or a mobile computing device to provide an image to the user. Also, audio recording or delivery means may also be provided and integrated with the trainer 10 to provide audio and visual capabilities. Means for connecting a portable memory storage device such as a flash drive, smart phone, digital audio or video player, or other digital mobile device is also provided, to record training procedures and/or play back pre-recorded videos on the monitor for demonstration purposes. Of course, connection means for providing an audio visual output to a screen larger than the monitor is provided. In another variation, the top cover 10 does not include a video display but includes means for connecting with a laptop computer, a mobile digital device or tablet such as an IPAD® and connecting it by wire or wirelessly to the trainer.


When assembled, the top cover 16 is positioned directly above the base 18 with the legs 20 located substantially around the periphery and interconnected between the top cover 16 and base 18. The top cover 16 and base 18 are substantially the same shape and size and have substantially the same peripheral outline. The internal cavity is partially or entirely obscured from view. In the variation shown in FIG. 1, the legs include openings to allow ambient light to illuminate the internal cavity as much as possible and also to advantageously provide as much weight reduction as possible for convenient portability. The top cover 16 is removable from the legs 20 which in turn are removable or collapsible via hinges or the like with respect to the base 18. Therefore, the unassembled trainer 10 has a reduced height that makes for easier portability. In essence, the surgical trainer 10 provides a simulated body cavity 12 that is obscured from the user. The body cavity 12 is configured to receive at least one surgical model accessible via at least one tissue simulation region 14 and/or apertures 22 in the top cover 16 through which the user may access the models to practice laparoscopic or endoscopic minimally invasive surgical techniques.


A model 30 for the practice of passing sutures in laparoscopic procedures according to the present invention is shown in FIG. 2. The model 30 is configured to be placed inside the surgical training device 10 described above or other similar surgical trainer. The model 30 includes a base 32, and a plurality of eyelets 34 connected to the surface of the base 32.


The base 32 of the model 30 is a platform that serves as a bottom support for the rest of the model 30 and it is sized and configured such that the model does not tip over. The platform is made of any material such as metal or plastic. The base 32 is of sufficient heft to maintain the stability of the model 30 in the upright position while being manipulated by a user. The model 30 is sized and configured to be placed into the body cavity 12 of the surgical trainer 10 in the location of the model receiving area 24. The underside of the base 32 is provided with means to affix the model 30 inside the surgical trainer 10. Such means to affix the model 30 inside the trainer 10 include but are not limited to adhesive, suction cup, magnet, snap-fit, and a hook-and-loop type fastener material attached to the bottom surface of the base 32 and configured to connect with a complementary hook-and-loop type fastener material or adhesive attached to the base 18 of the surgical trainer 30.


The base 32 of the model 30 includes an outer surface 36 which may be flat or contoured in various ways. For example, the outer surface can be convex as shown in FIG. 2. The outer surface 36 may be concave, curved, sloped, undulating or otherwise have any configuration or geography including an upward hill, a downward hill, valleys and peaks including smaller surface additions such bumps or divots that compliment the larger features. The geography of the outer surface 36 creates a varying surface or numerous planes to permit the user to practice depth perception in laparoscopic surgery. In one variation, the base 32 is not rigid and solid but is pliable, resilient and flexible, and deflectable when manipulated with surgical instruments that would be used in laparoscopic surgery. As such, the base 32 is made of pliable, resilient material such as rubber or silicone. Another example of the geography of the outer surface 36 of the base 32 is shown in FIG. 3. The model 30 in FIGS. 2 and 3 is shown positioned with the operative outer surface 36 facing upwardly. However, the model 30 may be positioned on its side in the trainer 10 to provide another variation and representation of internal bodily structures for practicing laparoscopic procedures. In this alternative orientation, the side surface of the model 30 is provided with eyelets 34.


The model 30 includes a plurality of eyelets or apertures 34 connected to the base 32 such that the eyelets 34 are configured to reside above the outer surface 36 or side surface of the model 30 as shown in FIGS. 2 and 3. An exemplary eyelet 34 is shown in FIG. 4A. In general, the eyelet 34 is configured to provide an opening through which a clinician can practice passing a needle and suture. The eyelet 34 includes a neck portion 38 and a head portion 40. The head portion 40 includes at least one aperture 42 defining an aperture plane in which it lies. Although the aperture 42 is shown to have a circular shape, the invention is not so limited and the aperture 42 can have any shape such as a polygon or closed curve. While FIG. 4A depicts a closed aperture 42, an open aperture 44 is within the scope of the present invention as shown in FIG. 4B. An open or hook-like aperture 44 is an aperture that is open and only partially enclosed by surrounding material of the head portion 40 leaving an opening or entry into the aperture 40 that is anywhere from approximately ⅛ to ¼ of the aperture perimeter in size. In one variation, the aperture 42 of the eyelet 34 is covered with a layer of silicone or other penetrable material that may include a mesh or fabric reinforcement such that passing a needle and suture through the aperture 42 requires piercing the covering of the aperture 42 with the needle and suture. The covering mimics real tissue and thus contributes to the realism of the exercise.


In one variation, the eyelet 34 is rigid. In another variation, the neck portion 38 of the eyelet 34 is flexible while the head portion 40 is rigid and in another variation both the neck portion 38 and head portion 40 are flexible or capable of being deflected. A deflectable or flexible eyelet 34 increases the difficult of performing suture passing. In another variation, the eyelet 34 is pre-bent or angled. The plane defined by the aperture intersects with the longitudinal axis of the neck portion 38 as shown in FIGS. 4C and 4D. In general, the eyelet 34 provides an aperture 42 for the surgeon to practice passing a needle and suture through. The neck 38 of the eyelet 34 is configured to space the aperture 42 from the outer surface 36 of the base 32. Other means for spacing the aperture 42 from the outer surface 36 of the base 32 are within the scope of the present invention. Also, the neck 38 is configured to connect to the base 32 and as such, the neck 38 may include threads, adhesive or other means for connection to the base. Also, the eyelet 34 may be mounted to the base 32 such that the entire eyelet 34 rotates or is rotatable with respect to the base 32 and, in another variation, the eyelet 34 is configured such that the head 40 of the eyelet 34 rotates with respect to the neck portion 38 in a free-spinning eyelet configuration. Such resulting rotatability of the aperture 42 with respect to the base 32 increases the difficulty of passing sutures.


