The following description of the invention is provided as an enabling teaching of the invention in its best, currently known embodiments. Those skilled in the relevant art will recognize that many changes can be made to the embodiments described while still obtaining the beneficial results of the present invention. It will also be apparent that some of the desired benefits of the present invention can be obtained by selecting some of the features of the present invention without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the present invention are possible and may even be desirable in certain circumstances and are a part of the present invention. Thus, the following description is provided as illustrative of the principles of the present invention and not in limitation thereof, since the scope of the present invention is defined by the claims.
The ceiling grid network of the invention includes a plurality of primary and cross grid members. The grid members shown throughout the drawings are of a generally inverted T-cross section, which are well known in the art. However, it should be noted that other grid members could be used in the grid network of the invention. The primary and cross grid members are typically spaced in perpendicular relation to accommodate ceiling panels and other suspended ceiling equipment, such as light fixtures. The grid network formed can be suspended from a stationary fixed ceiling.
Referring now to
A joint clip 20 is attached to the grid network at an intersecting point of the primary 10 and cross grid members 12. In the example embodiment shown in
A first resilient fastener portion 22 of clip 20 is attached to a primary grid member 10. As best seen in
When inserted into channel 36, the primary grid member 10 is slidably secured therein by the crimping of the resilient opposing leg portions 32, 34 about the vertical web 14 of the primary grid member. The clip 20 is prevented from moving upwardly away from assembled relation by the engagement of the leg portions 32, 34 with the underside of the bulb 16 of the primary grid member 10. The apex of the inverted-V channel 37 should be sufficiently tight to provide support for the underside of the bulb 16 of the vertical web 14.
Each leg portion 32, 34 may include one or more inwardly detents 38 stamped inwardly in a direction toward the opposing leg. The detents 38 further assist in engaging the vertical web 16 of the primary grid member 10 in a generally snug, gripping relationship in channel 36, thereby further resisting longitudinal movement of the primary grid member 10 in channel 36. However, during seismic activity, the primary grid member is able to move within channel 36 in a direction shown by Arrow L despite this resistance.
Each clip 20 further includes second and third resilient fastener portions, 24 and 25 respectively, also referred to as “cross grid member supports”, extending from, and integrally connected to, the first resilient fastener portion 22 in generally perpendicular relation. The second resilient fastener portion 24 effectively attaches a first cross grid member 12 to the primary grid member 10. Likewise, the third resilient fastener 25 portion effectively attaches a second cross grid member 12 to the primary grid member 10.
Each resilient fastener 24, 25 has two opposing clip webs 40, 42 which generally follow the geometry of the web 14 (and bulb 16) of a secondary grid member 12. In this embodiment, the top of each cross tee support is open forming a channel 44 having generally a Y-shaped cross section.
In a conventional configuration, a cross grid member 12 is typically supported by a lower horizontal flange 18 of the primary grid member 10. Here, support for the cross grid member 12 by the primary grid member is not required as the clip webs are contoured to the underside of the bulb 16 of the secondary grid member 12. Thus, resilient fastener 24 alone can support the secondary grid member 12. This is particularly important during a seismic disturbance when cross grid member 12 is displaced in the directions shown by arrow M in
Each clip web 40, 42 may also include one or more detents 38 stamped inwardly in a direction toward the opposing leg. The detents 38 assist in engaging the vertical web 16 of the secondary grid member 12 in a generally snug, gripping relationship, to resist any withdrawal movement of the secondary grid member 12 from fastener portions 24 and 25. Despite this resistance, during seismic activity, the secondary grid member 12 is able to move in channel 44 in the directions indicated by Arrow M.
