This invention relates generally to the motion and physical health of the mammalian body, and more specifically to portable systems for assisting humans or other animals to medically rehabilitate or train specific body parts through the application to such body parts of differential pressure.
Vertebrate animals feature a flexible, bony skeletal framework that provides the body shape, protects vital organs, and enables the body to move. The human skeleton comprises approximately 206 separate bones. These bones meet at joints, the majority of which are freely movable. The skeleton also contains cartilage for elasticity, and muscular ligaments consisting of strong strips of fibrous connective tissue for holding the bones together at their joints.
The femur, fibula, tibia, and metatarsal bones of the legs and feet support the body and therefore bear its weight. Muscles associated with the ilium, pubis, ischium, patella, tarsal, and phalanges bones provide the necessary bending of the hips, knees, ankles, and toes that are essential for humans to walk, run, climb, and engage in other locomotion activities.
Likewise, the humerus, ulna and radius bones and metacarpal and phalanges bones form the arms and hands, respectively. Muscles associated with the clavicle, scapula, and carpals enable the arm to bend or flex at the shoulder or elbow, and the hand to flex at the wrist and fingers, which is useful for lifting, carrying, and manipulating objects.
Over time, body bones or joints can become damaged. Bones fracture; ligaments tear; cartilage deteriorates. Such damage may result from the aging process, manifested by arthritis, osteoporosis, and slips and falls. But injuries are also caused by sports activities. For example, recreational and competitive running is enjoyed by some 37 million Americans with 25% of them suffering from running injuries annually. Meanwhile, 57 million Americans bicycle for recreational or transportation purposes. In addition to bodily injuries caused by falls, prolonged bicycling can result in groin discomfort or numbness. This medical injury is caused by the horn of the bicycle saddle creating pressure points that can occlude the arteries and veins that supply blood flow to the genitals. Within the 1999-2004 time period, 21 publications within multiple medical specialties (e.g., sexual medicine, urology, neurology, cardiology, biomedical engineering, sports medicine and emergency medicine) established a clear relationship between bicycle riding and erectile dysfunction (“ED”).
A number of different approaches have been taken within the industry and the medical community for preventing or treating these injuries. Exoskeletons entail external support systems made from strong materials like metal or plastic composite fibers shaped for supporting proper posture of the human body. Honda Motor Co. has employed “walking assist devices” for its automotive factory workers to support bodyweight for reducing the load on assembly line workers' legs while they walk, move up and down stairs, and engage a semi-crouching position throughout a work shift. The U.S. military has experimented with exoskeletons for its soldiers to enable them to carry heavy equipment packs and weapons. However, the body must be connected to the exoskeleton at the limbs and other parts by means of straps and other mechanical attachment devices. The exoskeleton's motor must be regulated by various sensors and controls, and driven by hydraulics, pneumatics, springs, or other motorized mechanical systems. These can be cumbersome and expensive systems that do not necessarily reduce the stress on the body caused by gravity.
Athletes and older people suffering from joint injuries have rehabilitated in pools and water tanks. The buoyant property of the water provides an upwardly-directed force to the body that lightens the load otherwise directed to the joints. However, these types of systems are not portable, since the person is confined to the pool or water tank. Moreover, pools or water tanks may be unavailable or expensive to install.
Another approach is provided by a harness system exemplified by U.S. Pat. No. 6,302,828 issued to Martin et al. Consisting of an overhead frame to which is connected a raiseable body harness, such a system supports a portion of a person's body weight as he, e.g., walks or runs on a treadmill in order to diminish downward forces on the body joints. But the straps and attachment devices create localized pressure points and stresses on the body, and restrict the range of motion of the body and its limbs. Such a mechanical weight off-loading system may also lack portability.
The National Aeronautics and Space Administration (“NASA”) has developed a system that utilizes differential air pressure to provide a uniform “lift” to the body to assist the exercise process. See U.S. Pat. No. 5,133,339 issued to Whalen et al. The differential pressure is applied to the lower half of the person's body that is sealed within a fixed chamber to create a force that partially counteracts the gravitational force on the body. A treadmill contained within the sealed chamber allows the person to exercise. However, this Whalen system requires a large, immobile pressure chamber containing a treadmill. Such a system is expensive and requires cumbersome entry and exit by the person. It will not enable the person any other means of exercise besides the treadmill.
Pressurized bodysuits have also been used within the industry for several different applications. For example, U.S. Published Application 2002/0116741 filed by Young discloses a bodysuit with integral supports and internal air bladders that are filled with pressurized air. This air pressure exerts force against the muscles of a person wearing the suit to tone them during daily activities. U.S. Pat. No. 6,460,195 issued to Wang illustrates exercise shorts with buckled belts, air bags, and a vibrator that directs pulses of pressurized air to the body to work off fat and lift the hips. U.S. Pat. No. 3,589,366 issued to Feather teaches exercise pants from which air is evacuated, so that the pants cling to the body of an exerciser to cause sweating, thereby leading to weight loss.
The U.S. military has also employed pressurized suits of various designs for protecting fighter pilots from debilitating external G-forces. Due to rapid changes in speed and direction, the fighter pilot's body undergoes very high accelerations. This normally forces the pilot's oxygen-laden blood away from the portion of the circulatory system between the heart, lungs and brain, pooling instead toward the blood vessels of the lower extremities. As a result, the pilot can lose situational, awareness and spatial orientation. A pilot's bodysuit pressurized against the blood vessels of the legs can force the oxygen-laden blood back to the head and torso of the pilot. See U.S. Pat. No. 2,762,047 issued to Flagg et al.; U.S. Pat. No. 5,537,686 issued to Krutz, Jr. et al.; and U.S. Pat. No. 6,757,916 issued to Mah et al. U.S. Pat. No. 5,997,465 issued to Savage et al. discloses a pants bodysuit made from metal or polymer “memory material” that is heated by electrical current to form around the body, and then cooled to apply pressure for treating this G-forces phenomenon.
Pressurized bodysuits have been used previously for other purposes, such as splinting leg fractures, stopping bleeding from wounds, treating shock, and supporting the posture of partially paralyzed patients. See, e.g., U.S. Pat. No. 3,823,711 issued to Hatton; U.S. Pat. No. 3,823,712 issued to Morel; U.S. Pat. No. 4,039,039 issued to Gottfried; and U.S. Pat. No. 5,478,310 issue to Dyson-Cartwell et al. Bodysuits can also have air between the suit and the body evacuated by vacuum to draw the suit into close contact with the body. See U.S. Pat. No. 4,230,114 issued to Feather; U.S. Pat. No. 4,421,109 issued to Thornton; and U.S. Pat. No. 4,959,047 issued to Tripp, Jr. See also U.S. Published Application 2006/0135889 filed by Egli.
Such pressurized body suits have not previously been used to rehabilitate skeletal joint injuries or minimize conditions that cause erectile dysfunction. Moreover, they have typically been used only in stationary situations like a sitting pilot due to the problem of air pressure forcing the body suit off the lower torso. In some applications like weight-loss patients, suspender straps have been required to overcome this downwards migration of the bodysuit pants.
Thus, a pressurized bodysuit that can be used to apply localized differential pressure to a lower or upper body part for injury rehabilitation or minimization, coupled with an external support or pressure condition control system would be beneficial, particularly due to its portable nature. Such a pressurized body suit system could be worn by a patient, athlete, or other person within a variety of settings to perform a variety of different functions.
Ambulatory assist devices such as walkers, rollators, are used to assist elderly or physically-impaired people undergoing rehabilitation, or people suffering from gait and balance problems due to strokes, Parkinson's and other neurological disorders. These devices are used to provide balance and some measure of body weight support often by the person using their arms and hands. Use of these devices requires the disabled person raise himself from a sitting position to a standing position in order to use the device to ambulate. However, physically impaired people often lack the strength and or balance in order to raise themselves from a sitting to a standing position without assistance. This prevents people from independently using ambulatory assist devices. Also providing personnel for assistance entails additional costs for rehabilitation institutions or in providing home care. Walkers that incorporate a means for assisting a seated person to stand are commercially available or otherwise known in the art. One example is U.S. Pat. No. 7,363,931 which provides lifting arms to assist in standing. One commercially available device is “The New Lift Walker” available from newliftwalker.com. It incorporates a harness and arm supports and a pneumatic lift device to assist in raising a person from a seated to a standing position. These devices generally lack having a body weight support capability. Instead the person is able to provide some body weight support using their arms and hands as supports. Some mobility assist devices utilize a harness to provide body weight support. However harness systems have the drawbacks we have described earlier. There is a need for improved mobility assist devices that provide both improved means of body weight support and a means for assisting a person to raise himself from a seated to a standing position. The wheeled support aid with lift mechanism may utilize electric or pneumatic power sources or both.