A plurality of eyelets 34 are connected to the outer surface 36 of the base 32 as shown in FIGS. 2 and 3. In another variation, one or more eyelets 34 is retractable with respect to the outer surface 36 such that the retractable eyelet 34 has a first position in which the aperture 42 of the eyelet 34 is at a first distance relative to the outer surface 36 and a second position in which the aperture 42 is at a second distance relative to the outer surface 36 wherein the second distance is greater above the outer surface 36 than the first distance. In one variation, the eyelet 34 is biased towards the first position such that the eyelet 34 has a tendency to spring back toward the first position. Furthermore, at least one eyelet 34 is connected to the base 32 such that at least a portion of the eyelet 34, such as at least a portion of the aperture 42 of the eyelet 36, is beneath the upper surface 36 so that the eyelet 34 is visible to user but, in order to pass a suture through the eyelet 34, the eyelet 34 laying partially beneath the surface is pulled-up or extracted by the user and held with one instrument in the extracted position so that the suture needle and suture may be passed through the aperture 42 of the eyelet 34 with another instrument held in the opposite hand. When released from the extracted position, the eyelet 34 would retract back to its at least partial sub-surface position. The retractable eyelet 34 is embedded in an elastic base different from the upper surface 36 or spring biased with respect to the upper surface 36. Also, the retractable eyelet 34 is biased in the retracted position such that force is required to pull the eyelet above surface and hold it in position above the upper surface 36 for suture passing. When released, the eyelet 34 would be pulled back toward beneath the surface. In another variation, the retractable eyelets 34 are not biased inwardly but move in and out between a first position and a second above-surface position wherein the first position may be at least partially beneath the surface. The eyelets 34 would be slotted to move within a slot axially relative to the upper surface 36. Each eyelet 34 may be the same or the plurality of eyelets 34 may include a mixture of eyelets 34 having different features described above such as eyelets with apertures 42 of different sizes and shapes, flexible eyelets, rotatable eyelets, covered eyelets, open eyelets, deflectable eyelets, retractable eyelets, plastically deformable eyelets which when deflected remain deflected and deflectable eyelets that resume their previous position after being deflected. The plurality of eyelets 34 may include eyelets of different colors including colors that blend in against the background or color of the outer surface 36 of the base 32 for increased difficulty in visualizing the eyelet aperture 42 on a camera viewing monitor. Also, at least one of the eyelets 34 attached to the base 32 may also be colored such that the eyelet 34 visually stands out or is in contrast when viewed against the background or outer surface 36 of the base with a laparoscope. Furthermore, the plurality of eyelets 34 may include one or more groups of eyelets that have the same color, thus being color-coded so that a predetermined path along which a suture must be passed is defined by the color of the eyelets 34. For example, a set of green-colored eyelets 34 may define either a predetermined path that is particular to a surgical procedure or may define a relatively easy skill level defined by eyelets 34 with relatively large apertures 42, for example. Alternatively, the predetermined path may be marked not with the coloring of the eyelets 34 but with markings 46 on the outer surface 36 of the base 32 as shown in FIG. 2. Such markings 46 on the outer surface 36 can include anatomical landmarks from which the user can deduct the correct pathway to follow for passing sutures. Alternatively, the markings 46 are lines drawn on the outer surface 36 between eyelets 34 interconnecting them to define the predetermined path. The line 46 is contrast colored against the base 32 as in FIG. 2 and may be color-coded to indicate a particular predetermined pathway. Also, among the plurality of eyelets 34 attached to the base 32, groups of eyelets 34 may be interconnected with markings 46 such as lines drawn on the base 32 that connect the eyelets 34 within a certain group. The certain group of eyelets can define a predetermined pathway to follow for testing the skill of the user making sure that all eyelets 34 of a particular group lying along a particular pathway have been passed through with a suture. Hence, the arrangement and choice of eyelets 34 in a subset of eyelets 34 among a plurality attached to the base, can be used to improve the skill of passing a needle and suture through an aperture and as such the pathways and eyelets selected in each pathway can vary in difficulty from relatively easy eyelets, for example, ones having large apertures, standing upright, being rigid or located in relatively flat areas of the outer surface and being starkly contrasted against the background to more difficult eyelets, for example ones comprising smaller apertures, flexible eyelets, deflectable eyelets so eyelets colored so as to blend in with the background. The base 32 may be sold as part of a kit with a plurality of different types of eyelets 34 described above which the user would then assemble by selecting from the plurality of different eyelets and then placing them as desired into the base 32 to form a custom pathway for practice. The eyelets 34 and base 32 are configured such that the eyelets 34 can be pushed through the outer surface 36 of the base 32 to securely attach the eyelets 34. The kit may also include organs or other anatomical features that can also be connected to the base to create an anatomy suitable for a particular practice.


A predetermined pathway for passing sutures may be predefined based on the surgical procedure to be practiced. For example, the practice of closing the vaginal vault may require a generally circular pathway at a particular angle with eyelets having small apertures. Accordingly, such a pathway may be defined and marked by eyelets of the same color or markings on the base for the surgeon to follow. Another surgical procedure such as anastomosis of a bowel may require a larger generally circular pathway of closely spaced pairs of eyelets. Hence, the surgical procedure to be practiced may determine the types of eyelets used and their arrangement and the markings indicating that particular pathway to the user.


The eyelets 34 are embedded within the base in a variety of patterns and configurations creating patterns and pathways. Some pathways may be aimed at making sure the clinician visualizes all the eyelets and successfully passes through all within a set without missing ones that are difficult to visualize or to pass a suture through. Of course, the eyelets are placed at differing heights and angles with the objective being for the surgeon to pass an actual suture needle or simulated suture needle through each eyelet and in a specific order to complete each pathway. There are multiple pathways with different sized eyelets for different skill levels which allows for skill advancement within the same platform. The practice model 30 is placed inside a laparoscopic trainer 10 and a laparoscope is inserted into the cavity 12 to observe the model 30. A suture needle and suture are passed through one of the apertures 22 or tissue simulation region 14 into the cavity 12 and the procedure of passing the suture through the eyelets 34 is observed on the video display monitor 28 providing a two-dimensional video representation to the practitioner of the three-dimensional model 30 inside the laparoscopic trainer 10 and obscured from direct visualization. The model 30 and trainer 10 combination advantageously allow the user to practice identifying a desired surgical pathway for the suture, moving the needle and passing the suture through a number of eyelets 34 laparoscopically.


The model 30 may include interchangeable eyelets 34 in which the user may personally select certain eyelets or select a predetermined set of eyelets that corresponds to a pathway of a surgical procedure for practicing certain skills, difficulty levels or procedures. The model 30 is advantageously challenging and adjustable for all skill levels and effective in that the user must use both hands equally to complete the path. The suture needle must also be manipulated to be facing the proper direction for each pass in order to successfully pass it through the aperture. Hence, the model is particularly useful for the practice of laparoscopic suture passing, determining and visualizing tissue planes, the practice of depth perception and visualization of eyelets, hand-to-hand transfer of instruments and needles, suturing and tissue manipulation. This model allows clinicians to keep their skills sharp or to “warm-up” beforehand for successful outcomes in real surgery.


While certain embodiments have been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope thereof as defined by the following claims.

Claims
  • 1. A surgical training device, comprising: a device base;a top cover spaced apart from the device base to define an internal cavity between the top cover and the device base;at least one aperture or a penetrable region for accessing the internal cavity; anda laparoscopic camera disposed inside the cavity and configured to display video images on a video monitor connected to the camera and located outside of the internal cavity; anda model removably disposed inside the internal cavity such that the model is substantially obscured from a user yet observable via the a laparoscopic camera displaying video images of the model on the video monitor; the model comprising an elastic base, an outer surface disposed over the elastic base, and a plurality of interchangeable eyelets connected to the outer surface and the elastic base; wherein the plurality of interchangeable eyelets are arranged in a plurality of user-customized groups, a first group of the plurality of user-customized groups defining a first user-customized pathway for practicing the passing of at least one needle and suture through one or more of the plurality of interchangeable eyelets of the pathway, wherein the plurality of interchangeable eyelets are configured to be removed and replaced with other interchangeable eyelets or to be repositioned thereby defining different user-customized pathways that correspond to different surgical procedures, wherein each eyelet of the plurality of interchangeable eyelets comprises a neck portion and a head portion connected to the neck portion, and wherein one or more of the plurality of interchangeable eyelets has the neck portion disposed in the elastic base and beneath the outer surface and at least a portion of the head portion is also disposed beneath the outer surface and is configured to be movable from beneath the outer surface to being entirely above the outer surface of the model, the elastic base being different from the outer surface and configured to require a force to pull the at least a portion of the head portion above the outer surface and hold it in position above the outer surface.
