This invention pertains to electronic hearing aids and methods for their construction.
Hearing aids are electroacoustic device which amplify sound for the wearer in order to correct hearing deficits. Certain types of hearing aids, referred to as behind-the-ear (BTE) hearing aids, utilize a housing that is worn behind the ear that contains, among other things, a receiver (e.g., loudspeaker) that conducts sound to an earbud inside the ear via an audio tube. The receiver is an electro-acoustic transducer that converts electrical signals to acoustic signals and is a source of magnetic radiation that may affect other components inside the housing such as the processing circuitry or a telecoil used to receive audio signals from a magnetic source such as a telephone. The generation of an acoustic signal by the receiver also causes the receiver to vibrate which can affect the overall performance of the hearing aid. For example, the vibrations in the receiver can be transmitted back to the microphone, causing unwanted feedback.
The following detailed description of the present subject matter refers to subject matter in the accompanying drawings which show, by way of illustration, specific aspects and embodiments in which the present subject matter may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present subject matter. References to “an”, “one”, or “various” embodiments in this disclosure are not necessarily to the same embodiment, and such references contemplate more than one embodiment. The following detailed description is demonstrative and not to be taken in a limiting sense. The scope of the present subject matter is defined by the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
To dampen or reduce the transmission of receiver vibrations within the receiver can, a receiver suspension assembly may be provided. Described herein are embodiments for receiver suspensions that may be used alone or in any combination. Previous designs for receiver suspensions are bulky and difficult to align without biasing the receiver and usually must be developed differently for any specific receiver. The embodiments described below may be implemented to provide modular manufacture, size reduction, consistency (performance & acoustic seal), and uniformity (one size fits all)
In one embodiment, the receiver 160 has top and bottom ends with a spout 161 extending from the top end for conducting sound generated by the receiver. The receiver can 250 has top and bottom ends with the top end being open to allow insertion of the receiver therein.
In the embodiment shown by
When the receiver is placed in the receiver can, the bumpers 260 maintain stability while reducing points of contact which could bias the receiver and transmit vibration.
Other techniques for suspending a receiver within a receiver may involve the use of custom molded wrap around gaskets and bumpers. These types of designs, however, are generally expensive and difficult to align in manufacture. Placing two square elastomer gaskets on opposite ends of a receiver, sealing around a spout on one of them, and running wires under the front one without creating misalignment or excessive contact with the can is difficult. Even if that is accomplished, there is still a need to insert a rigid seal tube from the outside to lock and seal everything in place. This action can now create a linear compression force on the internal gaskets which also can bias the receiver and or transmit vibration.
In the embodiments described above and illustrated by
Alternative embodiments to those described above include the use of a spine interface to retain the suspensions and isolate the receiver. Another embodiment involves the use of a modular universal suspension assembly with a modified can cover configured to retain and acoustically seal a reduced form ear-hook interface contained entirely inside the device.
In an example embodiment, a hearing aid comprises: an input transducer for converting an audio input into an input signal; a processor for processing the input signal into an output signal in a manner that compensates for a patient's hearing deficit; an audio amplifier, and a receiver for converting the output signal into an audio output, wherein the receiver is contained in a receiver can as described above.
In an example embodiment, a hearing aid comprises: a receiver for converting an electrical signal into an audio output; a receiver can for containing the receiver, wherein receiver can has top and bottom ends with the top end being open; a spout at the top end of the receiver for conducting sound out of the receiver; a cover assembly for covering the open top end of the receiver can and for containing the receiver's spout when the receiver is mounted within the receiver can; and, wherein the cover assembly is mated to an audio tube for conducting sound from the receiver's spout. The hearing aid may further comprise a spout suspension seal surrounding the receiver's spout within the cover assembly. The spout suspension seal may be an annular ring made of elastic material that radially seals a connection between the receiver's spout and the audio tube. The hearing aid may further comprise elastomeric bumpers mounted on the bottom end of the receiver to suspend the receiver within the receiver can when the receiver is mounted therein. The receiver can and receiver may be both generally cuboidal in shape and wherein a pair of elastomeric bumpers are mounted at opposite diagonal corners of the bottom end of the receiver.