Since the direction of the motion of the independent ceiling areas during an earthquake is unpredictable it may be possible that two ceiling areas, and therefore their respective cross beams, on either side of a separating primary grid member move in opposite directions lengthwise along the primary grid member, i.e. in opposite directions of the horizontal directions indicated by Arrows P and X in
The example embodiment of the joint clip shown in
In this configuration, each opposing leg 32, 34 of the first fastener portion 22 has a clip carrier 52 which is defined by a carrying slot 54 stamped in the leg of the first fastener portion 22. The second and third fastener portions 24, 25 of the first embodiment are modified to include a face plate 56. The face plate 56 integrally extends from the top of the clip webs 40, 42 in a downward direction but is spaced from the side edge of the clip webs. The face plate 56 contains one or more downwardly extending planar tabs 58 stamped out of the face plate 56 with the top of the tabs 58 integrally attached to the face plate 56. The tabs 58 engage carrying slot 54 of the first fastener portion 22. When engaged, the second or third fastener potion 24, 25, and, thus, a cross grid support member 12 attached thereto, can slide along the clip carrier 52 in carrying slot 54, in the directions indicated by Arrows P and X in
The embodiment of the joint clip 60 of the invention shown in
Segments 61, 62 are loosely connected and capable of moving slightly independently of each other longitudinally of a main beam 90 at an intersection in a connection of the invention.
Overhang 63 is formed with a horizontal top 68 that has, depending downward, a lip 70 at one side, and a wall 71 on the opposite side.
Overhang 63 includes a projection 83, which is intended to telescope with overhang 63 on an opposing segment 61. Projection 83 has a wall 81 that extends in alignment with the wall 71. The top of projection 83 is narrower than, and slightly depressed below, top 68. There is a transition slope 88 between top 68 and the top projection 83.
In each of the segments 61, 62, the walls 71 and 81, which are an extension of each other, form a cut-out 72 that is slidably secured on a main beam 90. The assembled joint clip 60 is free to oscillate along the main beam 90 during an earthquake, while still secured to the main beam 90, at a right angle.
The cut-out 72 in each segment 61, 62, conforms to the shape of the bulb 91 of main beam 90. The cut-out 72 may be, for instance, one with a peak 92 that conforms to a bulb 91, as seen in the '416 patent. Cut-out 72 has right angle bends at 75 and 76 that straddle the main beam 90 and keep the joint clip 60 oriented at right angles to the main beam 90. Cut-out 72 has at the bottom thereof, in each segment 61, 62 at one side of the cut-out 72, a vertical positioning stay 94. Stay 94 is sloped on the lower side to permit a forced insertion over bulb 91 of main beam 90. The stay 94 has a horizontal stop at the top, to prevent upward movement of the joint segments 61 and 62 once the clip 60 is forced into position on the main beam 90.
The joint segments 61 and 62, have enough play to permit a slight movement of the segment relative to one another to place the joint in position on bulb 91 of the main beam 90.
Stay 94, as so positioned, limits upward movement or dislodgment of clip 60 from main beam.
The lower horizontal top of a projection 83 of a segment 61, 62, permits a telescoping action when segments 61, 62 are assembled to form the joint clip 60 shown in
The segments 61 and 62 are assembled by telescoping each toward the other longitudinally to the aligned position, wherein overhang 63 receives in each segment 61, 62 a projection 83 from the opposing segment.
As seen in
Slots 77 and 78, having a horizontal section 93 and an inclined section 95, are formed in the underhang 67 of each segment 61 and 62. When the segments 61 and 62 are assembled, as shown in
The function of joint clip 60, as with the other embodiments set forth above, is to permit the main beam 90, and each of the cross beams 96, 97 in an intersection in a suspended ceiling grid 130, to move independently of one another in an earthquake. As can be seen particularly in
The cross beams 96 and 97 are assembled into, and are free, to ride back and forth within overhang 63 and underhang 67, in pockets 101 and 102 whose cross section conforms generally to the cross sections of the bulbs 98 and 99 and webs 101 of cross beams 96, 97. Cross beams 96 and 97 are slidably supported by self-tapping screws 104 that pass through slots 77 and 78, with horizontal section 93 and inclined section 95. The screws 104 are free to slide in the slots 77 and 78, and, since they are embedded in the webs 101 of the cross beams 96, 97, the screws 104 lift and drop the end of a cross beam 96, 97 as the cross beam travels longitudinally back and forth toward the main beam 90, during an earthquake. As the cross beams 96 and 97 move toward and away from the main beam 90 during a quake, the ends of the beams 96, 97 are lifted and lowered, to avoid interference between the cross beam end and the flange 103 of the main beam 90.