  • 2. The surgical training device of claim 1, further comprising a marking disposed on the outer surface of the base of the model, the marking configured to illustrate to a user the first user-customized pathway of the first group of eyelets.
  • 3. The surgical training device of claim 2, wherein the marking comprises a line drawn on the outer surface.
  • 4. The surgical training device of claim 3, wherein the outer surface of the base of the model has a first color, and the marking has a second color configured to contrast with the first color.
  • 5. The surgical training device of claim 1, further comprising a marking comprising anatomical landmarks disposed on the outer surface and arranged to indicate to a user the first-user customized pathway of the first group of interchangeable eyelets to follow to pass sutures.
  • 6. The surgical training device of claim 1, further comprising a second group of interchangeable eyelets defining a second predetermined pathway.
  • 7. The surgical training device of claim 6, further comprising a first marking on the outer surface of the base of the model, the first marking corresponding to the first predetermined pathway of the first group of interchangeable eyelets and a second marking on the outer surface of the base of the model, the second marking corresponding to the second predetermined pathway of the second group of interchangeable eyelets.
  • 8. The surgical training device of claim 6, wherein the eyelets of the first group of interchangeable eyelets each have an aperture having a first diameter, the eyelets of the second group of interchangeable eyelets each have an aperture having a second diameter smaller than the first diameter.
  • 9. The surgical training device of claim 6, wherein the eyelets of the first group of interchangeable eyelets are rigid, and wherein each of the eyelets of the second group of interchangeable eyelets comprises a head portion being deflectable relative to a neck portion.
  • 10. The surgical training device of claim 6, wherein the eyelets of the first group of interchangeable eyelets are rigid, and wherein each of the eyelets of the second group of interchangeable eyelets comprises a head portion and a neck portion, the neck portion being flexible relative to the head portion and the base of the model.
  • 11. The surgical training device of claim 1, wherein one or more of the plurality of interchangeable eyelets are slotted to move axially within a slot relative to the outer surface of the model.
  • 12. The surgical training device of claim 1, wherein the plurality of user-customized groups correspond to different skill levels.
  • 13. The surgical training device of claim 1, wherein the head portion of one or more of the plurality of interchangeable eyelets define an aperture therethrough, the aperture being covered with a penetrable material configured to be pierced by the at least one needle and through which the at least one needle and suture is passed therethrough and through the aperture.
  • 14. The surgical training device of claim 13, wherein the penetrable material comprises at least one of a mesh or a fabric reinforcement.
  • 15. A kit for assembling a model for use in a surgical training device, the kit comprising: a model comprising: a base, and an outer surface disposed over the base; anda plurality of interchangeable eyelets insertable through the outer surface and connected to the base,wherein the plurality of interchangeable eyelets comprising a first group of interchangeable eyelets having a first configuration and a second group of interchangeable eyelets having a second configuration different from the first configuration,wherein each eyelet of the plurality of interchangeable eyelets comprises a neck portion and a head portion connected at an end of the neck portion, wherein the first configuration of the first group of interchangeable eyelets comprises a rigid neck portion, and wherein the second configuration of the second group of interchangeable eyelets comprises a flexible neck portion, andwherein one or more of the plurality of interchangeable eyelets has the neck portion disposed in the base and beneath the outer surface and at least a portion of the head portion is also disposed beneath the outer surface.
  • 16. The kit of claim 15, wherein the base comprises a pliable, resilient material.
  • 17. The kit of claim 15, wherein the outer surface comprises a contoured surface.
  • 18. The kit of claim 15, wherein each eyelet of the plurality of interchangeable eyelets comprises a neck portion and a head portion, wherein the first configuration of the first group of interchangeable eyelets is defined by a closed aperture formed in the head portions of the first group of interchangeable eyelets, and wherein the second configuration of the second group of interchangeable eyelets is defined by an open aperture formed in the head portions of the second group of interchangeable eyelets.
  • 19. The kit of claim 15, wherein the first configuration of the first group of interchangeable eyelets comprises eyelets formed of a first color, and wherein the second configuration of the second group of interchangeable eyelets comprises eyelets formed of a second color different from the first color.
  • 20. The kit of claim 15, wherein each eyelet of the plurality of interchangeable eyelets comprises a neck portion and a head portion, wherein the first configuration of the first group of interchangeable eyelets is defined by a straight neck portion, and wherein the second configuration of the second group of interchangeable eyelets is defined by an angled neck portion.
  • 21. The kit of claim 15, wherein the model further comprises simulated organs connected to the base of the model and are configured to create a realistic anatomy for a particular surgical procedure.
  • 22. The kit of claim 15, wherein one or more of the plurality of interchangeable eyelets are configured to be pulled so that the head portion is repositioned completely above the outer surface, and wherein upon release, the one or more of the plurality of interchangeable eyelets are biased so that at least the portion of the head portion is repositioned into being disposed beneath the outer surface.
  • 23. A kit for assembling a model for use in a surgical training device, the kit comprising: a model comprising: a base sized and configured to remain upright, and an outer surface; anda plurality of interchangeable eyelets insertable through the outer surface and connected to the base of the model,the plurality of interchangeable eyelets comprising a first group of interchangeable eyelets having a first configuration and a second group of interchangeable eyelets having a second configuration different from the first configuration,wherein each of the eyelets of the plurality of interchangeable eyelets comprises a neck portion and a head portion attached at the end of the neck portion, andwherein the head portion of at least one of the plurality of interchangeable eyelets is configured to rotate freely at the end of the neck portion providing for a free-spiraling eyelet configuration.
  • 24. The kit of claim 23, wherein the head portion of at least one of the plurality of interchangeable eyelets is configured to be movable from being at least partially beneath the outer surface to being entirely above the outer surface of the model.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/038,104 entitled “Surgical training model for laparoscopic procedures” filed on Sep. 26, 2013, which claims priority to and benefit of U.S. Provisional Patent Application Ser. No. 61/706,602 entitled “Surgical training model for laparoscopic procedures” filed on Sep. 27, 2012 each of which is incorporated herein by reference in its entirety.