Training of gait and balance with body weight support (BWS) is a promising rehabilitation technique. The current body weight support method utilizes an overhead harness support mechanism for which commercial systems are available. One harness system is exemplified by U.S. Pat. No. 6,302,828 issued to Martin et al. Consisting of an overhead frame to which is connected a raiseable body harness, such a system supports a portion of a person's body weight as he, e.g., walks or runs on a treadmill in order to diminish downward forces on the body joints. Harnesses for body weight support attach upper torso and the pulling force on the body is directly upwards. This restricts the natural position of the body during running and walking to a forward leaning position. Because harness systems pull the upper body directly upwards from the chest they are can provide too much stability for balance training. Another issue with the harness based body weight support is that the harness supporting the subject decreases the need for natural associated postural adjustments (APAs) that are required for independent gait. The main site for an active control of balance during gait is the step-to step mediolateral placement of the foot. When supported by a harness during BWS training any mediolateral movement is restricted by a medially directed reaction force component that will help stabilize the body in the frontal plane and decrease or even eliminate the need for APAs making gait and balance training less effective. Further the straps and attachment devices create localized pressure points and stresses on the body, and restrict the range of motion of the body and its limbs. In particular the straps around the thighs and groin interfere with the back and forth rotation of the legs.
An new alternative to a harness based body weight support is a close fitting differential pressure suit is described in this application and in U.S. Patent Application [US 2010/0000547, PCT/US2009/003535, EP 09762926.5]. A differential pressure body suit with external support against body suit migration is provided by the invention. In its preferred embodiment, such body suit may comprise a close-fitting, multi-layered suit sealed against a person's skin to contain the differential pressure, or a looser-fitting space suit that bends at the joints with minimal force. External support means include either fixed or movable mechanical supports attached to the body suit, extraordinary air pressure levels for making the body suit rigid, or exoskeletons attached to the body suit. This differential pressure body suit provides a portable and convenient system for rehabilitating a skeletal joint injury or training for injury prevention or athletic performance. The pressurization reduces the weight of the body to greater or lesser extents, and offloads the weight to the ground through the external support means. The body suit is flexible and has joints that can flex with minimal force even under pressure.
In either harness based approaches or partial pressure differential pressure suit means are required for attaching the harness, pressure suit or other attaching means to the mechanism that provides the counter-force body weight support. Harness systems use ropes straps and or cables to attach the harness system to the overhead counter-weight system. A natural walking or running gait consists of body movements or rotations about various axes of the body. It is important that the connecting system not unduly restrict these movements. There is a need for body weight support systems that do not restrict natural body movements.
The present invention provides a differential pressure body suit with external support against body suit migration. The invention provides body weight support in a way that does not restrict one's natural body movements that occur while walking or running. Specifically the invention is an improved system for a body weight support device for connecting a person's body to the weight off-loading components of the device (referred here to a constant-force adjustment mechanism) so as not to restrict natural body movements. In its preferred embodiment, such body suit may comprise a close-fitting, multi-layered suit sealed against a mammal's skin to contain the differential pressure, or a looser-fitting suit that bends at the mammal's joints with minimal force. External support means include either fixed or movable mechanical supports attached to the body suit, extraordinary air pressure levels for making the body suit rigid, or exoskeletons attached to the body suit. A cyclic control system can turn the differential pressure condition within the body suit on and off on a selective basis to accommodate the movement of the legs of the mammal. This differential pressure body suit provides a portable and convenient system for rehabilitating a skeletal joint injury or training the mammal for injury prevention, athletic performance, or fat reduction, or assisting the mobility of the physically disabled. The pressurization reduces the weight of the body to greater or lesser extents, and offloads the weight to the ground through the external support means. The body suit is flexible and has joints that can flex with minimal force even under pressure.
The invention can also be used to assist the mobility for, e.g., the elderly or disabled people, who have common problems such as degenerative hips or knees by reducing the stress on their joints. This includes a lift-assisted mobility device for enabling a person to stand from a sitting position with minimal effort and receive support while standing in a mobile environment. Furthermore, the alternating pressure/depressurization cycle can provide medical benefits via the body suit similar to massage, or by enhancing venous return of blood to the heart for, e.g., people suffering from varicose veins or other vascular disorders. The system can also facilitate proper posture, and avoid bed sores caused by prolonged horizontal contact by the body with the bed. This is not a purely mechanical system for supporting bodily motion, such as an exoskeleton. This invention is useful not only for humans, but also for other animals like dogs, cats, and horses.
In the accompanying drawings:
A differential pressure body suit with external support against body suit migration is provided by the invention. In its preferred embodiment, such body suit may comprise a close-fitting, multi-layered suit sealed against a mammal's skin to contain the differential pressure, or a looser-fitting space suit that bends at the mammal's joints with minimal force. External support means include either fixed or movable mechanical supports attached to the body suit, extraordinary air pressure levels for making the body suit rigid, or exoskeletons attached to the body suit. A cyclic control system can turn the differential pressure condition within the body suit on and off on a selective basis to accommodate the movement of the legs of the mammal. This differential pressure body suit provides a portable and convenient system for rehabilitating a skeletal joint injury or training the mammal for injury prevention, athletic performance, or fat reduction, or assisting the mobility of the physically disabled. The pressurization reduces the weight of the body to greater or lesser extents, and offloads the weight to the ground through the external support means. The body suit is flexible and has joints that can flex with minimal force even under pressure. The invention can also be used to assist the mobility for, e.g., the elderly or disabled people, who have common problems such as degenerative hips or knees by reducing the stress on their joints. Furthermore, the alternating pressure/depressurization cycle can provide medical benefits via the body suit similar to massage, or by enhancing venous return of blood to the heart for, e.g., people suffering from varicose veins or other vascular disorders. This is not a purely mechanical system for supporting bodily motion, such as an exoskeleton.
For purposes of the present invention, “differential pressure” means the difference in pressure conditions across opposite sides of the body suit, such as a positive pressure or negative (vacuum) pressure condition contained inside the suit, and an atmospheric pressure condition on the outside of the suit. For example, if atmospheric pressure is equal to 14.7 lbs/in2 (“psi”), and the internal pressurized condition of the body suit is 15.7 psi, then the differential pressure applied by the body suit to the mammal wearing the body suit is 1.0 psi. Such differential pressure can also be represented as ΔP within this application.
As used within this application, “positive pressure” means any pressure level in excess of atmospheric pressure.
For purposes of this application, “negative pressure” means any pressure level less than atmospheric pressure. A vacuum is an example of such a negative pressure. Partial vacuums are also covered by this invention.
In the context of the present invention, “body portion” means any part of the body to which the differential pressure condition is applied by the body suit. Examples include, without limitation, feet, legs, knees, hips, shoulders, arms, elbows, torso, and the back.
As used within this application, “body suit” means a single or multi-layered, close-fitting or loose-fitting suit capable of containing a positive or vacuum pressure condition that covers a predetermined body portion. Examples include, without limitation, trunks, shorts, full-length pants, such pants that cover the feet, shirts, and chest or arm segments. The suit is provided with a means for creating the positive or negative (vacuum) pressure condition within the suit. Such a means may be a port connected to an air pressure control system.
In the context of the present invention, “pressure-tight” means with respect to the body suit that the material forming such body suit is capable of containing a positive or negative pressure condition without substantial diminishment over a time period that is relevant to the usage of the body suit. Thus, pressure tightness does not require an absolute absence of any loss of pressure or vacuum, nor does it require maintenance of the positive pressure or vacuum condition within the suit for a time period greater than the time interval during which the suit is worn for an exercise or therapeutic treatment session, or beyond which such positive pressure or vacuum condition can reasonably be replenished within such exercise or therapeutic session.