Markings 128 serve as vertical positioning indicia for locating the self-tapping screws 104 into the ends of cross beams 96, 97.
In
To form the seismic grid of the invention for the suspended ceiling 130, the ends of each main beam 90 adjoining room wall 109, and the ends of each cross beam 96 and 97 adjoining room walls 110 and 111, are fixed to such walls, as by riveting to a wall molding, as well known. In
The ends of main beams 90 along room wall 118 are not connected to the wall, but simply lie on the wall molding, as at 108, and are free to move thereon during a quake. This freedom to move is shown symbolically in
After the conventional ceiling grid is completed, the ceiling is divided into areas of 2500 feet or less by inserting the clips 60 of the invention along a selected main beam, or beams, 116. In
In
When a ceiling grid is divided into areas 121, 122 of 2500 square feet or less, as shown in
In installing the present embodiment of a seismic separation joint clip 60, into a suspended ceiling grid, a conventional suspended ceiling grid is first assembled, with connectors at intersections that are fixed. An example of such a grid and connectors is shown in detail, for instance, in the '712 patent referred to above. A section of such a prior art grid in a conventional suspended ceiling is shown in
To install the joint clip 60 of the invention at an intersection on a selected main beam 116, a fixed connector 105 is cut through as shown in
To insert the joint clip 60 of the invention, segments 61 and 62 of the clip 60 are assembled as shown in
A self-tapping screw 104 is inserted through the slots 77, 78 in the clip 60 into an end of the cross beam 96, 97. The screw 104 extends through slots 77, 78, on each side of the end of a cross beam, and serves as an axle as it rides in the slots, both horizontally, and at an incline.
A vertical stamp mark 125 below the horizontal segment 93 of slot 77, 78 is used to properly position the screw 104 within the clip 60. The screw 104 is installed from opposite sides of the assembled clip 60, on each side of the selected main beam 116. Thus screw 104, in addition to its function of slidably securing the cross beam 96, 97 ends in the clip, serves to aid in keeping clip 60 assembled.
As seen in
During an earthquake, areas 121 and 122, in
Forces, and vectors of forces, that in a quake, shake the area 121, 122, in a direction longitudinally of selected main beam 116, are not transmitted between areas 121, 122, since cut-out 72 slides longitudinally along beam 116 without transmitting any force between the main beam 116 and either/or both of the cross beams 96, 97. The ends of cross beams 96 and 97, extending into pockets 100, 101 of a clip 60, shake against each side of the clip 60, which sides are slightly movable with respect to one another, so there is no direct transmission of the forces to the cross beam 96, 97 on the opposite side of the selected main beam 116. Thus, no substantial forces are transmitted between areas 121, 122, in a direction longitudinally of the selected main beam 116 during a quake, between the selected main beam 116 and either cross beam 96, 97, or between opposing beams 96, 97.
Forces, and vectors of forces, that, during a quake, shake the area 121, 122 laterally, of selected main beam 116 through cross beams 96, 97, are not transmitted through clip 60, since the ends of cross beams 96, 97, simply slide in and out of pockets 100, 101 in clip 60, while supported from slots 77, 78.
No substantial forces are transmitted along, or across, selected main beam 116, thus isolating the areas 121, 122 from each other, so there is no momentum build-up of the entire ceiling.
This application is a continuation-in-part of U.S. application Ser. No. 10/592,614, filed Sep. 12, 2006, entitled Suspended Ceiling Grid Network Utilizing Seismic Separation Joint Clips, which claims the benefit under 35 U.S.C. §119(e) of U.S. provisional application Ser. No. 60/536,427, filed Jan. 14, 2004, entitled “Suspended Ceiling System Utilizing Seismic Separation Joint Clips”.
Number | Date | Country | |
---|---|---|---|
Parent | 10592614 | Sep 2006 | US |
Child | 11895986 | US |