Hearing assistance devices typically include an enclosure or housing, a microphone, hearing assistance device electronics including processing electronics, and a speaker or receiver. It is understood that in various embodiments the microphone is optional. It is understood that in various embodiments the receiver is optional. Such devices may include antenna configurations, which may vary and may be included within an enclosure for the electronics or be external to an enclosure for the electronics. Thus, the examples set forth herein are intended to be demonstrative and not a limiting or exhaustive depiction of variations.
It is further understood that any hearing assistance device may be used without departing from the scope and the devices depicted in the figures are intended to demonstrate the subject matter, but not in a limited, exhaustive, or exclusive sense. It is also understood that the present subject matter can be used with a device designed for use in the right ear or the left ear or both ears of the wearer.
It is understood that digital hearing aids include a processor. In digital hearing aids with a processor programmed to provide corrections to hearing impairments, programmable gains are employed to tailor the hearing aid output to a wearer's particular hearing impairment. The processor may be a digital signal processor (DSP), microprocessor, microcontroller, other digital logic, or combinations thereof. The processing of signals referenced in this application can be performed using the processor. Processing may be done in the digital domain, the analog domain, or combinations thereof. Processing may be done using subband processing techniques. Processing may be done with frequency domain or time domain approaches. Some processing may involve both frequency and time domain aspects. For brevity, in some examples drawings may omit certain blocks that perform frequency synthesis, frequency analysis, analog-to-digital conversion, digital-to-analog conversion, amplification, and certain types of filtering and processing. In various embodiments the processor is adapted to perform instructions stored in memory which may or may not be explicitly shown. Various types of memory may be used, including volatile and nonvolatile forms of memory. In various embodiments, instructions are performed by the processor to perform a number of signal processing tasks. In such embodiments, analog components are in communication with the processor to perform signal tasks, such as microphone reception, or receiver sound embodiments (i.e., in applications where such transducers are used). In various embodiments, different realizations of the block diagrams, circuits, and processes set forth herein may occur without departing from the scope of the present subject matter.
The present subject matter is demonstrated for hearing assistance devices, including hearing aids, including but not limited to, behind-the-ear (BTE), in-the-ear (ITE), in-the-canal (ITC), receiver-in-canal (RIC), or completely-in-the-canal (CIC) type hearing aids. It is understood that behind-the-ear type hearing aids may include devices that reside substantially behind the ear or over the ear. Such devices may include hearing aids with receivers associated with the electronics portion of the behind-the-ear device, or hearing aids of the type having receivers in the ear canal of the user, including but not limited to receiver-in-canal (RIC) or receiver-in-the-ear (RITE) designs. The present subject matter can also be used in hearing assistance devices generally, such as cochlear implant type hearing devices and such as deep insertion devices having a transducer, such as a receiver or microphone, whether custom fitted, standard, open fitted or occlusive fitted. It is understood that other hearing assistance devices not expressly stated herein may be used in conjunction with the present subject matter.
This application is intended to cover adaptations or variations of the present subject matter. It is to be understood that the above description is intended to be illustrative, and not restrictive. The scope of the present subject matter should be determined with reference to the appended claims, along with the full scope of legal equivalents to which such claims are entitled.