For purposes of the present invention, “mammal” means any of a class of higher vertebrates comprising humans and all other animals that nourish their young with milk secreted by mammary glands, and have the skin usually more or less covered with hair. Such animals include, without limitation, horses, dogs, and cats.
A human runner will be used as an exemplary mammal for purposes of describing the assisted motion system of the present invention. It is important to appreciate, however, that any other type of mammal for any other kind of exercise, life activity, or rehabilitative activity is covered by this application, as well.
The assisted motion system 10 of the present invention is shown in
The differential pressurized suit 14 is constructed of air-tight material, and affords easy movement by the body and limbs of runner 12 while running. The suit 14 is sealed against the body at the waist 16. When air pressure condition P above atmospheric pressure Patm is added to the volumetric region 24 defined between the runner's legs 20 and the suit 14, a differential pressure condition ΔP is created in which the runner's lower body portion contained within the suit 14 experiences a higher pressure condition than the runner's upper body 26, which only experiences Patm. Due to this pressure differential ΔP, an upwards force is exerted on the runner 12 by the higher air pressure contained inside the suit 14, thereby acting to diminish the weight of the runner's body. Runner 12 thereby experiences a reduced weight on his feet, knees, legs, and lower body when he runs in this differential pressurized suit 14, compared with if he ran without the suit.
Fb=ΔP×Aw
This constitutes the amount of weight that is effectively reduced from the lower body 20 of runner 12. For example, a runner experiencing a pressure differential ΔP on the lower body of 0.5 psi having a cross-sectional waist area of Aw of 100 square inches would experience a 50 lb reduction in weight due to the differential pressurized suit 14.
Fs=ΔP×As.
This constitutes the amount of force that pushes the suit down the body. For example, a suit pressurized to a pressure differential ΔP of 0.5 psi having a cross-sectional waist area As of 100 square inches is subject to a 50 lb downwards force. This force Fs would ordinarily cause suit 14 to work its way downwardly along legs 20. Therefore, an important part of the invention is the inclusion of external support 26 to prevent the downward migration of the suit. In the case of the embodiment depicted in
In this manner, the supported differential pressurized suit 14 is able to diminish the weight of the runner's body without contacting the body. Through the application of differential pressure ΔP, an amount of weight ΔW of the body equal to:
ΔW=W−(ΔP×Aw)
is transferred from the muscle-skeletal structure of the runner's lower body 20 to the frame 28 of the supporting structure 26, and through the frame 28 and wheels 30 to the ground. Moreover, the support structure prevents force Fs from pulling the differential pressurized suit 14 off runner 12. Furthermore, because the wheel-based support structure 36 and differential pressurized suit 14 are completely portable in nature, runner 12 can go anywhere with the motion-assisted system 10, instead of being confined to a stationary or pressure chambers as with prior art systems.
When the runner's body is in contact with the ground via feet 18, various amounts of weight can be effectively removed from the body, depending upon the level of positive pressure P introduced to the body suit. For example, for a 180 lb runner having a cross-sectional area Aw of 100 square inches, a differential pressure ΔP of 1 psi would reduce his weight by 100 lbs. The runner's lower body would therefore only need to support a weight of 80 lbs. A 0.5 psi pressure differential ΔP would take off 50 lbs of weight. A 0.25 psi pressure differential would take off 25 lbs of weight.
The preferred construction of differential pressurized suit 14 is shown in greater detail in
An air-tight inner layer 31 featuring an airtight seal 32 at the waist 16 of the runner's body 20 maintains the positive pressure P condition inside the suit against the runner's body skin 34. The fabric for this air-tight layer which is closest to the body may be formed from any pressure-tight material that is also sufficiently flexible to afford mobility by the runner. Examples include, without limitation, latex rubber, neoprene, and air-tight elastic fabrics like latex-coated Lycra. This fabric should be sufficiently thin and elastic to provide comfort without restriction. Preferably, suit 14 is about 0.002-0.040 inch thick, more preferably about 0.005-0.015 inch thick, still more preferably about 0.010 inch thick. The elasticity of the material can be expressed by spring rate, which is the force necessary to double a one-inch-thick strip of fabric. Preferably, this spring rate should be about 0.2-2.0 lbs, more preferably about 0.5-1.5 lbs, still more preferably about 1.0 lb.
Two outer layers 36 and 38 of the differential pressurized suit 14 composition prevent the suit from expanding due to the force applied by positive pressure P, while maintaining the shape of the suit to fit closely to the body. This close fit provides for ease of mobility of the body and its limbs 20. It also prevents the legs of the suit from contacting each other during the running motion. Moreover, this close fit of the suit reduces the volume of pressurized air or other suitable gas in contact with the body joints in order to facilitate bending of the legs.
The fabric for these first and second outer layers 36 and 38 should be composed of mesh, netting, or other suitable fabric. Suitable mesh material is available from Apex Mills Corporation of Inwood, N.Y. This mesh or netting is constructed to mostly be non-extending along one axis, and elastic or extensible along a second axis perpendicular to the first axis. Exemplary mesh materials include, without limitation, nylon-Lycra that can be knit or braided, or a monofilament like nylon or Dacron.
The first outer layer 36 serves to prevent the suit 14 from expanding circumferentially. The circumferential direction of expansion is perpendicular to the longitudinal axis of the legs and body fabric. The fabric is oriented so that its non-extending axis follows this direction. The fabric can be more specifically oriented so that its non-extending axis follows lines on the body in which the skin does not stretch or extend during bending or other movement. These lines are known within the industry as “lines-of-non-extension.” Lines of non-extension run both parallel and perpendicular to the longitudinal axis of the legs and body. This first layer of fabric preferably would follow the perpendicular lines of non-extension.
The second outer layer 38 serves to prevent the suit 14 from expanding longitudinally under pressure. This fabric layer is oriented, so that its axis of non-extension generally follows lines that are generally parallel to the longitudinal axis of the legs and body. Preferably, the fabric can be more specifically oriented in this direction to follow longitudinal lines on the body in which the skin does not stretch or extend during bending or other movement. Where appropriate in sections of the body which do not flex, such as the thigh area or lower calves, cloth, mesh, or net material that is non-extendible along both axes may be used. This second outer fabric layer 38 which is mostly non-extensible in the vertical direction of an upright body effectively carries the vertical downward load on the suit resulting from the positive pressure differential.
Differential pressurized suit 14 may also feature additional layers of nylon 40 between the body 20 and the air-tight inner layer 30, and 42 and 44 between the inner 30 and first outer layer 36, and two outer layers 36 and 38, respectively, in order to enable the suit and layers to slip relative to one another on the body to improve the runner's mobility. Air-tight zippers 46 positioned along the suit 14 near its waist 16 and feet 18 portions allow for easy entry and removal of the suit. Such air-tight zippers are available from YKK (U.S.A.) Inc. of Marietta, Ga. Moreover, the suit 14 may feature an inner vent layer 48 that provides airflow and moisture control. In other embodiments these layers can be separately combined into a single layer that provides the same basic functioning as for the separate layers described above.
As shown in
The band 54 may be made from any suitable material that is strong enough to contain this outwardly-directed force, including metal, plastic, or composites. It may be made moldable to the general shape of the runner's waist, using a thermoset plastic material. The band 54 may alternatively be formed from a strong, flexible fabric, such as nylon. The suit 14 may be attached and detached from the band 54, using a Velcro fastening system. Other mechanical fastening systems such as straps, snaps, or hooks engaging eyelets may also be utilized. Alternatively, the band can constitute an integral part of the suit. The band may be in two pieces hinged and fitted with a locking clasp to allow for easy entry.
In the embodiments of the differential pressurized suit 14 shown in
The seal 40 constitutes an airtight band of material that fits tightly over the body. As shown more clearly in
In yet another alternative embodiment, the seal can consist of an inflatable air tube seal 50, as shown in
As shown in
While this application discusses the use of pressurized air to fill the suit, other pressurized gases may be employed. Other examples of such pressurized gases include nitrogen, carbon dioxide, and argon. Such gases must be non-toxic and not harmful to body skin, or else an inner layer must be worn between the gas and the skin to protect the skin and body.