US Referenced Citations (486)
Number Name Date Kind
184573 Becker Nov 1876 A
2127774 Jacobson Aug 1938 A
2284888 Arnell, Jr. Jun 1942 A
2324702 Hoffman et al. Jul 1943 A
2345489 Lord Mar 1944 A
2495568 Coel Jan 1950 A
3766666 Stroop Oct 1973 A
3775865 Rowan Dec 1973 A
3789518 Chase Feb 1974 A
3921311 Beasley et al. Nov 1975 A
3991490 Markman Nov 1976 A
4001951 Fasse Jan 1977 A
4001952 Kleppinger Jan 1977 A
4321047 Landis Mar 1982 A
4323350 Bowden, Jr. Apr 1982 A
4332569 Burbank Jun 1982 A
4371345 Palmer et al. Feb 1983 A
4386917 Forrest Jun 1983 A
4459113 Boscaro Gatti et al. Jul 1984 A
4481001 Graham et al. Nov 1984 A
4596528 Lewis et al. Jun 1986 A
4726772 Amplatz Feb 1988 A
4737109 Abramson Apr 1988 A
4789340 Zikria Dec 1988 A
4832978 Lesser May 1989 A
4867686 Goldstein Sep 1989 A
4907973 Hon Mar 1990 A
4938696 Foster et al. Jul 1990 A
4940412 Blumenthal Jul 1990 A
5061187 Jerath Oct 1991 A
5083962 Pracas Jan 1992 A
5104328 Lounsbury Apr 1992 A
5149270 McKeown Sep 1992 A
5180308 Garito et al. Jan 1993 A
5230630 Burgett Jul 1993 A
5273435 Jacobson Dec 1993 A
5295694 Levin Mar 1994 A
5310348 Miller May 1994 A
5318448 Garito et al. Jun 1994 A
5320537 Watson Jun 1994 A
5358408 Medina Oct 1994 A
5368487 Medina Nov 1994 A
5380207 Siepser Jan 1995 A
5403191 Tuason Apr 1995 A
5425644 Szinicz Jun 1995 A
5425731 Daniel et al. Jun 1995 A
5472345 Eggert Dec 1995 A
5518406 Waters May 1996 A
5518407 Greenfield et al. May 1996 A
5520633 Costin May 1996 A
5541304 Thompson Jul 1996 A
5620326 Younker Apr 1997 A
5720742 Zacharias Feb 1998 A
5722836 Younker Mar 1998 A
5727948 Jordan Mar 1998 A
5743730 Clester et al. Apr 1998 A
5762458 Wang et al. Jun 1998 A
5769640 Jacobus et al. Jun 1998 A
5775916 Cooper et al. Jul 1998 A
5785531 Leung Jul 1998 A
5800178 Gillio Sep 1998 A
5803746 Barrie et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5810880 Jensen et al. Sep 1998 A
5814038 Jensen et al. Sep 1998 A
5850033 Mirzeabasov et al. Dec 1998 A
5855583 Wang et al. Jan 1999 A
5873732 Hasson Feb 1999 A
5873863 Komlosi Feb 1999 A
5908302 Goldfarb Jun 1999 A
5947743 Hasson Sep 1999 A
5951301 Younker Sep 1999 A
6080181 Jensen et al. Jun 2000 A
6083008 Yamada et al. Jul 2000 A
6113395 Hon Sep 2000 A
6234804 Yong May 2001 B1
6271278 Park et al. Aug 2001 B1
6336812 Cooper et al. Jan 2002 B1
6398557 Hoballah Jun 2002 B1
6413264 Jensen et al. Jul 2002 B1
6474993 Grund et al. Nov 2002 B1
6485308 Goldstein Nov 2002 B1
6488507 Stoloff et al. Dec 2002 B1
6497902 Ma Dec 2002 B1
6511325 Lalka et al. Jan 2003 B1
6517354 Levy Feb 2003 B1
6568941 Goldstein May 2003 B1
6589057 Keenan et al. Jul 2003 B1
6620174 Jensen et al. Sep 2003 B2
6654000 Rosenberg Nov 2003 B2
6659776 Aumann et al. Dec 2003 B1
6773263 Nicholls et al. Aug 2004 B2
6780016 Toly Aug 2004 B1
6817973 Merril et al. Nov 2004 B2
6820025 Bachmann et al. Nov 2004 B2
6854976 Suhr Feb 2005 B1
6857878 Chosack et al. Feb 2005 B1
6863536 Fisher et al. Mar 2005 B1
6866514 Von Roeschlaub et al. Mar 2005 B2
6887082 Shun May 2005 B2
6929481 Alexander et al. Aug 2005 B1
6939138 Chosack et al. Sep 2005 B2
6950025 Nguyen Sep 2005 B1
6960617 Omidian et al. Nov 2005 B2
6997719 Wellman et al. Feb 2006 B2
7008232 Brassel Mar 2006 B2
7018327 Conti Mar 2006 B1
7025064 Wang et al. Apr 2006 B2
7056123 Gregorio et al. Jun 2006 B2
7080984 Cohen Jul 2006 B1
7118582 Wang et al. Oct 2006 B1
7255565 Keegan Aug 2007 B2
7269532 David et al. Sep 2007 B2
7272766 Sakezles Sep 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7364582 Lee Apr 2008 B2
7404716 Gregorio et al. Jul 2008 B2
7419376 Sarvazyan et al. Sep 2008 B2
7427199 Sakezles Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7465168 Allen et al. Dec 2008 B2
7467075 Humphries et al. Dec 2008 B2
7544062 Hauschild et al. Jun 2009 B1
7549866 Cohen et al. Jun 2009 B2
7553159 Arnal et al. Jun 2009 B1
7575434 Palakodeti Aug 2009 B2
7594815 Toly Sep 2009 B2
7621749 Munday Nov 2009 B2
7646901 Murphy et al. Jan 2010 B2
7648367 Makower et al. Jan 2010 B1
7648513 Green et al. Jan 2010 B2
7651332 Dupuis et al. Jan 2010 B2
7677897 Sakezles Mar 2010 B2
7775916 Mahoney Aug 2010 B1
7780451 Willobee et al. Aug 2010 B2
7802990 Korndorffer et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806696 Alexander et al. Oct 2010 B2
7819799 Merril et al. Oct 2010 B2
7833018 Alexander et al. Nov 2010 B2
7837473 Koh Nov 2010 B2
7850454 Toly Dec 2010 B2
7850456 Chosack et al. Dec 2010 B2
7854612 Frassica et al. Dec 2010 B2
7857626 Toly Dec 2010 B2
7866983 Hemphill et al. Jan 2011 B2
7931470 Alexander et al. Apr 2011 B2
7931471 Senagore et al. Apr 2011 B2
7988992 Omidian et al. Aug 2011 B2
7993140 Sakezles Aug 2011 B2
7997903 Hasson et al. Aug 2011 B2
8007281 Toly Aug 2011 B2
8007282 Gregorio et al. Aug 2011 B2
8016818 Ellis et al. Sep 2011 B2
8017107 Thomas et al. Sep 2011 B2
8021162 Sui Sep 2011 B2
8048088 Green et al. Nov 2011 B2
8083691 Goldenberg et al. Dec 2011 B2
8116847 Gattani et al. Feb 2012 B2
8137110 Sakezles Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8197464 Krever et al. Jun 2012 B2
8205779 Ma et al. Jun 2012 B2
8221129 Parry et al. Jul 2012 B2
8297982 Park et al. Oct 2012 B2
8308817 Egilsson et al. Nov 2012 B2
8323028 Matanhelia Dec 2012 B2
8323029 Toly Dec 2012 B2
8328560 Niblock et al. Dec 2012 B2
8342851 Speeg et al. Jan 2013 B1
8403674 Feygin et al. Mar 2013 B2
8403675 Stoianovici et al. Mar 2013 B2
8403676 Frassica et al. Mar 2013 B2
8408920 Speller Apr 2013 B2
8425234 Sakezles Apr 2013 B2
8439687 Morriss et al. May 2013 B1
8442621 Gorek et al. May 2013 B2
8454368 Ault et al. Jun 2013 B2
8459094 Yanni Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8460002 Wang et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8469715 Ambrozio Jun 2013 B2
8469716 Fedotov et al. Jun 2013 B2
8480407 Campbell et al. Jul 2013 B2
8480408 Ishii et al. Jul 2013 B2
8491309 Parry et al. Jul 2013 B2
8500753 Green et al. Aug 2013 B2
8512044 Sakezles Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8521252 Diez Aug 2013 B2
8535062 Nguyen Sep 2013 B2
8544711 Ma et al. Oct 2013 B2
8556635 Toly Oct 2013 B2
8608483 Trotta et al. Dec 2013 B2
