Suspended ceiling systems are well-known in which a plurality of main runners extend parallel to each other, with cross members extending between the main runner at spaced intervals for supporting ceiling tiles or panels. The main runners and cross members, or cross tees, generally have an inverted T cross-sectional configuration, with a pair of oppositely-extending flanges connected by a web portion to a reinforcing bulb or bead. The cross members are typically connected to the main runners by a tongue that extends from the ends of the cross members and are received in an elongated slot in the web of the main runner.
It is also known to provide for a “fire rated” suspended ceiling system in which the connection between the main runners and the associated cross tees allows for limited expansion of the cross tees caused by an elevated temperature that would result from a fire without buckling the main runners. See, e.g., U.S. Pat. Nos. 4,601,153 and 4,677,802, both of which are incorporated herein by reference.
More recently, ceiling grid systems have been developed that allow for lateral movement of the cross members both into and away from the main runners, while maintaining the assembled relationship of the grid system, for use in geographical regions subject to earthquakes. Standards and requirements have been promulgated for ceiling suspension systems and areas requiring seismic restraint. Specifically, the International Building Code (“IBC”) requires the provision of a seismic separation joint for all ceiling areas exceeding 2,500 square feet. One method for providing for the separation joint is disclosed in U.S. Published Application US 2007/0180787, where joint clips are provided which attach to the grid at the points of intersection of the main runners and the cross-members. The clips support the reinforcing bulbs of the grid member so that the cross tees continue to be supported by the main runners upon separation. Consequently, an over-wide flange on the main runners is not required for support of the cross members.
By way of the present disclosure, an improved separation joint is provided. Specifically, the present disclosure provides for a seismic separation joint that does not require an additional clip member.
A seismic separation joint for suspended ceiling grid system is provided in which the grid system comprises at least one main runner or tee and a pair of opposed cross tees that are secured to the main runner and extend in opposite directions therefrom. The tees each include a central web with a tongue or tab extending from the web. In the case of the cross tees, the tongues are slidably received in a slot in the web of the main runner. An elongated slot is formed in the web of the tees of a length corresponding to the amount of movement to be allowed for in the event of a seismic occurrence. Preferably, the elongated slot extends from the web of the tee into the tongue/tab associated therewith, such that the slots of the tees are aligned when a pair of tees are connected to each other. A fastener is received in a portion of the tongue/tab of at least one, and preferably both, of the tees distally of the slot and in the slot of the other tee, securing the tees to the to each other while providing for limited movement of the tees both into and away from each other.
A description follows of specific embodiments shown in the accompanying drawings. However, this is for the purposes of illustration of the principles of the invention only, and not by way of limitation.
Turning to the drawings, there is seen a grid system for a suspended ceiling generally designated 10 comprising one or more main runners 12 generally extending the span of the grid system 10 and a plurality of cross members or cross tees 14 typically spanning between adjacent main runners 12.
Both the main runners 12 and the cross tees 14 (both of which may be generally referred to as “tees”) have a similar, inverted T-shaped cross-sectional configuration, as is well known in the art and exemplified by the U.S. patents incorporated by reference above. Specifically, the runners 12 and cross tees 14 are formed of strips of sheet metal with a pair of opposed flanges 16, 16 defining the lower surface. The flanges are connected by a central web 18 to a reinforcing bulb or bead 20. As is well known in the art, the flanges 16, 16 may be covered along their length on their bottom surfaces with an additional strip that is bent over the edges of the flanges.
The web 18 of the main runner 12 includes a plurality of vertically-oriented elongated openings or slots 22 at spaced intervals corresponding to the connection points for the cross tees 14 to the main runners. In order to connect the cross tees 14 to the main runners 12, the webs 18 of the cross tees 14 are formed with tongues 24 that extend beyond the end surfaces of the bead and the flanges 16 and are adapted to be received in the slots 22 in the main runners 12. The tongues 24 and the portions of the web 18 adjacent thereto may be embossed to provide additional strength and stiffness. Preferably, the tongue 24 is provided with an embossment or stitch 25 between the end of the slot 22 and the tip of the tongue 24 to enhance the rigidity of the tongue 24 and to prevent separation of the web. The end surfaces of the flanges 16, 16 of the cross tees include an edge portion 26 which is offset from the plane defined by the flanges 16, 16 by amount approximately equal to the thickness of the flanges so that, when the cross tees are installed in the ceiling grid, the offset edges 26 are positioned above the flanges 16, 16 of the main runners 12, and the flanges of the main runners 12 and the cross tees 14 are in the same plane.