The differential pressurized suit 52 shown in
Still another embodiment of a differential pressurize suit 70 is depicted in
By having suit 70 end at the ankles, motion by the foot will not be impaired by the foot portion of the suit. The suit 70 may also be put on more easily. Moreover, the wearer may wear normal-sized shoes.
The net upward force provided by pressurized air contained within suit 70 may be calculated as:
Fb=ΔP(Aw−2AA)
where ΔP is the difference in pressure level P inside the suit and atmospheric pressure Patm outside the suit. Aw is the cross-sectional area of the waist. Aa is the cross-sectional area of each ankle.
Another embodiment of differential pressurized suit 80 is shown in
The net upwards force supplied to the runner's body when suit 80 is filled with pressurized air is:
Fb=ΔP(Aw−2Ak)
ΔP is the difference in pressure between pressure condition P contained inside the suit 80 and atmospheric pressure Patm existing outside the suit 80. Aw is the cross-sectional area of the waist. AK is the cross-sectional area of the spot on each leg just above the knee where seals 88 engage the leg.
In another embodiment shown in
Yet another embodiment is shown in
Each leg suit 92, 93 covers the entire lower leg and foot, so that the entire leg below the thigh seal 95 is airtight. The leg suits are attached by means of straps 96 to a rigid band 98 that is provided near the waist. This band may alternatively constitute a strong, flexible fabric. The band 98 is then attached to a supporting structure (not shown). Alternatively, the leg suits may be attached directly to the support frame by means of straps 96. The positive pressure differential ΔP contained in the leg suits 92, 93 results in an upwards-directed resultant force Fb applied to the body located at the centroid 97 of the cross-sectional area At. The total amount of this upwards force Fb on the body from both leg suits is:
Fb=2ΔP×At
where ΔP is the difference in pressure between the positive pressure P condition inside the suit and atmospheric pressure outside the suit. Aw is the cross-sectional area of the waist region. At is the cross-sectional area of each upper thigh region.
The various configurations of suits described above provide high to lower amounts of upwards force Fb on the body, depending upon the location of the seals. The complete lower body coverage suit 14 of
Fb=ΔP×Aw.
The waist-to-ankle suit 70 of
Fb=ΔP(Aw−2Aa).
Next in decreasing progression is the waist-to-just-above-the-knee suit 80 of
Fb=ΔP(Aw−2Ak).
For most humans, their body anatomy is such that Aa<AK. The independent leg suits 92, 93 also provide for a higher to lower amount of upwards force on the body. The leg suit with a top seal at the upper thigh of
Fb=2ΔP×At.
A leg suit with a top seal at the upper thigh and a bottom seal at the ankle (not shown) provides the next highest amount:
Fb=2ΔP×(At−Aa).
A leg suit with a top seal at the upper thigh and a bottom seal at the spot above the knee (not shown) provides the lowest amount:
Fb=2ΔP×(At−Ak).
While pressurized gases like air have been discussed as the pressurizing medium for the differential pressurized suit 14 of this invention, positive pressure applied against a body and its limbs can be created by other means. For example a fabric or elastic material 102 circumferentially kept under tension around a leg 104 can be employed, as depicted in
Various means can be utilized to develop this tension. For example, an elastic material can provide this circumferential tension. In such example, the “suit” is constructed by a multitude of windings of an elastic material that is perpendicular in direction to the axis of the leg 104, and non-extensional in the longitudinal direction of the leg. The suit is sized to be smaller than the body, so that a tension is developed when the suit is put on. Alternatively, the suit can be placed under tension through the use of zippers, or by cinching up the suit via lacing, tied in a knot after it is put on. Suits of this circumferential tension embodiment 100 may be similar in degree of coverage, as discussed above—e.g., waist-to-above-the-knee, waist-to-ankle, waist-to-around-foot; upper thigh/hip-to-above-knee; upper thigh/hip-to-above-ankle; upper thigh/hip-to-around-foot.
An air bladder 106 positioned under a portion of the wrap 102 against the leg 104 may be utilized to create further tension inside the suit 100. This air bladder should have a small width, and extend longitudinally along the body under the wrap 102. When the bladder 106 is inflated with a gas like pressurized air, the wrap 102 is placed under tension. Advantageously, only a small amount of air is required to create the positive pressure on the body, because the wrap 102, itself, also contributes positive pressure via the tension. At the same time, the wrap material can allow for breathability and the transfer of moisture away from the body.
Shaped memory alloys like nickel titanium or shaped polymers may likewise be used to provide the tension in a circumferentially-tensioned pressure suit. An electric current can be applied to cause the material to change in shape to conform to the underlying body's shape, and create circumferential tension. Shaped memory alloys or polymers can be woven into fabric that the suit is constructed of.
While close fitting differential pressure suits 14 and circumferentially-tensioned suits 100 have been described for use with the assisted motion system 10 of the present invention, a looser-fitting suit 110 may also be employed, as shown in
Mobility of the body 114 and lower legs 116 is provided by constant volume joints positioned at the waist 118, knee 120, and ankles 122, respectively, of the suit 110. The equation for work where volume is changed under a constant pressure is:
W=P×ΔV
where W is work, P is the constant pressure, and ΔV is the change in volume. Clearly, holding the volume constant in a joint, such that ΔV=0 over the course of joint flexure is one way to nullify the need to expand work just to flex the suit joint.
A constant-volume joint allows the cross-sectional area of the joint of the suit to maintain a constant volume of pressurized air P during bending of the body, so that the work, and thus the force, required to bend the joint is minimized. In the preferred embodiment of loose-fitting differential pressure suit 110, the constant volume joints consist of baffles and tensioning straps along the sides of the joint to prevent the baffles from extending. Other types of constant-volume joints known in the prior art, such as “Space Suit Mobility Joints described in U.S. Pat. No. 4,151,612, and which is hereby incorporated by reference in its entirety, may also be utilized. The suit shown in
Pressurized gas 126, such as air, is injected into the suit 110 by means of control system 128 and hoses 129. A person wearing the suit 110 may exercise on a treadmill 127, but portable pressurized gas systems are also possible.
A rubberized nylon can be utilized to construct a single-layer suit. This can be sewn into the appropriate shape using a standard sewing machine. Thigh seals can be made from a commercially-purchased neoprene compression sleeve. Compression sleeves are available from Advanced Brace of Irving, Tex. Neoprene compression shorts are available from the same supplier. The compression sleeve can be sewn interior to the pant around the thigh opening, and made airtight with seam sealer in the form of Seam Lock sold by REI, Inc. of Sumner, Wash. to make the seam airtight. A shorts-type waist seal can be constructed by sewing the waist area to the outer rubberized nylon suit, and sealing the seams to make it airtight. Alternatively, a compression sleeve may be connected to the rubberized nylon exterior suit, by placing each over an appropriate diameter steel band, and then clamping together the two layers of material with another outer ring. A standard air intake fitting can be installed in the pants to provide a port for pressurizing the suit.
Another important aspect of the assisted motion system 10 of
Shown in greater detail in
The frame 130 shown in
The pressurized suit 132, as described in other embodiments of this invention, will create a force along the vertical axis of pushing the body up, with the reaction force being that of pushing the suit down. The latter is countered in this embodiment by offloading this downward reaction force to the ‘bike’ frame 130, thereby effectively delivering part of the runner's weight to the bike frame and thus to the ground through the wheels.
A mechanism 144 allows for both rotational and angular pivoting of the runner's torso during the motion of running. In this embodiment, the mechanism simply consists of a flexible pleated material 140 surrounding the region about the waist of the pressure suit, which may bend and twist with the movement of the runner's torso. Other mechanical mechanisms for this purpose may also be utilized.
The running support frame 130 has a mechanism 146 for steering the bike. In one embodiment of the steering mechanism, the movable front wheel 136 is steered in a similar fashion to a bicycle, except instead of long handlebars, cables 148 and a small steering wheel 150 are used employing well-known mechanical methods to implement steering. In a second embodiment of the steering mechanism, a handlebar is brought back in reach of one or both arms of the runner. The only difference in this embodiment and a standard bicycle steering mechanism is that a centering spring holds the bike true, or non-turning until the runner applies force to the steering handle bar. This allows periods of running without active steering. A third steering embodiment uses a stepper motor in the steering column powered by an embedded rechargeable battery. The steering is controlled by the motor via a wireless handheld glove actuator that provides motion commands to the motor using well-known wireless and motion control methods. This permits the runner to freely swing his arms in a natural running motion, and still retain full-time steering control. A fourth steering embodiment positions the hub of the wheel backwards or forwards of the vertical axis of steering to provide automatic steering.