8613621 Henderickson et al. Dec 2013 B2
8636520 Iwasaki et al. Jan 2014 B2
D699297 Bahsooun et al. Feb 2014 S
8641423 Gumkowski Feb 2014 B2
8647125 Johns et al. Feb 2014 B2
8678831 Trotta et al. Mar 2014 B2
8679279 Thompson et al. Mar 2014 B2
8696363 Gray et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8708707 Hendrickson et al. Apr 2014 B2
8764449 Rios et al. Jul 2014 B2
8764452 Pravong et al. Jul 2014 B2
8800839 Beetel Aug 2014 B2
8801437 Mousques Aug 2014 B2
8801438 Sakezles Aug 2014 B2
8807414 Ross et al. Aug 2014 B2
8808004 Misawa et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8814573 Nguyen Aug 2014 B2
8827988 Belson et al. Sep 2014 B2
8840628 Green et al. Sep 2014 B2
8870576 Millon et al. Oct 2014 B2
8888498 Bisaillon et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8911238 Forsythe Dec 2014 B2
8915742 Hendrickson et al. Dec 2014 B2
8945095 Blumenkranz et al. Feb 2015 B2
8961190 Hart et al. Feb 2015 B2
8966954 Ni et al. Mar 2015 B2
8968003 Hendrickson et al. Mar 2015 B2
9008989 Wilson et al. Apr 2015 B2
9017080 Placik Apr 2015 B1
9026247 White May 2015 B2
9050201 Egilsson et al. Jun 2015 B2
9056126 Hersel et al. Jun 2015 B2
9070306 Rappel et al. Jun 2015 B2
9087458 Shim et al. Jul 2015 B2
9096744 Wan et al. Aug 2015 B2
9117377 Shim et al. Aug 2015 B2
9119572 Gorek et al. Sep 2015 B2
9123261 Lowe Sep 2015 B2
9129054 Nawana et al. Sep 2015 B2
9196176 Hager et al. Nov 2015 B2
9226799 Lightcap et al. Jan 2016 B2
9257055 Endo et al. Feb 2016 B2
9265587 Vancamberg et al. Feb 2016 B2
9295468 Heinrich et al. Mar 2016 B2
9351714 Ross et al. May 2016 B2
9336694 Shim et al. Jun 2016 B2
9358682 Ruiz Morales Jun 2016 B2
9364224 Nicholas et al. Jun 2016 B2
9364279 Houser et al. Jun 2016 B2
9370361 Viola et al. Jun 2016 B2
9373270 Miyazaki Jun 2016 B2
9387276 Sun et al. Jul 2016 B2
9427496 Sun et al. Aug 2016 B2
9439649 Shelton, IV et al. Sep 2016 B2
9439733 Ha et al. Sep 2016 B2
9449532 Black et al. Sep 2016 B2
9468438 Baber et al. Oct 2016 B2
20010019818 Yong Sep 2001 A1
20020168619 Provenza Nov 2002 A1
20030031993 Pugh Feb 2003 A1
20030091967 Chosack et al. May 2003 A1
20030176770 Merril et al. Sep 2003 A1
20040005423 Dalton et al. Jan 2004 A1
20040126746 Toly Jul 2004 A1
20040248072 Gray et al. Dec 2004 A1
20050008997 Herman Jan 2005 A1
20050026125 Toly Feb 2005 A1
20050064378 Toly Mar 2005 A1
20050084833 Lacey et al. Apr 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050142525 Cotin et al. Jun 2005 A1
20050192595 Green et al. Sep 2005 A1
20050196739 Moriyama Sep 2005 A1
20050196740 Moriyana Sep 2005 A1
20050214727 Stoianovici et al. Sep 2005 A1
20060046235 Alexander et al. Feb 2006 A1
20060232664 Toly Oct 2006 A1
20060252019 Burkitt et al. Nov 2006 A1
20060275741 Chewning et al. Dec 2006 A1
20070074584 Talarico et al. Apr 2007 A1
20070077544 Lemperle et al. Apr 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070148626 Ikeda Jun 2007 A1
20070166682 Yarin et al. Jul 2007 A1
20070197895 Nycz et al. Aug 2007 A1
20070225734 Bell et al. Sep 2007 A1
20070238081 Koh Oct 2007 A1
20070275359 Rotnes et al. Nov 2007 A1
20080032272 Palakodeti Feb 2008 A1
20080032273 Macnamara et al. Feb 2008 A1
20080052034 David et al. Feb 2008 A1
20080064017 Grundmeyer, III Mar 2008 A1
20080076101 Hyde et al. Mar 2008 A1
20080097501 Blier Apr 2008 A1
20080108869 Sanders et al. May 2008 A1
20080187895 Sakezles Aug 2008 A1
20080188948 Flatt Aug 2008 A1
20080299529 Schaller Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090246747 Buckman, Jr. Jan 2009 A1
20090068627 Toly Mar 2009 A1
20090142739 Wang et al. Jun 2009 A1
20090142741 Ault et al. Jun 2009 A1
20090143642 Takahashi et al. Jun 2009 A1
20090176196 Niblock et al. Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090298034 Parry et al. Dec 2009 A1
20090314550 Layton Dec 2009 A1
20100047752 Chan et al. Feb 2010 A1
20100094312 Ruiz Morales et al. Apr 2010 A1
20100099067 Agro Apr 2010 A1
20100167248 Ryan Jul 2010 A1
20100167249 Ryan Jul 2010 A1
20100167250 Ryan et al. Jul 2010 A1
20100167253 Ryan et al. Jul 2010 A1
20100167254 Nguyen Jul 2010 A1
20100094730 Di Betta et al. Aug 2010 A1
20100196867 Geerligs et al. Aug 2010 A1
20100204713 Ruiz Morales Aug 2010 A1
20100209899 Park Aug 2010 A1
20100248200 Ladak Sep 2010 A1
20100258611 Smith et al. Oct 2010 A1
20100273136 Kandasami et al. Oct 2010 A1
20100279263 Duryea Nov 2010 A1
20100285094 Gupta Nov 2010 A1
20100324541 Whitman Dec 2010 A1
20110020779 Hannaford et al. Jan 2011 A1
20110046637 Patel et al. Feb 2011 A1
20110046659 Ramstein et al. Feb 2011 A1
20110087238 Wang et al. Apr 2011 A1
20110091855 Miyazaki Apr 2011 A1
20110137337 van den Dool et al. Jun 2011 A1
20110200976 Hou et al. Aug 2011 A1
20110207104 Trotta Aug 2011 A1
20110218550 Ma Sep 2011 A1
20110244436 Campo Oct 2011 A1
20110269109 Miyazaki Nov 2011 A2
20110281251 Mousques Nov 2011 A1
20110301620 Di Betta et al. Dec 2011 A1
20120015337 Hendrickson et al. Jan 2012 A1
20120015339 Hendrickson et al. Jan 2012 A1
20120016362 Heinrich et al. Jan 2012 A1
20120028231 Misawa et al. Feb 2012 A1
20120034587 Toly Feb 2012 A1
20120045743 Misawa et al. Feb 2012 A1
20120065632 Shadduck Mar 2012 A1
20120082970 Pravong et al. Apr 2012 A1
20120100217 Green et al. Apr 2012 A1
20120115117 Marshall May 2012 A1
20120115118 Marshall May 2012 A1
20120116391 Houser et al. May 2012 A1
20120148994 Hori et al. Jun 2012 A1
20120164616 Endo et al. Jun 2012 A1
20120165866 Kaiser et al. Jun 2012 A1
20120172873 Artale et al. Jul 2012 A1
20120179072 Kegreiss Jul 2012 A1
20120202180 Stock et al. Aug 2012 A1
20120264096 Taylor et al. Oct 2012 A1
20120264097 Newcott et al. Oct 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120282584 Millon et al. Nov 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120288839 Crabtree Nov 2012 A1
20120308977 Tortola Dec 2012 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130101973 Hoke et al. Apr 2013 A1
20130105552 Weir et al. May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130157240 Hart et al. Jun 2013 A1
20130171288 Harders Jul 2013 A1
20130177890 Sakezles Jul 2013 A1