In keeping with the disclosure, a separation joint is provided between the tees of the grid system that permits a predetermined amount of longitudinal movement of the tees without compromising the structural integrity of the grid system. Specifically, the main runners and cross tees are inter-connected to form the grid system so that they are capable of limited movement both into and away from each other in response to, e.g., a seismic event.
To this end, the cross tees are formed with a generally horizontal slot 28 that extends generally equidistant into both the tongues 24 and the web 18 of the cross tee. When the tongues 24 of a pair of cross tees 14 are inserted into a slot 22 in the web 18 of a main runner 12, the distal end of the tongue of each of the cross tees is slidably secured to the slot of the tongue of the other cross tee so that movement of the cross tees 14 relative to the main runner 12 along the length of the slot 28 both into the main runner (
The tongues 24 of the cross tees 14 may be secured in the slot 28 of the mating cross tee by any fastener 30 that permits slidable movement along the length of the slot. In the illustrated embodiment, the fastener 30 comprises a rivet 32 that is received in a sleeve 34 that expands when the rivet is inserted therein. However, a screw or bolt may also be used. In the illustrated embodiment, the fastener 30 is received in an aperture 36 on the distal end of the tongue 24 that is in generally axial alignment with the slot 28. While two fasteners are used in the illustrated embodiments, a slip joint according to the present disclosure may also be assembled with a single fastener. The materials from which the fastener and runner are constructed may be advantageously selected so that a predetermined minimum force is required before either of the fastener or the slot/aperture that receives the fastener will fail.
In keeping with another aspect of the disclosure, the diameter of the shaft portion of the assembled fastener 30 may be slightly greater than the overall width of the slot, and the slot slightly oversized at a central portion of the slot (in general alignment with the ends of the bead and the flanges) to form a seat 38 that locates the fastener during the initial assembly and installation of the ceiling grid. Thus, to permit relative movement of the cross tees with respect to the main runner after initial installation, a force sufficient to slightly widen the slot 28 and/or deform the fastener 30 is required. The required deformation also provides a degree of internal friction in the sliding joint and a level of damping or energy dissipation during relative movement of the grid members.
Optionally, the reinforcing bead 20 of the cross tees 14 may be extended so that the beads 20 contact the reinforcing bead 20 of the main runner 12 when the grid 10 is in its initial, assembled condition (i.e., as shown in
Also, the end of the tongue 24 may be narrowed in width to facilitate its insertion into the slots 22 in the main runner 12. This may be accomplished by having a bevel 40 on the end of the tongue. Optionally, the end of the tongue 24 may have a second bevel 42 (best seen in
Turning to
When the separation joint of the present disclosure is used to connect two main runners end-to-end, a gap 46 between the ends of the flanges results. For aesthetic purposes, a cover 48 may be provided to close the gap 46. The cover 48 permits slidable movement of the runners with respect to the cover 48, as provided by the separation joint. With reference to
This application claims the benefit of the filing dates of U.S. Provisional Applications 61/017,437, filed Dec. 28, 2007, 61/078,492, filed Jul. 7, 2008, and 61/108,904, filed Oct. 28, 2008, the entire contents of each being incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3089579 | O'Neil, Jr. | May 1963 | A |
3292332 | Jahn | Dec 1966 | A |
3492888 | Nishimura et al. | Feb 1970 | A |
4106878 | Jones | Aug 1978 | A |
4479341 | Schuplin | Oct 1984 | A |
4494350 | Sharp | Jan 1985 | A |
4785595 | Dunn | Nov 1988 | A |
5517796 | Koski et al. | May 1996 | A |
5839246 | Ziegler et al. | Nov 1998 | A |
5893249 | Peterson et al. | Apr 1999 | A |
5941029 | MacLeod | Aug 1999 | A |
5966887 | Mieyal | Oct 1999 | A |
6851238 | Rebman | Feb 2005 | B2 |
7293393 | Kelly et al. | Nov 2007 | B2 |
7661236 | Platt et al. | Feb 2010 | B2 |
7788872 | Platt | Sep 2010 | B2 |
20040068953 | Sauer | Apr 2004 | A1 |
20060096219 | Ingratta et al. | May 2006 | A1 |
20070180787 | Fecska | Aug 2007 | A1 |
20080060306 | Platt et al. | Mar 2008 | A1 |
20090223146 | Platt | Sep 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20090165417 A1 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
61017437 | Dec 2007 | US | |
61078492 | Jul 2008 | US | |
61108904 | Oct 2008 | US |