The running support frame 130 may also have standard bicycle brakes which are operated by a band lever using well-known means, or by the handheld remote control method that may actuate electric powered brakes.
An optional constant force extension mechanism may be used that provides a constant upwards force on the pressure suit allowing it to move vertically with the vertical motion of the runner's body. The constant force of the mechanism is adjustable so that the upwards force on the mechanism is equal to the downwards force of the suit under pressure. The suit can thus float vertically up and down with the motion of the runner's torso, while maintaining an essentially constant upward force on the suit. A range of motion of 0-7 inches is provided to accommodate various runners, with 3 to 4 inches being a typical vertical displacement in running motion.
Different frames sizes may be provided to fit different sized runners. The vertical position of the rotational and angular pivoting mechanisms and the constant force may be adjustable to accommodate different body heights.
An alternative embodiment to the foregoing bicycle-like running support structure 130 is a cart-like structure with four wheels, arranged as pairs of wheels lateral to the left and right sides of the runner, as shown in
Yet another embodiment may be that of a tricycle, where a pair of wheels front-left and front-right of the runner are connected to the frame as in the four-wheeled cart, and a third free wheel and a single free turning rear wheel confers stability to the system. Finally, it should be realized that any number of wheels may be used without departing from the scope of this invention.
This is accomplished by providing a set of sliding rods which support the runner and are arranged to allow for longitudinal and lateral motion. A rigid waist loop supporting member 188 wraps around the runner's body and connects to the pressure suit 184 at the waist. A horizontal longitudinal sliding rod 190 connects to each end of the frame and slides through the fittings 192. The sliding longitudinal rod allows for longitudinal movement of the runner in the front to back direction on the track 182. The fittings 192 are attached at the middle of each of two sliding horizontal lateral rods 194. These sliding lateral rods allow for lateral movement of the runner on the track in the side-to-side direction. The lateral sliding rods 194 slide through fittings 196 that are fixed atop constant-force pneumatic springs 198. Preferably, these springs provide a constant force to support the vertical downwards loads from the suit and sliding rods, and allow for vertical motion of the runner 186. In other embodiments, the springs may be constant-force mechanical springs, as is known in the art. The springs may also be mechanical or pneumatic springs that are not constant force. The springs are connected to vertical rigid members 200 that connect to the base of the treadmill.
In usage, the constant-force air cylinders are each set such that the total force equals the desired weight to be subtracted. Air cylinder actuators are available from Bimba Manufacturing Company of Monee, Ill. Prior to pressurizing the pants 184, the runner steps up on a small support about one foot above the surface of the treadmill, and clips into the hooks on the air cylinder apparatus. Once this is done, the pants 184 may be pressurized. By standing on a scale, the pressure may be set to subtract the desired weight. Alternatively, since the pants characteristics should be known a priori, a specific calculated pressure P applied to the pants 184 will yield a specific weight subtraction. The desired weight subtraction set via the pressure P, and the counter force supplied by the air cylinders 198 can be approximately matched. A control system can apply the correct calculated pressure to the constant force springs 198. During running, a runner could move vertically from 1 to 7 inches, typically 3 or 4 inches, vertically relative to the running surface. The function of the air cylinders 198 is to maintain a constant offloading of the reaction force dynamically, in response to this vertical displacement during running.
In lieu of the wheeled or static support structure discussed above for this invention that is separate from the pressurized suit, the supporting structure component may be directly incorporated into the pressure suit so that both the supporting frame and the pressure suit and body have the same movements, in this manner the invention provides for a wide range of movements and exercises over a variety of terrains.
As shown in the embodiment 230 of
The embodiment 240 shown in
Another type of supporting device for the assisted motion system 10 of the present invention utilizes the air pressure of the pressurized suit to support the runner. In this case, no supporting frame is required. The column of pressurized air contained in the leg units is capable of supporting a load equal to the differential pressure ΔP times the cross-sectional area of the leg unit Au.
As shown in
The positive pressure differential ΔP in the leg unit results in an upwards-directed resultant force Fb on the body located at the centroid of the cross-sectional area Au of each leg unit. The total amount of this upwards force Fb on the body from a leg unit is:
Fb=ΔP×Au.
As discussed with respect to
In another embodiment, the tubular units may be shaped into forms that enable the motion of the person wearing the suit 252, and provide for a more compact design. For example the tubular units may be elliptical with the longer axis aligned with the forwards-backwards axis of motion. The shape of the cross-sectional area can vary moving up and down the leg. The lower cross-sectional area can be shaped more like the lower leg and foot. The upper cross-sectional area can be shaped like the thigh. This provides for a streamlined form, which does not interfere with the running motion.
Alternatively, the tubular unit may have a separate outer pressurized chamber that provides the support. This chamber can have a higher pressure than required for providing support to the body to enable supporting a higher load with less of a cross-sectional area for the tubular unit.
The unit may also have separate smaller pressurized tubular units which support the load. Such an embodiment provides a more compact form closer fitting to the body.
For the suits described which provide exoskeletons as the supporting structure, the movement of various body movements can be further enhanced by using a powered exoskeleton, as is known in the art. A powered exoskeleton consists primarily of a skeleton-like framework worn by a person and a power supply that supplies at least part of the activation-energy for limb movement. Typically, a powered exoskeleton is attached at specific localized points of the body through mechanical means. These local mechanical pressure contact points on the body are deleterious. The use of differential pressure to support the body allows for the coupling of the exoskeleton to the body to be distributed over a large body surface.
The concept of supported differential pressure can be utilized to un-weight other areas of the body. For example, by creating a pressure differential between the narrower waist or lower pelvis of a seated person using a supported differential upper body pressure suit, the person's upper body weight can be unweighted. This could be used to reduce pressure on the lower back and spine for people with lower back pain, degenerative or ruptured disks, etc.
An example of this suit is shown in
A challenge posed by the pressurized suit of the present invention is proper management of the balance between the downwards force of the suit and the upwards force applied by the previously described constant-force adjustment mechanism, support structure, or other offloading means. In particular, the forces must be balanced when the suit is pressurized or depressurized. If the force developed by the downwards force of the suit and the counter force applied by the constant-force adjustment mechanism are not applied simultaneously, the result will be imbalance of the downwards force of the suit and the upwards force of the offloading means. Thus, if the air pressure is applied first, the unopposed downward force will drive the suit downwards. Conversely, if the upward counter tension force is applied first, then the suit will be pulled upwards. If however, the two forces are applied so as to continuously counter-balance each other, then the suit will remain in its correct position on the person's body.
A method for smoothly applying the pressure and the offloading counter force to the person wearing the pressurized suit will be described. The application to pressure pants is used for exemplary purposes only, for a similar system may be applied to the other embodiments of the invention, including the suit using negative differential pressure. The preferred method of an adjustable, but approximately constant-force spring will be described. Following that, a mechanism to create a set point for a control algorithm will be described.
As described above, it is important over small vertical displacements in the range of a typical runner (nominally 3 inches) that the counter force is maintained approximately constantly. A variation of no more than five pounds of force over three inches is preferred. This is readily accomplished with stretch (bungee) cord material of approximately four feet in length, with a spring constant of 10 pounds per foot. Note that two cords are preferably used: one on the left side and the other on the right side of the person. Thus a 40 pound maximum force on each cord will yield an 80 pound offloading maximum. To achieve 40 pounds on each side, the stretch cord will be stretched to twice its length, or four feet of displacement. Note that the 3 inch (0.25 feet) vertical displacement of the person during running will cause 2.5 pounds of force loss on each cord at the peak height, for a total of 5 pounds, which meets the preferred minimum variation.
In
In parallel with the primary stretch cord 800 is a secondary cord 810 whose purpose is essentially for measurement and control. Cord 810 terminates at a fixed location 811 near pulley 801, and its initial section is a short spring 812 with a spring constant of one pound per foot, followed by an inline control load cell 813, a non-extensible cord section 814, and a hand-operated ratcheting pulley 815 mechanism. The lower end of 815 terminates in a non-extensible rope 816 that attaches to the pants.