20130192741 Trotta et al. Aug 2013 A1
20130197579 Foerster Aug 2013 A1
20130218166 Elmore Aug 2013 A1
20130224709 Riojas et al. Aug 2013 A1
20130245681 Straehnz et al. Sep 2013 A1
20130253480 Kimball et al. Sep 2013 A1
20130267876 Leckenby et al. Oct 2013 A1
20130282038 Dannaher et al. Oct 2013 A1
20130288216 Parry, Jr. et al. Oct 2013 A1
20130302771 Alderete Nov 2013 A1
20130324991 Clem et al. Dec 2013 A1
20130324999 Price et al. Dec 2013 A1
20140011172 Lowe Jan 2014 A1
20140017651 Sugimoto et al. Jan 2014 A1
20140030682 Thilenius Jan 2014 A1
20140038151 Hart Feb 2014 A1
20140051049 Jarc et al. Feb 2014 A1
20140072941 Hendrickson et al. Mar 2014 A1
20140087345 Breslin et al. Mar 2014 A1
20140087346 Breslin et al. Mar 2014 A1
20140087347 Tracy et al. Mar 2014 A1
20140087348 Tracy et al. Mar 2014 A1
20140088413 Von Bucsh et al. Mar 2014 A1
20140093852 Poulsen et al. Apr 2014 A1
20140093854 Poulsen et al. Apr 2014 A1
20140099858 Hernandez Apr 2014 A1
20140106328 Loor Apr 2014 A1
20140107471 Haider et al. Apr 2014 A1
20140156002 Thompson et al. Jun 2014 A1
20140162016 Matsui et al. Jun 2014 A1
20140170623 Jarstad et al. Jun 2014 A1
20140186809 Hendrickson et al. Jul 2014 A1
20140187855 Nagale et al. Jul 2014 A1
20140200561 Ingmanson et al. Jul 2014 A1
20140212861 Romano Jul 2014 A1
20140220527 Li et al. Aug 2014 A1
20140220530 Merkle et al. Aug 2014 A1
20140220532 Ghez et al. Aug 2014 A1
20140242564 Pravong et al. Aug 2014 A1
20140246479 Baber et al. Sep 2014 A1
20140248596 Hart et al. Sep 2014 A1
20140263538 Leimbach et al. Sep 2014 A1
20140272878 Shim et al. Sep 2014 A1
20140272879 Shim et al. Sep 2014 A1
20140275795 Little et al. Sep 2014 A1
20140275981 Selover et al. Sep 2014 A1
20140277017 Leimbach et al. Sep 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140303646 Morgan et al. Oct 2014 A1
20140303660 Boyden et al. Oct 2014 A1
20140308643 Trotta et al. Oct 2014 A1
20140342334 Black et al. Nov 2014 A1
20140349266 Choi Nov 2014 A1
20140350530 Ross et al. Nov 2014 A1
20140357977 Zhou Dec 2014 A1
20140370477 Black et al. Dec 2014 A1
20140371761 Juanpera Dec 2014 A1
20140378995 Kumar et al. Dec 2014 A1
20150031008 Black et al. Jan 2015 A1
20150037773 Quirarte Catano Feb 2015 A1
20150038613 Sun et al. Feb 2015 A1
20150076207 Boudreaux et al. Mar 2015 A1
20150086955 Poniatowski et al. Mar 2015 A1
20150132732 Hart et al. May 2015 A1
20150132733 Garvik et al. May 2015 A1
20150135832 Blumenkranz et al. May 2015 A1
20150148660 Weiss et al. May 2015 A1
20150164598 Blumenkranz et al. Jun 2015 A1
20150187229 Wachli et al. Jul 2015 A1
20150194075 Rappel et al. Jul 2015 A1
20150202299 Burdick et al. Jul 2015 A1
20150209035 Zemlock Jul 2015 A1
20150209059 Trees et al. Jul 2015 A1
20150209573 Hibner et al. Jul 2015 A1
20150228206 Shim et al. Aug 2015 A1
20150262511 Lin et al. Sep 2015 A1
20150265431 Egilsson et al. Sep 2015 A1
20150272571 Leimbach et al. Oct 2015 A1
20150272574 Leimbach et al. Oct 2015 A1
20150272580 Leimbach et al. Oct 2015 A1
20150272581 Leimbach et al. Oct 2015 A1
20150272583 Leimbach et al. Oct 2015 A1
20150272604 Chowaniec et al. Oct 2015 A1
20150332609 Alexander Nov 2015 A1
20150358426 Kimball et al. Dec 2015 A1
20150371560 Lowe Dec 2015 A1
20150374378 Giordano et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20160000437 Giordano et al. Jan 2016 A1
20160022374 Haider et al. Jan 2016 A1
20160030240 Gonenc et al. Feb 2016 A1
20160031091 Popovic et al. Feb 2016 A1
20160058534 Derwin et al. Mar 2016 A1
20160066909 Baber et al. Mar 2016 A1
20160070436 Thomas et al. Mar 2016 A1
20160073928 Soper et al. Mar 2016 A1
20160074103 Sartor Mar 2016 A1
20160098933 Reiley et al. Apr 2016 A1
20160104394 Miyazaki Apr 2016 A1
20160117956 Larsson et al. Apr 2016 A1
20160125762 Becker et al. May 2016 A1
20160133158 Sui et al. May 2016 A1
20160140876 Jabbour et al. May 2016 A1
20160194378 Cass et al. Jul 2016 A1
20160199059 Shelton, IV et al. Jul 2016 A1
20160220150 Sharonov Aug 2016 A1
20160220314 Huelman et al. Aug 2016 A1
20160225288 East et al. Aug 2016 A1
20160232819 Hofstetter et al. Aug 2016 A1
20160235494 Shelton, IV et al. Aug 2016 A1
20160256187 Shelton, IV et al. Sep 2016 A1
20160256229 Morgan et al. Sep 2016 A1
20160262736 Ross et al. Sep 2016 A1
20160262745 Morgan et al. Sep 2016 A1
20160293055 Hofstetter Oct 2016 A1
20160296144 Gaddam et al. Oct 2016 A1
Foreign Referenced Citations (87)
Number Date Country
2 293 585 Dec 1998 CA
2421706 Feb 2001 CN
2751372 Jan 2006 CN
2909427 Jun 2007 CN
101313842 Dec 2008 CN
101528780 Sep 2009 CN
201364679 Dec 2009 CN
201955979 Aug 2011 CN
102458496 May 2012 CN
202443680 Sep 2012 CN
202563792 Nov 2012 CN
202601055 Dec 2012 CN
202694651 Jan 2013 CN
103050040 Apr 2013 CN
203013103 Jun 2013 CN
203038549 Jul 2013 CN
203338651 Dec 2013 CN
203397593 Jan 2014 CN
203562128 Apr 2014 CN
10388679 Jun 2014 CN
102596275 Jun 2014 CN
103845757 Jun 2014 CN
103396562 Jul 2015 CN
105194740 Dec 2015 CN
105504166 Apr 2016 CN
41 05 892 Aug 1992 DE
93 20 422 Jun 1994 DE
44 14 832 Nov 1995 DE
19716341 Sep 2000 DE
1 024 173 Aug 2000 EP
0 990 227 Apr 2002 EP
1 609 431 Dec 2005 EP
0 870 292 Jul 2008 EP
2 068 295 Jun 2009 EP
2 218 570 Aug 2010 EP
2 691 826 Dec 1993 FR
2 917 876 Dec 2008 FR
2 917 876 Dec 2008 FR
2488994 Sep 2012 GB
10 211160 Aug 1998 JP
2001005378 Jan 2001 JP
2006187566 Jul 2006 JP
2009063787 Mar 2009 JP
2009236963 Oct 2009 JP
3162161 Aug 2010 JP
2011113056 Jun 2011 JP
2013127496 Jun 2013 JP
101231565 Feb 2013 KR
PA 02004422 Nov 2003 MX
106230 Sep 2013 PT
WO 199406109 Mar 1994 WO
WO 1996042076 Feb 1996 WO
WO 199858358 Dec 1998 WO
WO 199901074 Jan 1999 WO
WO 200036577 Jun 2000 WO
WO200238039 May 2002 WO
WO 2002038039 May 2002 WO
WO 2004032095 Apr 2004 WO
WO 2004082486 Sep 2004 WO
WO 2005071639 Aug 2005 WO
WO 2005083653 Sep 2005 WO
WO 2006083963 Aug 2006 WO
WO 2007068360 Jun 2007 WO
WO 2008021720 Feb 2008 WO
WO 2008103383 Aug 2008 WO
WO 2009000939 Dec 2008 WO
WO 2009089614 Jul 2009 WO
WO 2010094730 Aug 2010 WO
WO 2011035410 Mar 2011 WO
WO 2011046606 Apr 2011 WO
WO 2011127379 Oct 2011 WO
WO 2011151304 Dec 2011 WO