This patent application is a continuation of U.S. patent application Ser. No. 16/018,771, filed Jun. 26, 2018, now issued as U.S. Pat. No. 10,820,124, which is a contiuation of U.S. patent application Ser. No. 15/274,685, filed Sep. 23, 2016, issued as U.S. Pat. No. 10,021,493, which appliation claims the benefit of U.S. Provisional Patent Application No. 62/233,232, filed Sep. 25, 2015, entitled “Suspension Assembly for Hearing Aid Receiver”, each of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3118023 | Victoreen | Jan 1964 | A |
3172963 | Victoreen | Mar 1965 | A |
3257516 | Shaler | Jun 1966 | A |
3534183 | Knowles | Oct 1970 | A |
4620605 | Gore et al. | Nov 1986 | A |
4854415 | Goschke | Aug 1989 | A |
6459800 | Brimhall | Oct 2002 | B1 |
6625290 | Dittli | Sep 2003 | B1 |
6751326 | Nepomuceno | Jun 2004 | B2 |
7076074 | Gebert et al. | Jul 2006 | B2 |
7206428 | Geschiere | Apr 2007 | B2 |
8693718 | Agustiar | Apr 2014 | B2 |
9002047 | Lin et al. | Apr 2015 | B2 |
9055366 | Azmi | Jun 2015 | B2 |
9071918 | Higgins | Jun 2015 | B2 |
9578429 | Karamuk | Feb 2017 | B2 |
10021493 | Higgins et al. | Jul 2018 | B2 |
10051383 | Margot et al. | Aug 2018 | B2 |
10820124 | Higgins et al. | Oct 2020 | B2 |
20090304216 | Hansen | Dec 2009 | A1 |
20150110328 | Sondergaard | Apr 2015 | A1 |
20150201293 | Sanecki | Jul 2015 | A1 |
20170094422 | Margot | Mar 2017 | A1 |
20170094427 | Higgins et al. | Mar 2017 | A1 |
20170118567 | Larssen | Apr 2017 | A1 |
20180376260 | Higgins et al. | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
1450579 | Aug 2004 | EP |
1450579 | Aug 2004 | EP |
2096863 | Oct 1982 | GB |
2096863 | Oct 1982 | GB |
WO-2011107205 | Sep 2011 | WO |
Entry |
---|
“U.S. Appl. No. 15/274,685, Non Final Office Action dated Aug. 9, 2017”, 14 pgs. |
“U.S. Appl. No. 15/274,685, Notice of Allowance dated Mar. 13, 2018”, 8 pgs. |
“U.S. Appl. No. 15/274,685, Response filed Nov. 9, 2017 to Non Final Office Action dated Aug. 9, 2017”, 6 pgs. |
“U.S. Appl. No. 16/018,771, Advisory Action dated Apr. 8, 2020”, 3 pgs. |
“U.S. Appl. No. 16/018,771, Final Office Action dated Jan. 22, 2020”, 18 pgs. |
“U.S. Appl. No. 16/018,771, Non Final Office Action dated Jun. 20, 2019”, 20 pgs. |
“U.S. Appl. No. 16/018,771, Notice of Allowance dated Jun. 10, 2020”, 8 pgs. |
“U.S. Appl. No. 16/018,771, Response filed Mar. 23, 2020 to Final Office Action dated Jan. 22, 2020”, 8 pgs. |
“U.S. Appl. No. 16/018,771, Response filed Oct. 18, 2019 to Non Final Office Action dated Jun. 20, 2019”, 8 pgs. |
“U.S. Appl. No. 16/018,771; Preliminary Amendment filed Sep. 17, 2018”, 5 pgs. |
U.S. Appl. No. 15/274,685 U.S. Pat. No. 10,021,493, filed Sep. 23, 2016, Suspension Assembly for Hearing Aid Receiver. |
U.S. Appl. No. 16/018,771 U.S. Pat. No. 10,820,124, filed Jun. 26, 2018, Suspension Assembly for Hearing Aid Receiver. |
Number | Date | Country | |
---|---|---|---|
20210044909 A1 | Feb 2021 | US |
Number | Date | Country | |
---|---|---|---|
62233232 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16018771 | Jun 2018 | US |
Child | 16949341 | US | |
Parent | 15274685 | Sep 2016 | US |
Child | 16018771 | US |