The input controller keypad and display 817 contains a microprocessor. The microprocessor receives digitally converted inputs from the load cells 805 and 813 and the pants pressure sensor 818. The microprocessor, in addition to standard I/O functionality for the treadmill, also controls the pants pressurizing valve and a counter tensioning windup motor.
At startup, the individual when ready begins with a START command to the input control pad 817. After standard checks to ensure that inputs are being received from the load cells 805 and 813 and pressure sensor 818, the system instructs the user to tension ratcheting pulley 815 until the 1 pound set point (plus/minus a suitable tolerance) is attained. When attained, a READY status is reported on the display, and the user stops manually tensioning. The primary tension cable 800 is tensioned via actuating the windup pulley 807 until a slight decrease in the control load cell is detected, and then it is paused at this setting. The user then enters on the keypad 817 a target body weight to be offloaded by the system. At this point, the air flow is initiated to generate pressure within the suit and the measurement from load cell 813 is monitored in the control software. As soon as load cell 813 registers a force increase, incremental tension is applied by turning windup pulley 807 again to maintain the set point on the control load cell 813 at one pound. Subsequently an increment of air flow may be applied through air inlet hose 819, followed by incremental counter tension by actuating windup pulley 807 so as to maintain the one-pound set point on the control load cell. In the simplest embodiment, this back and forth iteration may proceed until the desired target weight is achieved on load cell 805, or the maximum system allowed pressure is reached as reported by pressure sensor 818.
More sophisticated control algorithms may also be used for purposes of this elastic suspension system of the present invention, such as a proportional-integral-derivative (PID). The key aspect is that the control parameter as reported by load cell 813 is increased by the air pressure system, whereas it is decreased by the counter tension mechanism, and the control algorithm operates on both systems to maintain the desired set point of the control parameter. When the user begins running, the system may not need to monitor and perform further adjustments. However, by monitoring the cyclic peak values reported by load cell 813, on-going adjustments may be made to maintain the desired set point.
Another method for pressurizing the pants and applying the counter force incrementally may be performed as follows, again referring to
While these embodiments of the elastic suspension system have been depicted with respect to a stationary treadmill located indoors where the control unit can be mounted above the person exercising on the treadmill, it is important to appreciate that portable systems employing the electro-mechanical principles of this invention can be used as well. For example, a similar system could be mounted to a bicycle frame to manage the countervailing pressure and support forces applied to the pressurized suit worn by the bicyclist. It is also important to appreciate that this elastic suspension system is not essential to use of the pressurized suit of the present invention.
A further use for a mobile pressurized suit is as a support aid that can be used to assist the mobility of elderly or physically-impaired people undergoing rehabilitation, particularly those recuperating from leg or back injuries. The four-wheeled cart-like support structure 900 of
The support aid's frame 902 and front wheels 903 and rear wheels 904 are designed and sized so that the mobile unit has the functionality of standard wheeled walkers. The front wheels turn and pivot to allow for easy turning. All four wheels may also turn and pivot. Typically the Wheels 903 and 904 are at least seven inches in diameter—preferably eight inches—to ensure better reliability. A three-wheeled walker may also be utilized. Moreover, to enhance the safety, convenience, and durability of a wheeled walking aid and its parts, the wheeled support aid may utilize tubular seats, back seats, and baskets with spacers and cushions.
The wheeled support aid can be incorporated with hand-operated brake levers 905 and brakes 910. The brakes on the wheeled support aid may constitute locking brakes to allow the person to stand while supported in a stationary position. Other means of braking may be provided for those with limited use of their arms and hands. The wheeled support aid can be designed to enable greater range for rotating the body from side to side to enable the person in the wheeled support aid to turn from side to side and stand facing one side or the other, or even the back. It may also have a seat that will allow for resting. The wheeled support aid will have adjustable height. The wheeled support aid may also be designed with a folding mechanism for compact storage.
The wheeled support aid can feature band supports for assisting the entry and exit from the support aid. The wheeled support aid can be constructed from light-weight materials such as aluminum or composites. The pressure-assisted wheeled support aid may preferably use tubular seats, back seats and baskets with spacers and cushions. The wheeled support aid can be equipped with a source of pressurized air to control pressurization of the suit, and means for balancing the downwards force of the suit automatically as the pressure is adjusted.
The impaired person 911 wears a pressurized suit 907 that attaches to the frame of the walker at attachment points 907. The various attachment methods previously described may be utilized. The previously described constant-force adjustment mechanisms may also be incorporated. For walking applications, there is minimal up and down vertical motion of the walker compared with a running motion, so less overall adjustment and force balancing is needed for this embodiment. Various embodiments of the pressurized suit 901 described earlier can be utilized with this wheeled support aid. The suit can be customized for easy entry and exit by physically impaired persons. In particular the pressure suit can have extra long zippers 908 and an easy entry supporting ring which makes the suit easy to put on for a physically impaired person.
In addition to injury rehabilitation and cardio training, the pressurized suit of the present invention can also be used with beneficial results by a person looking to lose weight. In order to burn fat through physical exercise, the medical community advises that the person's heart rate needs to be maintained within a specified range, usually lower than the heart rage for cardio training. Many people significantly overshoot this heart rate range for fat burning, resulting in a failure to lose desired amounts of weight. This disappointment often causes people to quit their exercises because of their difficult or unpleasant nature, and rely instead upon extreme diets.
The pressurized suit of the present invention, when properly used, enables the person to reach an elevated level of physical exercise with a significantly reduced heart rate. This should make it easier for that person to maintain her heart rate within the prescribed range for fat burning, and enhance the likelihood of achieving her weight reduction goal.
The invention provides body weight support in a way that does not restrict one's natural body movements that occur while walking or running. Specifically the invention is an improved system for a body weight support device for connecting a person's body to the weight off-loading components of the device (referred herein to a constant-force adjustment mechanism) so as not to restrict natural body movements. During walking or running gait the body moves and rotates about various axes of the body shown in
The attachment between the body suit and the band is shown in detail in
In addition to band and pulley system the present invention can include a second suspension apparatus for providing freedom of movement of the body about the various axes of rotation with body weight support.
In other embodiments, as will be described subsequently, the rigid band is attached directly to a constant-force adjustment system. In other embodiments, the cord (2006) in
The above described suspension apparatus the present invention provides for unrestricted movement of a person about the various axes rotation of the body, as described above. In use the upper end of the bar (2021) and the cable (2017) are aligned with the superior-inferior (i.e. vertical) axis (2010) of the person. The cable and bar (2016) are free to rotate about this axis as the person's body rotates. This allows for unrestricted body and hip rotation about the superior-inferior (i.e. vertical) axis (2010) of the person. The pivot attachment point (2022) between the vertical L-shaped support bar (2020) and the horizontal c-shaped support bar (2023) allows the c-shaped support bar (2023) to pivot about the anteroposterior (front to back) axis (2012) of the person. This allows for unrestricted back and forth rotation about the anteroposterior (front to back) axis (2012) of the person. The pivot bearing attachment (2027) between the horizontal c-shaped support bar (2023) and the band (2003) allows the band (2003) to pivot about the medio-lateral (i.e. side-to-side) axis (2011) of the person in the device which allows for unrestricted rotation of the person. In summary the suspension mechanism (2005) provides a means for supporting body weight without restricting body movement and rotation about the superior-inferior, anteroposterior and media-lateral axes of rotation. Thus both the band pulley system and the suspension mechanism provide for unrestricted movement of the body during walking and running. They both provide a means for enabling unrestricted body movement in a body weight support device.
In another embodiment the rigid band and pulley system is used with a mobile device such as a walker as a support aid that can be used to assist the mobility of elderly or physically-impaired people undergoing rehabilitation, particularly those recuperating from leg or back injuries. A mobile walker to provide body weight support using differential pressure suit is previously described in this application. Another use of the rigid band and pulley system on a mobile device is to provide stability for walking. If a person becomes unstable or loses balance the pulleys and band inherently provide a counter force as the person tilts from vertical. The pulleys and band make it difficult or even impossible to fall. Falls are a major source of injury and death to the elderly and disabled population. The above-described wheeled walker is also advantageous for those impaired persons with limited or no use of their hands and arms because it does not require the use of their hands and arms for support as is necessary with a traditional walker. The support aid provides the necessary support and stability for that person instead of him having to resort to his arms and hands leaning on a conventional walker. The support aid may also be used to provide body weight support while both walking and running. It is an improved system for rehabilitating a skeletal joint injury or training for injury prevention, athletic performance, or fat reduction, or assisting the mobility of the physically disabled.