WO 2012149606 Nov 2012 WO
WO 2012168287 Dec 2012 WO
WO 2012175993 Dec 2012 WO
WO 2013048978 Apr 2013 WO
WO 2013103956 Jul 2013 WO
WO 2014022815 Feb 2014 WO
WO 2014093669 Jun 2014 WO
WO 2014197793 Dec 2014 WO
WO 2015148817 Oct 2015 WO
WO 2016138528 Sep 2016 WO
WO 2016183412 Nov 2016 WO
WO 2016198238 Dec 2016 WO
WO 2016201085 Dec 2016 WO
WO 2017031214 Feb 2017 WO
WO 2017042301 Mar 2017 WO
Non-Patent Literature Citations (99)
Entry
Provisional Patent Application, “Method for Analyzing Surgical Technique Using Assement Markers and Image Analysis”; Poniatowski et al; filing date: May 3, 2012. Total pp. 46.
European Patent Office, International Search Report for International Application No. PCT/US2011/053859 A3, dated May 4, 2012, entitled “Portable Laparoscopic Trainer”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/60997, dated Mar. 7, 2013, entitled “Simulated Tissue Structure for Surgical Training”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, dated Mar. 18, 2013, entitled “Advanced Surgical Simulation”.
Human Patient Simulator, Medical Education Technologies, Inc., http://www.meti.com (1999) all.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2011/053859, titled “Portable Laparoscopic Trainer” dated Apr. 2, 2013.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062363, dated Jan. 22, 2014, entitled “Surgical Training Model for Laparoscopic Procedures”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061949, dated Feb. 17, 2014, entitled “Surgical Training Model for Laparoscopic Procedures”.
Anonymous: Realsim Systems—LTS2000, Sep. 4, 2005, pp. 1-2, XP055096193, Retrieved from the Internet: URL:https://web.archive.org/web/2005090403;3030/http://www.realsimsystems.com/exersizes.htm (retrieved on Jan. 14, 2014).
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/062269, dated Feb. 17, 2014, entitled “Surgical Training Model for Transluminal Procedures”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061557, dated Feb. 10, 2014, entitled “Surgical Training Model for Laparoscopic Procedures”.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/061728 dated Oct. 18, 2013, entitled “Surgical Training Model for Laparoscopic Procedures”.
Limps and Things, EP Guildford MATTU Hernia Trainer, http://limbsandthings.com/US/products/tep-guildford-mattu-hernia-trainer/.
Simulab, Hernia Model, http://www.simulab.com/product/surgery/open/hernia-model.
McGill Laparoscopic Inguinal Hernia Simulator, Novel Low-Cost Simulator for Laparoscopic Inguinal Hernia Repair.
University of Wisconsin-Madison Biomedical Engineering, Inguinal Hernia Model, http://bmedesign.engr.wisc.edu/projects/s10/hernia_model/.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2012/070971, dated Jul. 4, 2014, entitled “Advanced Surgical Simulation Constructions and Methods”.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/070971, titled “Advanced Surgical Simulation” dated Jun. 24, 2014.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2012/060997, titled “Simulated Tissue Structure For Surgical Training” dated Apr. 22, 2014.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061949, titled Surgical Training Model for Laparoscopic Procedure, dated Apr. 9, 2015.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/038195 titled “Hernia Model”, dated Oct. 15, 2014.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2014/048027 titled “First Entry Model”, dated Oct. 17, 2014.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2014/042998, title; Gallbladder Model, dated Jan. 7, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for international application No. PCT/US2013/061728, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062363, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/062269, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061557, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/022774, dated Jun. 11, 2015 entitled “Simulated Dissectible Tissue.”
Kurashima Y et al, “A tool for training and evaluation of Laparoscopic inguinal hernia repair; the Global Operative Assessment of Laparoscopic Skills—Groin Hernia” American Journal of Surgery, Paul Hoeber, New York, NY, US vol. 201, No. 1, Jan. 1, 2011, pp. 54-61 XP027558745.
The International Bureau of WIPO, International Preliminary Report on Patentability, for PCT application No. PCT/US2013/053497, titled, Simulated Stapling and Energy Based Ligation for Surgical Training, dated Feb. 12, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2013/061949, titled Surgical Training Model for Laparoscopic Procedures, dated Apr. 9, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/019840, titled Simulated Tissue Structure For Surgical Training, dated Sep. 11, 2015.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2015/020574, titled “Advanced First Entry Model for Surgical Simulation,” dated Jun. 1, 2015.
Anonymous: Silicone rubber—from Wikipedia, the free encyclopedia, pp. 1-6, XP055192375, Retrieved from the Internet: URL:http://en.wikipedia.org/w.index.php?title=Silicone_rubber&oldid=596456058 (retrieved on May 29, 2015).
Lamouche, et al., “Review of tissue simulating phantoms with controllable optical, mechanical and structural properties for use in optical coherence tomography,” Biomedical Optics Express, Jun. 1, 2012, 18 pgs., vol. 3, No. 6.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/038195, titled Hernia Model, dated Nov. 26, 2015.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2013/053497 titled “Simulated Stapling and Energy Based Ligation for Surgical Training” dated Nov. 5, 2013.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/042998, titled “Gallbladder Model” dated Dec. 30, 2015.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2014/048027, titled “First Entry Model” dated Feb. 4, 2016.
Society of Laparoendoscopic Surgeons, “Future Technology Session: The Edge of Innovation in Surgery, Space, and Business” http://www.laparoscopytoday.com/endourology/page/2/ , Figure 1B: http://laparoscopy.blogs.com/laparoscopy_today/images/6-1/6-1VlaovicPicB.jpg , Sep. 5-8, 2007, 10 pgs.