A constant-force adjustment mechanism 822 is attached to each side of the wheeled support aid. The constant-force adjustment mechanism control system and user interface may be similar to the constant-force adjustment mechanism previously described in this application. In the embodiment described herein compression springs 823 are utilized to provide the constant force. Other mechanisms that provide a relatively constant force such as constant force air springs might also be utilized in place of the compression springs.
The preferred method of an adjustable compression spring will be described. It is important over small vertical displacements in the range of a typical walker (nominally 1-3 inches) that the counter force is maintained without great variability. Thus a spring constant of only a few pounds per inch is used such that force when the spring is compressed changes only modestly when the individual rises slightly during walking.
In
Upon startup, the unweighting is not realized all at once, but can only happen as fast as the pants become pressurized, which in the described system requires on the order of 10 to 20 seconds. The counter-tensioning value, supplied by engaging the gear motor to begin compressing the compression springs, is developed at a rate such that the above equation is maintained dynamically, within a 5 pound limit. In the preferred control algorithm during build up to a target unweighting value, the load cells and pants pressure are read every 50 milliseconds, and if the above equation, due to increasing pressure can support a further increment of unweighting, the gear motor is engaged for a short increment. Air flow continues until the desired target air pressure is reached, and every few milliseconds further force is applied to the springs such that when the air pressure target is reached, the counter-tensioning value is simultaneously reached. The same lock step algorithm is engaged if the un-weighting set value is changed, or dropped to zero.
A further enhancing mechanism particularly for disabled individuals desiring to walk in the system is power assisted wheels. A phenomenon when one is greatly un-weighted by the disclosed walker system, is that one has less ‘leaning’ ability to nudge the walker into motion, simply because one effectively weighs less. Normal individuals can easily overcome this by pushing with their arms and legs, but the addition of power assisted wheels are a useful enhancement for frail or rehabilitating individuals. The mechanism is realized by an electric motor and clutch on each of the front two wheels that supply a significant fraction of the force necessary to overcome friction and roll the walker. The motor need not run full time but is engaged with a band switch on the walker to conserve battery power. This also serves as an optional braking mechanism, in that if the engagement switch is released, the wheels may brake. The clutch mechanism allows users to exceed or overdrive the force supplied by the motor to the extent that they are capable of exceeding the very minimal startup speed supplied by the wheel motors.
Both the powered and non-powered mobile support aids that utilize the band and pulley suspension system can utilize a pressurized suit, a non-pressurized suit or a harness. The powered mobile support aid's frame 802 and front wheels 803 and rear wheels 804 are designed and sized so that the mobile unit has the functionality of standard wheeled walkers. Similarly the non-powered mobile support aid's frame 902 and front wheels 903 and rear wheels 904 are designed and sized so that the mobile unit has the functionality of standard wheeled walkers. The front wheels turn and pivot to allow for easy turning. All four wheels may also turn and pivot. Typically the wheels 903 and 904 are at least seven inches in diameter—preferably eight inches—to ensure better reliability. Various numbers of and configurations of wheels may also be utilized including configurations with three, five, six or more as in known in the art. The wheels may be combinations of fixed or pivot wheels and may be of different sizes and configurations as is known in the art. The number, size, type and configuration of wheels provides for various handling, maneuverability and stability characteristics required for various therapeutic uses. The wheels may be connected to a steering mechanism, so the person or a person assisting him may manually steer the wheeled support aid. Moreover, to enhance the safety, convenience, and durability of a wheeled walking aid and its parts, the wheeled support aid may utilize tubular seats, back seats, and baskets with spacers and cushions.
The powered wheeled support aid can be incorporated with hand-operated brake levers (805) and brakes (810). Similarly the non-powered wheeled support aid can be incorporated with hand-operated brake levers (905) and brakes (910). The brakes on the wheeled support aid may constitute locking brakes to allow the person to stand while supported in a stationary position. Other means of braking may be provided for those with limited use of their arms and hands. The wheeled support aid can be designed to enable greater range for rotating the body from side to side to enable the person in the wheeled support aid to turn from side to side and stand facing one side or the other, or even the back. It may also have a seat that will allow for resting. The wheeled support aid can have adjustable height mechanism to accommodate various sizes of persons. The wheeled support aid may also be designed with a folding mechanism for compact storage.
The wheeled support aid can feature band supports for assisting the entry and exit from the support aid. The wheeled support aid can be constructed from light-weight materials such as aluminum or composites. The wheeled support aid may preferably use tubular seats, back seats and baskets with spacers and cushions.
The constant-force adjustment mechanism (1022) is attached at each side of the treadmill. The constant-force adjustment mechanism control system and user interface similar to the constant-force adjustment mechanism previously described in this application. In the embodiment described herein compression springs (1023) are utilized to provide the constant force. Other mechanisms that provide a relatively constant force such as constant force air springs might also be utilized in place of the compression springs. At the end of compression spring (1023) is an electronic load cell (1030) capable of measuring the desired compression from 0 to 100 pounds. Mounted on the bottom side of the compression spring is a gear motor (1031) and displacement shaft (1032). The motor has a displacement encoder that is fed to the system microcontroller, along with the load cell information. In this embodiment the user would select two parameters from a control panel (not shown) mounted on the treadmill's control panel: first the desired un-weighting level in pounds and a second a setting that relates to the cross sectional area of the individual. The enclosure (1010) contains an air pressure source, air regulator and microcontroller running control software. A cable 1033 connects the load cell to the enclosure. An air hose (1034) delivers pressurized air to the suit. The software is programmed to deliver a specified air pressure to support unweighting, as well as a control signal to the motors (1031) to displace the compression springs (1023) to a specified level as measured by the load cell (1030). An air line (1011) connects the air pressure source to the pants. The constant force control mechanism is the same as described previously for the powered mobile device.
An improved embodiment of the close fitting differential pressure suit is described below. A construction of the layers of embodiment is shown in
The bladder can be sized to the same size as the outer constraining layers 1136 and 1138 or it maybe sized to be smaller or larger than the outer constraining layers. The bladder can be sized to extend various lengths up the waist of the suit, so that positive pressure is applied only in sections that the bladder extends to beneath the constraining layers. The bladder can extend upwards from the legs just to the hips, or just to approximately the pelvic area, or all the way to the waist. The bladder may be patterned so that it conforms to zippers incorporated into the suit. The bladder may be constructed from identically sized sections of fabric, so that one section forms an inner layer 1131 and one section forms the outer layer 1131b or the bladder. The bladder may be constructed by sewing the sections together with a heat sealing film at the seams to make an airproof seam. One heat seal film is Bemis 3218 adhesive film available from Bemis 100 Ayer Rd—Shirley, Mass. 01464 USA.
The fabric for these first and second outer constraining layers 1136 and 1138 should be composed two way stretch fabric. This type of fabric is constructed to mostly be non-extending along one axis, and elastic or extensible along a second axis perpendicular to the first axis. Exemplary two way stretch materials include, without limitation, nylon-Lycra that can be knit or braided, or a monofilament like nylon or Dacron. Two-way stretch fabrics are available from Shoelier Textile USA of Seattle, Wash.
The fabric can be more specifically oriented so that its non-extending axis follows lines on the body in which the skin does not stretch or extend during bending or other movement. These lines are known within the industry as “lines-of-non-extension.” The concept of lines of non-extension is described in a published technical report: THE USE OF LINES OF NONEXTENSION TO IMPROVE MOBILITY IN FULL-PRESSURE SUITS, ARTHUR S. IBEIALL, RAND DEVELOPMENT CORPORATION, AMRL-TR-64-118, AMRL-TR-64-118. Lines-of-non-extension are directions on the skin of the body in which the skin does not stretch or extend. A picture from the report which maps the lines of nonextension on a mannequin is shown in
The constructions of the two outside layers 1136 and 1138 are such that the stretch and non-stretch directions of the fabric are mapped into the lines-of-non-extension as best as possible. This is accomplished by constructing the suit of multiple sections of two-way stretch fabric in a pattern which maps the non-stretch direction of the individual fabric sections onto the lines of nonextension as best possible.
A pattern 1201 for the first outer layer 1136 is shown in
The suit also can incorporate sections of four-way stretch fabric as necessary in areas that require stretch in both directions. Where appropriate in sections of the body which do not stretch as much, such as the thigh area or lower calves, cloth, mesh, or net material that is non-extendible along both axes may be used.
A drawing of a runner 1301 using a body weight support system 1303 on a treadmill 1303 wearing the differential pressure suit 1302 described in this embodiment is shown in
The differential pressure suit on the runner 1301 shown in
The suit 1302 shown in
While the suit is described above as having multiple layers of fabric including air impermeable and two way stretch fabrics orientated and located as described, the functions of these various layers can be combined into fewer layers of fabric so that at a minimum the suit is comprised of a single layer of fabric with the functionality of the layers combined. For instance two-way stretch fabrics that is also air impermeable and or water vapor permeable can be utilized to both contain pressurized air and constrain the suit as a single function. Or two or more layers of fabric can be laminated together so that the fabric consists of a single layer with the functionality of the individual layers.
A rigid band is constructed from curved rigid aluminum strip 1 inch wide and ⅛ inch thick. The band is oval in shape. Pulleys are attached to the band as follows. Two pulleys are attached at the front and back midpoints of the band, two pulleys are attached at the midpoints at the side in the configuration shown in
An L-shaped vertical component (2020) of the suspension apparatus is formed from 1 inch diameter, aluminum tubing, as shown in
A mobile ‘walker’ device has been constructed using the concepts illustrated in
Elderly or physically-impaired people undergoing rehabilitation, or people suffering from gait and balance problems due to strokes, Parkinson's and other neurological disorders, or people requiring hospitalization, or recovering from illness or surgery often lack the strength and balance to rise from a sitting to a standing position. Nurses, physical therapists, aids, and other care providers often have to assist in standing and walking. Assisting large persons in standing and walking requires significant physical strength and sometimes requires several people. Furthermore, there is a risk of falls to the patient or harm to the care provider from heavy lifting. Thus, the present invention provides a lift-assisted mobility device that provides both body weight support and lift assistance. It functions to off-load a portion or all of the person's body weight in order to make it easier for him to rise from a sitting position to a standing position.
A preferred embodiment of the lift-assisted mobility device 1401 is shown in
As shown more clearly in
A latch 1408 is connected to the end of a horizontal support bar 1409 that extends from the top end of the vertical shaft 1407. The latch 1408 couples with a rigid band and pulley system 1503, as shown in
The differential pressurized suit 1502 shown in
Other embodiments of the lift-assisted mobility device can utilize a non-pressurized body suit, or a harness assembly rather than a pressurized differential pressure suit. For example, the band and pulley system of the lift-assisted mobility device may be attached to a leg harness 916 as shown in
In some rehabilitation settings, there are advantages to being able to use a mobile support device in stationary mode in conjunction with a treadmill. For example, in traumatic brain injury patients, the added stimulation of ambulating about the rehabilitation facility may be overwhelming, making the fixed treadmill setting desirable, or a physical therapist may need to remain in a seated position to access the patient's legs while the patient ambulates. It will also be economical to be able to utilize a hospital's mobile support device on a standard treadmill, rather than purchasing a separate overhead harness system for treadmill-based therapy.
A means of mounting a mobile support device (walker) on a stationary treadmill frame is shown in
A rear view of the treadmill-walker system is shown in
The above specifications and drawings provide a complete description of the structure and operation of the assisted motion system 10 under the present invention. However, the invention is capable of use in various other combinations, modifications, embodiments, and environments without departing from the spirit and scope of the invention. Therefore, the description is not intended to limit the invention to the particular form disclosed, and the invention resides in the claim and hereinafter appended.
This application claims the benefit of the U.S. provisional application No. 61/626,749 entitled “Suspension and Body Attachment System and Differential Pressure Suit for Body Support Devices” filed on Oct. 3, 2011, and is a continuation-in-part of U.S. Ser. No. 13/573,692 filed on Oct. 3, 2012, which is a continuation-in part of U.S. Ser. No. 12/456,196 filed on Jun. 12, 2009, which is a continuation-in-part of U.S. Ser. No. 12/319,463 filed on Jan. 7, 2009, which claims the benefit of U.S. provisional application Nos. 61/010,034 filed on Jan. 7, 2008, and 61/131,919 filed on Jun. 13, 2008, all of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1629108 | Lake | May 1927 | A |
2675856 | Abdallah | Apr 1954 | A |
2762047 | Ruseckas | Sep 1956 | A |
2825327 | Tunnicliffe | Mar 1958 | A |
3355230 | Trexler | Nov 1967 | A |
3744491 | Fischer | Jul 1973 | A |
3823711 | Hatton | Jul 1974 | A |
3823712 | Morel | Jul 1974 | A |
4003371 | Fischer | Jan 1977 | A |
4039039 | Gottfried | Aug 1977 | A |
4151612 | Vykukal | May 1979 | A |
4211223 | LoPiano | Jul 1980 | A |
4230114 | Feather | Oct 1980 | A |
4257407 | Macchi | Mar 1981 | A |
4343302 | Dillon | Aug 1982 | A |
4421109 | Thornton | Dec 1983 | A |
4509513 | Lasley | Apr 1985 | A |
4577622 | Jennings | Mar 1986 | A |
4691695 | Birk et al. | Sep 1987 | A |
4844452 | Tomosky | Jul 1989 | A |
4959047 | Tripp, Jr. | Sep 1990 | A |
5029579 | Trammell | Jul 1991 | A |
5133339 | Whalen | Jul 1992 | A |
5176597 | Bryne | Jan 1993 | A |
5273502 | Kelsey et al. | Dec 1993 | A |
5356361 | Watenpaugh | Oct 1994 | A |
5478310 | Dyson-Cantwell et al. | Dec 1995 | A |
5503143 | Marion et al. | Apr 1996 | A |
5537686 | Krutz, Jr. et al. | Jul 1996 | A |
5704881 | Dudley | Jan 1998 | A |
5865722 | Heng | Feb 1999 | A |
5997465 | Savage et al. | Dec 1999 | A |
6045519 | Smith, Sr. | Apr 2000 | A |
6093024 | Sokolowski | Jul 2000 | A |
6302828 | Martin et al. | Oct 2001 | B1 |
6460195 | Wang | Oct 2002 | B2 |
6589194 | Calderon et al. | Jul 2003 | B1 |
6757916 | Mah et al. | Jul 2004 | B2 |
7341543 | Dandy | Mar 2008 | B2 |
7363931 | Weaver | Apr 2008 | B2 |
7591795 | Whalen et al. | Sep 2009 | B2 |
20020025889 | Egger | Feb 2002 | A1 |
20020116741 | Young | Aug 2002 | A1 |
20030216672 | Rastegar et al. | Nov 2003 | A1 |
20040063550 | Harris | Apr 2004 | A1 |
20050070405 | Egger | Mar 2005 | A1 |
20050183759 | Wolfe | Aug 2005 | A1 |
20060049611 | Stevens | Mar 2006 | A1 |
20060135889 | Egli | Jun 2006 | A1 |
20060189899 | Flaherty et al. | Aug 2006 | A1 |
20070157651 | Naaman | Jul 2007 | A1 |
20070179421 | Farrow | Aug 2007 | A1 |
20070181121 | Whalen | Aug 2007 | A1 |
20080247837 | Cardona | Oct 2008 | A1 |
20100000547 | Johnson et al. | Jan 2010 | A1 |
20120238921 | Kuehne et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
WO2009151630 | Dec 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20140026893 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61626749 | Oct 2011 | US | |
61010034 | Jan 2008 | US | |
61131919 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13573692 | Oct 2012 | US |
Child | 13839204 | US | |
Parent | 12456196 | Jun 2009 | US |
Child | 13573692 | US | |
Parent | 12319463 | Jan 2009 | US |
Child | 12456196 | US |