Miyazaki Enterprises, “Miya Model Pelvic Surgery Training Model and Video,” www.miyazakienterprises, printed Jul. 1, 2016, 1 pg.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2015/059668 titled “Simulated Tissue Models and Methods” dated Apr. 26, 2016, 20 pgs.
Australian Patent Office, Patent Examination Report No. 1 for Australian Application No. 2012358851 titled “Advanced Surgical Simulation” dated May 26, 2016, 3 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/032292 titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Jul. 14, 2016, 11 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/018697 titled “Simulated Tissue Structures and Methods,” dated Jul. 14, 2016, 21 pgs.
European Patent Office, International Search Report and Written Opinion for International Application No. PCT/US2016/034591 titled “Surgical Training Model for Laparoscopic Procedures,” dated Aug. 8, 2016, 18 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/036664 titled “Hysterectomy Model”, dated Aug. 19, 2016, 15 pgs.
3D-Med Corporation, “Validated Training Course for Laparoscopic Skills”, https://www.3-dmed.com/sites/default/files/product-additional/product-spec/Validated%20Training%20Course%20for%20Laparoscopic%20Skills.docx_3.pdf , printed Aug. 23, 2016, pp. 1-6.
3D-Med Corporation, “Loops and Wire #1” https://www.3-dmed.com/product/loops-and-wire-1 , printed Aug. 23, 2016, 4 pgs.
Barrier, et al., “A Novel and Inexpensive Vaginal Hysterectomy Simulatory,” Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, vol. 7, No. 6, Dec. 1, 2012, pp. 374-379.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/020574, entitled “Advanced First Entry Model for Surgical Simulation,” dated Sep. 22, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/0043277 titled “Appendectomy Model”, dated Oct. 4, 2016, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2015/022774, titled “Simulated Dissectible Tissue,” dated Oct. 6, 2016, 9 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/041852 titled “Simulated Dissectible Tissue”, dated Oct. 13, 2016, 12 pgs.
European Patent Office, Invitation to Pay Additional Fees for International Application No. PCT/US2016/062669, titled “Simulated Dissectible Tissue”, dated Feb. 10, 2017, 8 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/055148 titled “Hysterectomy Model”, dated Feb. 28, 2017, 12 pgs.
European Patent Office, Examination Report for European Application No. 14733949.3 titled “Gallbladder Model,” dated Dec. 21, 2016, 6 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2016/062669 titled “Simulated Dissectible Tissue,” dated Apr. 5, 2017, 19 pgs.
European Patent Office, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US2017/020389 titled “Simulated Tissue Cartridge”, dated May 24, 2017, 13 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2015/059668, entitled “Simulated Tissue Models and Methods,” dated May 26, 2017, 16 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability and Written Opinion for International Application No. PCT/US2016/018697, entitled “Simulated Tissue Structures and Methods,” dated Aug. 31, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/0032292, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Nov. 23, 2017, 2017, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/034591, entitled “Surgical Training Model for Laparoscopic Procedures,” dated Dec. 7, 2017, 2017, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/036664, entitled “Hysterectomy Model,” dated Dec. 21, 2017, 10 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/041852, entitled “Simulated Dissectible Tissue,” dated Jan. 25, 2018, 12 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 17202365.7, titled “Gallbladder Model”, dated Jan. 31, 2018, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/043277, entitled “Appendectomy Model,” dated Feb. 1, 2018, 9 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/055148, entitled “Hysterectomy Model,” dated Apr. 12, 2018, 12 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated May 17, 2018, 12 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2016/062669, entitled “Simulated Dissectible Tissue,” dated May 31, 2018, 11 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Jun. 8, 2018, 13 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Jan. 10, 2019, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18210006.5, titled “Surgical Training Model for Laparoscopic Procedures,” dated Jan. 21, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18207214.0, titled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Mar. 28, 2019, 6 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216002.8, titled “Surgical Training Model for Laparoscopic Procedures,” dated Feb. 4, 2019, 6 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18216005.1, titled “Surgical Training Model for Laparoscopic Procedures,” dated Feb. 4, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 19159065.2, titled “Simulated Tissue Structures and Methods,” dated May 29, 2019, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018036, entitled “Laparoscopic Training System,” dated Aug. 29, 2019, 8 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2018/018895, entitled “Synthetic Tissue Structures for Electrosurgical Training and Simulation,” dated Sep. 6, 2019, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20153338.7, titled “Advanced Surgical Simulation Constructions and Methods,” dated Mar. 5, 2020, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 19215545.5, titled “Advanced First Entry Model for Surgical Simulation,” dated Mar. 26, 2020, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20158500.7, titled “Surgical Training Device,” dated May 14, 2020, 9 pgs.
“Surgical Female Pelvic Trainer (SFPT) with Advanced Surgical Uterus,” Limbs & Things Limited, Issue 1, Jul. 31, 2003, URL:https://www.accuratesolutions.it/wp-content/uploads/2012/08/ Surgical_Female_Pelvic_Trainer_SFPT_with_Advanced_Uterus_Us er_Guide.pdf, retrieved Feb. 21, 2020, 2 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2017/039113, entitled “Simulated Abdominal Wall,” dated Aug. 7, 2017, 13 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18177751.7, titled “Portable Laparoscopic Trainer,” dated Jul. 13, 2018, 8 pgs.
European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2018/034705, entitled “Laparoscopic Training System,” dated Aug. 20, 2018, 14 pgs.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2017/020389, entitled “Simulated Tissue Cartridge,” dated Sep. 13, 2018, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 18184147.9, titled “First Entry Model,” dated Nov. 7, 2018, 7 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 20186713.2, titled “Simulated Dissectible Tissue,” dated Nov. 10, 2020, 12 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. 21159294.4, titled “Surgical Training Model for Laparoscopic Procedures,” dated Apr. 5, 2021, 7 pgs.
Condino et al.; “How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators,” The International Journal of Medical Robotics and Computer Assisted Surgery, Apr. 27, 2011, vol. 7, No. 2, pp. 202-213.
Wilkes et al.; “Closed Incision Management with Negative Pressure Wound Therapy (CIM): Biomechanics,” Surgical Innovation 19(1), URL:https://journals.sagepub.com/doi/pdf/10.1177/1553350611414920, Jan. 1, 2012, pp. 67-75.
European Patent Office, Extended European Search Report for European Patent Application No. EP 21182654.0, titled “Simulated Dissectible Tissue,” dated Oct. 22, 2021, 13 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 21191452.8, titled “Advanced Surgical Simulation Constructions and Methods,” dated Dec. 13, 2021, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 22151452.4, titled “Portable Laparoscopic Trainer,” dated Apr. 13, 2022, 8 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. EP 22172093.1, titled “Hysterectomy Model,” dated Jul. 20, 2022, 9 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. 22212824.1, titled “Surgical Training Model for Laparoscopic Procedures,” dated Feb. 28, 2023, 20 pgs.
European Patent Office, Extended European Search Report for European Patent Application No. 22214865.2, titled “Gallbladder Model,” dated Feb. 28, 2023, 18 pgs.
European Patent Office, Partial Extended European Search Report for European Patent Application No. 23180886.6, titled “Simulated Dissectible Tissue,” dated Sep. 20, 2023, 16 pgs.
Related Publications (1)
Number Date Country
20190035308 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
61706602 Sep 2012 US
Continuations (1)
Number Date Country
Parent 14038104 Sep 2013 US
Child 16148059 US